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ABSTRACT

ALGORITHMS FOR THE GEOMETRY OF SEMI-ALGEBRAIC SETS

Dennis Soulé Arnon

Under the supervision of Professor George E. Collins

Let A be a set of poiynomials in r variables with integer coefficients. An A-
invariant cylindrical algebraic decomposition (cad) of r-dimensional
Euclidean space (G. Collins, Lect. Notes Comp. Sei., 33, Springer-Verlag,
1975, pp 134-183) is a certain cellular decomposition of r-space, such that
each cell is a semi-algebraic get, the polynomials of A are sign-invariant on
each cell, and the cells are arranged into cylinders. The cad algorithm given
by Collins provides, among other applications, the tastest known decision
procedure for real closed flelds, a cellular decomposition algorithm for
semi-algebraic sets, and a method of solving nonlinear (polynomial) optimi-
zation problems exactly. The time-consuming calculations with real alge-
braic numbers required by the algorithm have been an obstacle to its imple-
mentation and use. The major contribution of this thesis is a new version of
the cad algerithm for r=3, in which one works with maximal connected A-
invariant collections of cells, in such a way as to often avoid the most time-
consuming algebraic number calculations. Essential to this new cad algo-
rithm is an algorithm we present for determination of adjacencies among
the cells of a cad. Computer programs for the cad and adjacency algo-
rithms have been written, providing the first complete implementation of a
cad algorithm. Empirical data obtained from application of these programs

are presented and analyzed.
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CHAPTER 1

INTRODUCTION

In 1948, Tarski [TARS1] gave a qﬁantiﬂer elimination procedure, and
hence a decision procedure, for the first order theory of real closed flelds
(let RCF denote the theory). Because difficult and important mathematical
problems can be expressed in RCF ([TARS1] has examples; see also [KAH75]
and [QUA71]), there was interest soon after the appearance of Tarski's
paper in a computer implementation of the procedure (see e.g. [SEI54].
[COLs8], [COL57]). Hewever, the computational infeasibility of the method -
became apparent. In the period 1954-73 two new quantifier elimination
methods for RCF appeared ([SEI54], [COH69]) and improvements to Tarski's
method were found ([HOL74]). But despite these improved algorithms and
the enormous advances in hardware and software, an implementation suit-
able for. nontrivial problems seemed beyond available capabilities in 1973.
In a 1971 assessment of the impact of Tarski's classic paper, Abraham
Robinson reaffirmed the possibility of applying such a computer program to

substantial problems if it were available ((ROB71], p 140).

In 1973, G.E. Collins ([COL75],[COL76]) discovered a new and much more
efficient quantifier elimination procedure for RCF. For any fixed number of
variables, its computing time is a polynomial function of the length of the
input formula, whereas the time for Tarski's and other previous algorithms
is exponential in input formula length. Collins' algorithm offered renewed

hope of a feasible implementation. The principal component of the new




method is an algorithm for constructing what Collins called a cylindrical

algebraic decomposition (cad) of r-dimensional Euclidean space E". A cad

algorithm takes as input a set A =14, ...,4,} of polynomials in r variables
with integer coeflicients. Its output is a decomposition of E” into finitely
many disjoint connected subsets, called cells by Collins, with the following
property. For each cell ¢ and each 4;, either 4(z) <0 for all x in ¢
A(z)=0for all x in ¢, or A(z) >0 for all X in c. (Thus each 4 is sign-
invariant on ¢; we also say that each A is invariant on ¢, and that ¢ is 4
invariant, since we are not concerned with the value 4(z), but only its
sign.) For each cell, Collins® original cad algorithm also constructs a particu-
lar point belonging to that cell. This sample point is determined exactly, in
the sense that each of its coordinates is a real algebraic number which can

be approximated to any desired precision

A semi-algebraic set S (in E7) is, roughly, the set of all points of ET
satisfying-some given finite boolean combination ¢ of polynomial equations
and inequalities inr variables (a precise definition is given in Section 2.1). ¢
is called a defining formula of S. In [COL75], Collins showed that each cell of
a cad is a semi-algebraic set, by providing a subalgorithm of the cad algo-

rithm which constructs defining formulas for the cells.

The subject of this thesis is certain algorithms which pertain to the
geometric relationships between the cells of a cad. Itis appropriate to men-
tion existing literature on semi-algebraic geometry (e.g. [BRU79]. [HIR74]).
with which one may wish to compare our work. The fact that the cad algo-
rithm can be used to decompose any semi-algebraic set into (semi-
algebraic) cells ([ARN79]). is a further connection between cad's and semi-

algebraic geometry.



Implementation of the cad algorithm began soon after its discovery.
Between 1974 and 1977 significant work was done by Collins, A. Akritas of the
University of Wisconsin, and R. Loos, M. Lauer, and E. Lauer of the University
of Karlsruhe. These efforts built on the contributions of the many persons
who had participated in the development of the SAC-1 and SAC-2 Computer

Algebra systems.

F. Miiller of the University of Heidelberg implemented portions of the
cad algorithm between 1974 and 1977, as described in his dissertation
[MUE?77]. His objective was to obtain single solution points to (nonlinear)
optimization problems involving polynomial functions. By using the cad
algorithm, he was able to obtain exact algebraic number coordinates for
such points. Since he sought only the first occurrence of a certain kind of
cell in a cad, however, his algorithms discarded irrelevant cells, and in gen-
eral simplified the cad algorithm wherever possible. For example, he did not
need to construct defining formulas for cells, which is essential to the appli-
cation of thé cad algorithm to RCF quantifier elimination. An empirical
observation he made about the algebraic number calculations performed by

. .....the. cad algorithm.was one.of the .starting points for. the work reported in

this thesis. We will say more about this observation below.

In 1978 several of the major subalgorithms (e.g. DEFINE, DECOMP,
APROJ of [COL75]) of the cad algorithm remained unimplemented. In 1979-
1980, Arnon carried out the first complete implementation of the cad and
RCF quantifler elimination algorithms. It became apparent that the range of
feasibility of the cad algorithm was limited. The bottleneck, as Loos had
predicted and Miiller had observed, was the time required for the exact cal-

culations with real algebraic numbers, specifically the constructive version




of the primitive element theorem.

In a 1978 letter to Collins [KAH78], Peter J. Kahn of Cornell University

had made the striking observation that a cad of £ is what would be called in
algebraic topology a cellular decomposition of £ (see e.g. [MAS7B], p 54).
An i-cell in ET, for any i, 0<1i < 7, is a subset of E” which is homepmorpbic
to E" (E° is deflned to be a single point). A cellular decomposition of £7 is a
collection D of disjoint i-cells in ET, for various i, 0<1i <, such that for
each i, the union of the j-cells in D, 0= j <1, is a closed subset of £7, and
the union of D is £7. Kahn went on to raise the possibility of using a cad to
compute the homology groups of semi-algebraic sets, for which one would
need to know the incidences among cells. For i=0, an i-cell ct is said to be
incident on an (i+1)-cell ¢**!if ¢* and c**! are disjoint, and if ¢* is contained
in &**!, the closure of c**!. The cad algorithm as originally given, however,
does not produce incidence information. In [ARN79], it was shown that
incidence of cells of a cad is decidable, by expressing the assertion "c* is
incident on c'*!” as a sentence in RCF. Applying a quantifier eliﬁlination
algorithm for RCF, one would have an (inefficient) algorithm for incidence

determination.

Following the implementation of the original cad algorithm, when it
became clear that the time required for algebraic number calculations inhi-
bited its use, it was seen that incidence determination might offer a means
of alleviating the problem. Let 4,,....,4, be the input polynomials to an
iavocation of the cad algorithm. Scott McCallum pointed cut that, for cad’s
of £ the hardest algebraic number calculations, in the sense of requiring
extension flelds of highest degree, usually occur for the sample points of

certain O-dimensional cells of a cad with the following property: there exists



a 1-cell of the cad, on which the O-cell is incident, such that each 4; has the
same sign on both cells. The observation of F. Miller [MUE77] mentioned
above complemented McCallum's. For cad's of E?, the essence of Miiller's
observation is that, in most cases, the algebraic number calculations for all
cells other than those that McCallum had distinguished could be done in
extension flelds of low degree. Thus arose Athe idea of "pasting”, in some
sense, the O-cells McCallum had distinguished to the 1-cells with the same
sign patterns on which they were incident, for the purpose of avoiding the
algebraic number calculations for the O-cells. Extending this idea, Arnon
proposed, for cad's of E™, the notion of an A-invariant cluster of cells,
namely a collection C of cells of a cad such that, where R is the union of C, R
is A-invariant. For r < 3, it has been found possible to modify the cad algo-
rithm to do certain algebraic number calculations only for maximal A-
invariant clusters, instead of individual cells, often yielding a substantial
time saving. The price of this speedup is that one no longer obtains sample
points for all cells of a cad, but this does not impede using the cad algorithm
as a quantifier elimination algorithm for RCF.

It is essential to this clustering version of the cad algorithm to have an
eflicient incidence algorithm. For technical reasons, it became convenient
to speak of adjacency of cells rather than incidence. Two connected subsets
X, and X, of ET are said to be adjacent if their union is a connected set. (It
will be shown in Chapter 3 that, under certain hypotheses, if c* and c¢**! are
respectively an i-cell and an (i+1)-cell of a cad of £7,r <3, then ct is
incident on c¢**! if and only if ¢* and c'*! are adjacent.) In 1980 Arnon found
a new and more efficient adjacency (incidence) algorithm. The idea of the

new algorithm was to evaluate a defining formula for g'*! at a sample point




of c*, and thereby decide whether c! is contained in #**!. This algorithm

may thus be called the "formula closure adjacency algorithm” . The imple-

mentation of a clustering cad algorithm was completed soon afterwards.
The formula closure adjacency algorithm, and hence this first clustering cad
algorithm, suffered from the limitation that the primitive parts of the r-
variate input polynomials, and of certain of their partial derivatives, could
not vanish identically on the vertical line over any point of £7~! (this can
only happen if r=3).

In a 1979 M.Sc. thesis [MCC79] on constructive triangulation of (alge-
braic) curves and surfaces, McCallum gave algorithms for computing a sim-
plicial decomposition of a single curve in £? or a single surface in £°, and
also gave algorithms for incidence determination in such decompositions.
His incidence algorithms are based on the idea of drawing a sufficiently
small box about a point of a curve (or surface), and counting the intersec-
tions of the curve (or surface) with the sides of the box. It was observed
that the McCallum incidence algorithms could be extended to provide adja-
cency algorithms for cad’s of £2 and E°, and would have the advantage over
the formula closure algorithm of not requiring the construction of defining
formulas. However, the McCallum £? adjacency algorithm would have a res-
triction similar to that on the formula closure algorithm, namely that the
trivariate input polynomials not vanish identically on any vertical line over a
point in £2. In 1980, using the McCallum £? adjacency algorithm as a subal-
gorithm, a new cad adjacency algorithm for £° was found jointly by Collins,
Arnon, and McCallum, which does not place the "non-vanishing" limitation on
the input polynomials (and which does not require the construction of

defining formulas). The new E° adjacency algorithm proceeds by reducing



the given E? adjacency problem to a number of £? adjacency problems. The
McCallum E? adjacency algorithm and the new £? algorithm have been made
a part of a second version of the clustering cad algorithm. In the remainder
of the thesis these two adjacency algorthms will be referred to as the "sec-
tion boundary adjacency algorithm for 2-space”. and the "section boundary

adjé.cency algorithm for 3-space” respectively.

The major contribution of this thesis is the clustering cad algorithm. In
Chapter 2 we review the original cad algorithm. Chapter 3 contains results
on the nature of cell boundaries which are essential to all that follows.
Chapter 4 develops the clustering cad algorithm. Chapter S develops the
section boundary adjacency algorithms. In Chapter 6 we describe various
experiments which we have performed with the computer programs for our

algorithms. Chapter 7 summarizes the thesis.

The investigations reported in this thesis are related to the problem of
"solving systems of polynomial equations” in computer algebra. Programs
for this task, utilizing some of the classical elimination theory of .a.lgebraic
geometry, have been available in several computer algebra systems, as

described in [WIL82], [MOS86], and [YUN73].




CHAPTER 2

THE ORIGINAL CYLINDRICAL ALGEBRAIC

DECOMPOSITION ALGORITHM

Section 2.1 contains definitions and a first sketch of the algorithm.
Section 2.2 is a new and complete exposition of the underlying mathematical
results. Sections 2.3 - 2.5 discuss certain important aspects of the algo-

rithm, and Section 2.8 presents an abstract version of it.

2.1 Asynapsis.

Our first concern in this section is to precisely define the notion of an
A-invariant cylindrical algebraic decomposition. We then summarize the
"original” cad algorithm, which terminology shall refer as in Chapter 1 to the
cad algorithm in [COL75]. For any r=0, let /. denote Z[z,, .. ..z ] the ring
of integral polynomials in r variables. We view /., r=1, as f._;[Z,], and with
respect to this view, write ldcf (F) for the leading coefficient of any F in /.,
and deg (F) for the degree of any F in I;.. (The degree and leading coefficient
of the zero polynomial are both zero.)

Throughout this thesis, by the term "formula" we shall mean "well-
formed formula of RCF", as defined in [TARS51]. We will also adhere to the
convention that ¢(z,, . . . .z,) denotes a formula ¢ in which all occurrences
of z,,...,z, are free, each z; may or may not occur in ¢, and no variables

besides zy, . . . , Z, occur free in ¢.



Definition. A standard atomic formula is a formula of one of the six forms
A=0,A>0,4<0 A#0 4=0, and A <0, where A€/, for some r. A stan-
dard formula is any formula which can be constructed from standard
atomic formulas using propositional connectives and quantifiers. A standard
prenez formula is a standard formula of the form

¥(zy, ... %) = (QeerZrer) - (@Z)(Zr . oo Zp)
where ¢(z,, . . . .Z;) is a quantifier-free standard formula, O<k=<r, and each

(@,z,) is either an existential quantifier (£z;) or a universal quaztifier (Az;).

Clearly for any formula, there is an equivalent standard prenex for-

mula.

Definition. A definable set in E*, k=1, is a subset S of £* such that for some
formula ¥(z,, ...,Z), S is the set of points in £* which satisfy ¥. ¥ is
called a defining formula for S. Given any formula ¥, we write S(¥) to

denote the definable set determined by it.

Definition. A definable set S is semi-ulgebraic if S has a defining formula

which is quantifier-free.

It follows immediately from the definition that the semi-algebraic sets
in ET are a boolean class of subsets of ET. That is, they are closed under
finite unions, finite intersections, and complementation. Because of the
existence of a quantifier elimination procedure for RCF, a subset of E7 is
definable if and only if it is semi-algebraic. [HIR74] gives some other

equivalent definitions of semi-algebraic set.

Definition. A regionin E7, =1, is a nonempty connected subset of £7.
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We note that a "region” is usually required to also be open. Our usage,

while unconventional, will be a great convenience in this thesis.

Definition. For any 7=1 and any subset X of £”, a decomposition of X is a
finite collection of disjoint regions in £™ whose union is X. A decomposition

is algebraic if each of its regions is a semi-algebraic set.

Remark. Since an i-cell is a region, a cellular decomposition of E™ as
deflned in Chapter 1 is a decomposition of £ according to the definition just

given.

Definition. For any region c in E™~! 21, the cylinder over ¢, written Z(c),
is the Cartesian product cxE € ET. c¢ is called the base of Z(c). A cylinder

in ET is a cylinder over c, for some region ¢ in £7 L.

Definition. Given a region ¢ in ET"l,r=>1, a saction of Z(c) is a subset s of
Z(e) such that for some continuous function
fie=E,5 = graph(f) = {<a.f(a)> | a€c). s is said to be the f-section
of Z(c). In the case r=1, one must have ¢ = E9, and we identify any function

f defined on c with its unique value €k,

Definition. For any region c¢ in £™~!, r=1, a sector of Z(c) is a subset s of

Z(c) such that one of the following four conditions holds.

(1) There is a  continuous function  f:ic-=F such  that
s = {<ab>eZ(c) | b < f{a)}. (sisthe (—= f)—sector of Z(c)).

() There are continuous functions f, < fzc-=E such that
s=f<ab>eZ(c) | fila) <b < fala)]. (s is the (f,.fz)—sector of
Z(c)).
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(38) There is a continuous function Jic=F such that

s {<a,b>€Z(c) | b > f(a)]. (sis the (f.=)=sector of Z(c)).
(4) s = Z(c). (sisthe (~=,=)=sector of Z(c)).
Observations.

(1) Sections and sectors of cylinders are regions, i.e. they are connected.

(8) Where mET-E""! is the standard projection, if ¢ is a region in £ with

r=1, and if s is a section or sector of Z(c), then ni(s) = c.

Definition. Let c be aregion in E7~!, 721, and suppose we are given continu-

ous functions f; < f2 < - < fric=E, k=0. The (f,.....fr)-induced
stack over ¢, written S{f;, ... .fe.C), is defined as follows. If k = 0, then
S(f1 ... Je.)is §2(c)}. It k=1, then S(f;,....f.C) is the collection

of the following subsets of Z(c):

(=~eo,f )-sector
J 1~section

(f 1.f 2)-sector

J z-section

(fE-1.S g )-sector

J -section

(fg.=)-sector

Observation.. S(fy, ....frC)is a decomposition of Z(c).

Definition. Let ¢ be a region in E™!, 7=1. A stack over c, written S(c), is




12

S(fy..-JeC) for some continuous functions

J1 £ fa2 < '+ < frc=F, k>0. A stack in E” is a stack over c for some

region ¢ in 771,

Definition. Let S and T be stacks in E7,r21. T is a refinement of S if every

element of S is a union of elements of T.

Definition. A stack is algebraic if each of its elements is a semi-algebraic

set.

Definition. A decomposition D of £7, r=1, is cylindrical if
(1) r=1andD is a stack in £, or
(2) r>1 and there is a cylindrical decomposition D' of E7~! such that for

every c in D', if S(c) is the set of all regions of D which meet Z(c), then

S(c) is a stack over ¢, and

D= y S(c).
ceD’

1t is clear that D' is unique, and thus associated with any cylindrical
decomposition D of E7, for =2, are induced cylindrical decompositions I; of
E* for i=r-1,r-2,....1.

A cylindrical algebraic decomposition of ™, r=1, is a decomposition of
E™ which is both cylindrical and algebraic. Associated with any cad D of E7,
r=2, are induced cad's J; of £* for i=r-1,r-2,...,1.

As mentioned in Chapter 1, Kahn in his 1978 letter [KAH78] made the
important observation that each region of a cad is an i-cell for some i. It is

clear how the dimensicns of the cells of a cad D of £” are inductively deter-

mined. If r = 1, then each point a; is a O-cell, and each open interval is a 1-
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cell. If r > 1, then assume the dimensions of the cells of the induced cad D’
of ET~! are known. Each cell d of D is an element of a stack S over a cell ¢ of
D'. If d is a section of S, then dim. (d) = dim (c), and if d is a sector of s, then

dim (d) = dim(c) + 1.

Definition. Let D, D° be cad's of E™,r=1. D’ is a refinement of D if for every

cell ¢ of D, there is a collection of cells of D° whose union is c.

Definition. Let F be any element of /., 7=1. Let X be a subset of £7. Fis
said to be invariant on X (and X is said to be Finvariant), if one of the fol-

lowing three conditions holds:

(1) F(a) > 0for all a in X. ("F has positive sign on X").

(2) F(a) =0 for all a in X. ("F has zero sign on X).

(3) F(a) < 0for all « in X. ("F has negative sign on X"').

Thus F is invariant on X if and only if the sign of F is invariant on X. Let
A =14y ..., ,4,), n=1, be any set of elements of /.. X is said to be 4

invariant if each 4, is invariant on X. A stack in £™ or a decomposition of £7

is A-invariant if each of its regions is.

Note that a constant polynomial, e.g. the zero polynomial, is invariant

on any subset of £7.

Observation. Suppose A C [,,r=1 and let S be a stack in £7. If S is A-
invariant, then any refinement of S is A-invariant. If D is an A-invariant cad

of £7, then any refinement of D is A-invariant.

The original cad algorithm for determining an A-invariant cad of £7 can

be summarized as follows. If the input polynomials A = {4,,....4,} are
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n
univariate, we take the real roots of HA‘ as real numbers a;, . . . ,a; deter-
iml

mining a cylindrical decomposition D of E! (we may assume without loss of
generality that each 4; is nonzero). Since each oy is algebraic, one easily
shows that D is algebraic, hence D is a cad of E!. Also, D is clearly A-
invariant. If A is a subset of I.. r>1, suppose that we have a means of con-
structing a finite subset P(A) of /,—; such that if ¢ is any cell of a P(A)-
invariant cad of £7~!, then there is an A-invariant algebraic stack over c. We
call the cad algorithm recursively with P(A) as input to obtain a P(A)-
invariant cad D’ of £7~1. We then determine the sections and sectors of each
A-invariant algebraic stack over a cell of D' to obtain an A-invariant cad D of
ET. Section 2.2 presents the original cad algorithm in more detail, via a
proof of the theorem (Thereom 2.2.1) that there exists an A-invariant cad for
any 4 € I.. In the course of proving Theorem 2.2.1, we define an appropriate

P(A) and establish that it has the required property.

2.2 The aristence of A-invariant cylindrical algebraic decompositions.

Definition. An algebraic point of £7,r=1, is a point of £™ each of whose coor-

dinates is a real algebraic number.

Thegrem 2.2.1. Given any finite set 4 = {4,,...,4,] of polynomials in
[., 7=1, there exists an A-invariant cylindrical algebraic decomposition of

ET, every cell of which contains an algebraic point.

Proof. We may assume each 4; is nonzero, since if A’ is the set of nonzero
elements of A, any A’-invariant cad of E™ is A-invariant. Furthermore, we

may assume n=1, since if n = 0 then {£7{ is an A-invariant cad of £7. We
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proceed by induction on r as follows. The case r=1 is straightforward, for, as

n
noted above, the real roots of | [ 4 determine an A-invariant cad D of E', and
=l

clearly each cell of D contains an algebraic point. For r>1, Theorems 2.2.17
and 2.2.18B below establish the existence of a map P which associates with
any finite subset A of /, a finite subset P(A) of [,_;, such that for any P(A)-
invariant cad of ET~!, there is an A-invariant algebraic stack S over each cell
¢ of this cad. Theorem 2.2.2 below establishes that if ¢ contains an algebraic
point, then so does every cell of S. By the inductive hypothesis a P(A)-
invariant cad D' of E7"! exists, such that every cell of D’ contains an alge-
braic point. From this we immediately obtain the existence of an A-
invariant cad of E™ such that each cell contains an algebraic point, namely

the union of the stacks over the cellsof D', =

The remainder of this section is devoted to proving the theorems which

serve as lemmas for Theorem 2.2.1 (Theorems 2..2.2. 2.2.17, and 2.2.18).

Notation. Let F be an element of [,, 722, let G be an element of /._;, let ¢ be
a region in 77}, and let a be a point of c. We write Fa(z,) or F, to denote

F(a,z,), and G, to denote G(a).
Definition. A complex number is strictly complez if it is non-real.

Definition. Let F be a nonzerv element of /r, 7=2. Let c be a region in ET1,

Let V*(F) denote the variety of F, i.e. V°(F) is the set of all <@y, ....ar >,
with each a; complex, such that F(a,,....,a.) = 0. Let V(F) denote the
real variety of F, i.e. V(F) is the set of all <a,, ... ,a, > in V*(F) with each

a, real. We say V'(F) is delineable on c if the following two conditions are

satisfied:




16

(1) V(F) N Z(c) consists of finitely many disjoint sections sy, ... .5, of

Z(c), m=0, such that for each i, 1<i<m, the following condition holds:

there is a positive integer e; such that if s; is an f;—section, then f(a)
is a root of F,(z,) of multiplicity e; for all a in c. (e; is the multiplicity
of s;.) If m=1, thens,, . .., 5y are called the F-sections of Z(c). Without
loss of generality we may assume [f;<[f3< ‘' <fpni
S(f1....fm.c) is called the Fuinduced stack over c, written S(F.c).
When convenient, we write §, <52 < - '+ < Spn. The sectors of S(F,c)

are called the F-sectors of Z(c).

(2) The multiset of the multiplicities of the distinct strictly complex roots
of Fla,z,) is invariant over all a in c. (See [KNU89], p. 411, for a

definition of multiset).

We will usually abbreviate "V°(F) is delineable” to "F is delineable".

Thearem 2.2.2. Let Fel,, =2, be delineable on a region c in £7 ~! which con-
tains an algebraic point. Then every region of S(F,c) contains an algebraic
point.

Proof. Let a€c be an algebraic point. If S(F,c) has m=0 sections, then
F(a,z;) has m real roots by, ...,bm, each of which is a real algebraic
number. Thus < a,b;>,..., < a,by, > are algebraic points each of which
lies on a distinct section of S(F.c). “Clearly for every sector s of S(F,c), there

exists a rational b such that < a,b>€s. =

Lemma 2.2.3. Let Fel,, 7 =1, and let R be a region in £7. If F(z)»0 for all
z€R, then either F(z) > Oforallz€R, or F(z) < 0 for all z€R.
Proof. let U,={z|z€E" & F(z) >0}, and let U, ={z|z€k” & F(z) < 0}.

Since F is a continuous function £™ - £, every point of U, is an interior point,
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hence U, is open. Similarly, Usisopen. Let Vi= Uy, N Rand V= Uz N K.
¥, and V, are both open in the subspace topology on R, and # = V; U V2.
Since R is connected, there do not exist nonempty disjoint open subsets of R

whose union is R. Hence either V; = @or V; = 4. =

L[emma 2.2.4. Let Fel,, r=2, be delineable on a region c in E™~'. Then
S(F.c) is F-invariant.

Proof. S(F.c) could only fail to be F-invariant if some sector of S(F,c) is not
F-invariant. By definition of delineability, F does not vanish at any point of a
sector of S(F.c). Hence by Lemma 2.2.3, every sector of S(F.c) is F-

invariant, hence S(F,c) is F-invariant. =

Definition. Let ¢ be a region in E7, r=1, and T a function defined on c. Let
the topology on ¢ be the induced topology from E7. T is locally invariant on
¢ if for any a€c, there is an open neighborhood M of a in ¢ such that

T(8) = T(a) for all fcH.

Lemma 2.2.5. Let ¢ be a region in £™~!, r=2, and T a function defined on c.
If T is locally invariant on c, then T is invariant on c.

Proaf. Choose any 7 in c¢. Let S, be the union of the T-invariant neighbor-
hoods M(a), for all those a in ¢ such that T(a) = T(y). Let S; be the union
of the T-invariant neighborhoods M(a), for all those a in ¢ such that
T(a) # T(y). ¢ =8, U Sa S, is nonempty, and if S is also nonempty, we
have a partition of ¢ into disjoint nonempty open subsets, contradicting its

connectivity. Hence Sy is empty, hence Sy =c¢, i.e. Tis invariant on c.»

Definition. Let ] be a unique factorization domain. Let F,G be nonzero ele-

ments of J[x]. If deg(F) > deg(G)., let F/; = F and Fp = G, else let F; = G and
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Fo=F. Let F1,Fa, ... ,Fr, k22 bea polynomial remainder sequence as
defined in [BRT71]. Let ny = deg(f;), 1<i=<k. Then ny;ng ... T is the

degree sequence of F and G.

Definition. Let F and G be nonzero elements of J [x], J a unique factorization
domain. Let k = min(deg(F),deg(G)). For 0<j <k, we write S;(F.G) to
denote the ji* subresultant of F and G [BRT71]. For 0=j < k, the j princi-
pal subresultant coefficient of F and G, written psc;(F.G), is the coeflicient
of z{ in 5;(F.G). We define psci(F.G) to be 1€J. The psc set of F and G,
written PSC(F,G), is

{psc;(F.G)|0sjsk & pse;(F,G)#0}

Theorem 2.2.6. Let F and G be nonzero elements of J[x], J a unique factori~

zation domain. Let myma, . ...ng. k =2, be the degree sequence of F and G.

Then

(1) my = deg(ged(F,G)), and

(2) For any j, 0<j <mng pscy(F.G)#0 if and only if j =mny for some i
R<sisk.

Proof. Let F,Fp, ..., F, be a polynomial remainder sequence whose first

two terms are F and G; thus m; = deg(F;), 2<1i < k. As pointed out on p.

508 of [BRT71], Fi ~gcd(F.G), where ~ denotes similarity. Hence

n, = deg(ged(F,G)). Suppose for some j, 0<J <mn,, that psc;(F,G)=0. If

j = ng we are done, so suppose j <Nz Then by the fundamental thoerem of

polynomial remainder sequences [BRT71], either j =mn; for some L.

3<i<k, orj=npn--1, for somem,3=m <k. If j =nq we are done, so

suppose j = tm—; - 1. Then Np-y-1=7m. Suppose M- -1 > N,. By the
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fundamental theorem of p.r.s., Sn,_, -1(F.G) ~ Sn_ (F.G), s0

dag (Sn,, -1(F.G)) = deg (S, (F.G)) = up < Tim_y=1=3.
Hence psc;(F,G) =0, a contradiction. So j =np-1 -1 =Nm, and we are
done. Suppose conversely that j = n; for some i, 2<is<k. Ifi =2, then

pscﬂz(F.G) =1#0. If i =3, then by the fundamental theorem of p.r.s.,

S,“(F.G) ~ Fy, hence dag(S,.‘(F.G)) = deg (F}) = ny, hence psc, (F,G)#0. «

Corollary 2.2.7. Let F and G be nonzero elements of J[x], J a unique factori-
zation domain. Then dag(ged(F,G)) = k if and only if k is the least j such
that psc; (F.G)#Q.

Proof. Follows immediately from Theorem 2.2.6. «

Definition For Fel.r=1, the derivative of F, written der(F) or F', is the

partial derivative of F' with respect to z,.

Theorem 2.2.8. Let F be a nonzero element of /., 7=2. Let ¢ be a region in

E™"! such that (Idcf (F))e#0 for all a in c. Then the following are equivalent:

(1) F is delineable on c.

(2) The number of distinct (complex) roots of F,(;,) is invariant over all a
in c,

(3) If deg (F)=2, then the least k such that psc, (F,F 'q)#0 is invariant over
all ain c.

Proaf. We show (1) iff (2), and () 1ﬂ (3).

(1) => (2): An immediate consequence of the definition of delineability.

(28) => (1): If F, has no roots for all a in ¢, the assertion is immediate, so

suppose that f, has p = 1 distinct complex roots for all acc.
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Choose some a€c, and let z,, ...,2p, be the distinct complex roots of
F,. There exists an s satisfying 0 <s = p, such that 2, <2< -+ <z, are
real, and 244y, . . ., 2p are strictly complex. Let e; be the multiplicity of z;

for 1=<1i<p. Let § be a positive real number less than 1/ 2 sep (F,), where
sep (F,) is the minimum distance in the complex plane between any two dis-
tinet roots of F,. For 1<1i <p, let (; be the circle in the complex plane of
radius § centered at z;. By Theorem (1,4) of [MARB8], there is a neighbor-
hood M in ¢ of a such that for all A€M, and for 1 =i < p, Fg has e roots,
multiplicities counted, in §. Since Fjy and F, each have p distinct roots,
and since the interiors of the ('s are disjoint, Fg has one root of multipli-
city e; in ( for 1 <1 = p. The root y; of Fg in § cannot be strictly complex
ifi = s, for then the complex conjugate of y; would be a second distinet root
of Fgin Cy, a contradiction. The root of Fgin & cannot be real ifi > s, for
by the choice of 8, C; contains no real points when i > s, since complex

roots occur in conjugate pairs.

Thus where o(g) is defined to be the number of real roots of Fg for any
ge€c, o is locally invariant on ¢, hence by Lemma 2.2.5, ¢ is invariant on c
with the value s = g(a). For any fec, let z,(8) < z2(8) < - - < z4(8) be the
real roots of Fs. For 1=1i<s, we define a function f;:c-+e by setting
fi(B) = z;(B) for any fec. From our argument above, one sees that each f;
is continuous. For 1 =i <s and for any f<c, define &;(8) to be the multipli-
city of f;(g) as a root of Fg. From our argument above one also sees that for
1<1<s, g is a locally invariant function on ¢, hence by Lemma 2.2.5, g; is

invariant on c. Hence F satisfles condition (1) of the definition of delineabil-

ity.



21

For any f<c, define m(g) to be the muiltiset of the multiplicities of the
distinct strictly complex roots of Fjs. Again from our argument above, one
sees that m is locally invariant on ¢, hence m is invariant on ¢. Thus F
satisfles condition (2) of the definition of delineability, and so is delineable

onc.

(2) => (3): Since (ldcf (F))q is nonzero for all a in ¢, ny = deg (Fg) is invari-
ant over all @ in ¢. If ng =0 or 1, then the assertion is trivial, so assume
ng=2 for all a in c. For any « in ¢, let k, be the degree of
Colzy) = ged(F,(z;).F's(z,)). Where p, is the number of distinct roots of
F,, one easily sees that p, = ng -k, Since p, and n, are invariant over all
acc, so is k,. Hence by Theorem 2.2.7, the least k such that psc, (FaF')#0

is invariant over all a€c.

(3) => (2): 1t deg(F) is 0 or 1 then the number of distinct roots of Fq(z.) is
clearly invariant over all a in ¢, so assume deg (F)=2. Let k be the nonnega-
tive integer such that for all a in ¢, k is the least k such that pscg (Fa.F 'a) is
nonzero. Then by Theorem 2.2.7, deg (ged(Fa.F''a)) = k is invariant over all
a in c. Since n, = deg(Fy) is invariant over all a in ¢, we have that p, ., the
number of distinct complex roots of F,, is invariant over all a in c, since

Do = na"];"

Theorem 2.2.9. Let A and B be elements of I, 7=2, both of which are deline-
able on a region ¢ in E"!. Assume also that (idcf(A4)),#0 and

(ldef (B))q # 0 for every a in c. Then the following are equivalent:

(1) ABis delineable on c.
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(2) Any A-section s; and any B-section sp of Z(c) are either disjoint or

identical, and the number of distinct common strictly complex roots of

Aq and B, is invariant over all ain c.

(3) If A and B both have positive degree, then the least k such that

psC (Aa(Zy ). Balz,))#0 is invariant over all a in c.

Proof. For the duration of this proof we define D = AB, C, = ged(AgBa) for

any a€c, and p(da), P(Ba). p(Dg), and p(C,) to be the number of distinect

complex roots of 4a, Ba D, and C, respectively. for any a€c. We note that
p(Da) = P(4q) + P(Ba) - P(Ca)

for any a in c.

(1) => (2) Let s4 be an f4~section of A on c and sp be an fp—section of B

on ¢. Since AB is delineable on c, 54 and sp are contained in sections s'4 and

s'p of‘AB on ¢ respectively. Clearly s4 = s'y and sg = s'p. By definition of

delineability of AB, 54 and sp must either be disjoint or identical.

By the argument just concluded, we have that the number of distinet
common real roots of 4, and B, is invariant over all a€c, i.e. the number of
distinct real roots ‘of C, is invariant over all acc. Since D, A, and B are
delineable on ¢, p{Dg), p(4s). and p(B,) are invariant over all a<c. Hence
since

p(Ca) = P(Aa) + P(Ba) -P(Da),
p(C,) is invariant over all acc, hence the number of distinct common

strictly complex roots of 4, and B, is invariant over all a<c.

(2) => (3) If either Aq(zy) or Ba(z,) has degree zero for all a in ¢ the asser-

tion is trivial, so assume both have positive degree. Since any A-section and
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any B-gsection are either disjoint or identical, and since the number of dis-
tinct common strictly complex roots of A, and B, is invariant over all a in c,
the number of distinct roots of C, is invariant over all « in ¢. But then the
multiplicities of the distinct roots of C, are also invariant over all a in ¢,
since the multiplicity of any root of C, is the minimum of its multiplicities
as a root of A, and as a root of B, which by delineability of A and B on ¢ are
both invariant over all a in c. Thus the total number of roots of Cq, multipli-
cities counted, is invariant over all a in ¢, i.e. the degree of C, is invariant
over ¢. Then by Theorem 2.2.7, the least k such that psc,(44.5,4) is nonzero

is invariant over all a in c.

(3) => (1) We first note that since (ldcf (4)),#0 and (Idcf (8))a#0 for all @
in ¢, (idef (D))o#0 for all a in ¢. If either A or B has degree 0, then D is obvi-
ously delineable, so assume that both A and B have positive degree. By
Theorem 2.2.8, if p(D,) is invariant over all a in c, then D is delineable on c.
Since A and B are delineable on ¢, p(Ag) and p(5,) are invariant over all a in
c by Theorem 2.2.8, so it suffices to show p(C,) invariant over all a in ¢c. We
establish this by showing that for every a in ¢, there is a neighborhood M in ¢

of & such that for every 8 in M, p(Cg) = p(C,), then applying Lemma 2.2.5.

By assumption, the least k such that psc, (A4 B,) is nonzero is invariant
over all a in ¢. Then by Theorem 2.2.7, k4 = deg (C,) is invariant over all « in
c. Choose any « in ¢. Since p(A4p) and p(Bp) are invariant over all 8 in c,
since the roots of A, and the roots of B, together comprise the roots of J,,
and since sep(D,)<sep(A,) and sep(D,)ssep(B,), by two applications of
Theorem (1.4) of [MARB6] and an argument like that used in the proof of

Theorem 2.2.8, we can find a neighborhood M in ¢ of a and disjoint circles
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centered at the roots of D, such that for each circle (;, the following condi-
tions hold. Either 45 has one root of invariant multiplicity in G for all 8 in
M, or Ag has no roots in G for all 8 in M, and either By has one root of invari-
ant multiplicity in G for all # in M, or By has no roots in ; for all # in M.
Furthermore, for any g in M, each root of 4z is in some C; and each root of
Bg is in some C;. Thus every root of C,"(z,.), for any €M, is in one of those
circles €, which contains a root of both 4, and B, i.e. a root of C,. Thus
P(Cp) < p(Cq). Let Cy, .... G, be the circles containing a root of C,: thus
h =p(C,). For 1<i=h, for any feM, let

e((8) = the number of roots of Cy in (;, multiplicities counted.

e;(8) = the multiplicity of the unique root z;(g) of 4gin C;.

e;(B) = the multiplicity of the unique root z; () of Bgin G.

Since for all f€#, and for 1 <1i < h, we have e;(8) = e;(a) and e; (8) = e{(a),
we have
in(e;(a).e(a)) = e(a) .2((8) = 2 (B)
e.(8) =

0 2(B) =2 (B)
for any feM, and e;(a)=1. Furthermore, for all f€M,

kg = élei(ﬁ)-
Suppose for some f€M and for some i, 1 <1 < A, that C; does not contain a
root of Cg. Then z((f)#2;(#), hence e;(8) = 0, hence kg < k,, a contradic-
tion. Thus for every geM, and for each i, 1 =i <h, C; contains a (unique)

root of Cg. Hence for all f€M, p(Cq) = p(Cq). *

Theorem 2.2.10. Let A,.B be elements of /,,r=2. Let c be a region in £7~%.
Assume (ldcf (4)).#0 and (ldcf (B)),#0. for every acc. If AB is delineable

on c, then A is delineable on c.
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Proaf. By Theorem 2.2.8 and Lemma 2.2.5, it suffices to show that the
number of distinct roots of A is locally invariant on c¢. Let a€c. Let D = AB,
and let zy,...,2z, be the distinct roots of D at a. by Theorem (1,4) of
[MARS8], there are disjoint circles Cy, . .. . &, with z; the center of §, and a
neighborhood M in ¢ of a such t.hat if e; is the multiplicity of z; as a root of
AB at «, then for every B€M, Dg has e; roots in &, multiplicities counted. By
another application of the same theorem, we may choose M small enough
that if e is the multiplicity of z; as a root of A at a (zero in case z¢ is not a
root of A at a), then Ay has e, roots in ¢, multiplicities counted, for every
peM. By a third application of the theorem, we may assume that the same
is true with B in place of A. Since D is delineable on ¢, it follows from
Theorem 2.2.8 that Dg has exactly p distinct roots for every geM. Hence
since each C, contains at least one root of Dg, it must contain exactly one,
for every f€M. Let z; be a root of A,. Let geM and let Z; be the unique root
of Dgin . If Z; is not a root of Ap then Ag has no roots in C;. Butif e{ is the
multiplicity of z; as a root of 4, then e; > 0 and C; contains e; roots of Ag,
multiplicities counted, a contradiction. So 2 is a root of 4, indeed the
unique root of Ag in . Further, if z; is not a root of 4,4, then e; =0, and
hence if €M, then Ay has no roots in C.. So Ag and A, have the same

number of distinct roots for every feM. =

Corollary 2.2.11. Let 4,, ..., 43, n =1, be elements of /., 7=2, such that

n
(idcf (4))a#0 for 1 i <n and every acc. If [[4 is delineable on ¢, then

i=1

each 4; is delineable on c.

Notation. For an element 4; of I, we write 4;, for (4i)a.
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Theorem 2.2.12. Let Aydg, ....A,,n=1 be elements of [, 722, each of

which is delineable on a region c in E”~!. Assume aiso that (ldef (4))a# 0

n
for 1<i<n and every a in c. Then [[4; is delineable on c if and only if for all
i=}

jandj, 1 €1 < j = n, A4y is delineable on c.

n
Proof. Let A = [[4. Since for each i, (ldcf (4;))q is nonvanishing for all a

i=1

in ¢, we have (ldcf (4)), #0 for all a in c. Suppose tbat for all i and j, i<j,
A4y is delineable on ¢. Then by Theorem 2.2.9, for all i and j, every A
section and every 4;-section of Z(c) are either disjoint or identical, and the
number of common strictly complex roots of 4;, and 4; 4 is invariant over all
a in ¢. From this one easily sees that the number of distinct roots of 4, is
invariant over all a in ¢. Hence by Theorem 2.2.8, A is delineable on c. Sup-
pose conversely that A is delineable on c. Then since for all i and j .,
1<1i<j=<n, A4 divides A, and (ldcf (Ai4j))a#0 for all agc, by Corollary
R.2.11, A4y is delineableonc. ©

Corollary 2.2.13 Let A4z ... . 45, n=1 be elements of [, r=2, each of
which is delineable on a region ¢ in E™"!. Assume also for l<i<n that

(ldef (A4;))q # O for every a in ¢. Then the following are equivalent:

n
(1) T[4 is delineable on c.

i=l
(2) For anyiandj, 1<1i<j=n,each 4;-section s; and each A;-section sy
of Z{c) are either disjoint or identical, and the number of common

strictly complex roots of 4; 5 and 4; , is invariant over all a in ¢.

(3) For any i and j, 1 =i <j <n, such that 4 and 4; both have positive

degree, the least k such that PsCe (4 a(Zr) 45 a(Z,))#0 is invariant over
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allain c.

Corollary 2.2.14. Let F be a primitive nonzero element of /.,7=2. Letcbea
region in E7"! such that (ldcf (F))a#0 for all acc. Then F is delineable on ¢
if and only if its greatest squarefree divisor is delineable on c. (See [COL73]
for a deflnition of greatest squarefree divisor).

Proof. Let F° denote the greateust squarefree divisor of F. Since
(Idef (F))a#0 for all a€c, we have (ldef (H))q#0 for any factor H of F and for
all acc. If F is delineable on c, then by Theorem 2.2.10. F* is delineable on
¢. Suppose F° is delineable on c. From Corollary 2.2.13 it is easily seen that
(F°)* is delineable on ¢ for any k =1. There exists a k =1 such that F
divides (F°)*. Where K = (F°)*/ F. clearly (ldef (K)),#0 for all a€c. Hence

by Theorem 2.2.10, F is delineable on c. ®

Definition. Let F be an element of I,, r=2. Let ¢ be a region in E™!, Fis
cylindrical on ¢ if F(ay, . .. ,ay) = 0 for every <a,,....qr > in Z{e). U F
is eylindrical on ¢, the F-induced stack over c, written S(F.c), is {Z(c)}. Ife
consists of a single point a, we say F is cylindrical at a. If for a point peE™!

F is not cylindrical at 8, we say F is noncylindrical at 8.

Definition. Let F be an element of [, 7=2. Letc be a region in E™"L. Fis

regular on c if F is either delineable or cylindrical on c.

Theorem 2 2.15. 1f Fel, is regularon a semi-algebraic regionc in ETL r=2,
then S(F.c) is algebraic.

Proof. Let ¢ be a defining formula for c¢. If F is cylindrical on c or there are
no F-sections of Z(c), then S(F.c) = { Z(c) }. and since ¢ also defines Z(c),

S(F.c) is algebraic. Suppose F is delineable on c¢ with F-sections
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§,<83< +** <Sp,m=1, and let 5 be an fy-section. It suffices to show that

each region of S(F.c) is deflnable. Let x denote an (r-1)-tuple
<Zy ...,Tp-y >, and let y stand for z,. Then for 2<k<m -1, s; is the set

of all points <z,y > satisfying the following formula:

o(z) & (By)(Byg) - (Bys-D)[ Y1 <¥2< **° <Y1 <Y
&Flzy,)=0&F(zyz)=0& -+ &F(ZYp-1)=0 &F(zy)=0
& (Al (Y1 2Y1 Y1 # Y2 & EYer1 Y1 &
Yes1 #Y EF(ZYps1) =0) D> U1 >¥ ) 1

Defining formulas for s, and s,, can be obtained by obvious modifications to
the above formula. For isk=m, let ¢, denote the defining formula for s.
For 2<k<m., the (f,—,.f:)-sector of S(F,c) is the set of all points <x,y> satis-

fying the formula:
0(z) & (Bye-1) By Ye-1 <Y < Y & 0r-1(T Y1) & gz 00) 1.
Clearly deflning formulas for the (—,f;)-sector and the (f m =)-sector of

S(F.c) can be obtained by straightforward modifications to the formula just

given. e

Theorem 2.2.16. Let ¢ be a region in £™~!, 7 = 2, and suppose that F€/; is
delineable on ¢. Then deg (F,) is invariant over all a€c.

Proof. From the deflnition of delineability one sees that there exists p =0
such that F, has p distinct complex roots for all a€c. One also sees that
where e,(a), . . . .ep(a) are the multiplicities of the distinct roots of F,, the

multiset {e,(a),....ep(a)§ is invariant over al a€c. Since

deg (F,) = f 8,(a) for any a€c, deg (F,) is invariant over all a€c. ®

i=1
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Definition. Suppose Fel,,r=2isregularona region c in E7"!. The degrae of
Fon ¢, or the c-degree of F, written deg,(F), is defined as follows. 1t Fis
cylindrical on c, then deg.(F)=0. If F is delineable on ¢, then

deg. (F) = deg (F,) for any a in c.

Definition. Let A be a set of polynomials in /., 7=2, which is regular on some
region ¢ in E7!. The noncylindrical product of elements af A on c, written
Ac . is the product of all the elements of A which are delineable on c¢. If

there are no such elements, then 4, is the constant polynomial 1 in I,.

Definition. Let c be a region in E7~'. Let A = {4,, ... , A} be a subset of I..

A is regular on c if (1) each 4, is regular on ¢, and (2) A, is delineable on c.

Definition For any F€/,, the leading term of F, written ldt (F), is
ldef (F)'z,.d'g(n-
The reductum of F, written red (F), is F - ldt(F). For any k=0, the kth reduc-

tum of F, written red®(F), is defined by induction on k:

red%(F) = F.
red®*1(F) = red (red® (F)).

Theorem 2.2.17. Let A = {4y ....An}. n=1 be a subset of [. r=2. IfAis
regular on a semi-algebraic region ¢ in £7 -1 then S(4,.c) is A-invariant and
algebraic.

Proof. By Theorem 2.2.15, S(4.c) is algebraic. For any A,€A which is
delineable on ¢, there is a unique reductum G of 4 such that 4; = G onc
and ldcf (G;) is nonvanishing on ¢. Thereisa unique reductum G; of A such
that 4 = G, on ¢ and ldcf (G.) is nonvanishing on ¢. We have that

G, = [J{G | A4 €4 delineable on ¢j, and that G is delineable on ¢ since 4 is.
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It A;,Ay €A are delineable on ¢ with j #k, then applying Corollary 2.2.13 to G,

, Gy . and G, we have that each Gj-section is either disjoint from or identical

to any G,-section, hence each A;-section is either disjoint from or identical
to any 4;-section. Thus each 4; that is delineable on c is invariant on each.
section of S(4,.c). Since for each 4; that is delineable on c, every sector of
S(4.c) is a subset of some sector of S(4y,c), 4; is invariant on each sector
of S(4;.c). The cylindrical elements of A are clearly invariant on each

region of S(4;.c), so S(4.c) is A-invariant.

Definition. For any Fel,, the reducta set of F, written RED(F), is
{red® (F)|Osk<deg (F) & red®(F)#0]

Definition. Let A = {41, ....4n},n21, be a set of polynomials in [, r=22.
The projection of A, written PROJ(A), is a set of polynomials in /.., defined as
follows. For each i, 1si=n, let By = RED(4;). Let

Pyd) = U U (Hedf (G) U PSC(G.GY))

Pyd) = U U PSC(G.G)
1si<jEn GER &G ERy

Then PROJ(A) is the union of P;(4) and P(4).

Theorem 2.2.18. For A c I., 722, if ¢ is a PROJ(A)-invariant region in E7~%,
then A is regular on c. ‘

Proof. Consider any 4 in A. By definition, PROJ (A) includes every nonzero
coeflicient of 4;, so each coeflicient of A; either vanishes everywhere or
nowhere on c. If every coeflicient of 4; vanishes on c, then 4; is cylindrical
on c. Suppose some coefficient of 4; is nonvanishing on c. Then there is a

unique reductum G; of 4; such that 4; is equal to G on ¢ and ldef (G) is
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nonvanishing on ¢. Then since PROJ(A) includes ldcf (&) and every element
of PSC(G,.G";). the least k such that psce(G qG'2)#0 is invariant over all a
in ¢. Hence by Theorem 2.2.8, & is delineable on c, hence 4; is delineable on
¢. Thus every element of A is regular on c. Consider now any two elements
A and 4; of A which are delineable on c. Let G and Gy be the unique
reducta of 4 and A4; respectively such that 4 = G oncand 4 = Gyonec.
PROJ(A) includes PSC(G.G;). hence the least k such that
psce (G o(Zr ). Gy a(20))#0 is invariant over all a in c. Hence by Theorem
2.2.12, G G; is delineable on c. Thus where G, is the unique reductum of 4,
such that 4, = G, on c and ldcf(G;) is nonvanishing on c, by Corollary
2.2.13, G, is delineable on ¢. Hence 4 is delineable on c. Hence A is regular

oncg. @

This completes the proof of the theorems needed for the proof of

Theorem 2.2.1.

2.3 Bases

Definition. By an algebraic polynomial we mean a polynomial over the alge-

braic number fleld @(y), for some algebraic number 7.

Definition. An element of g is positive if it is a positive integer. An element
of [, T = 1, is positive if its leading coeflicient, as an element of I._;, is posi-

tive.

Definition. Let | be a unique factorization domain. A basis is a set
B = {By ...,Bs}, s=0, of pairwise relatively prime elements of J[x], such

that each B, is primitive, ample, and of positive degree. A basis B is square-
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free if each B, is squarefree. A basis B is irreducible if each F; is irreduci-

ble.

The definition of an ample element of J(x] is given in [COL75] and
[COL73]. For the bases B of interest in this thesis, we will always have either
Bcl.,r=1,or B c g(y)[z] for some real algebraic number 7. An element
of I, is ample if and only if it is positive, and an element of @(y)[z] is ample

if and only if it is monie.

Definition. Let J be a unique factorization domain, and let A be a subset of
J[x] such that each element of A is primitive and of positive degree. A basis
B c J[x] is a basis for Aif

(1) For each A4€A, there (exist (not necessarily distinet)

B, ....5Bx€B, k20, such that

k
A=c ][5
i=t
for some unit ¢ of J, and
(2) Each Bj€B divides some 4 €4.

Definition. For a unique factorization domain J, let A be a set of primitive
polynomials in J[x] of positive degree. Given bases B and B’ for A, we say
that B' is a refinement of B if every element of B’ is a divisor of some ele-
ment of B. Clearly the set B° of ample irreducible divisors of elements of A
is a basis for A. B’ is the finest basis for A in the sense that it is a
refinement of every other basis for A. Since B’ is also a squarefree basis, we
refer to it as the finest squarefree basis for A. As shown in [COL75] (p. 148),
A also has a coarsest squarefree basis, that is, a squarefree basis such that

every other squarefree basis for A is a refinement of it.
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Definition. Let F be an element of /. = I,_j[z.]. The content of F, written
cont(F), is the greatest common divisor of the coefficients of F. The primi-
tive part of F, written pp(F), is F / cont(F). The content of the zero poly-
nomial is deflned to be zero, and the primitive part of the zero polynomial is
defined to be zero. Let A be a subset of [,,7=2. We define CONT(A) to be the
set of contents of elements of A, and PP(A) to be the set of the primitive

parts of positive degree of elements of A.

We will use bases to obtain a new version of the projection operator that
is computationally more efficient than that deflned in Section 2.2, chiefly
because we apply it to polynomials of lower degree. Where A C I, 7=2, is
the set of input polynomials to the cad algorithm, and B is a basis for PP(A),
our new projection of A will be CONT(A) \y PROJ(F). This new version of

PROJ is justified by the following theorem.

Theorem 2.3.1 Let A be a subset of [,,r=2, and let B be a basis for PP(4). Let
¢ be a region in £7~! which is both PROJ(B)-invariant and CONT(A)-invariant.
Then A is regular on ¢, and S(B;,c) is A-invariant.

Proaf. Since PROJ(B') < PROJ(B) for any subset B’ of B, by Theorem 2.2.17
any subset of B is regular on c. Hence if B' is a subset of B each of whose
elements is delineable on c, then the product of B' is delineable on ¢. Then

by Corollary 2.2.14, any power product of elements of B’ is delineable on c.

For any 4 €4, if cont (4;) vanishes on ¢, then 4 is cylindrical on c. Sup-
pose cont(4;) is nonvanishing on c. If pp(4) is the power product of ele-
ments of B of which at least one is cylindrical on ¢, then 4; is cylindrical on
c. If pp(4) is the power product of noncylindrical elements of B, then by

our argument above, pp (4;) is delineable on ¢, hence 4 is delineable on c.
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Since pp (4 ) is the power product of noncylindrical elements of B, pp(4 ) is
delineable on ¢. cont(4;) is nonvanishing on c, since 4 is the product of
polynomials whose contents are nonvanishing on ¢, hence 4; is delineable on
c. Hence A is regular on c. We have V(4;) = V(pp(4)) = V(gssfd(pp(4:)))
where gsfd denotes greatest squarefree divisor. gsfd(pp(4;)) is a tactor of
B., hence V(gsfd(pp(4))) < V(B,). hence S(B..c) is a refinement of

S(A..c), hence since S (4.c) is A-invariant, so is S(Be.c). =

The use of bases will be important to nearly all the results of this thesis.

Definition Let D be a cad of ET r=2, and ¢ a cell of D'. The D-stack over c,
written Sp(c), is the stack over c consisting of the cells of D contained in

Z(e).

Notation. For any cad D of E”,r=2, we will write D to denote the cad of E7~!

induced by D. If 7 = 3, we write D" to denote the cad of £77% induced by D".

Definition. Let D be a cad of ET r>1. A section of D is defined as follows. I
r=1, then any 0-cell of D is a section of D. If r>1, then D is the union of the
stacks Sp(c), for each c€D', and a section of Dis a section of any Sp(c). A

sector of D is similarly defined.

Definition. A cad D of £7.r21, is (B, ..., B") basis-determined if B" C I is

a basis, and
1. Dis BT-invariant.
2. every section of D is contained in V(B) for some B€B".

3. ifr>1, then D' is (BY, ..., B""!) basis-determined.
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Theorem 2.53.2. Let D be a cad of E7,7=1, and let B* be a basis contained in
Lfori<i=r. Dis(B! ...,B") basis-determined if and only if the follow-

ing three conditions are satisfled:

(1) For each cell ¢ of D’, and for each BeB", either V(B) N Z(c) is the
union of finitely many sections of Sp(c), or Z(c)  V(B).

(2) Every section of D is contained in V(B) for some B&€B".

(3) if r>1, thenD'is (8%, ...,B""!) basis-determined.

Proof. By induction on r. For r=1 the assertion is clear. Suppose that r>1,

that D is (B!, ..., B") basis-determined, let c€D’, and let BeBT. 1f V(B)

meets a sector s of Sp(c), then by the B-invariance of D, B vanishes on s,

hence Z{(c) c V(B). If V(B) meets a section t of Sp(c). then by the B-

invariance of D, B vanishes on t. Hence if Z(c) € V(5), then V(B) N Z(c)is

the union of finitely many sections of Sp(c).

Assume now that conditions (1)-(3) are satisfled. Consider any c€D’
and any B€B". 1t Z(c) c V(B), then clearly Sp(c) is B-invariant. Assume
V(B) N Z(c) is the union of finitely many sections of Sp(c), It V(B) meets a
section t of Sp(c), then ¢t < V(B), and hence B is invariant on t. IfRisa
region of Sp(c) which V(B) does not meet, then by an argument similar to
that used in the proof of Lemma 2.2.4, B is inlvariant on R. Hence Sp(c) is

B-invariant. Hence D is B"-invariant. =

2.4 Sample point canstruction.

Sample point construction plays an essential part in the extension of a
cad of £7~! to a cad of 5" by the cad algorithm. If 4 C /,,7=2, is the set of

input polynomials to the cad algorithm, if Bis a basis for A, if ¢ is any cell in
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the induced cad of £7"!, and if a is a sample point for ¢, then the number of
real roots of B° = {B(a.z,)| Bi€B & deg(Bi(a.zr)) > 0} is the number of
sections of .S;(Bc.c). As suggested by Theorem 2.2.2, the section sample
points we will construct for S(5.,c) are the points < a,b >, where b is a
real root of B°. The sector sample points we will construct have the form

< a,b > with b rational.

Our algorithms for sample point construction utilize two distinct
representations for real algebraic numbers. The first is the representation
of a real algebraic number as an element of the field of all real algebraic
numbers. The second is the representation of an algebraic number as an
element of an algebraic number field @(y), for some real algebraic number
7.

Let v be an element of the field of all real algebraic numbers. Thereisa
unique monic irreducible polynomial M(x) in Q[x] such that M(y)=0. M(x) is
the rational minimal polynomial of y. The unique primitive, positive
integral polynomial M (z) similar to M(x) is the integral minimal polynomial
of 7. An acceptable isolating interval for y is an interval with rational
number endpoints containing ¥ but no other root of M(x), and satisfying cer-
tain other conditions. These conditions are relevant to the root isolation
algorithms, bu are irrelevant to all the matters discussed in this thesis. A
representation for ¥ is the pair consisting of its integral minimal polynomial
and an acceptable isolating interval for it.

Consider now the algebraic number field @(7). Let n be the degree of

M(x). Let ¥ denote the familiar isomorphism from Q(y) to Q[x]/(M(x)). For

any a in Q(y), ¥(a) can be viewed as a polynomial A(x) in Q[x] of degree less



37

than n, such that a=A(y). Then we take the representation for a to be A(x).

For any algebraic point a = <a;, ..., > in E", there exists a real
algebraic number y such that @(y) = @(a,, . ...ar). We call 7 a primitive
elemant for a. a is represented as a triple (#./,@), where M is the integral
minimal polynomial of , I is an acceptable isolating interval for 7, and @ =

<% ....8% >, where & is the representation for a; as an element of @(7).

We first discuss the construction of sample points for cad's of £!. For a
set A of univariate input polynomials, the cad algorithm calculates the finest
squarefree basis B for PP(4), and constructs (acceptable) isolating intervals
for the real roots of B. Thus any O-cell in the cad of E! will be the unique
root ¥ of some M €5 lying in some acceptable isolating interval 1 which we
have constructed. If ¥ is rational, then our representation for this O-cell is
(M.I, <v>). It visirrational, then since our representation for ¥ as an ele-
ment of @(7) is just the polynomial "x", the sample point representation for
this O-cell is the triple (# ,1(x)). For a 1-cell in a cad of E', we pick some
rational number r contained in it as its sample point, trivially compute the
integral minimal polynomial # of r and some acceptable isolating interval I

for r, and then form the triple (M, I,<r>) as the representation of r.

Now let A be a subset of /,, 7=2, and let D be an A-invariant cad of E7.
Let B be the finest squarefree basis for PP(A). Given a cell ¢ of D', we explain
how we construct sample points for S(5;,c). We assume that an algebraic
sample point a for ¢ has been constructed; let ¥ denote the primitive ele-
ment for a. « is represented as a triple (#.1,7), where H is the integral
minimal polynomial of 7, | is an acceptable isolating interval for 7. and @ is

an (r-1)-tuple <@, ...,&-; >, such that each &; is an element of Q7).
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Sector sample points are straightforward, for since any such point has
the form < a,b> with b a rational number, its representation is
(.1, <&, ... %-1,b>). To construct section sample points, we proceed
as follows. Let B° = {B,(a.z;,)| Bi€B & deg(Bi(a,z,)) >0{. We compute a
coarsest squarefree basis B fcr-B’.~ The set of real roots of elements of this
basis is the same as the set of rth coordinates of points of sections of
S(B;.c) in Z(a), so we isolate these roots using an algorithm such as that
described in [RUM78]. Let g be a real root of an element B; of B. We apply
the NORMAL algorithm of [LOO73] to obtain a univariate integral polynomial
N(x) which has § among its roots, and an isolating interval J for 8 as a root of
N(x). We then find the unique positive irreducible factor N(z) of N(x) which
has a root in J. N(z) is the integral minimal polynomial of 8. We then apply
the SIMPLE algorithm of [LOO73] to M(z), N(z) , 1. and J to obtain an
integral polynomial U(x) and an interval K. K is an isolating interval for a
real root ¥ of U(x) having the property that @(d) = @(y,6). We find the
unique positive irreducible factor U(z) of U(x) which has a root in K. U(z)
is the integral minimal polynomiel of ¥. SIMPLE also produces rational poly-
nomials m (z) and n(z), which are respectively the representation of y as an
element of @(¥) and the representation of 8 as an element of Q(8). Let U’
be the rational minimal polynomial of ¥  For Il=isr-l, let
o (z) = & {m(z)) mod U’(z). Since a; = (), y =m(¥), and U’(¥) = 0, we
have ¢, (9) = Gy(m(¥)) =& (y) = a;. Henceif a’= <af, ..., 0p-;n>, then

the representation for the section sample point < a,f > is (U,K,a").
2.5 Defining formula construction

Definition. For Fel., r=1, and for any k=0, the kth derivative of F, written
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der® (F), is deflned by induction on k:
der®(F) = F,
der®**1(F) = der(der® (F)).
Definition.  For any nonzero F in ., r=1, the derivative set of F, written
DER(F).I is
{pp( der* (F) ) |0=k=dag (F)i.

If F is the zero polynomial, then DER(F) is the empty set.

Definition. Let F be an element of I., 7=2. Let ¢ be a region in £7~!. Fis

derivative-regular on c¢ if
(1) Fisregular onc, and
(2) every element of DER(F) is regular on c.

Lemma 2.5.1. Let Fel.,r =2, be regular on a region R in E7"! If

degr(F) = 1, then cont (F') is nonvanishing on R.

n
Proof. LetF = ) Fiz,', and let ¢ = cont(F'). For any a<K such that c van-
i=0

ishes at a, Fiy . Fiy—y. . . ., Fy all vanish at a. Hence since k = 1 and F, does

not vanish on R, ¢ does not vanish at any a€R. =

Lemma 2.5.2. Let Fel.,r =2, be regular on a region R in £7~!. Suppose

k = degp(F)=1, and let G = pp(F ). Then degp(G) = k-1.

n
Proof. Let F = )} Fiz,.!, and let ¢ = cont(F'). By Lemma 2.5.1, c does not
i=0

n—1 3
vanish at any a€R. Let G = Y, Gz,'. Since Ff; =i-¢c G, for 1 =1 <n, since
i=0

Fno.Faoy\,....Fg,, all vanish on R, and since F} is nonvanishing on R, we have

that Gy—y,.... G, all vanish on R, and G-, is nonvanishing on R. Hence




degp(G) =k-1. =

The next theorem has the same conclusion as Theorem 2.2.15 but
stronger hypotheses. Its proof implicitly exhibits the structure of the
quantifier-free defining formulas constructed by the cad algorithm for the

cells of S(F.c), whereas Theorem 2.2. 15's proof was nonconstructive.

Theorem 2.5.3. If Fel, is derivative-regular on a semi-algebraic region ¢ in
ET1r=2, then S(F.c) is algebraic.

Proof. Let p. be a quantifier-free defining formula for c¢. We proceed by
induction on k = deg,(F). Itk =0, then S(F.c) = {Z(c)} and since g, also
defines Z(c), S(F,c) is algebraic. If degc (F)=1, then F is delineable on ¢ with
one section of odd multiplicity, hence S(F,c) consists of one section and two
sectors, and F has opposite signs on the two sectors. Hence (p. & F>0),
(¢c & F=0), and (p. & F<0) are defining formulas for the regions of S(F.c)
(which of the first and third formulas applies to which sector depends on the

sign of F on the sectors).

Suppose now that k =2, and suppose that S(X.c) is algebraic for any
Kel, with K derivative-regular on ¢ and deg. (K) <k. Let G = pp(F'). By
Lemma 2.5.2, deg.(G) = deg.(F) -1, and G is derivative-regular on c since F
is. Hence by the inductive hypothesis, S(G.c) is algebraic. Since F and G are

each regular on ¢ with positive c-degree, both are delineable on c.

Let H be the unique reductum of F such that F = Honc¢ and Ildef (H) is
nonvanishing on ¢. Since F is delineable on ¢, so is H. Let h = cont (H'). By
Lemma 2.5.1, h is nonvanishing on c¢. There is a factor g of h such that gG =
H om c. Since h is nonvanishing on ¢, so is g. Hence since G is delineable on

¢, so is H'. Since H is delineable on ¢, by Theorem 2.2.8, the least k such
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that psc,(Ha. H '¢)#0 is invariant over all a€c, hence by Theorem 2.2.9, HH'
is delineable on c¢. Hence again by Theorem 2.2.9, any H-section and any H’-
section of Z(c) are either disjoint or identical. Hence any F-section and any
G-section of Z(c) are either disjoint or identical. Hence for any F-section t
of Z(c), either t is a section of S(C.c). or t is contained in some sector of
S(G.,c). In the latter case, by Rolle’s theorem, t =s' N V(F) for some sector
' of S(G,c).

If an F-section t of Z(c) is a section of S(G.c), t is semi-algebraic by the
inductive hypothesis. If ¢ =s' N V(F) for a sector s' of S(G,c), then s’ is
semi-algebraic by the inductive hypothesis, and where Yy is a defining for-
mula for s', ¢c &Yy & (F =0) is a defining formula for t, so t is semi-
algebraic.

Let s be the top sector of S(F,c), i.e. s is an (f ,=)-section for some f. If
s = Z(c), then ¢, deflnes s, so s is semi-algebraic. If s#Z(c), then s is
bounded below by an F-section t. If t is a section of S(F.c), then s is the
union of regions of S(G.c), and so by the inductive hypothesis is semi-
algebraic. If t is not a section of S(G,c), thent =s' N V(F) tor a sector s' of
S(G.c). Since t N V(G) = 4. and since by Lemma 2.5.1 cont(F') is non-
vanishing on ¢, t (} V(F') = @, hence t has multiplicity one. Hence where
s,=5 MNs,andsz;=¢-(s U t), F has opposite signs on §'; and s'z. Hence
where o is the sign of F on §';, and %y is a defining formula for s’
¢c & Yy & (aF >0) is a defining formula for s';, so §', is semi-algebraic.
Since s -§', is a union of regions of S(G.c), each semi-algebraic by the induc-
tive hypothesis, s is semi-algebraic. The argument for the other possible

kinds of sectors of S(F,c) is similar. =
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Definition. Letcbe aregionin E77!,7 =2 LetA= {Ay. . ...4,] be a subset
of I,. A is derivative-regular on c if (1) each 4; is derivative-regular on c,

and (2) A is delineable on c.

The next theorem has the same conclusion as Theorem 2.2.17 but
Stronger hypotheses. Its proof implicitly exhibits the structure of
quantifier-free defining formulas constructed by the cad algorithm for the
cells of S(4;.c). ‘

Theorem 2.5.4. Let A = {4,, ... .4}, n=1 be a subset of I,, r=2. If A is
derivative-regular on a semi-algebraic region ¢ in ET"! then S(Ac.c) is A-
invariant and algebraic.

Proof. lf every element of A is cylindrical on ¢, then S(4A:.c) = { Z(c) | and
the assertion is obvious, so agsume at least one element of A is delineable on
c. Without loss of generality, let 4,, ... ,An, 1sms=n, be the elements of A
which are delineable on c. By Theorem 2.5.3 and Lemma R.2.4, for l=j=m,
each S(4;,c) is an algebraic, A;-invariant stack over c. Each section of
S(4..c) is a section of some S(4;.¢c) and so a semi-algebraic set. Each sec-
tor of S(4,.c) is either the intersection of a sector of S(Ajl.c) and a sector
of S(Ajg.c) for some j; and jp with 1 < j, <jzsm,ora sector of S(4;.c) for
some j, 1 < j < m. Thus each sector of S(4,c) is a semi-algebraic set. For
any A; which is delineable on c, 1<j=m, we have V(4;)C V(A:), hence
since A, is delineable on c, every 4;-section of Z(c) is an 4, -section of Z(c).
Since no two 4,-sections of Z(c) meet, it follows that 4; is invariant on every
A;-section of Z(c). Since every sector of S(4,.c) is a subset of some sector
of S(44,c), 4; is invariant on each sector of S(4;,c). Since the cylindrical

elements of A are trivially invariant on each region of S(4..c), it follows that
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S(A..c) is A-invariant. =

In order to satisfy the stronger hypotheses of Theorem 2.5.4, a substi-
tute for the projection operator of Theorem 2.2.16 is needed. We call this

substitute the "augmented projection” operator.

Definition. Let A = {A;,....An}, n=1, be a set of polynomials in I, 7=2.
The augmented projection of A, written APROJ(A), is defined as follows. For
eachi, 1 €1 =n,let R, = RED(4).

D, = \y DER(G"),

GeR,
and
S, = U PSC(H.H).
HGD‘
Then P(4) = () S,. and APROJ(A) = PROJ(A) U Pa(4).

i=l

Theorem 2.5.5. For A C I,, r=2, if ¢ is an APROJ(A)-invariant region in £77%,
then A is derivative-regular on c.

Proof. Since PROJ(A) € APROJ(A), by Theorem 2.2.18, A is regular on c.
Hence each 4; is regular on c, and 4; is delineable on ¢. Consider any par-
ticular 4 €4. If A is cylindrical on c, then every element of DER(4) is
cylindrical on ¢, hence 4 is derivative-regular on c. Suppose 4; is delineable
on ¢. Then there is a unique reductum G of 4; such that 4, = G on ¢, and
ldef (@) is nonvanishing on ¢. G is delineable on ¢ since 4; is. Let
k = deg(G). If & =0, then DER(G) = {pp(G)} = {1}, hence every element of
DER(G) is delineable on c. Suppose k = 1. Since G is delineable on c,
cont (G) is nonvanishing on ¢, hence pp(G) is delineable on c. Since ldcf (G)

is nonvanishing on ¢, ldcf (deri(G)) is nonvanishing on c for 0 < j < k. hence
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ldcf (pp(der?(G))) is nonvanishing on c for 0< j < k, hence ldef (H) is non-

vanishing on ¢ for every HEDER(G). For all HEDER (G,
PSC(H,H'") ¢ APROJ(A), hence for all HeDER(G') of degree =2, the least j
such that (psc;(H.H '))a#0 is invariant over all acec. Since ldcf (H) is non-
vanishing on ¢ for all HEDER(G'), (ps"c, (H.H")a = pscj(HaH'g) for all
HeDER(G') of degree 22 and all a€c, hence for all HeDER(G') of degree
=2, the least j such that pscj(HaH ') #0 is invariant over all a€c, and hence
by Theorem 2.2.8, every HeDER(G') is delineable on c. Hence since pp(G)
is delineable on ¢, every H€DER(G)G is delineable on c.

Consider now any DE€DER(4;). Let m be such that D = pp(der™(4)). If
m > k, then D is cylindrical on ¢. If m <k, then there is a unique hel._,
and a unique H€DER(G) such that h is nonvanishing on ¢ and D = hH onc.
Since H is délineable on ¢, so is D. Hence every element of DEKR (4;) is either
delineable or cylindrical on ¢, i.e. every element of DER(4;) is regular on c,

hence 4, is derivative-regular on c. Hence A is derivative-regularonc. @

As per Theorem 2.3.1 of Section 2.3 and its preceding discussion, the
augmented projection we actually compute will be CONT(4) U APROJ(B),
where B is a basis for A. We now precisely specify the structure of the
defining formulas constructed by the cad algorithm. By Theorems 2.5.3 and
2.5.4, it will be seen in all cases that a formula which we assert to be a

defining formula for a particular cell of a cad indeed is.

Definition. Let D be a (B') basis-determined cad of E!'. For any cell d of D,
we define a derivative-based defining formula of d as follows. If D consists of
the single 1-cell £', then a derivative-based defining formula for Elis (0 =

0). If {D| > 1, then assume given isolating intervals for the real roots of ele-
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ments of B! that are (1) strongly disjoint, i.e. the closures of any two isolat-
ing intervals are disjoint, and (2) have rational number endpoints. Consider
a O-cell ¢ = {a} in D. «a is a root of some irreducible polynomial M(x) in B*;
let n be the degree of M(x). If n>1, then we have an open rational isolating
interval (r.s) for a, and a derivative-based defining formula for ¢?, expressed -
in an obvious shorthand, is
(r <z <s)&(M(z)= 0).
If n = 1, then a derivative-based defining formula for c? is
. M(z)=0
Consider now a 1-cell ¢! = (a.f) in D. Let M(x) and N(x) be the integral
minimal polynomials of « and f, and let [r.s] and [t,u] be the closures of the
given isolating intervals for « and §. We may assume 7 S5 < t<u. Let
d = deg (M) and e = deg(N). Let o and 7 be the signs of M and N on c.

Then a derivative-based defining formula for c! is defined to be

(aM(z)>0)&:(‘rN(:c)>0). fd=1&e =1,
(z <u)&(aM(z)>0)&(TN(z)>0). ifd=1&e > 1,
(r <z)&(aM(z)>0)&(fN(z)>0). ifd>1&e =1,

(r<z<u) & (cM(z)>0) & (TN(z) > 0), ifd>1&e > 1.
Consider now a l-cell ¢! = (-=,8). Thena derivative-based deflning for-
mula for ¢! is

z <f ife =1,
(z <u) &(TN >0), ife>1

The case ¢! = (a,=] is similar.

Definition. A (B, ..., BT) basis-determined cad D of ET, r=1, is derivative-
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regular in case either (1) r = 1, or (2) r > 1, D' is derivative-regular, and BT

is derivative-regular on each cell of D'.

Definition Let D' be a derivative-regular (5!, ...,B5"™!) basis-determined
cad of E77}, 722, Assume that derivative-based defining formulas for D' have
been defined, let c be a parti.c{llar cell of D', and let @c(zy, ... . Zr-1) be @
derivative-based defining formula for c. Let F€l. be derivative-regular on c.
For any cell d of S(F,c), we define the derivative-based defining formula of d
as follows. Let k = deg.(F). If k=0, then a derivative-based defining formula
for the unique sector Z(c) of S(F.¢) is ¢, & (0=0). If k = 1, then S(F.,c) con-
sists of two sectors and one section, and F has opposite signs on the sectors.

Let o be the sign of F on the bottom sector. Then

¢e & (aF > 0)
Pc &'(on)

@. & (oF <0)
are derivative-based defining formulas for the cells of S(F,c), in ascending

order. Suppose k > 1, and let G = pp(F'). Then (by Lemma 2.5.2)
deg. (G) = k—1. Suppose inductively that the derivati.ve-based defining for-
mulas for S(H.c) have been defined, for any primitive A</, such that H is
derivative-regular on c and deg, (H)sk —1. Then G is derivative-regular on c,

so the derivative-based defining formulas for S(G.c) have been defined.

Let t be any section of S(F,c); let m(t) be the multiplicity of t. If m(t) >
1, then t is a section of S(G.c), and its derivative-based defining formula with
respect to S(F,c) is its derivative-based defining formula with respect to
S(G.,c). If m(t) = i, then there is a unique sector of S(G,c) which meets t; let

¢c(T1 ... ZTpy) &Y(zy, . .. . Zy) be its derivative-based defining formula.
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Then

g &Y &(F =0)
is the derivative-based defining formula for t.

Let s be a sector of S(F,c). Let vy, ....vn, n = 1, be the cells of S(G,c)
which  meet s, listed in ascending order. Let
Pe(zs . . . .z,.-l)‘ & Y(zy, . .. ,zp) be the derivative-based defining formula

for v;, 1 £i < n. Suppose there are sections ¢, and ¢ of S(F,c) below and
above s. Then vy and Un are sectors, and s =
(v, NS)Uv2U - * UV U (Un N §). By Rolle's Theorem, there is a
section t' of S(G,c) such that £, < t' < £, hence n = 3. Let o be the signof F
on s. If m(£,)>1, set ¥ =4, else it m(t,) =1, set Y7 =9, &(aF >0).
Then ¥; defines w; M\ s. Similarly, if m(tz) > 1, set Yn = Yn, else set
Y = Yn & (0F > Q). Then ¥, defines v, N s. Then the derivative-based

defining formula for s is

Pe &{(Yn VY2V " VTV Yn1 V Yn )-
Suppose next that s is the top sector of S(F.c). Let t, be the section of

S(F.c) directly below s. Then the derivative-based defining formula for s is

o &(Yr VY2V - ¥V Ynoy V Yn )
Suppose that s is the bottom sector of S(F.c). Let t; be the section of

S(F,c) directly above s. Then the derivative-based defining formula for s is

e &(Yr VY2V "V Yn v Y ).
Note that for any d€S(F.c), the derivative-based defining formula for d
has the form g¢(Zy, . . . » Zr—1) & ¥r(z1, . . . . Zr), for some quantifier-free for-
mula ¥,(z,, ....z,). Hence the first conjunct of the derivative—based

defining formula for d is the derivative-based defining formula for c, the
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base of the stack S(F,c) in which 4 lies.

Definition. Let D be the derivative-regular (B 1 ...,BT7) basis-determined
cad of ET.r=2. For any cell d of D, a derivative-based defining formula of d
is defined as follows. Assume that the derivative-based defining formulas of
cells of D' have been defined. Let c€l’, dESD(c&). and let ¢, be the
derivative-based deflning formula for c. If Sp(c) = {Z(c)}. then g, & (0 = 0)
is the derivative-based defining formula for the unique sector Z(c) of Sp(c).
Suppose |Sp(c)| > 1. and let t be a section of Sp(c). Then t is a section of
S(B,c) for some Be€B", and its derivative-based defining formula with
respect to Sp(c) is its derivative-based defining formula with respect to
S(B.c). Let s be a sector of Sp(c). If s is the top (bottomn) sector of Sp(c).
then s is the top (bottom) sector of S(B.,c) for some B€B", and its
derivative-based defining formula with respect to Sp(c) is its derivative-
based defining formula with respect to S(B,c). Othervwise, there are sections
t, and t, of Sp(c) directly below and directly above s, with t,€S(B,.c) and
€S (Bp.c) for some By Bz€F". Let ¢ & ¥, be the derivative-based defining
formula for the sector of S(Bc) directly above ¢,, and let @; & Yo be the |
derivative-based defining formula for the sector of S (Bga,c) directly below ta.
Then the derivative-based defining formula for s is
v & (Y1 & Y2).
unless B, = B,, in which case ¥, = ¥, and the derivative-based defining for-

mula for s is just

Pe &1301-

The original cad algorithm constructs derivative-based defining formu-

las. For further details on how this is done, see algorithm DEFINE of
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[COL75]. When we want to construct deflning formulas, we use APROJ

instead of PROJ, as one can see in the abstract algorithm of Section 2.6.

2.6 The cad algoTithm.

éAD(r.A.k:S.F)

[Cylindrical algebraic decomposition. A is a list of n20 integral polynomials

in r variables, r=1. k satisfies Osk<r. Sis a list of sample points for an A-

invariant cad D of ET. If k=1, F is a list of deflning formulas for the induced

cad of E*, and if k = 0, F is the empty list.]

(1) [Initialize.] Set N«CONT(A). Set A«PP(A). Set B« the finest square-
free basis for 4. Set S«() and F«().

(2) [r = 1.]1fr > 1 then go to 3. Isolate the real roots of B. Construct a
sample point for each cell of D and add it to S. If k = 1, then con-
struct a defining formula for each cell of D and add it to F. Exit.

(3) [r>1.] if k = r then set P«APROJ(B) and k'«k=—1; otherwise set
P<PROJ(B) and k'«k. Set P«N U P. Call the algorithm recur-
sively with inputs r-1, P and k' to obtain outputs S’ and F', which
specify a cad D' of ET-!. For each cell ¢ of D' with sample point «,
let B® = {B;(a.z;)| Bi€B & deg(Bi(a.z,)) > 0. Isolate the real
roots of B°, and use the isolating intervals to construct sample
points for the sections and sectors of S(B,.c). adding them to S. If
k = r , then construct defining formulas for the sections and sec-
tors of S(B5;,0) (using F') and add them to F. otherwise set F«F".

Exits
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CHAPTER 3

CELL BOUNDARIES AND ADJACENCY

3.1 Overview.

Let X< T. T a topological space. The boundary of X, written 98X, is
defined to be ¥ - X ( X denotes the closure of X). Where L(X) denotes the set
of all limit points of X, one can easily show that aX = L(X)-X.

We remark that this is the usual definition of boundary in algebraic
topology (see e.g. [MAS78], p. 135). In general topology. the "frontier” of X,
written fr(X), is defined to be ¥ N =X, where -X denotes the complement
of X (see e.g. [WID70].p. 28). The frontier is sometimes also called the boun-
dary. It follows easily from the definitions that X = fr(X)-X.

n this chapter we establish properties of the boundaries of cells of a
cad. Our chief results, in Sections 3.2 - 3.4 and 3.8, are that certain kinds of
cad's of E'.E?, and E° have what we call the "boundary property” (defined
below). Many of the related properties of cell boundaries which we establish
will be used in later chapters. Section 3.5 introduces the concept of adja-

cency.

Definition. A cad D of ET, 721 has the boundary property if

1) For any cell ¢ of D, there is a (possibly empty) collection of cells of D

whose union is dc.

2) If r>1, then D' has the boundary property.
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If we replace dc by fr(c) in this definition, we obtain what might be
called the frontier property. But it then follows easily that a cad has the

boundaryﬂproperty if and only if it has the frontier property.

Theorem 3.1.1. Let D be a cad of £” such that if r > 1, then D* has the boun-
dary property. Then D has the boundary property if‘ a;nd only if for all cells
c,dofD,ifc Ny dd= @, thenc < ad.

Praaof. 1t D has the boundary property. then 8d is the union of certain cells
of D. Hence if ¢ M 3d#4, then there is a cell e contained in 8d, such that
¢ (M e#4d. Hence ¢ = e, by disjointess of cells, and so ¢ C 8d. Suppose for all
cells c,d of D that if ¢ (| dd#4, then ¢ < 8d. Then for any cell ¢ of D con-
taining a point of dd, ¢ C 8d. Therefore the union of all cells which contain a
point of 3d is 8d. Therefore by the hypothesis that if r > 1 then D' has the

boundary property, it follows that D has the boundary property.

3.2 Cell boundaries in I-space.

Theorem 3.2.1. Every r-cellin E7, =1, is an open subset of E7.

Proof. Let c be anr-cellin ET. By definition of r-cell, c is homeomorphic to
ET. The principle of invarianc;a of domain ([WID70]) states that any subset of
E" homeomorphic to an open subset of E7 is itself open. Thus since c is

homeomorphic to £7, and E” is open, ¢ is open. ®

Theorem 3.2.2. Let D be a cad of E! and let c,d be cells of D. Then
¢ N dd#4dif and only if c is a O-cell, dis a 1-cell, and ¢ C ad.
Proof. If ¢ N 8d#& then c#d, and hence c and d are disjoint. Any O-cell in

E! is a one-point cell and hence its boundary is empty. Hence if ¢ M 8d#8,
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then d is a i-cell of D, and is therefore an open interval. Therefore, the
boundary of d consists of the endpoints, if any, of the interval. If such an
endpoint belongs to ¢ M dd, then since ¢ and d are disjoint, ¢ must be the
0O-cell consisting of just this one endpoint, and hence ¢ € dd. The converse

is obvious. =

Corollary 3.2.3. Every cad of E'! has the boundary property.

Proof. An immediate consequence of Theorems 3.2.2 and 3.1.1. =

3.3 Cell boundaries in 2-spacae.

Definition. Let QR be regions in £7~!, r=2. Let S(Q). S(R) be stacks over
Q.R. S(R) has the boundary property in S(@) if for every element s of S(R),

there is a (possibly empty) collection of elements of S(Q) whose union is

s N Z(Q). =

Notation. We denote the usual two-point compactification of E by £ °. Thus
E*=E { {-==|. Forr=>2 and any subset X of £™~%, Z°(X) denotes X x E°.

Definition. Let R be a region in E™"}, r=2. The - =-section of Z°(R) is the
graph of the constant function g(x) = - = for all x in R. The + «-section of
Z*(R) is the graph of the constant function h(x) = + = for all x in R. An -
section of Z°(R) is either the +=-section or the -=-section of Z°(R). By a
section of Z°(R) we shall mean either a section of Z(R) or an =-section of

Z°(R).

Definition. Let R be a region in £77!, =2, and let S be a stack over R. The

extended stack over R, written S°, is the union of S and the =-sections of
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Z°(R). US=8S(f1.....fm.R). m =0, we let fo denote the constant func-

tion -= on R, and fm+: the constant function + = onR.

Definition. LlLet R be a region in £ Lr=2 and let
S=5(f....fm.R).m =0, be a stack over R. For 0 <1 =<m, the ith sec-
tor of S° is the (f4.f(+1)—sector of Z°(R). For 0<j < m+1, the jth section |
of S° is the f; - section of Z°(R). For 0<1i=m, the ith sector of S is the
ith sector of S°, and for 1 = j < m, the jth section of S is the jth section of
S°.

Lemma 3.3.1. Let R be a region in 57!, r=2. Then Z (&) = Z°(R).

Proof. Elementary. =

Corollary 3.3.2. Let R be a region in E™"!, 722, and let S(R) be a stack over
R. For any region s of S°(R), 8s c Z°(R).
Proof. s c§ ¢ Z'(R) < Z°(RF) by Lemma 3.3.1. =

[emma 3.3.3. Let R be a region in 77}, r = 2, and let t be an =-section of
Z°(R). If tis a +w-gection, then 8¢t N Z°(R) is Rx{ +=f. It is a —o-
section, then 8t N Z°(R) is 3R x}{ - ={.

Proof. Obvious. =

Lemma 3.3.4. Let Q,R be regions in E™~}, r=2, such that @ C dF. Let fq be
the -w-section, and ¢, the +«-section, of Z°(R). Then 8tq M Z°(Q) is the -e=-
section of Z°(@), and 9, M Z°(Q) is the +=-section of Z°(@).

Proof. Obvious. =

Iemma 3.3.5. Let R be a region in £7°!, 7 = 2, and let s be an f -section of

Z(c). Let U,={<a,b>|aeR &b < f(a)i, and
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U = {<a,b>|a€R &b > f(a)]. Then U; and Uz are open in Z°(R).

Proof. Consider any <a.b>€U;. Choose c€F such that b <c < f(a). Let
V,={z|z€R & f(z) >c}. Let W =ly|yck &y > c}. Then V;=f "YWy,
hence since ¥, is open in E° and f is continuous, V, is open in R. Further-
more, V; contains a. Then ¥} = V,x{y |ly€E &y <c)]is anopen set in Z°(R)
such that <a,b>€Y,; c U,. Hence U, is open in Z°*(R). The proof for Us is

similar. =

Corollary 3.3.6. Assume the hypotheses of Lemnma 3.3.5. Then

s= -U; N - Uzis closed in Z°(R).

Proof. Since U, and Uz are open in Z°(R), -U, and - Uz are closed in
Z°(R). Since the intersection of two closed sets is closed, s = -U; N - Uz

is closed in Z°(R). »

Theorem 3.3.7. Let R be a region in ET-1, r=2, and let S be a stack over R.
Let s be any section of S°. Thends N Z°(R) = 4.

Proof. 1f s is a section of S, then by Corollary 3.3.6, s is closed in Z°(R),
hence ds M Z°(R) = 4. If s is an =-section of S° then ds N Z°(R) = 6 by

Lemma 3.3.3. =

Theoremn. 3.3.8. Let R be a region in ET!, r>2, and let
S=S({f1... .fmR) m=0, be astack over R. Where s; is the ith sector of
S° 0=i<m,and is the jth sectionof S°, 05 j <m +1,

8s, N Z°(R) =t U tuere
Proaf. For any i, 0si=sm, and any Y€X, any open neighborhood of
< v.fi(7)> contains a point <7.6> with Fily) €b < Fipg(y). Le. <7.b>Ese

Hence < 7.fi(7)> is a limit point of s; for any y€R, hence t; Cds¢. By a
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similar argument, £;4; C 9s;.

Let Up={<y.b>|7eR.b < fi(7)). and Uy =§ <7.6>|yER.b > fs(7).

By Lemma 8.3.5, U, and U, are open in Z°(R). Hence -U;N -
Up=5; Ut U tis1is closed in Z°(R). Hence 3s, M Z°(R) = t; U £i4y. ®

Corollary 3.3.9. Let R be a region in E™~!, r=2. Any stack over R has the
boundary property in itself.

Proof. Follows immediately from Theorem 3.3.7 and Theorem 3.3.8. =

Theorem 3.3.10. Let D be a cad of £7, r=2, such that D' has the boundary
property. D has the boundary property iff for every pair of cells c,d in D’
with ¢ < 8d, Sp(d) has the boundary property in Sp(c).

Proof. Suppose D has the boundary property. Let c.d be cells of D' with
c c 8d. Let s be any cell of Sp{d). Then ds is the unicn of cells ey, ... .e
of D. But then 8s M Z(c) is the union of those e; which are contained in
Z(c), since any other e, is disjoint from Z(c). So Sp{d) has the boundary pro-

perty in Sp(c). Assume the hypotheses for the converse. By Corollary 3.3.2,

as =[as N Z()] U U [8s N Z(e)].

c€8d
By Corollary 3.3.9, there is a collection of cells of Sp(d) whose union is
8s N Z(d), and by hypothesis, for each c €dd, there is a collection of cells
of Sp(c) whose union is s M Z(c). Hence there is a collection of cells of D

whose union is ds. Hence D has the boundary property. =

Definition. Let Q.R be regions in £7~}, =2, such that @ c 8R. Let S(Q), S(R)
be stacks over QR. S°(R) has the section (sector) boundary property in
5°(Q) if for every section (sector) s of S*(R), 8s N Z°(Q) is the union of a

finite number of regions of S°(@). S°(R) has the unigque section boundary
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property in S°(Q) if for every section s of S°(R), s N Z°(Q) is a section of
S°(Q). In this case, ds N Z°(Q) is called the boundary section of s in

5°(Q).

Notation. Let R be a region in E "', r=>2, and let S(R)
S(f1-..+fmE). m=0, be a stack over R. Let f; denote the fi-section of

S(R), O<i<m+1. Then for anyi,j.0s1,j =m,
[tut;]={ < af > e€Z°(R)|acR, fi(a) <8< f;(a)].

(¢4.t;) is deflned similarly.

Notation, let R be a vregion in £ Lr=22 and let
S=5(fy....fmE). m =0, be a stack over R. For 0=k <2m+32, let Sy
denote the (k/2)* section of S° if k is even, and the ((k-~1)/ 2)¥ sector of
S*if k is odd. For 1 <k <2m+1, let S, denote the same region of S as

denoted by Sy. k is the indez of S;, or Sy. ‘

Lemma 3.3.11. Let R, .R3 and Ry be mutually disjoint regions in ET . r=1,
such that B, C 3Rz and R C 8Rs. Then R C 3Rs.

Proof. By hypothesis, R, C Rz and Rz C F3. Hence since X C Y implies
¥ c ¥ and X = X, for any subsets X and Y of E7, we have R, C K. Hence

since R, and Rg are disjoint, #y C 3Rg. =

Definition. Let X be a subset of 77!, 7=2, and let a be a point of 8X. Let

f:X-E’ be continuous. Then we say

limxf(:z:)=b

z-ain

if for every open interval I in £° such that b €/, there exists an open ball B in

E™-! centered at a such that f (B N X) < [.
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Lemma 3.3.12. Let R be a region in E™~!, r=2, suppose S(R) is a stack over

R, and let s be an f-section of S(R). For a€dR and beE’, <ab > is the

unique limit point of s in Z°(a) if and only if _ lim _f (z) =b.
z-ain

Proof. Suppose <a,b> is the unique limit point of s in Z°(a), but

ume(z)#b. Then there is an open interval 1 in £° containing b, such

z-ain

that for any 6 > 0, where B4(a) is the ball of radius d in ET™"! centered at a,
we have f(Bg(a) N\ R)2I. Setting 6 =1/ 2, and choosing z; in
Bg (o) N R so that f (z) ¢ I, we obtain a sequence of points in R which con-

verges to a. Let V = By(a). VxE* is compact, so the sequence < z.f (z)>
contained in VxE° has a convergent subsequence, and its limit has the form
<oaz> ze€E’. Since f(z,) ¢/ for all i, z ¢ /. But since <z.f (z;)>€s for
each i, <a,z> is a second limit point of s in Z°(a), contradicting the

hypothesis that < a,b> is the unique limit point of s in Z(a). Hence
lim Rf (x)=b.

z-ain

Assume lim f(z)=0b. Let U be any open neighborhood of < a.b>.

TR

Then U contains an open set of the form Bx/, such that B is an open ball in
E™! centered at o and I is an open interval in E°. By definition of

lim }"?f (z) = b, there exists an open ball B’ centered at a, with B'C H,

z-ain

such that f(B' N R) c /. Since ac€dR, aisa limit point of R, hence there
exists u€F' N F. Then <u,f(u)>€B'x/ c U. Hence since < w,f(u) > €s,
< a,b> is a limit point of s. The proof that < a.b > is unique is straightfor-

ward. =

Lemma 3.3.13. Let Q.R be regions in £}, 7 = 2, such that @ C8R. Let S(Q)

and S(R)=S(f1 ... .fmR), m =0, be stacks over Q.R such that S°(R)



58

has the unique section boundary property in S5°(Q). For0<j<m+l,let 2
be the boundary section in S°(Q) of the j* section of S°(R), and suppose 2;
is a gy-section. Then for 0= i <j <m+l,either g =g; or gy <gj.

Proof. Suppose for some i andj, 0<i <j=m+l, that g¢ > g;. Then there
exist disjoint open intervals L, [; C E° such that gi(a)ek, gj(a)€l;, and
I; >I;. By Lemma 3.3.12, ”12%1' Rfi(z) =gy(a), and s-.lai:r& Rj,-(z) = g;(a).
Hence there exist balls B;, B; centered at a such that fB; N\ R)<L and
fi(By N R)<I;. Let B = By N B;. B N R#0, since a€dR ard sois a limit
point of R. Thus there exists y€B N R such that f(¥) > f;(7). a contradic-

tion. Hence gy <g;. ®

Theorem 5.5.14. Let Q,R be regions in ET!, r=2, such that @ CdR. Let
S(Q), S(R) = S(f1. - . . . fm.R).m = 0 be stacks over Q.R such that S°(R) has
the unique section boundary property in 5°(Q). For 0=1i s m, let s be the
ith sector of S(R). For 0= j <m+1, let t; be the f;-section of S°(R), and z;
the boundary section of t; in $°(Q). Thenfor0si=m,
as; N Z2°(Q) = [ze.2zin].

Proof. ForO=si=s=m+l, 2 C dt; by definition of boundary section. Choose a
particular i, 0<ism. By Theorem 3.3.8, ¢ € 8s;, and so by Lemma 3.3.11,

z; C 8s;. Similarly, £;,; C 8s;, and 50 244+, C ds¢.

Suppose z; is a g(-section of S°(Q). By Lemma 3.3.13, gi < g+ If

gi = gis1 we are done, so suppose gi <Gi+1 Let < a,b >eZ(Q) with

gi(a) < b < ggsi{a). By Lemma 3.3.1%, . U%‘th(z) = gi{a), and
-Q
lim fis1{x) = gisr(a). Let z.Ze, .. be a sequence of points in R con-

z-+ain

versing to « The sequence <z.b> <=zgb> - ', converges to <a,b>,
ging q g




59

and since for sufficiently large j, < z;.b>€s;, < a,b> is a limit point of 5.

Thus [2¢,2141] € 9s¢.

Suppose that < a,b>€Z°(Q) is a limit point of s;. Then there exists a
sequence of points <y,b; > . <Yzbp> - in & converging to < a,b>. For
each b; we have fi(y;) <Y < fieryy)- The sequences <y;.fi(y;)> and
< y5.f1+1(ys)> converge to < a,g¢(a)>and < a,gy+1{a)> respectively, and so

we must have gi(a)=<b =<gi,(a), and hence < a,b>€[z,244,]. Hence

8s; N Z2°(Q) = [21.2441] ®

Theorem 3.3.15. Let QR be regions in ET~!, 722, such that @ CdR. Let
S(Q), S(R) be stacks over Q,R such that S°(R) has the unique section boun-
dary property in S°(@). Then S(R) has the boundary property in S(Q).

Proof. By the unique section boundary property, for any section t of S(R),
at N Z°(Q) is either a section of Z(Q) or an =-section of Z°(Q). In the first
case, 9t N Z(@) is the union of one cell of S(Q), and in the second,
8t A Z(Q) is the union of no cells of S(Q). Let S(R) = S(fio. - fm B
m=0. If m=0, then the unique sector s of S(R) is Z(R), hence by Lemma
3.3.1, 8s N Z{Q@) = Z(Q). and since Z(Q) = U S(Q), 8s N Z(Q) is the union
of regions of S(Q). Suppose m=1. Let s; be the i** sector of S(R) for 0si=m.
Let ¢; be the i** section of S(R), 0<i=m+1. Let z; be the boundary sec-
tion of £ in S°(@Q). By Theorem 3.3.14, 8s; N Z°(Q) = [2,2i+1]. Clearly
[2,,24+1] is the union of a flnite set of regions of S°(Q). Deleting any e=-

sections from this set, we obtain a set of regions of S(Q) whose union is

3s; N Z(Q). =

Lemma 3.3.16. Let R be a pathwise connected region in ET',r=22. Then
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any section of Z°(R) is pathwise connected, and any sector of Z *(R) is path-
wise connected.

Proof. Llet s be an f-section of Z°(R). Let g:R +RxE° be defined by
g(z) = <I(z).f (z)>, where I is the identity map on R. g is continuous (by a
standard theorem) since ] and f are both continuous. g maps Ronto g,s0 s
is the continuous image of a pathwise connected set, and hence (by a stan-
dard theorem) is itself pathwise connected. Suppose s is an (f .g )—sector of
Z(R), and that both f and g take on only finite values. Let < a8, > and
< agfz > be points of s with a,,a;€R. Let P:[0,1]»R be a path in R from a,
to @p. Let A be the function (f + g)/ 2. Then the map @:[0,1]»s defined by
Q(t) = <P(t).h(P(t))> is a path from < ajh(a)>to < azh(ag)> in s. Join-
ing <a;f;> to <aph(ag)> and <azfe> to < as.h(ag)>, with vertical
line segments contained in s, we obtain a path from <a.f;> to <azfz>

in 5. Hence s is pathwise connected. If graph(f) is a finite section of Z°(R)
and graph (g) is the +=-section of Z°(R), then, replacing h(z) by the func-
tion f(z) + 1, we repeat the argument given above. If graph (f) is the -es-
section of Z°(R) and graph(g) a finite section, then we may use
h(z) =g(z)-1. If graph(f) is the -=»-section and graph(g) the +e-section
of Z°(R), then we may use h(z) = 0. =

Theorem 3.3.17. Let Ay, ....4, k =1, be non-zero elements of I3. There

are infinitely many pairs < a;az > of complex numbers which are zeros of

A, tor 1 =i <k, if and only if ged(4,, . . ., 4) has positive degree in either
z,orzs.
Proof. Let B = gcd(Ay. ... .4). If B has positive degree in either z, or z;

then it is obvious that A4;. ....4 have infinitely many common complex
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zeros. Assume that 4;, . . .,4; have infinitely many commeon complex zeros.
We will prove by induction on k that B has positive degree in z, or z. For k
= 1 this is obvious. Let k =2 and assume it true for k - 1. Let
'=ged(Ay, .- Ak-1) Al B have infinitely many common Zeros.
so by the inductive hypothesis, B' has positive degree in z; or Za. If the
degree of B' in zz is zero, then there is a root «; of B'(z;) such that
A (ay,ag) = 0 for infinitely many a2 Hence (z, - a,) divides 4;(z,,Z2), and so
B has positive degree in x;. Symmetrically, if the degree of 4 in x5 is zero,
then the degree of B in z, is positive. So assume that B' and 4, both have
positive degree in zz. Let R(z,) be their resultant with respect to z. For
every common zero (a;ag) of B’ and 4., we have R(a,) =0. If R(z)) =0,
then B has positive degree in z; by Theorem 2 of [COL71]. 1f R(z,)#0, then
there are only finitely many &, such that, for some az < @,.0g > is a com-
mon zero of B' and 4¢. So for some a,, there are infinitely many ap for
which < aj.ag > is a common zero. But then (z, - a,) divides B(z,,x2). so B

has positive degree in z;. This completes the induction s

Definition. Let c be a 1-cellin E!, and let f:c»E"' be continuous. f is piece-
wise monofone if there is a finite partition P = {Py, ... . Pilin=1 of c

such that for eachi, 1si<sn, f restricted to P; is monotone.

Theorem 38.3.18. Let ¢ be a 1-cell in £, and let F(x.y) be a primitive element
of I, of positive degree. Let f be a continuous function c¢-£, such that
F(z.f(z)) =0forallzec. Thenfis piecewise monotone.

Proof. Let G(z.y).H(z.y)€lz be distinct, ie. relatively prime, irreducible
factors of F. By Theorem 3.3.17, there are only finitely many a€c such that
Gla.f (a)) = H(a.f (@) = 0. Let G be any irreducible factor of F. Since F is
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primitive, G has positive degree in y, hence G'#0. Thus by Theorem 3.3.1%,
there are only finitely many a€c such that G(a.f (a)) = G'(a.f (a)) = 0. For
any K€l let K; denote K/ dz. Let G be any irreducible factor of F of posi-
tive degree in x. Then G;#0, and so by Theorem 3.3.17, there are only
finitely many a€c such that G(a.f(a))= Gy (a.f(a)) = 0. Let
@, < -+ <an, n =0, be all the acc satisfying one of the three conditions
above. Let ¢ be the open interval (ag.an+). Let P be the partition
f(ag. @) fagd (anag). . . . . fani(an.ne1) of c. Consider any open interval
I = (a4,044;) in P. There is exactly one (distinct) irreducible factor G of F
such that G(z.f(z)) = 0 for all z€/. Furthermore, G'(z.f (z))#0 for z</,
hence by the Implicit Function Theorem, f is differentiable on I and
f(z)= -G(z.f(z))/ G'(z.f(z)). Either G (z.f(z))#0 for all z€l, or
G.(z.f (x)) = 0 for all ze/. Sincelis connected, by 2 standard theorem, the
graph of f restricted to I is connected, hence by an argument similar to that
used in the proof of Lemma 2.2.4, G'(z.f(z)) and G.(z.f (z)) are sign-
invariant on 1. Hence f ' is sign-invariant on I, hence f is monotone on L.
Since f is trivially monotone on each {a;}, f is monotone on each element

of P, hence f is piecewise monotone. =

Lemma 3.3.19. Let A€/, 7=2, let R be a region in E7~!, and let S(R) be a
stack over R. If A vanishes on a sector of S(R) then A vanishes on Z(R).
Proof. For every a in R, A(a.z,) has infinitely many roots, hence is the zero

polynomial. =

Lemma 3.3.20. Let A€/, be primitive and of positive degree. There is no
acE! such that A is cylindrical at a.

Proof. Let
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Alzy) = ﬁ"}omz)y* . m1.

Suppose A is cylindrical at a€E'. Then 4 (a) = 0 for O<i<m. Then ais an
algébraic number, and where M(z) is its integral minimal polynomial, M(x)

divides 4 (z) for 0<i<m, contradicting the primitivity of A(x.y).=

Corollary 3.3.21. Let A€lp be primitive and of positive degree, let R be a
region in E!, and let S(R) be a stack over R. There is no sector of S(R) on
which A vanishes identically.

Proof. Let s be a sector of S(R). If A vanishes on s, then A vanishes on Z(R)
by Lemma 3.3.19, hence A is cylindrical at each a€R, contrary to Lemma

3.3.20. Hence A does not vanishons. =

Lemma 3.3.22. Let R be a semi-algebraic region in £77!, 7 = 2, and let t be a
semi-algebraic section of Z(R). There exists Fel, such that F is primitive, F
has positive degree, and ¢t C V(F).

Proof. Let #(z,, ...,z,) be a standard quantifier-free defining formula for
t. Let Gy, ...,Gy€L, n =1, denote the nonzero polynomials occurring on

the lefthand sides of the standard atomic formulas of ¢. Let

F.=pp(G). 1<ismn. Let F = [|F. Note thatif deg(F) =0, then F = 1<,

i=t

and so V(F) = 4. Suppose there exist a€c and b€ such that < a,b>&t but
F(a,b)#0. Then F;(a,b)#0for 1 =i <n. Since each F; is a continuous func-
tion ET~E, there exists &' #b such that sign(Fi(a.b")) = sign(Fi(a.b)) for
1<i=n. Then < a,b'> satisfles p, hence < a,b'>€f. But thisis a contrad-
iction, since < a,b'> € graph(f). where t is an f-section. Hence ¢ C V(F).

Hence V(F)#4, hence F has positive degree. ®

Lemma 3.3.23. Let c be a semi-algebraic 1-cell in E!, let a€dc, and let t be
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a semi-algebraic section of Z(c). Thent has a unique limit point in Z°(a).

Proof. By Lemma 3.3.22, there exists F€/; such that teV(F), F is primitive,
and F has positive degree. Hence where t is an f -section, by Theorem
3.3.18, f is piecewise monotone. Then where c is an open interval I C E,
there is an open subinterval J-of I. such that a is an endpoint of J and f is
monotone on J. Then by a standard theorem, f has a unique limit point in

Z%(a). =

Theorem 3.3.24. Let D be a (B'.B?) basis-determined cad of £%. Let c%cl be
a O-cell and a 1-cell of D’ such that c® c 8c!. Then Sp(c!) has the uniciue sec-
tion boundary property in Sp(c?).

Proof. Let t be any 1-section of Sp(c!), and suppose 3t N Z(c%# 0, Le. t
has a limit point <a,b> in Z(c®), where c?=a. Since D is (B!'.B?) basis-
determined, some B €B5? vanishes on t, hence since V(B) is closed, B van-
ishes at <a,b>. Let d be the cell of Sp(c® containing <a,b>. Since D is
(B!,B?) basis-determined, it is B-invariant, hence B vanishes on d. By Corol-
lary 3.3.21, d cannot be a 1-sector of Sp(c®. Hence d must be a 0-section of
Sp(c9), i.e. any limit ppint of t in Z(c% is a section of Sp(c?). By Lemma
3.3.23, t has a unique limit point in Z"(c®);: by our argument above, this limit
point is a section of Sp(c®). By Lemma 3.3.4, if t is an «-section of Sp(c?).
then 8t M Z°(c% is an =-section of Sp(c?). Hence Sp(c!) has the unique

section boundary property in Sp(c?. =

Corollary 3.3.25. Let D be a (B',5?) basis-determined cad of E?. D has the
boundary property.

Proaf. By Corollary 3.2.3, D’ has the boundary property. Hence by Theorem
3.2.2, for any cellsc,d of D' withc Cdd,cisa O-cell and d a 1-cell. Then by
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Theorem 3.3.24, Sj{d) has the unique section boundary property in Sp(e).

hence by Theorem 3.3.15, Sp(d) has the boundary property in Sp(c), hence

by Theorem 3.3.10, D has the boundary property. =

The following theorem will be used in Section 3.5.

Theorem 3.3.26. Let D be a cad of E?, and let s€D be a 2-sector. Suppose
seSp(c), c a 1-cell in D', and let a€dc. Where s = (¢,.t3). for sections ¢,.¢;
of Sp(c), let z; be the unique limit point of £ in Z*°(a). Then
3s N Z2°(a) = [21.22]

Proof. By Lemma 3.3.23, every section of Sp(c) has a unique limit point in
Z°(a). Let the stack S be a refinement of Sp(a) defined by the requirement
that each limit point in Z(a) of a section of Sp(c) be a section of S. Then
Sp(c) has the unique section boundary property in S °. hence by Theorem

3.3.14, 85 N Z2°(a) = [21.22]. ®

Jemma 3.3.27. Let ¢ be an open interval in E!, and let acdc N £. Let
<a,f>€Z’(a), and let U be any open neighborhood in ExE° of <a.f>.
Then there exist open intervals [C E and J cE° such that
<af>elxs cU,and [ Nc isanopen interval.

Proof. The open sets in ExE° of the form #xN, M an open interval in E, N
an open interval in E°, are a basis for the topology on EXE °. Hence there
exists some such basis element /xJ with <a,8> eIxJ c U. Clearly I N ¢

is an open interval. =

Theorem 3.3.28. Let c be acell in a cad of £', and let a€dc M E. Letsbea
section or sector of Z(c). Let <af;> and <afz> €ds N Z°(a). Let

By < f < fz Then <af> €0s.
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Proof. By Theorem 3.2.2, if ¢ is a O-cell, then dc = g, so we may assume that
c is a l-cell. Let U be any open neighborhood in EXE’ of <a,f>. By
Lemma 3.3.27, there exist open intervals { CE and J C E° such that
<af>el/xJc U, and K =1 N c is an open interval. Where J = (by,b3).
without loss of generality we may assume f; < b, < ﬁv< by < f3. Hence there
exist open intervals J,Jz € E° such that €/, Bz€J2, /1N J =4 and
Jz N/ = @ Then IxJ, is an open neighi)orhood of <a,f;>.and IxXJzisan
open neighborhood of < a,8; > . Since < a,B8; > is a limit point of =, there is
a point < ¥;.6y > €(/xJ{) N s. Similarly, since < a.f2 > is a limit point of
s, there is a point < 2.0z > €(I/xJz) N §. Since K Cc, Z(K) N s is either a
section or sector of Z(K), and since K is pathwise connected, by Lemma
3.3.18, Z(K) N s is pathwise connected. Since s C Z(c), 7,€c, hence €L,
hence <y.6,>€Z(L) N s. Similarly, <263 >€Z(L)Ns. Let
P:[0,1]+E? be a path in Z(K) Ns from <71.6:> to < 2.2 >. Where
P(t)= <z(t)y(t) > tor any t€[0,1], the function y(t) is continuous since
P is. Since y(0) = §,J/,, and every element of J is less than any element of
J. y(0) < 8. Similarly, y(1) > g. By the Intermediate Value Theorem, there
exists u€(0,1) such that y(u)=g. Then P(u)= <z(uw),g > with
<z(u),8 > &lxJ c U Hence <z(u)g>clUNs. Hence < a,8> is a limit

point of s, hence < a.f > €ds. »

Theorem 3.3.29. Let ¢ be a 2-cell of a (B!, B?) basis-determined cad D of E?,
and let <u,u>€dc M E?. Then there exists an open interval /' C £ contain-
ing v, such that for any open subinterval of J' containing v, there is an open
interval / € E containing u such that (/xJ) N ¢ is pathwise connected.

Proof. Let e! be the unique l-cell of D' such that ceSp(e!). By Theorem
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3.3.8, there are two l-sections d, and dg of Sp(e') such that dc N Z°(el) =

d, U dz. Suppose that neither d, nor d3 is an «~-gection, and that acd,. Let
d, be an f -section and da an fz-section. Where a = <u,v>, let £ = fa(u) -
fi{u) = fou)-v. LetJ'= (v -e/2v + &/R). Let J be any open subinter-
val of J' containing v. By continuity of f, and f 2, there exists an intervallin
E containing u such that if z</, then fi(z)ed and fa(z) #J. Clearly Iis
pathwise connected. Since (IxJYN e = f<zy>|zel &
Fiz) <y <v + /2], (IxJ) N c is a sector of Z(I), hence pathwise con-
nected by Lemma 3.3.18. The changes needed in this argument if a€dy, or if

either d; or dg is an <-gection, are minor and evident.

Suppose there is a O-cell e? of D' such that g%cde!. By Theorem 3.3.24,
S5(e!) has the unique section boundary property in Sp(e®), hence d, and dj
have boundary sections z; and 2z in Sp(e®. By Theorem 3.3.14,
8c M Z°(e% = [z,2;]. Suppose that z, <z and ac(z,,2;). Let e®=1u,
z, = <u, v, > , Z2p=<u,Up>, and a = <u,U>. Choose v, Y3€E such that
v, <Y<V <yz<vz andlet J'= (y1.¥z). Let J be any open subinterval of
I' containing v; J = (w,wy) with v; <y;sw; <V <wz=Yz <Vz Let

Uy =[-ww,), and Uz = (wg,=]. By Lemma 3.3.1%, lim 1fl(:v:) =wv,; and

z+uine

lim . fa(z) = vo. Hence there exist open intervals 5, and B3 in E contain-

z~u n e
ing w such that f (8, N e') € Uy, and fa(B2 N elyc Uz Let I =B, N Ba
an open interval in E containing u. Then (IxJ) N e = (I N el)xJ, asector

of Z(I N e!), which by Lemma 3.3.16 is pathwise connected since / N e!is.

Still assuming 2, < Zg, suppose that z, is finite and that « = z;. Where

a=z;,=<uv,> and 2;=<uuz>, Wwe have lim 1f1(z)=v1 and
z-u ing
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lim lfz(z)=v2. Let e =wg-v;. Let J'=[-=w;+¢&/2). Let J be any

zwuin e

open subinterval of J' containing v. There exist open intervals B, and 5 in
E containing a such that f (8, N e!)cJ, and fo(Bz N et) C (vg-e/2.=].
Let . I =5, N Ba Then (IxI)N ¢ =
f<zy>lze(/ Ne) & fi(z) <y <v, +¢&/2}, hence (/IxJ) N c isa sector of
Z(I N e'), hence by Lemma 3.3.18, (/xJ) N ¢ is pathwise connected since
(I N e!) is. Minor changes in this argument are needed for the case 2z;
finite and a = z,.

Suppose now that z, = z5. If z; = 2z, is infinite, then a ¢ [2,.22], so sup-
pose that z; = z, is finite and a = z; = 2z, = <u,w>. Set J'=(-=, + ), and
let J be any open subinterval of I' containing v. There are open intervals 5,
and A, in E containing u such that f,(8, N e')cJ and f(Bz N e') < J.
Set I =5, N B2 Then (IxJ) N ¢ =
f<zy>lze(l Nel) & fiz.y) <y < fa(z.y)]is asector of Z(i N e'), hence

pathwise connected since J N el is.

By Corollary 3.3.2, we have considered all points of dc N E?. This com-

pletes the proof. =

Lemma 3.3.30. Let ¢ be a 1-cell or 2-cell in a (F!,5?) basis-determined cad
D of E? and let acdc N £E2% Let <a.f>€Z’°(a), and let U be any open
neighborhood in E?xE° of < a,8 > . Then there exist open intervals /.J C &
and K ¢ E* such that < a,8 > €IxXJxK c U, and (/xJ) N ¢ is pathwise con-
nected.

Proaf. The open sets in £2xE° of the form Lx#xN, L.# open intervals in E,

N an open interval in £°, are a basis for the topology on E?xE°. Hence
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there exists some such basis element /'xJ 'xK with < a,8>el'xJ'xKc U.

We claim that there are open subintervals I and J of /' and J' such that

aclxJ, and (IxJ) N ¢ is pathwise connected.

Suppose ¢ is a 1-sector. Then there is a O-cell e of D', and sections
d, < dj of Sp(e), such that ¢ = (d,.dy). B)’r Theorem 3.3.8, either @ = d, or
a = dp. Hence there exist u€£ and v,,v2€E° such that ¢ = fu{x{v,vg), and
either a = <u,v;> or a=<u,wg>. Clearly ¥ =J' N (v, v2) is an open
interval and hence pathwise connected. Then taking / =/'and J =J', we

have that (/xJ) N ¢ = {u{x¥ is pathwise connected.

Suppose c is a 1-section. Let J = J'. By Thecrem 3.3.7, Corollary 3.3.2,
and Theorem 3.2.1, there is a 1-cell e! of D', and a O-cell e® of D' such that
ceSp(e!) and acSp(e?). By Theorem 3.3.24, a is the boundary section of ¢
in Sj(e?. Hence if c is an f-section, if e® =u, and if a = <u,v>, then by

Lemma 3.3.12, lim f(z) =v. Then there is an open interval B in E con-
zZ-u in @

taining w such that f (B N e!)cJ. I =B N ['is an open interval of E con-
taining u. Clearly / N e!is an open interval, and hence pathwise connected.
Let g denote the restriction of f to / N el. graph(g) is a section of
Z(I M e!), hence by Lemma 3.3.16, it is pathwise connected. Hence since
graph(g) = (I/xJ) N ¢, we have found open subintervals I and J of /' and J'

such that a€/xJ and (/xJ) N ¢ is pathwise connected.

Suppose now that ¢ is a 2-sector. Let a = <u,v>. By Theorem 3.3.29,
there is an open interval J° C £ containing v, such that for any open subin-
terval J of J° containing v, there is an open interval ' ¢ £ containing u such
that (FxJ") N ¢ is pathwise connected. Set J'=J° N J'. Then setting / = J

and / = ['. we obtain open subintervals I and J of /' and J' such that
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aclxJ and (IxJ) N c is pathwise connected. =

Theorem 3.3.31. Let c be a cell in a cad of E?, and let a€dc N E% Lets be
a section or sector of Z(c). Let < a.f; > and < a.fz2 > €ds N Z"(a). and let
8, < B < fz Then < apf > €ds.

Proaf. Essentially the same as the proof of Theorem 3.3.28. If c is a O-cell,
then dc = 4, so we may assume that c is a 1-cell or a 2-cell. Let U be any
open neighborhood in E*xE° of < a,8 >. By Lemma 3.3.30, there exist open
intervals [/ c F and KC E° such that <af>€/x/xKcU, and L =
(IxJ) N c is pathwise connected. Where K = (b,.b32), without loss of general-
ity we may assume @; < b; <8 < b3 < f;. Hence there exist open intervals
KK, C E° such that f;€K,, Bs€Ks Ky K =0 and Kz K =40 Then
IxJxK, is an open neighborhood of < a.8; > . and IXJXxK3 is an open neigh-
borhood of < a.Bz2 > . Since < a.f,> is a limit point of s, there is a point
<716, > €(IxIxKy) N s, with 1€/xJ and 6,€X,. Similarly, since < Bz >

is a limit point of s, there is a point < 73,62 > e(IxJxKy) N 5, with y€/xJ
and 6,€K;. Since L c ¢, Z(L) N s is either a section or sector of Z(L), and
since L is pathwise connected, by Lemma 3.3.16, Z(L) N s is pathwise con-
nected. Since s ¢ Z(c)., v,€c. hence 7,€L, hence < 7.,6;>€Z(L) Ns.
Similarly, <7.02> €Z(L) N s. Let P:[0,1]-E% be a path in Z(L) N § from
<961 > to <7362>. Where P(t) = <z(t)y(t)z(t) > for any t€[0,1],
the function z(¢) is continuous since P is. Since g (0) = 6,€K,, and every
point of K, is less than any point of K, 2(0) < 8. Similarly, g(1) > 8. By the
Intermediate Value Theorem, there exists ©€(0,1) such that z(w) = 8. Then
P(u) = <z(u)y(uw).g > with <z(u)y(u).f>el/x/xK U, Hence

<z(u)y(u)pf>€U Ns. Hence <af> is a limit point of 8, hence
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<a,f>Els. @

L[emma 3.3.32 Let ¢.d be cells of a cad of £~} r = 2 or r = 3, such that
c cdd. Let S(c), S(d) be stacks over c,d. S*(d) has tk;e unique section
boundary property in S°(c) if and only if for every section s of S(d), if
ds M Z(c)#4, then ds N Z(c) is a section of S(e). '

Proof. Suppose for every section s of S(d) that if ds N Z(c)#06, then
ds N Z(c) is a section of S(c). Suppose for some f-section s of S(d) that
s N Z(c) = @. For any a€c, since ¢ C dd, there is a sequence z,,Z3,... ind
converging to a; let B be a closed ball in E™"! centered at a, which, we may
assume without loss of generality, contains z,Zs,.... B X E° is compact,
hence the sequence < z.f(z)>, < Za.f(z2)> - has a convergent subse-
quence whose limit is < a,b>, beE’, hence < a,b> is a limit point of s.
Hence for all acc, s M Z°(a)#4@. Since 8s N Z(c) = @, by Theorem 3.3.28

and Theorem 3.3.31, for each a€c, s has a unique limit point < a,6> in

Z°(a). with either b = + = or b = -=. Hence by Lemma 3.3.12, for every
aEc, either im f(z)= + e, or lim df (z) = =oo. Define
zT>amn T-ain
T(a) = . lim f(z), for acc. It is easy to prove that T is continuous on c,
-Q

and hence by the Intermediate Value Theorem, T is either the +w«-section or
the -=-section of Z°(c).” Then by Lemma 3.3.4, S°(d) has the unique section

boundary property in S °(c). The converse is clear. =

Theorem 3.3.33. Let X be a subset of £7,7 =2, and let acE™"1l, with
XN Z(a) = @ Let 83X N Z°(a) = {ajxU. Then U is closed in E°.

Proaf.



fa]xU =3X N Z°(a)
=(X-X)N Z°(a)

=X N Z%a)
is closed in Z°(a). 1f BeU - U, then there is a sequence {#;} in U converging

to 8. Then the sequence { < a,f; >} in fajxU converges to <af> ¢«
fajx U, contradicting our conclusion that {a{xU is closed in Z°(a). Hence

U-U=2aie. U=U,ie. Uis closed. =

Coroliory 3.3.34. Let c be a cellof acad of E7!, r =2 orr = 3, and let
acdc. Let S(c) be a stack over c, and let s be a region of S(c). Then
8s N Z°(a) = {ajx[, where | is a closed interval in £°.

Proof. By Theorem 3.3.28 and 3.3.31, I is an interval. By Theorem 3.3.33, 1 is

closed in £°. o

The following lemma will be used in later sections.

Lemma 3.3.35. Let cbe acell of acad of 77}, r =2 orr = 3, and let acdc.
Let Fe/,, and let t be an F-section of Z(c). If t has two distinct limit points
in Z°(a), then F is cylindrical at a. - »

Proof. Let <a,b; > and < a,bz > be distinct limit points of t in Z*(a), with
b, < ba. By Corollary 3.3.34, {a}x[b;,bz] C 8¢. Then since V(F) is closed,
foajx[b1,bg] € V(F). Hence F(a,z,) has infinitely many roots, hence F{a.z,)

is the zero polynomial, hence F is cylindrical at a. =

Theorem 3.3.36. Let c and d be cells of a cad of £7"!, r=2 or r = 3, such
that d c dc. Let S(c) and S(d) be stacks over c and d, and let s be a region
of S(c), such that 8s N Z°(2) is the union of a finite number of regions in

S°(d). Then there exist h and k such that
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k
ds N Z°(d) = iUhsq’(az).

Proof. Let h be the smallest positive integer such that Sy(d) cds N Z°(d).
Let k be the largest positive integer such that Sy(d) c ds N Z°(d). Let
h <i <k, and assume that S;{d) ¢ (8s N Z°(d)). and hence by hypothesis,
S(d) is disjoint from 8s M Z°(d). Let acd. Then 8s N Z°(a) N S(d) = 4,
but 8s N Z°(a) N Sk(d)#8, and 8s N Z°(a) N Se(d)#8, contradicting

Corollary 3.3.34. =

Lemma 3.3.37 Let c be acell of a cad of E™!, 7 = 2, and let a€dc. Let S(c)
be a stack over c, and let s,8' be regions of S(c) with s below s'. Suppose
8s N Z°(a) = {aix/, where I =[g,f;] with g, <8 and 3s' N Z°(a) =
fajxI ', where " = [B,'.82'] with 8y’ < B2’ Then f; s 8. and f2 < f#'.

Proof. Let fc/. Then there is a sequence { < z;,%; > | in s which converges
to <a,f>. Then {z;] converges to a, and {y;} converges to 8. For each i,
there exists y;' > y; with < =z;,,%' > in s'. Since E’ is compact, there is a
subsequence of { < z;,%;' > ] which converges, say to a point <a'f'> in
ETIxE°*. Clearly a'=a, and since the corresponding subsequence of
{<z,y >] converges to <af>, we have f'=f  Therefore

<a,f' >e€ds N Z2°(a), B'el’, and B’ = B'= F. But g was any element of I,

so A2’ = B;. By symmetry,. 8i'=8,. =

Theorem 3.3.38. Let ¢ and d be cells of a cad of E7”!, 7 = 2, such that

d c dc. Let S(c) and S(d) be stacks over c and d. Let s and s’ be regions of

k
S(c), with s below s', such that 8s N Z°(d) = US(d). and 8s' N Z2°(d) =
i=h

¢
U S{d). Thenh sh',and k k'
izh'
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Proof. Let a€d. Then
SHa) 1 2°(a) < (U SAD) N Z°(a)
=35 A Z°(d) N 2°()

=ds N Z°(a).
Let <af8>€S.(d) N Z°(«). Then < a.f>€ds N Z°(a). By Lemma 3.3.37,

there exists ' = 8 with
<af'>e€(ds' N Z°a))

¥
= _L_{"Si.(d) N Z°(a),

so <af'>eSd) N Z'(a) withi<k'. But f<f' sok<i<k'. Bysym-

metry, h <h'. =

Theorem 3.3.39. Let ¢ and d be cells of a cad of £77!, r = 2 or r = 3, such
that d < 8c. Let S(c) and S(d) be stacks over c and d such that S°(c) has
the section boundary property in S°(d). Then S°(c) has the sector boun-
dary property in S °(d).

Proaf. Let s be a sector in S(c). Let g, .. ..tm+1, m = 0, be the sections of
S*(c), é.nd suppose that s = (£;,t,,). By the section boundary hypothesis
and Theorem 3.3.386, there exist hk,h'.and k' such that

k

oty N Z°(d) = U Sy(d).

j=h
and
, k' L/
8ty N Z°(d) = U S;(d).
j=k
By Lemma 3.3.38, h <k and k <k'. Let h <sj<k. Then Sj(d) cdt;, and

since £; €ds by Theorem 3.3.8, by Lemma 3.3.11, Sy(d) c 8s. Also,
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Sd)c z°(d), so Sfd)cds N Z'(d). Similarly, for A =<j<k,

Sf(d)cds N Z°(d). Assume Kk <j <A, and let a<d. Then
SAd) N Z°(a) cds M Z°(a), and Sy(d) N Z°(a) c8s N Z°(a). So by
Corollary 3.3.34, Sj(d) N Z°(a) €3s N Z°(a). But a was an arbitrary ele-

ment of d, so Sy(d) < as N Z°(d). Therefore,

jf)hS,'(d) cas A Z°(d).
Let j < h, and assume S;(d) N ds#@. Let <a.f>e€S{(d) N ds. Then
<a.f>€ds N Z°(a), and £; is a region of S(c) below s.‘ So by Corollary
3.3.34 and Lemma 3.3.37. there exists g'<f with <af'> €8t N Z°%(a).

But then dt; N S,f (d)# 4 for some j' < j, contradicting

k
a4 N Z°(d) = U Sy(a).
j=h

Hence if S;(d) M 8s#4, thenj = h. Similarly, j < k', and so
L4 b‘ @,
s N 2°(d) = jL—JhS,(d). "

Corollary 3.3.40. Let ¢ and d be cells of a cad of E~l, r=2o0rr =3, such
that d ¢ dc. Let S(c), S(d) be stacks over c,d such that S(c) has the section
boundary property in S(d). Then S(c) has the boundary property in S(d).

Proof. By Theorem 3.3.39, S°(c) has the sector boundary property in S°(a),
and since every region of S(c) is either a section or sector, it follows that

S(c) has the boundary property in S(d). =

3.4 Cell boundaries in 3-space, part 1.

Theorem 3.4.1. Let B€l; be primitive and of positive degree. Let R be a

region in £? such that B is cylindrical on R. Then R consists of a single point.
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Proof. Suppose R is not a single point. Then since E? is Hausdorff and R is

connected, R contains infinitely many points. Let

B(z.Za.Z3) = igBt (z1.22)z3 ",
withn=1,e,21,8,>e,,> - >e; 20, and F#0for l<i<n. Since
B is cylindrical on R, each B; vanishes at each poi;at of R, hence By, ... .Bn
have inflnitely many common zeros. Hence by Theorem 3.3.17,
gcd(B,, . ... B,) has positive degree in z; or rp contradicting the primi-

tivity of B. Hence R consists of a single point e

Definition. Let F be an element of /., 7 = 2, and let R be a region in ET1 R
is cylindrical with respect to F if F is cylindrical on R. R is noncylindrical
with respect to F if F is noncylindrical at every point of R. Let AC /.. Ris
cylindrical with respect to Aif R is cylindrical with respect to some 4,€4. R
is noncylindrical with respect to A if R is noncylindrical with respect to

every A €A,

Corallary 3.4.2. Let D be a (B!,B? 5% basis-determined cad of 2. Ifcisa
cell of D' which is cylindrical with respect to B3, then c is a O-cell.

Proaf. 1t c is cylindrical with respect to B3, then some BB’ vanishes on c.
Since B is primitive and of positive degree, by Theorem 3.4.1, ¢ consists of a

single point, i.e. ¢ is a O-cell =

Theorem 3.4.3. Let D be a (B!,B% B3) basis-determined cad of £3. Let ¢ be
a O-cell of D’ which is noncylindrical with respect to B3, and let d be a 1-cell
or a 2-cell of D’ such that ¢® c 8d. Then Sp(d) has the unique section boun-
dary property in Sp(c?).

Proof. Essentially the same as the proof of Theorem 3.3.24. Let t be a
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section of Sp(d), and suppose 3t M Z(c%#4, i.e. t has a limit point <a,b> in

Z(c®), where ¢®=a. Since D is (B} B%B%) basis-determined, some Bep3
vanishes on t. hence since V(B) is closed, B vanishes on <a,b>. Where d is
the cell of Sp(c®) containing <a,b>, d is B-invariant. Hence if 4 is a sector
and B vanishes on d, then by Lemma 3.3.19, B vanishes on Z(c9), i.e. B is
cylindrical at c® contrary to hypothesis. Hence d is a 0-section of Sp(c?),
i.e. any limit point of t in Z(c®) is a section of Sp(c®). By Corollary 3.3.34,
8t N Z°(c% = ¢/, where I is a closed interval in E’, and since V(B) is
closed, B(c%z) = 0 for every z€/. Since Bis noncylindrical at c® I contains
only finitely many points, and therefore since I is an interval, I contains
exactly one point. Hence if 8t N Z(c%#4, then 8t N Z(c% consists of a
section of Sp(c?), hence by Lemma 3.3.32, Sp(d) has the unique section

boundary property in Sp(c?). s

Theorem 3.4.4. Let QR be regions in ET-!, r>2, such that @ c 8R. Let S(Q).
S(R) be stacks over Q,R. Suppose for a€®, for an f section of S(R), and for a

g-section t of S°(@), that . 111‘;13Rj(z) = g(a). Then there exists an open
-Qx

interval I in £° containing g (a), and a bounded open neighborhood B of a in
£™! such that (1) t is the only section of S°(Q) meeting B x I, and (2)
f(BNR)cCIL

Proof. Since the sections of S°(Q) are disjoint graphs of continucus func-
tions, it is clear that there exists an open interval I in £° containing g (a),
and an open ball #, in E? centered at «, so that t is the only section of

S°(@) which meets 5, x I. By definition of _lim Rf (z) = g(a), there exists
T

an open ball B, in E? centered at « such that f (B2 N RYcI. Set B =

B, N Bz Since B C By, t is the only section of S*°(Q) meeting B x I, and



78
since B € B, f (B N R) < I. Since B, and Bz are bounded, sois B. =

Theorem 3.4.5. Let D be a (B',5%B%) basis-determined cad of E®. Let c!
and c? be a 1-cell and 2-cell of D’ such that ¢* c 3¢ Let s be an f -section of
Sp(c?), and let acc!. Then s has a unique limit point in Z°(a), which liesin a
section of Sp(c?). _

Proaof. Since a€dc?, there is a sequence z,Zz ..., in c? converging to «.
Without loss of generality we may assume there is a ball B in £? centered at
a containing every z;. The sequence <z f (z,)>, < z3,f(z2)>, - is con-
tained in s M (B x E°); since F x E° is compact, the sequence has a subse-
quence which converges to < a,b> for some beE’. <a,b> is a limit point
of s, and we claim it is the unique limit point of s in Z °(a). Suppose s has a
second limit point < a.b'>, b#b', in Z°(a). Assume without loss of general-
ity that & < &'. Then by Theorem 3.3.31, every point of {a} x [b.b'] is a limit
point of s. Since D is (5'.B%5%) basis-determined, s is a B; -section, for
some B,€B3. Since V(5) is closed, B; vanishes on {aj X [6.b']. Hence there
is a sector u of Sp(c!) such that B, vanishes at some point of u. Since D is
(B‘.Bz.Ba) basis-determined, B; vanishes everywhere on u, hence by Lemma
3.3.19, B, vanishes on Z(c!). Thus c!is cylindrical with respect to B;, which
by Corollary 3.4.2 is impossible since dim(c!) > 0. Hence < a,b> is the
unique limit point of s in Z°(a). If < a,b> is contained in a sector of Sp(c?).
and hence in a sector of Sp(c!), then B; vanishes on this sector, which by
another application of the argument just given leads to a contradiction.

Hence < a,b> is contained in a section of Sp(c!). =

Theorem 3.4.6. Let D be a (B!,5% B%) basis-determined cad of £% Let c¢!and

¢? be a i-cell and 2-cell of D' such that ¢! c dc® Let s be an f-section of
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Sp(c?), and let acc!. Then there exists a section t of Sp(c?), and an open

neighborhood M of « in ¢!, such that for all €M, the unique limit point of s

in Z°(8) is in t.
Proof. Suppose < a,b> is the unique limit point of s in Z°(a). Thus for
some g-section t of Sp(c!). b = g(a). By Lemma 3.3.12, lim “2)" (z) =g(a).

z=atn ¢

Then by Theorem 3.4.4, there is a bounded open neighborhood B of a in E?
such that (1) t is the only section of Sp(c!) meeting B x7I, and (2)
f(BNc¥)cl LetHd =B Ncl ForanypeM, let z,zz... be a sequence of
points in c? converging to §; without loss of generality we may assume
Z,,Za,... contained in B. Since B is bounded , F is closed and bounded, hence
compact, and since [ is a closed subset of the compact space E’, it is com-
pact. Hence E xT is compact. Hence the sequence <z,/[f (z,)>.
< Za.f (Z2)>.... of pointsins M (B x I) has a subsequence which converges
to a limit < 8,z> in {B] x 7. By Theorem 3.4.5, < f#,z> is in a section of
S3(cl). Since t is the only section of Sp(c!) meeting B x I, < g.z>€t. So

for all f€M, the unique limit point of sin Z°(8) isint. =

Theorem 3.4.7. Let D be a (B',5% 5%) basis-determined cad of E3. Let c? be
a 2-cell, ¢! a 1-cell of D’ such that ¢! ¢ 8c® Then Sp(c?) has the unique sec-
tion boundary property in Sp(c?).

Proof. Let s be any section of Sp(c?). For any acc!, let T(a) be the index of
the unique section of Sp(c!) which contains a limit point of s in Z*(a). By
Theorem 3.4.8, T is locally invariant on ¢!. Hence by Lemma 2.2.5, T is
invariant on c!. Hence s M Z°(c!) is a section of Sp(c!), and so by Lemma

3.3.32, S;(c?) has the unique section boundary property in Sp(c?) =

Theorem 3.4.8. Let c,d be cells in £7"!, r=2, such that ¢ € 8d and dim(c) <
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dim (d). Let S(c), S(d) be stacks over c,d such that S°(d) has the unique
section boundary property in S°(c). Then for any cell s of S(d). and any cell
t of S°(c) or S°(d) such that t (" 8s#4, dim(t) <dim(s) and £ C ds.

Proof. Let s be a section of S(d). By Theorem 3.3.7, 8 N Z°(d) = @. By
hypothesis, s has a boundary section t in Z"(c). We have dim(t) = dim(c) <
dim(d) = dim(s), and t C 8s by definition of boundary section. Let s be a
sector of S(d). By Theorem 3.3.8, 8s N Z°(d) consists of two sections of
S*(d), hence for any cell t of S°(d), 3t N s #4 implies dim (¢) < dim(s) and
t c 8s. By Theorem 3.3.14, s (\ Z°(c) is the union of certain cells of S°(c).
and since dim (t) < dim (c)+1 < dim(d) < dim(s) for all cells t of S°(c), for

any cell t of S*(c), if t M 8s#4, thent C ds and dim () < dim(s)e

Corollary 3.4.9. Let D be a (B!,B%) basis-determined cad of E2. For cells s.t
of D, if s () t#4, then t € s and dim (¢t) < dim(s).

Proof. Follows immediately from Theorems 3.2.2, 3.3.24, and 3.4.8+%

Definition. A (B!, ...,BT) cylindricity-free cad of E7, r=1, is defined as fol-
lows. If r=1, then any (B!) basis-determined cad of E' is (B') cylindricity-
free. If r>1, then a (B!, ..., BT) basis-determined cad D of E7 is
(B!, ...,B"™) cylindricity-free if every cell of D' is noncylindrical with
respect to BT, and if D' is (B!, . . . , BT"!) cylindricity-free.

A (B!, ..., B") basis-determined cad of E7.r=2, which is not
cylindricity-free is said to be a cad with cylindricity, or alternatively, a cad

that has cylindricity.

Theorem 3.4.10. A (B'.5%) basis-determined cad D of E? is (B'.B?)

cylindricity-free.
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Proof. Since each element of B? is primitive and of positive degree, by

Lemma 3:3.20, no element of B? is cylindrical at any point of E!, hence no

element of B? is cylindrical on any cell of D’. Since any (B!) basis-
determined cad of E! is (B') cylindricity-free, D' is (B') cylindricity-free,

and hence D is (B!,B?) cylindricity-free. =

Theorem 3.4.11. Let D be a (B!,B%B%) cylindricity-free cad of E®. D has the
boundary property.

Proof. By Theorem 3.4.10, D' is (B 1 B?) cylindricity-free. By Theorems
3.3.10 and 3.3.15, it suffices to show, for all cells c,d of D' such that ¢ C dd,
that Sp(d) has the unique section boundary property in Sp(c). By Corollary
3.4.9, for any c,d€D’' with ¢ < ad, either dim(c) = 0 and dim(d) = 2, or
dim (¢ )=0 and dim(d)=1, or dim(c)=1 and dim(d)=2. In the first two cases,
Sp(d) has the unique section boundary property in Sp(c) by Theorem 3.4.3.
In the third case, Sp(d) has the unique section boundary property in Sp(c)

by Theorem 3.4.7. ®

Corollary 3.4.12. Let D be a (B',B% B%) cylindricity-free cad of ES. For cells
stof D, ift () ds#4@, thent C ds and dim (t) < dim(s).

Proof. Suppose t (M ds#8@ for cells s.t€D. By Theorem 3.4.11, D has the
boundary property, hence by Theorem 3.1.1, t ¢ 8s. By Corollary 3.3.2.
there exist cells c¢,d€D’' such that teSp(d), s€Sp(c), and d CC. Hence
either d =c or d cdc. If d =c, then by Theorems 3.3.7 and 3.3.8, sis a
sector of Sp(c) and t is a section of S3(c), hence dim(t) < dim(s). I
d c dc, then by Corollary 3.4.9, dim (d) < dim(c). Thus by Theorem 3.4.3
and Theorem 3.4.7, Sp(c) has the unique section boundary property in

Sp(d), hence by Theorem 3.4.8, dim (t) < dim.(s)
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3.5 Adjocency.

Definition. Two disjoint regions in ET,r>1, are topologically adjacent, (we

will usually say just adjacent), if their union is a region.

Theorem 3.5.1. Let R, and R be disjoint regions in £7 .r=1. Then R, and R
are adjac;nt if and only if one contains a limit point of the other.

Praof. As shown in [WID70], p. 192, a subset X of &7 is connected if and only
if there exists no separation of X, where a separation of X is a pair (H.K) of
nonempty, disjoint subsets of X such that X = HUAK, and
H N 8K = K N 8H = 6. Thus if neither of £, or R, contains a limit point of
the other, then (R, Rj) is a separation of R, U Rj hence R; U Rz is not
connected, hence B, and R are not adjacent. Suppose that either R, con-
tains a limit point of Rz or vice versa. Then (R,.R3) is not a separation of
R, U Rs Suppose that nonetheless #, U R, has a separation (H.K). Then
either # M R,#6 and K N R,#6, or H N Ry#0 and K N Rz#@. Without
loss of generality, suppose the latter. Then (H N Ra2.K N R2) is a separa-
tion of Rp contradicting the connectivity of Fz. Hence if R, contains a limit
point of R, or vice versa, then R, \U R; has no separation, i.e. R, U R3is

connected, i.e. K, and R, are adjacent s

Theorem 5.5.2. Let D be a cad of E!. Cells c and d of D are adjacent if and
only if either dim (c) < dim(d) and ¢ C 8d, or dim (d) < dim(c) and 4 C dc.

Proaf. Suppose ¢ and d are adjacent. Then by Theorem 3.5.1, one contains
a limit point of the other. Assume without loss of generality that d contains
a limit point of c¢. Then d N 8c#4d, hence by Theorem 3.2.2, dim(d) <

dim(c) and d < dc. The converse is obvious. »
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Theorem 3.5.3. Let D be a (B!,5%) basis-determined cad of E?. Cells ¢ and d

of D are adjacent if and only it either dim(c) < dim(d) and c C8d, or

dim(d) < dim(c)and d < dc.

Proof. Suppose ¢ and d are adjacent. Then by Theorem 3.5.1, one contains
a limit point of the other. Assume without loss of generality that d contains
a limit point of ¢. Then d N dc##4, hence by Corollary 3.4.9, dim(d) <

dim(c) and d < 3c. The converse is obvious. =

Lemma 3.5.4. Let D be a (B!, ..., B") basis-determined cad of E7, r=2 or
r=3. Let ¢,d be distinct cells of D' such that dim (d) < dim (c). Then no cell
of Sp(c) contains a limit point of any cell of Sp(d).

Proaf. By Theorem 3.2.2 and Corollary 3.4.9, ¢ N dd = g hencec N d =4
Thus Z(c) N Z(d) =8 and since Z(d)=2Z(d) by Lemma 3.3.1,
Z(e) N Z(d) = 8. Hence Z(c) N 8Z(d) = 4, and hence no cell of Sp(c) con-

tains a limit point of a cell of Sp(d). =

Definition. An adjocency of a cad D of E7,r=1, is an ordered pair (cr.ca) ,

such that ¢, and c; are adjacent cells of D.

Notation. If (c,cz) is an adjacency with dim(c,) =i sdim(cy) =7, or
dim(cg) =1 < dim(c,) = j. then we say the adjacency is an (ij) type adjo-

cency. We shall sometimes omit the word "type".

Theorem 3.5.5. Let D be a (B!, 52 5%) basis-determined cad of £°. Suppose
that (d.c) is an adjacency of D' with dim(d) < dim(c), d C 8¢, and d non-
cylindrical Wit}:‘l respect to A% Then t€Sp(d) and s€Sp(c) are adjacent if
and only if dim () < dim.(s) and t < 0s.

Proaf. Suppose s and t are adjacent. Then by Theorem 3.5.1, one contains a
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limit point of the other. By Lemma 3.5.4, s cannot contain a limit point of t,
and so t contains a limit point of s, hence ¢ N ds#@. The pair
(dim (d),dim (c)) is either (0,1), (0.2), or (1.2), hence by Theorem 3.4.3 and
Theorem 3.4.7, Sp(c) has the unique section boundary property in Sp(d).
Then by Theorem 3.4.8, £ C3s and dim (t) < dim(s). The converse is obvi-

ous. @

Theorem 3.5.6. Let D be a (B!,5% B%) cylindricity-free cad of E3. Cells s and
t of D are adjacent if and only if either dim(t) < dim(s) and ¢t C3s, or
dim(s) <dim(t) and s C dt.

Proof. By Theorem 3.5.1, if s and t are adjacent, then one contains a limit
point of the other. Assume without loss of generality that t contains a limit
point of s. Then t N ds#4, hence by Corollary 3.4.12, £ C s and dim(t) <

dim (s). The converse is obvious. «

The following result was mentioned in Chapter 1.

Theorem 3.5.7 Let D be a (B!, ..., B") cylindricity-free cad of E7, 1=r=3.
Let ¢, and cy be an i-cell and (i+1)-cell of D, for some i=0. c, and cp are
adjacent if and only if ¢, is incident on c.

Proof. An immediate consequence of Theorems 3.5.1. 3.5.2, 3.4.10, 3.5.3,

and 3.5.6. =

Theorem 3.5.8. Let S be a stack in £7, r=2. d, and dj are adjacent regions
of §° if and only if d, and dz are a successive section and sector of S’
respectively, or a successive sector and section of S * respectively.

Proaf. Follows directly from Theorem 3.5.1, Theorem 3.3.7 and Theorem

3.3.8. «
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Theorem 3.5.9. Let D be a cad of E% Let d° be a O-cell of D, d? a 2-cell of D

adjacent to d%. Then there are exactly two 1-cells d{ and dJ of D such that

d° is adjacent to d{, d® is adjacent to dj, d{ is adjacent to d? and dj is
adjacent to d®

Proof. Where d?eSp(cl), cleD’, suppose d? = (e} .e}), where e and es are
sections of Sp(c!). Where d%eSp(c?), c%D", let s{ and s} be the sectors of
Sp(c® directly below and above d?® resoectively. By Corollary 3.3.5,
Theorem 3.3.2. and Theorem 3.5.8, e}, ed, s!, and s are the only possible
1-cells of D adjacent to both d° and d?. Let z, and 2z be the limit points of
e} and e in Z°(c%. By Theorem 3.3.26, 8d? N Z°(c%) = [2z,.22]. Suppose
z, = 2z, = d% Thene} and e are adjacent to both d® and d?, and neither s
nor s4 is adjacent to d®. Suppose z; < zz and z; = d®. Then e} and sf are
adjacent to both d°® and d?, e] is not adjacent to d% and s{ is not adjacent
to d? The case 2, < zp and z, = d? is similar. Suppose z, < d% < z5. Then
s} and s} are adjacent to both d° and d?, and neither e} nor e is adjacent

tod® =

Theorem 3.5.10. Let D be a cad of E7, 7=2. Let c¢,, c3 be cells of D', with
¢z Cdc, and dim(cp) < dim(c,). Suppose Sp(c,) has the unique section
boundary property in Sp(cz). Then for any section d, of Sp(c,), and any cell
ds of Sp(cy). dp is adjacent to d, if and only if d5 is the boundary section of
d, in Sp(cz).

Proof. If dj is the boundary section of d; in Sp(ca), then dp C 8d;, hence by
Theorem 3.5.1, dp is adjacent to d,. If dz is a cell of Sp(ce) which is adjacent
to d,, then by Theorem 3.5.1, one must contain a limit point of the other. By

Lemma 3.5.4, d, does not contain a limit point of d;. Hence d3 contains a
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limit point of d;, hence dz M 8d;#4d, hence by Theorem 3.4.8, dz C dd,,
hence by the definition of boundary section, d; is the boundary section of d,

in Sp(cz) e

3.6 Cell boundaries in 3-space, part 2.

Theorem 3.6.1. Let I be an open interval of E with endpoint a, « an algebraic
number. Let F(x.y) be an element of [z of positive degree. Let f be a con-
tinuous function I-£, such that F(z.f (z)) = 0 for all z€/. Then graph(f)
has a unique limit point in Z *(a).

Proof. Where A = {F(z,y).M(z)}, M(x) the integral minimal polynomial of «,
let B2 be a basis for A. Let D be an A-invariant (5! B*?) basis-determined cad
of 2. D' has a unique 1-cell ¢ such that ¢ M /#4 and a&dc. There is a
unique section s of Sp(c) such that s contains graph(f) N Z(c). By
Theorem 3.3.24, ds meets Z (a) in a unique point < a,f> Clearly s and

graph(f) have the same limit points in Z*(a). =

Theorem 3.6.2. Let c® be a semi-algebraic O-cell in E? which is adjacent to a
semi-algebraic 1-cell ¢! in E?, Suppose also that either c! is a section of
Z(e) for some l-cell e C £, or clis a sector of Z(a) for some O-cell {aj in
E!, a a real algebraic number. Let s be a section of Z(c!). Then s has a
unique limit point in Z*(c?).

Proof. Suppose first that ¢! is a section of Z(e). By Lemma 3.3.22, there
exist a primitive H(z y)€lz of positive degree such that clc V(H), and a
primitive F(z,y,z)€/5 of positive degree such that s C V(F). If F has degree
zero in v, then let R(z,z) = F(z.0,z), otherwise let R(z,z) be the resultant

with respect to y of H and F. Since F is primitive, H and F are relatively
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prime, hence by Theorem 2 of [COL71], R(z,z)#0. Let h be a function e £

such that ¢! = graph(h), and let f be a function c!<£ such that s =
graph(f). Define g(z) = f(z,h(z)) for z€e. Then g is a continuous func-
tion e-~FE, and R(z.g(z)) = R(z.f (z.h(z))) =0, since H(z.,h(z)) =0 and
F(z,h(z).g(z)) =0 for all zce. Let c®= <af>. Let { <aybyc;>] bea
sequence of points of s converging to < a.By >, with y€£°. Then
§ < a;,c; >} is a sequence of points of graph(g) converging to <a,7 >. Con-
versely, let { < a0y > | bea sequénce of points of graph(g) which converges
to some <a,y>, with y€£°. Set by = h(a;). Then { <ay.bi.cy >] is a
sequence of points of s which has a subsequence converging to < a.f, 7>,
since, first, { < a;,by > ] is a sequence of points of ¢!, second, by hypothesis
< a,f > €dc!, and third, by Lemma 3.3.23, < a8 > is the unique limit point
of clin Z°(a). So < aB.y> is a limit point of s if and only if <a.y> is a
limit point of graph(g). By Theorem 3.6.1, graph (g) has a unique limit point

<ay> in Z°(a). Hence < a8,y > is the unique limit point of s in Z°(c9).

Suppose now that c! is a sector of Z(a). Let M(z) be the integral
minimal polynomial of o If F has degree zero in =z, then let
R(y,z) = F(0,y,z); otherwise let R(y,z) be the resultant with respect to z
of F and M. Let I € E be an open interval such that ¢! = {ajx/, and let f be
a function c!+ % such that s = graph(f). Define g(y) = f(ay) for yel.
Then g is a continuous function /-E, and Ry.g(y)) = R(y.f(ay)) =0,
since M(a) = 0 and F(a.y.g(y)) =0 for all ye/. Let c®= <a,8>. Now an
argument similar to that of the preceding paragraph but somewhat simpler

shows that for some 7, < a.8,7 > is the unique limit point of s in Z°(c9). =

Theorem 3.6.3. Let D be a (B',B? 5% basis-determined cad of E3. Let
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(c%c?) be a (0,1) adjacency of D'. Let s be a section of Sp(c 1y such that for
some BeB® with s ¢ V(5). B is not cylindrical on c®. Then there is a section
t of S5(c®) such that t is the unique limit point of s in Z°(c?).

Proof. By Theorem 3.6.2, s has a unique limit point p in Z*(c9%. Let Bbe an
element of 52 which vanishes on s. Since V(B) is closed, p€V(B). If p is con-
tained in a sector of Sp(c?®). then since D is (B'.B% B9%) basis-determined, B
vanishes on this sector, hence, by Lemma 3.3.19, B vanishes on Z(c9,i.e. B

is cylindrical on c® a contradiction. Hence p is a section t of Sp(e9). =

Theorem 3.6.4. For r=1, no nonzero element of /, vanishes at every point of
anr-cell in £7.

Proaf. By induction on r. For r=1, any nonzero element F of I, has only
finitely many roots, hence since any 1-cell ¢ in E! is infinite, F cannot vanish
at every point of c. Suppose that the assertion is true for r=k-1, k=2, and
consider now the case r=k. Let ¢ be a k-cell in £*, and suppose that
Fel, . F#0, vanishes at every point of ¢c. By Theorem 3.2.1, ¢ is open in E*,
so for any acc, there exists an open ball B in £¢~! and an interval (w.v) in E
such that a€B x (u,v) cc. Bisa (k-i)-cell in E¥~'. For every €5, F(B.z¢)
vanishes at every point of (u,v), hence F(g8.z¢) is the zero polynomial for
each f€B. Thus where F, =ldcf(F), we have f,#0 and / vanishes at
every point of B, contrary to the inductive hypothesis. Hence no nonzero

element of /. vanishes at every point of c. =

Theorem 3.6.5. Suppose G.Hel.r =1, have positive degree, and suppose
that V(G) N V(H) contains an (r-1)-section s of some cad D of ET. Then G
and H have a common factor of positive degree.

Proof. 1f r=1 the assertion is immediate. Suppose r>l, and suppose
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seSp(c) forceD’. Let R = R(zy, ... ,Zp—;) be the resultant with respect to

2z, of G and H. By Theorem 5 of [COL71], R vanishes everywhere on ¢, and
hence by Theorem 3.6.4, R = 0. Hence, since G and H are both of positive
degree, by Theorem 2 of [COL71], they have a common factor of positive

degree.

Corollary 3.6.6. Let D be a (B! ,B? B%) basis-determined cad of £°. For any

2-section d of D, there is a unique B€5? such that d < V(B).

Theorem 3.6.7. Let D be a (B!,B% 5% basis-determined cad of E® Let
(c®c?) be a (0,2) adjacency of D'. Let d be a section of Sp(c?) such that
where BeB? is the unique element of 52 with d < V(5Z), B is not cylindrical
on c% Then there is a section z of Sp(c®) such that 8d N Z°(c%) = =z.

Proof. Let z,z; -+ be a sequence of points in c? converging to
c®= <a,8 >, such that z,,z,,... is contained in some ball B in E? centered
at cf Then where d is an  f-section, the sequence
<z.f(z,)> <zgf(xg) >, ind has a subsequence which converges to
a limit < a8,y > in Z°(c%, since B x £° is compact. Hence d has a limit
point 2 = < a8, 7> in Z°(c%). As argued in the proof of Theorem 3.6.3, z is

a section of Sp(c®). By Lemma 3.3.35, z is the unique limit point of d in
Z°(c9. =

By Theorem 3.5.9, we may make the following definition:

Definition. Let D be a cad of £?, let ¢® be a O-cell of D, and let c? be a 2-cell
of D adjacent to ¢ The c%-bounding I-ceils of c® are the unique two 1-cells
¢! and ¢} of D such that ¢} is adjacent to c® and c? and c¢j is adjacent to

¢%and c®
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Definition. Let D be a cad of £?, let c? and cZ be adjacent 0- and 2-cells of D,
and let ¢} and c} be the c%bounding 1-cells of c? c? is c-horizontally
stratified if there is a neighborhood B in E? of ¢ such that for every
<a,b>cc? N B, there are a,a;€E, a,<a<a; wth <a;b>eci,
<agb>ecd, and (a;,ag)x{b] cc? (or, for every <a,b> az<a <a,; and

(az.2y)xfb] c c?).

Definition. Let D be a cad of E?, let c? and c? be adjacent 0- and 2-cells of D,
and let ¢! and c§ be the c%bounding 1-cells of c® c? is c%wvertically
stratified if there is a neighborhood B in E? of c¢? such that for every
<a,b>cc? N B, there are b,bycE, b,<b <bz with <a,b,>cc},
<a,bz;>ec, and faix(b,by) cc? (or, for every <a,b>, by<b <b, and

iG;X(bg,b 1) C 02)'

Theorem 3.6.8. Let D be a cad of £?, let ¢° and c? be adjacent 0- and 2-cells
of D, and let ¢} and c4 be the c%bounding 1-cells of c? If ¢? is horizontally
stratified, then at least one of ¢} and ¢} is a section.

Proaof. If neither ¢} nor ¢ is a section, then c{ is the l-sector directly
below ¢ and ¢4 is the 1-sector directly above c? (or vice versa). But then
for any ball B centered at c9 and for any < a,8 > €8 N ¢? the liney =8
can meet at most one of ¢} and c}, contradicting the assumption that c?is

c%-horizontally stratified. Hence at least one of ¢} and ¢} is a section. =

Theorem 3.6.9. Let D be a cad of E?, let ¢ and c? be adjacent 0- and 2-cells
of D, and let ¢} and ¢4 be the c%bounding 1-cells of c2 c¢? is c%vertically
stratified if and only if both ¢} and ¢4 are sections.

Proof. Suppose c? is c%vertically stratified. Then there exists a ball B cen-
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tered at ¢% and <a.f > €F N c? such that there is a point < a.8; > €c,

and a point < a,f3> €cd. But neither the 1-sector below ¢? nor the 1-

sector above ¢? contains a point whose x-coordinate is a, hence both ¢! and

cs are sections.

Suppose both ¢} and ¢} are sections. Then for any < a,f > €c?, there
exist < a,f; > €c and < a,fz > €cd with 8; < 8 < Bz and {a}x(8;.8z) < c? (or

Bz < 8 < B,). Hence c? is c%vertically stratified. «

Notation. Let ¢%°= < a,f> be a O-cell in £? Let M(x) be the integral
minimal polynomial of «a - 8, and let N(x) be the integral minimal polynomial
of a + B. We write STRAT(c®) to denote the subset {M(y -z),N(y + z)} of
I,

Lemma 36.10. Let c® be a Owcell of a cad D of E® Suppose
STRAT(c® < H ¢ I,. Let D be an H-invariant cad of £2 which refines D. Then
every 2-cell of J adjacent to c® is either c%horizontally stratified or c®-
vertically stratified.

Proof. Let c® be a 2-cell of U adjacent to ¢ and let ¢! and c§ be the c®
bounding 1-cells of c?2. H both ¢} and c? are sections, then by Theorem
3.6.9, c? is c%vertically stratified. Suppose c¢{ is a sector. Suppose further
that ¢} is the 1-sector above c% and that c? is to the right of c¢® Let e? e!
be the cells of the D-induced cad of £' such that c%cSy(e®) and cfeSy(e!?).
We claim that c4 is a section; clearly it must be the topmost section of
Sp(e!). The real variety of M(y-x) consists of the collection of lines of the
form y - x = v;, where v; is a real root of M(x), i.e. a collection of parallel
lines of slope one, exactly one of which passes through < a,8 > . Similarly,

the real variety of N(y+x) consists of a collection of parallel lines of slope -1,
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exactly one of which passes through < a,f >. Hence M(y-x) has a 1-section
d! which is a line segment of slope one, in Sy(e!). Thus either ¢4 =d!, or cf
is above d! in Sy(e!). Clearly there exists a ball B centered at ¢9 such that
for any <u,u>€B (M c? there exists <u,v > €c{ and <¥pv > €d! with
u; <u <&z Suppose d! is an f-section and ¢ a g-section. Since
g (&) 2 v = f (@), and since g(u) < v, by the Intermediate Value Theorem,
there exists up€(u,Z,] such that g(ug) =v, ie. <ugw>ec}. Clearly
(u,,ug)xfv} € c2 Hence c? is c%horizontally stratified. The three other pos-

sible arrangements of ¢! and ¢4 with respect to ¢ are treated similarly. -

Natation. For Felg, let Fp, F, and F; denote the partial derivatives of F
with respect to x,y, and z respectively. For a differentiable function f: X~ £,
X c E? let f; and f, denote the partial derivatives of { with respect to x

and y.

Theorem 3.6.11. Let c be a 2-cell in £2, let d be an f -section of Z(c), and let
Fe&lg be such that F(z.y.f (z.y)) = 0 for all <z,y>€c. If none of F;, F, or
F, vanish at any point of d, then f is differentiable, and f, and f, are each
either positive or negative on c.

Proaf. Since F, does not vanish at any point of d, by the Implicit Function

Theorem f is differentiable on ¢, and

f::“' Fz
-Fy
fy"' Fz

on c. Since none of F; , Fy, F; vanish at any point of d., d is F,-invariant,
F,-invariant, and F;-invariant (by arguments similar to that given in Lemma

2.2.4). Hence f and f, are sign-invariant and nonzeroonc. ®
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Corollary 3.6.12. Let D be a cad of £?, let c° be a O-cell of D, and let c? be a

2-cell of D adjacent to ¢ which is c%horizontally stratified. Let d® be an f-
section of Z{(c), and let Fely be such that F(z,y.f(z.y)) =0 for all
<z.y>ec? If none of F,, F,, or F, vanish at any point of d?, then for any
interval I C E and any b €E such that /x{d{ c c? f(z,b)is monotone on 1.

Proaf. Consider any interval / C £ and any b €F such that Ix{b] C c? Sup-
pose without loss of generality that f; is positive on c? hence f.(z.b) is
positive on I. Let g(z) be the function /+£ defined by g(z) = f(z.b). Then
g is differentiable on, and g'(z) = f.(z.b). Hence g' is positive onl, hence

g is monotone onl, i.e. f(z.,b) is monotoneonl. =

A corresponding Corollary can obviously be proved in case c? ig ¢%

vertically stratified.

Notation. Let F,G be elements of /5. We write F(z,y.z) and G(z,y,2z) for
F(z,z2%s) and G(z,Zsx3). If both F and G have positive degree in X, then
Res.{F,G) denotes R(y.z), the resultant of F and G with respect to x. If one
of F and G has positive degree in x, say F, then Res;(#,G) denotes G(0,y.2).
If neither F nor G has positive degree in x, then Res.(F,G) is undefined.

Res,(F,G) and Res;(F,G) are defined according to similar conventions.

Notation. For B(zy.z)€l, of positive degree, we write RES(B) to denote the

subset {Res, (B ,B,) Res, (B ,By) Res; (B ,B;)} of [

Theorem 3.6.13. Let c© and c? be adjacent 0- and 2-cells in £2. Let d? be an
f section of Z(c?), and let Bel; be such that B(z.y.f(z.y)) =0 for all
<z y>cc? Suppose also that B has positive degree, B is irreducible, and B

is cylindrical at c® If c? is RES(B)-invariant, then none of 5z, By, or B; van-
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ishes at any point of d®.

Proof. Suppose B vanishes at <a,b,c>ed® If deg(B.;) =0, then where
T(x,y) = Res,(B,B:), T(x.y) = Bz(z,y.,0), and T(a,b) = 0. If deg(B;) > 0, then
T(x,y) is the resultant with respect to z of B and FH,, hence by Theorem 5 of
[COL71], T(a.b) = 0. Then since c? is RES(B)-invariant and T vanishes at
<a,b>€c?, T vanishes at every point of c®. Hence by Theorem 3.6.4, T(x.y) =
0. Suppose deg(5;) = 0. Then since T(x,y) = B (z.y.0) = 0, if follows that
B (z,y.z) =0, hence B has degree 0 in x. But then where ¢c%= <a.8>,
since B is cylindrical at ¢ we have B(z.8,z) = 0, contradicting the primi-
tivity of B. Hence deg(B;) > 0. Then by Theorem 2 of [COL71], B and 5,
have a common factor of positive degree in z. But this cannot occur, since
the degree of B, in x is less than the degree of B in x, and B is irreducible.
Hence B, does not vanish at any point of d?. A similar argument shows that
B, does not vanish at any point of d®. Suppose 5, vanishes at <a,b,c>ed?
Then where U{x,y) = Res,(F.B,). by the same argument used above, U(x,y)
= 0. If deg(B,;) =0, then B,(z.y,z) =0, which is impossible since B has
positive degree in z. Hence deg (5,) > 0, hence as argued above, B and B,
have a common factor of positive degree in z, which is impossible. Hence

none of B;, B, or B, vanish at any point of d?. e
Notation. For a stack S, let [S| denote the number of elements of S.

Thearem 3.6.14. Let D be a cad of £%, and let 4 C /. There exists a coarsest
A-invariant cad D° of £% such that D’ is a refinement of D.

Proof. Clearly there exists some A-invariant cad D of E? which is a
refinement of D. Initialize D° to . We now coarsen D° in two stages as fol-

lows. Let D denote the cad of £! induced by D°. In the first stage, for
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each cell ¢ of D, we "eliminate sections” in Sj.(c) as much as possible. By

this we mean: let ¢ be any section of S, o(c), let sg be the sector below ¢, and

let s, be the sector above t. Lets =sq iyt (J s, If tis not a section of D,
and if s is A-invariant, then we delete sq, £, and s, from S_,J.(c) and adds. In
the second stage, we "eliminate cylinders” of D° as much as possible. By
this we mean: let ¢, ¢', and ¢ be a successive 1-cell, O-cell, and 1-cell of D™,
i.e. ¢ is adjacent to ¢' and ¢' is adjacent to c¢". Let § = SD.(c), let
S'=8pc'), and let S = Spe(c"). e #D' if [S]|=]|5]|=|5"|=2m+1,
m =0 andif S; U S'; U S is an A-invariant region for 1 i < 2m +1, then
we "paste together” S, S', and S into a new stack S overc |J ¢ | c", with
|5| = 2m+1. If at the conclusion of the two stages above D’ is not the coar-
sest A-invariant cad of £2 which refines D, then there must be some section
t of D°, between sectors sy and s,, such that £ is not a section of D and
s =sg Ut U s, is A-invariant. But then there is a subset ¢' of { which is a
section of D, and subsets s'g and s'; of s and s, which are the sectors of D
below and above #', such that ¢' is not a section of Dand s’ =s'q U t' U 5
is A-invariant. But then # would have been eliminated in our first stage
above. Hence there can be no such section ¢. Hence D’ is the coarsest A-

invariant cad of £? which refines D. =

Definition. Let D be a cad of £7,7=2. Let D be a refinement of D'. The
refinement of D determined by D is the following cad of £7: The union of all
cells in £7 of the form (S;(d) N Z(c)), where c is a cell of D,disacellof D

containing ¢, and S;(d) is the jth element of Sp(d).

Definition. Let D be a (B'.5% B%) basis-determined cad of £E% Let H </,
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Let c® and c? be an adjacent O-cell and 2-cell of D', and let d be a B-section
of Sp(c?), BeB3. Let D be the coarsest H-invariant refinement of D', and let
D’ be the refinement of D determined by D. The H-set of z-values of d over

c%is a subset K of £° defined as follows:

(1) Where c] and ¢4 are the c%bounding 1-cells of c? let d; be the boun-
dary section of d in Sp(ci!), for i=1,2, and let < a,8.2; > be the unique
limit point of d; in Z°(c®). Then 2, and z; are in K.

(2) For each i-section s! of D such that s! is adjacent to ¢® and s! N ¢®#4,
where t! is the unique section of S, .(s!) contained in d, let < a,8.2> be
the limit point of ¢! in Z°(c®). Then zisin K.

Theorem 3.6.15. Let D be a (B'.B%B%) basis-determined cad of E° Let

H c I, Let ¢? and c? be an adjacent O-cell and 2-cell of D', and let d be a B-

section of Sp(c?), BeB% For any z in the H-set of z-values of d over c?,

< a,f,2> is a limit point of d.

Proof. Let D be the coarsest H-invariant refinement of D', and D° the

refinement of D determined by D. Let K be the H-set of d-values over cO.

For any z €K, there is a 1-section e of D such that < a,8,2>€de, and either

e Cod or e Cd. Hence by Lemma 3.3.11, < a,8,z2>€8d, hence < a,f8,2> is

a limit point of d. =

Theorem 3.6.16. Let Q and R be regions in £77!, r=2, such that § C K. Let
s be a section of Z°(R) such that 8s N Z°(Q) is a section of Z°(@). Let s be
the f-section of Z°(#). Then f has a unique extension to a continuous func-
tion h:(@ U R)-£°, and for every a€@, h(a) = lim Rf (z).

Tan
Proof. Let 8s N Z°(Q) =t, where t is the g-section of Z°(@). Then by

Lemma 3.3.12, for every a€@, lim Rf (z) = g(a), so f is continuous at ack
T-ain
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(see e.g. [KEL55], p.100). By [KEL55], p.100, since E” ! is a regular topologi-

cal space, f has a unique extension to a continuous function h:(@ U R)-E".
By definition of h, for every a€@, h(a) is a limit point of s, and hence

h(a) = g(a). So =_.1‘1‘1‘;;1‘ Rj (z) = h(a) for every ac@. ©

Theorem 3.6.17. Let D be a (B!,5% B%) basis-determined cad of E9, with B®
an irreducible basis. Let c® be a 0O-cell of D' such that BeB? is cylindrical on
¢, let c? be a 2-cell of D' adjacent to c% and let d be a B-section and f-
section of Sp(c?). Let H = STRAT(c® \y RES(B). Let K be the H-set of z-
values of d over ¢ Let z; = min(K) and z, = max(K). Then dd N Z°(c?
cc®x[zy,23]
Proof. Let D be the coarsest H-invariant refinement of D'. A point p of
Z°(c% is a limit point of d if and only if there is a sequence in d converging
to it. Any sequence of points in d has an inflnite subsequence inZ(e) N d,
for some cell e in D adjacent to c? and contained in c?, with either dim(e)=1
or dim(e)=2. Consider any sequence P = p;,pa,... of points in d converging to
peZ°(c?). Let e be a cell of D adjacent to ¢? and contained in c?, such that
P has an infinite subsequence in Z(e) M d. Suppose dim(e) = 1. Then the
limit p of P in Z"(c% must be the limit point in Z°(c® of the unique 1-
section of Sp.(e) contained in d, where D° is the refinement of D determined
by D. Hence the z-coordinate y of p is in K, by definition of K, and so
velz1.z2].

Suppose dim(e) = 2. Let P' = < ayby,f(anby)>.... be the subsequence
of P in Z(e) N d which converges to p. Let c} and ¢4 be the c%-bounding
i-cells of e. By Lemma 3.6.10, e is either c%horizontally stratified or c©-

vertically stratified; assume without loss of generality c%-horizontally
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stratified. Hence since n"(P VY= <a,;b;> - converges to c9, there exists
N such that for all i=N, there exist uy, v; such that w <a <y,
<uyby >eel, <wvby>ecd, and (w.v)xib] ce. Since e is RES(B)-
invariant, by Theorem 3.6.13 and Corollary 3.6.12, f (z.b;) is monotone on
(u;,v;) for eachi. By Theorems 3.4.7 and 3.6.18, f can be extended to a con-
tinuous map f on (e U ¢{ U c4). Clearly f (z.b;) is monotone on [wy,v] for
each i = N. Hence for each i = N, either f (uy,by) < f(a.b) < f(v4.b¢), or
Flu,b)= Flayb;) =7(v.b); assume without loss of generality the
former. Let P, and P, denote the sequences < uy.by. f (uy.by) > ... and
< uy.by.F(un.by)> ... respectively. Where c®= <a.f>, P, has a subse-
quence which converges to some < a.f.71>. and P, has a subsequence
which converges to some < a,8.7z>. 7 and 7z are in K by definition of K.
Where P converges to p = <a,f.y>. since f(uN,,,-,bNH-)sf(aN+,-,bN+,-)
< f (un+j.by+y), for any j = 0, we must have 7, <7 =< 72. Hence z; <y < 2p,

hence y€[z,.23]. *

Theorem 3.6.18. Let D be (B',5%B%) basis-determined cad of £°, with 5% an
irreducible basis. Let c® be a O-cell of D' such that F€5° is cylindrical on c®,
let c? be a 2-cell of D' adjacent to c% and let d be a B-section and f -section
of Sp(c?). Let H = STRAT(c®) \y RES(B). Let K be the H-set of z-values of
d over c® Let z, = min(K) and z; = max(K). thendd N Z°(c% = c%%[2z,,23].
Proof. By Theorem 3.8.17, 8d N Z°(c¢% < ¢®x [z,2¢]. By Theorems 3.6.15
and 3.3.31, every point of c®x{z;z,] is a limit point of S, hence

ad N Z°(c® =c%x [z,,25] »

Definition. A (B',B? B%) basis-determined cad D of E3, B? an irreducible

basis. is (B!,B% B%) cylindricity-refined if for each O-cell ¢®= < a.f> of D,
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each deD' which is adjacent to ¢ and each section t of Sp(d), where

3t N Z°(c% = ¢%%[2z},23], z; =22 <afiz;> and <a.f.zy> are sections
of Sp(c?®).

Clearly any (B!,5%B%) cylindricity-free cad of E? is trivially (B,B% B%)
cylindricity-refined. The clustering cad algorithm produces a cylindricity-

refined cad of E®, whereas the original cad algorithm may not.

Theorem 3.6.19. Let D be a (B!,B%.B5%) cylindricity-refined cad of £° Sup-
pose (c%c?) is a (0,2) adjacency of D' such that ¢ is cylindrical with respect
to B3. Let d be a B-section of Sp(c?). Then there is a collection T of ele-
ments of Sp(c®) such that 8¢ M Z(c% = unionT.

Proof. An immediate consequence of the definition of cylindricity-refined

cad.

Theorem 3.6.20. Let D be a (B!,5%.B%) cylindricity-refined cad of E° Sup-
pose (c%c?) is a (0,2) adjacency of D'. Then Sp(c?) has the section boundary
property in Sp(c?9).

Proof. 1f ¢®is not cylindrical with respect to B° then the assertion follows
from Theorem 3.4.3. If ¢° is cylindrical with respect to 5% then by
Theorems 3.6.7 and 3.6.19, for every section d of Sp(c?), there is a collection
T of elements of Sp(c? such that 8¢ N Z(c® = union T. Then clearly for
every section d of Sp(c?), there is a collection T* of elements of Sp(c®) such

that 8d M Z°(c®) = union T°. Hence by Lemma 3.3.4, Sp(c?) has the section

boundary property in Sp(c? =

Theorem 3.6.21. Let D be a (B!,B? 5% cylindricity-refined cad of E° Let

(c%c?) be a (0,1) adjacency of D'. Then Sp(c') has the unique section boun-
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dary property in Sp(c?).

Proof. 1f c9is not cylindrical with respect to B3, then the assertion follows
from Theorem 3.4.3. If c® is cylindrical with respect to 5%, then the asser-
tion is an immediate consequence of Theorem 3.6.3, the deflnition of

- eylindricity-refined cad, and Lemma 3.3.4. =

Theorem 3.6.22. Let D be a (B'.5%B5%) cylindricity-refined cad of £% D has
the boundary property.

Proof. By Corollary 3.3.25, D' has the boundary property. Let (c,d) be an
adjacency of D', with dim.(c) < dim(d). By Theorem 3.5.3, ¢ cdd. By
Theorems 3.4.7, 8.6.20, and 3.6.21, either Sp(d) has the unique section boun-
dary property in Sp(c), or Sp(d) has the section boundary property in
S5(c). Hence by Theorem 83.3.15 and Corollary 3.3.40, Sp(d) has the boun-
dary property in Sp(c). By Theorem 3.5.3, for any cells c,d of D', ¢ C dd if

and only if ¢ and d are adjacent. Hence by Theorem 3.3.10, D has the boun-

dary property s
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CHAPTER 4

THE CLUSTERING CYLINDRICAL ALGEBRAIC

DECOMPOSITION ALGORITHM

4.1 Overview

Sections 4.2 - 4.5 present the theoretical results underlying the cluster-
ing cad algorithm. The material of Section 4.2 is applicable to r-space for
any r; Sections 4.3 - 4.5 deal with those points that apply individually to 1-
space, 2-space, and 3-space. In Section 4.6 and 4.7 we discuss sample point
and defining formula construction in the clustering cad algorithm. Section
4.8 gives abstract algorithms for 2-space and 3-space, and discusses various

aspects of them.

To contrast the clustering cad algorithm with the original, one may
begin with the following two points. On the one hand, the clustering algo-
rithm produces more information than the original. In addition to an A-
invariant cad of E7, it produces a decomposition of E7 into maximal A-
invariant regions. (A is the set of r-variate input polyncmials to the cad
algorithm). Each such region R is the union of certain cells of the cad. A
collection of cells whose union is a particular R is a "cluster'”; R is the
"underlying region” of that cluster. These maximal A-invariant regions are
of geometric significance. For example, if A consists of a single bivariate
nclynomial F(x.y), then the number of clusters on which F = 0 is the number

of connected components of the curve.
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On the other hand, the clustering cad algorithm produces less informa-
tion than the original. One no longer obtains a sample point for ew;ery cell of
a cad. It does, however, produce a collection of sample points sufficient to
enable one to do RCF quantifier elimination, as we now briefly describe. (See
[COL75] for further information on quantifier elimination.) Suppose we are
given a standard prenex formula

¥z, ... 2e) = (QeerZer) (@2 )o(Z1 .. . 2p), B20.
In order to eliminate quantiflers, we first determine an A-invariant cad D of
ET, where A is the set of polynomials occurring on the left-hand sides of the

standard atomic formulas of ¢. We then need to
1. determine the truth value of ¢ on each cell of D, and
2. construct a defining formula for each cell of the D-induced cad of £*.

With the original cad algorithm, we determine the truth value of ¢ on a given
cell of the D by evaluating ¢ at its sample point. With the clustering cad
algorithm, although we ni,ay not have a sample point for a particular cell c;,
we always will have a sample point for a cell ¢z in the same cluster as cy.
The truth value of ¢ is the same on both ¢, and cj, since each element of A
has the same sign on both ¢, and c,, and hence each standard atomic for-
mula of ¢ has the same truth value on ¢, and c;. Thus we can determine the
truth value of ¢ at any cell ¢ of D without necessarily having a sample point

for c.

Chapter 6 will compare the performance of the two algorithms on

several examples,

4.2 Clusters, mazimal clusters, and algebraic components.
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Notation. Suppose A C I, r=1. We call an A-invariant region in £7 an 4

region in ET, an A-invariant decomposition an A-decomposition, an A-

invariant stack an A-stack, and an A-invariant cad an A-cad,

Definition. Suppose A4 C I, 722. Two disjoint A-regions are A-adjacent if

their union is an A-region.

Theorem 4.2.1. For A c I, 721, let R,,R,, and Rg be regions such that R, is
A-adjacent to Ry, R is A-adjacent to R, and R, is adjacent to R3. Then R, is
A-adjacent to Rj.

Proof. By the first two hypotheses, each 4;€4 is invariant on R, U Rg and

by the third hypothesis, R, |U K3is a region®

Definition. Let r=1. A nonempty collection C of disjoint cells in ET is a clus-
ter in case the union of C is a region. The union of a cluster C is its underiy-
ing region, written R(C). For 4 c I,, a cluster C is an A-cluster if R(C) is an
A-region. For any cad D of ET, a cluster of D is a cluster each of whose cells
is a cell of D. For an A-cad D of £, a cluster of D which is also an A-cluster is

an A-cluster of D.

Definition. For any cluster C, a subcluster of C is a subset of C which is

itself a cluster.

Definition. For A C I, 722, a region ¢ in E™ ! is Aregularizing if A is regu-
lar on ¢. A cluster C in E7"! is Aregularizing if R(C) is A-regularizing. A
decomposition of ET~! is A-regularizing in case each of its regions is A-

regularizing.

Definition. A (B!, ...,BT) basis-determined cad of £7, r=1, is regular in
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case either 7 = 1, or 7 = 2, B' is regular on each cell of D', and D'is aregu-

lar (B!, ..., B™"!) basis-determined cad of 7",

Definition. A clustering of a cad D of £7, r=1, is a partition of D into clus-
ters. For 4 C I, an Aclustering of an A-cad D of £7 is a clustering of D into
A-clusters. If =2 and D' is A-regularizing, then an 4-regularizing clustering
of D' is a clustering of D' such that each cluster is A-regularizing. A

clustered cad is a cad D together with a clustering of D.

Definitian. Let D be a cad of E™,r=1. Let L be a clustering of D. An adja-
cency {c,cp) of D is an L-inner adjacency of D in case ¢, and ¢y are both in

the same cluster of L; otherwise (¢ ,,c3) is an L-outer adjacency of D.

Theorem 4.2.2. Let A be a subset of /., 722, and let B be a basis for PP(A).
Let ¢ be a region in £7~! which is both B-regularizing and CONT(A)-invariant.
Then A is regular on ¢, and S (5, .c) is A-invariant.

Proaf. It is easy to see that if B is regular on ¢, then any subset of B is regu-
lar on ¢. The proof is completed using the same argument as used in the

proof of Theorem 2.3.1. =

Theorem 4.2.3. Suppose F€l,. is regular on a region R in ET"lr=22. Let R’
be a subregion of R. If F is delineable on R, then F is delineable on R ', and
IS(F.R)| = |S(F.R")|. If Fiscylindrical on R, then F is cylindrical on £ ",

Proaf. Obvious.

Corollary 4.2.4. Let D be a regular (B!, ..., B") basis-determined cad of
E™, r=2. Let L' be a BT-regularizing clustering of D'. Let ¢ and d be cells of

D' in the same L'-cluster C'. Let R = R(C'). Then Bf = B} = 53.
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Proaf. Suppose B€E" is delineable on ¢ but cylindrical on R. Then since ¢

is a subregion of R, by Theorem 4.2.3, B is cylindrical on c, a contradiction. -
If B is delineable on R, then since c is a subregion of R, by Theorem 4.2.3, B
is delineable on ¢. Hence B is delineable on ¢ if and only if it is delineable on
R. Similarly one shows B delineable on d if and only if B delineable on R.

Hence B = B = Bj. ®

Corollary 4.2.5. Let D be a regular (B!, ....B") basis-determined cad of
ET r=2. Let L' be a F"-regularizing clustering of D'. Let c and d be cells of
D' in the same L'-cluster C'. Let R = union C'. Then |Sp(e)| = |S(BR.R)| =
[Sp(a)].

Proof. Where C' is the L'-cluster containing ¢ and d, let R = R(C’). We have
Sp(c) = Sp(Bf.c), and Sp(d) = S(Bi.d). By Corollary 4.2.4,
Sp(c) = S(BR.c), and Sp(d) = S(Bf.d). Hence by Theorem 4.2.3,

|Sp(e)i = |S(BR.c)l

= | S(BR.R)|

= | S(B8k.d)|

= |Sp(d)] =
Theorem 4.2.6. Let D be a regular (B, ... , B7) basis-determined cad of
ET r=2. Let L' be a BT-regularizing clustering of D', and let C' =
{c,, ... Cs} be an L'-cluster, let R = R(C"). Lett = |S(BR.R)| = |Splei) !,

1<i<s. Thenforlsk<t,

Sy (BR.R) = Ulsk(ng .Cy)-
J=

Proof. By Corollary 4.2.4. if suffices to establish that
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Se(BE.R) = lesz(B}é.c:)

2
for each k. But since R = | ¢4, this is immediate. ®
i=1

Theorem 4.2.7. For A C [,, let D be a regular (B?, ..., B") basis-determined
A-cad of £7, such that D’ is CONT(A)-invariant. Let L' be a E"-regularizing
and CONT(A)-invariant clustering of D’. Let (¢,,c3) be an L'-inner adjacency.
Then for any k, 1 < k =< | Sp(c!)]. Se(BZ, .c,) is A-adjacent to S (BZ,.C2)-
Proof. Let R = ¢; | ca. By Corollary 4.2.4, B, = B = Bi,. For any k,
1<k < |Sp(c?)|, since L' is BT -regularizing, Si(BE.R) is well-defined, and
by Theorem 4.2.8,
Se(BR.R) = Sk(BE,.c1) U Se(5g,.c0)

Since Sg(BE.R) is a region, Sg(Bg,.c,) and Sk (BI,.c2) are adjacent. By
Theorem 4.2.2, Sy (B%.R) is A-invariant, hence Sg(5¢,.c,) and Sk (B, .c 2) are

A-adjacent. s

Theorem 4.2.8. For A c I, let D be a regular (B!, ..., B") basis-determined
A-cad of ET, such that BT is a basis for PP(A), and D' is CONT{A)-invariant.
Let L' be a BT-regularizing and CONT(A)-invariant clustering of D'. Let
(c,.c2) be an L'-inner adjacency. Let s;€Sp(c,) and sz€Sp(cz). Suppose
either s, and sz are both sections, or s, and sz are both sectors. Then s
and sp are adjacent if and only if sy = S(B5Z,.c1) and sz = Sk(B{a.cz), for
some k, 1<k < [Sp(c,)].

Praoof. Suppose s; and s, are adjacent. Let K =c; U ca Suppose
s, € S;(Bg.R) = t;, and s, C S;(BR.R) = t;. By Theorem 4.2.6, either both of

t; and t; are sections of S(Bk.R). or both are sectors of S(BR.E). If i#],
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then clearly ¢; and £; must be adjacent. Hence by Theorem 3.5.8, one of £

and £; is a section and the other a sector, a contradiction. Hence i = j, and

by Theorem 4.2.6, s, = 5} (B:l.c,). and sz = S5 (Bz.'g.cz). The converse follows

immediately from Theorem 4.2.7. @

Corollary 4.2.9. Assume the hypotheses of Theorem 4.2.8. Then s; and s;
are A-adjacent it and only if §, = Sg(5Z,.c,) and s5 = Sk(BZ, ce). for some k.
1sk < |Splcy)].

Proof. Follows immediately from Theorems 4.2.8 and 4.2.7.

Definition. For A € I, r22, let D be an A-cad of ET such that D' is A-
regularizing. Let L' be an A-regularizing clustering of D'. Let C be an L'-
cluster. A mazimal A-<cluster of D in Z(R(C)) is an A-cluster of D whose
underlying region is contained in Z(R(C)), and which is not a proper subset

of any other A-cluster of D whose underlying region is contained in Z(R(C)).

Definition. For A C [,,r=2, let D be an A-cad of ET and L' a clustering of D".
An L -initial A-cluster of D is a maximal A-cluster of D in Z(R(C)) for some
L'-cluster C. The L'“initial A-clustering of D is the A-clustering of D consist-

ing of all L'-initial A-clusters of D.

Theorem 4.2.10. For A < I., let D be a regular (B',...,B") A-cad of ET,
such that B" is a basis for PP(A) and D' is CONT(A)-invariant. Let L' be a BT-
regularizing and CONT(A)-invariant clustering of D'. For any cluster C'of L',
for any c,,cg of C', for any & = 1, S,,,(Bl.'l.cl) and Sk(Bé'z.cg) are in the same
L'-initial A-cluster.

Proof. Let R = union C'. By Theorem 422 for any k =1, S {(FR.R) is A-

invariant. Let C' = {¢,,....Cs}. by Theorem 4.2.6, for any k=1,
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8
Sk(BE'R) = U Sk(ng -cj)n
i=1
hence
Ce = (Sk(BE,.c1). - -« Sk(Bg, Ce)3
is an A-cluster of D. Since Si(BE.R) is contained in Z(R). G is a subcluster

of an L'-initial A-cluster of D. =

Definition. For A c I,,r=1, and for an A-cad D of ET, an A-cluster of D is

mazimal if it is not a proper subset of any other A-cluster of D.

Definition. Suppose A C [, 7=1. An Aalgebraic component of ET, also
called an A-companent of £7, is a maximal A-region in ET, i.e. an A-region in
ET such that no proper superset of it in E” is an A-region. A subset of £7 is
an algebraic component of ET with respect to A C I, r=1, if it is an A-

component.

Thecrem 4.2.11. For A C Iy, r=1, and for an A-cad D of ET, an A-cluster of D
is maximal if and only if its underlying region is an A-component.

Proof. Suppose C is an A-cluster of D such that R(C) is not an Aocompolnent.
Let R = R(C). Then there exists an A-region R’ properly containing R. Let

R°=R'-R. Letcy ....Ce. k=1, be the cells of D which meet R°, and let
k

Q = Uci. Then F | @ is an A-region which is the underlying region of an A-
i=1

cluster of D which properly contains C. Hence C is not a maximal A-cluster
of D. Suppose C is an A-cluster of D which is not maximal. Then there exists
an A-cluster C' of D which properly contains C, hence R(C) is properly con-

tained in the A-region R(C'). hence R(C) is not an A-component. *

Definition. Suppose 4 C [, =1, and let D be an A-cad of E7. The coarsest
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Aclustering of D is the unique A-clustering of D each of whose clusters is a

maximal A-cluster.

Our objective in the clustering cad algorithm is, given Acl., to con-

struct both an A-invariant cad D of £E7, and the coarsest A-clustering of D.

Definition. For A C I, r=2, let D be an A-cad of £” and L' a clustering of D".
An L-sufficient set of adjecencies of D'is a set 5' of adjacencies of D', with

the following property: if L is an A-clustering of D such that
1. Each L'-initial A-cluster of D is a subcluster of some L-cluster, and

2. For each adjacency (c,.cp) in S', if a cell d, of Sp(c,) is A-adjacent to a

cell ds of Sp(cz), then d; and d3 are in the same L-cluster,

then L is the coarsest A-clustering of D.

Theorem 4.2.12 For A c I, =2, let D be an A-cad of £ and L' be a cluster-
ing of D’. The set of all L'-outer adjacencies of D' is L'-sufficient.

Proof. Let S’ be any set of L'-outer adjacencies of D' which is not L'-
sufficient. Let L be an A-clustering of D such that (1) every L'-initial A-
cluster of D is a subcluster of some L-cluster, and (2) for each adjacency
(c,.cp) in S, if d;€Sp(c,) is A-adjacent to d,€Sp(cg), then d, and d; are in
the same L-cluster. Suppose L is not the coarsest A-clustering of D. Then
there exist cells e, and ez of D such that e, and e are A-adjacent but not in
the same L-cluster. Let ¢, and c, be the unique cells of D' such that
e,€5p(c,) and ezeSp(cg). ¢ and cz do not belong to the same L'-cluster,
because if they did, then e, and e; would belong to the same L'-initial clus-
ter of D. Hence {c,.cy) is an L'-outer adjacency which does not belong to S

Therefore S' is not the set of all L'-outer adjacencies of D'. Hence the set of
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all L'-outer adjacencies of D" is L'-suflicient. =

4.3 Clustering in I-space.

Given 4 C I, and a (B!) basis-determined A-cad D of E1, it is straight-
forward to construct the coarsest A-clustering of D. For any adjacent O-cell
¢9 and 1-cell ¢!, some element of B!, and hence some nonzero 4 €A vanish
at ¢ but no nonzero 4,cA vanishes on c!, hence c° and c! are not A-
adjacent. Thus the clustering of D in which each cell of D is the unique ele-
ment of the cluster to which it belongs is the coarsest A-clustering L of D. It

follows that every adjacency of cells of D is an L-outer adjacency.

4.4 Clustering in Z-space.

The following theorem will be useful in restricting the amount of adja-

cency testing that must be done in the clustering cad algorithim.

Thearem 4.4.1. For A C I, let D be a (B!,5%) basis-determined A-cad of E?,
such that B2 is a basis for PP(A). Let (c¢,.c2) be an adjacency of D withec; a
O-cell and ¢, a l-cell. Let s,€Sp(c,) and s,€Sp(c,) be A-adjacent. Then s,
and s, are either both sections or both sectors.

Proof. Suppose that s, is a section and s a sector. Since D is (B!.5%)
basis-determined, some HF€B? vanishes on §,, hence some nonzero A €A
vanishes on s;. Since dim(cp) = 1, we have dim(sg) = 2. By Theorem 3.6.4,
no nonzero element of A vanishes on sz, hence s, and sz are not A-adjacent,
a contradiction. Suppose s, is a sector and sg is a section. Then (s1.52) is a
(1.1) adjacency of D, which contradicts Theorem 3.5.3. Hence s; and sz are

either both sections, or both sectors. =

4.5 Clustering in 3-space
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Definition. The dimension of a cluster in ET,r=1 is the dimension of the

largest cell it contains. A cluster of dimension i is an i-clustar.

Notation. Given an (i.j) adjacency between an i-cell of an m-cluster (i = m)
and a j-cell of an n-cluster (j < n), we write this as a type

(i.3)[m.n]
adjacency.
Lemma 4.5.1. Let Fel,, and let R, and R, be adjacent F-invariant regions in
ET. Suppose also that F is nonzero on R, and F is nonzero on R Then
R, ') R;is F-invariant.
Proof. Let R = R, U Ra. Since R, and R; are adjacent, R is a region such

that F{z)#0 for all z€R. Hence by Lemma 2.2.3, Ris F-invariant. =

Theorem 4.5.2. For A C Ip, let D be a (8'.5°) basis-determined A-cad of E%,
such that B2 is a basis for PP(A). Let L be the coarsest A-clustering of D.
Then every L-outer adjacency of D is of one of the following types:

(0,1)[0,1]

(0.1)(0.2]

(0.1)(1.1]

(0.1)(1.2]

(0.2)(0.2]

(0.2)(1.2]

(1.2)(1.2]
Proof. By Theorem 3.5.3, every adjacency of D is of type (i.j)[m.n] withi <.
Since furthermore we must have 0<i<m and 0=j<n, the only types of

adjacencies not mentioned in the theorem are are (0.1)[2.2], (0.2)[R.R].
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(0,1)[2,1], and (1,2){2,2]. By Theorem 3.6.4, no nonzero element of A van-
ishes on a 2-cell in £?, hence no nonzero element of A vanishes on any cell of
a 2-cluster. However some element of 52 and hence some nonzero element
of A, must vanish on a O-cell of a (B!,5?) basis-determined cad, hence a 0-
cell cannot be in a 2-cluster. Thus (0.1)[2.2]. (0,2)[2,2], and (0.1)[R.2] L-
outer adjacencies cannot occur. Suppose c;€ belongs to a 2-dimensional
L-cluster C,, cz€D belongs to a 2-dimensional L-cluster Cz, and c, is adja-
cent to cz. For each nonzero 4 €4, by Lemma 4.5.1, ¢, U Cz is A¢-invariant.
Hence ¢, is A-adjacent to ¢, hence by maximality of L-clusters, (c,.c2) is an
L-inner adjacency. Hence L-outer adjacencies of type (i,j)[2.2] cannot

ocecur. @

Definition. Let D be a cad of £? and L a clustering of D. A (0,2)[1,2] L-outer
adjacency (c%c?) between a O-cell ¢ of a 1-cluster C; of L, and a 2-cell c? of
a 2-cluster C, of L, is nonisolated if there is a 1-cell c! of Cy which is adja-
cent both to ¢® and c? otherwise (c%c?) is isolated. A (0,1)[1,2] L-outer
adjacency (c®c!) between a 0-cell ¢® of a 1-cluster C; of L, and a 1-cell c! of
a 2-cluster C, of L, is nonisolated if there is a 1-cell d' of C; and a 2-cell d?
of Ca, such that c?is adjacent to d*, ¢! is adjacent to d?, and 4! is adjacent

to d? otherwise (c%c?) is isolated.

Theorem 4.5.3. For A c I, let D be a regular, (B! 5% B%) basis-determined
A-cad of £ such that B3 is a basis for PP(A) and D' is CONT(A)-invariant.
Let L' be a F3regularizing and CONT(A)-invariant clustering of D'. Suppose
(¢%c?) is a nonisolated (0,2)[1,2] L'-outer adjacency of D', with ¢%eC,el’ and
c?cCel’. Let the i-cell c'eC, be adjacent to both c® and c?® Then for

every A-adjacency (Sq.82), with 50€Sp(c®) and sz€Sp(c?), there is an A-
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adjacency (s,.53), with §,€Sp(c?), such that sq and s, are in the same L'-

initial A-cluster.
Proof. We first prove the following proposition: forany &, = 1, kg = 1,
(S2,(B2%.0%).54 (B2 o)
is an A-adjacency if and only if
(Se (B3 .01, Sey(B% %)
is an A-adjacency. Since dim(C,) > 0, dim(Cz) > 0, and L' is F%regularizing,
by Theorem 3.4.1, no element of B? is cylindrical on any of c%, ¢!, or c?
Suppose s, = S (F}.c') is A-adjacent to s; = Se,(B%.c?). By Theorem
4.2.7, s, is A-adjacent to sq = Sk (8%.c%. Then by Theorem 3.5.5, sq C 35,
and s, C 8s3, hence by Lemma 3.8.11, sq C 35, hence by Theorem 3.5.1, sq is
adjacent to sp, hence sq is A-adjacent to sz by Theorem 4.2.1.

Suppose sg = Sg,(B%.c') is A-adjacent to sz = Sk,(B%.c?). By Theorems
3.4.3 and 3.4.7, Sp(c?) has the unique section boundary property in both
Sp(c® and Sj(c!), and Sp(c?!) has the unique section boundary property in
S3(c®). We claim that for any section ¢ of Sp(c?), the index of the boundary
section tq of t; in S5(cP) is the same as the index of the boundary section ¢,
of t; in Sp(c!). Let zq be the boundary section of £, in Sp(c®. Since
zoCdt;, and ¢, Cdt; by Lemma 3.3.11, 2zgC dt,, hence since
8ta N Z°(c%) = to, we have tg = zo, hence by Theorem 4.2.8, tg and t; have

the same index.

Suppose §3 is a section. Then by Theorem 3.5.10, sg is its boundary sec-
tion in Sp(c?), hence by our claim above, s; = S,CI(BC3 .c!) is its boundary
section in Sj(c!), hence by Theorem 3.5.10, 5, is adjacent to s;. By Theorem

4.2.7, s, is A-adjacent to sq, hence by Theorem 4.2.1, s, is A-adjacent to sg.
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Suppose s, is a sector (u,v) of Sp(c?), where u and v are sections of
Sp(c?). Let u® and u! be the boundary sections of u in Sp(c®) and Sp(ch),
and let v° and v! be the boundary sections of v in Sp(c®) and Sp(c!). By
Theorem 3.3.14, 8sz () Z°(c%) = [u%v%], and dsz N Z°(c?!) = [u'w!]. By our
claim above, u® and u! have the same index i, and v° and v! have the same
index j =1i. Since sq is adjacent to s; by Theorem 3.5.5 it follows that
i< k,<j. Hence again by Theorem 3.5.5, s; = .S,‘,I(B"_3 .c!) is adjacent to s,.
As above, it follows that s, is A-adjacent to s;. This completes the proof of
our proposition.

Now let (sq,52) be an A-adjacency with sq€Sp(c®) and §,€Sp(c?). 'I‘I;Lere
exist k, = 1, kg = 1, such that

so = S¢,(B%.c? .and
s2 = S (B%.c?).
By our proposition above, s; = S 1(Bca c') is A-adjacent to s5. By Theorem

4.2.10, sq and s, are in the same L'-initial A-cluster. =

Theorem 4.5.4. For A C Ig, let D be a regular, (5! 8% 5%) basis-determined
A-cad of £93, such that B? is a basis for PP(A), and D' is CONT(A)-invariant.
Let L' be a B3-regularizing and CONT(A)-invariant clustering of D'. Suppose
(c%c!) is a nonisolated (0,1)(1,2] L'-outer adjacency of D', with c%C,el’ and
cleCyel’. Let the 1-cell d'€C, and the 2-cell d?€(; be such that ¢¢ is adja-
cent to d!, c! is adjacent to d?, and d! is adjacent to d?® Then for every A-
adjacency (sq.5;). with sq€Sp(c®) and s,€Sp(c!), there is an A-adjacency
(t,.tz), with t,€Sp(ad') and t,Sp(d?), such that sq and ¢, are in the same
L'-initial A-cluster, and s, and ¢; are in the same L'-initial A-cluster.

Proof. We first prove the following proposition: for any k, = 1, kz = 1,
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(Skl(B,,so -Co)-Sk,(B,i )

is an A-adjacency if and only if

(Sk,(Bgh.d").Sk (Bl .d%))

is an A-adjacency. Choose k; and k, and let

Sg = Sg,(Bo.c®)

§1= S (BA.ch)

£y = Sk(BJ.dY)

te = Sg,(Bh.d%).
Note that since ¢ is adjacent to d! we have ¢? c d', and since d! is adja-
cent to d? we have d! c 3d? hence by Lemma 3.3.11, c® c 8d?, hence c®is
adjacent to d? Suppose sq is A-adjacent to §,. Then sq € 35, and since by
Theorem ¢.2.7 s, is A-adjacent to t,, s, C 8tz hence by Lemma 3.8.11,
sg C 8tg, hence s¢ is adjacent to ts hence by Theorem 4.2.1, sg is A-adjacent

to ty. Then by Theorem 4.5.3, ¢, is A-adjacent to .

Suppose t; is A-adjacent to t;. By Theorem 3.4.3, Sp(c?) has the unique
section boundary property in Sp(c®) and S5(d?) has the unique section
boundary property in Sp(c®). We claim that for any i = 0, where u; Is the i**
section of Sp(cl), where v, is the i** section of Sp(d?), where y is the boun-
dary section of u; in Sp(c?), and where z is the boundary section of 7; in
S3(c%), y = z. By Theorem 3.5.10, y C duy. By Theorem 4.2.7, uy and v, are
adjacent, hence by Theorem 3.5.5, uy C dv,, hence by Lemma 3.3.11, ¥y C dvy,
hence dv; € Z°{(c% =z, we have y = z.

Since t, is A-adjacent to f3 by Theorem 4.5.3, sq is A-adjacent to fs.
Suppose tg is a section. Then by Theorem 3.5.10, sy is the boundary section

of tg in Sp(c®). If tp is a section, then s, is a section with the same index,
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hence by our claim above, sq is the boundary section of s, in Sp(c%. Hence
by Theorem 3.5.10, s¢ is adjacent to s,. Since sq is A-adjacent to tp, and by

Theorem 4.2.7, t3 is A-adjacent to s,, sq is A-adjacent to s, by Theorem 4.2.1.

Suppose £3 is a sector (v;,uj4+1) of Sp (d®), where v; and vy, are the [ A
and (j+1)* sections of Sp(d?). Let w; and wy,, be the boundary sections of
vy and vy4 in Sp(c®). By Theorem 3.3.14, 8tz N Z°(c%) = (wy.wyy,]. Since sq
is adjacent to t, by Theorem 3.5.5, ¢ C [wj,wy4,]. §; is the sector (5. %y41)
of Sp(c?), where u; and uy,, are the j* and (j+1)*® sections of Sp(c!). By
our claim above and Theorem 3.3.14, ds; N Z°(¢9) = [w;,wy41]. hence
§g € 8s,, hence by Theorem 83.5.5, sq is adjacent to s;. Then as argued

above, s is A-adjacent to s,. This completes the proof of our proposition.

Now let (sq.5;) be an A-adjacency with 50€Sp(c®) and s,€Sp(ct). There
exist k, = 1, kg =1, such that
sq = Sk (Bh.c% .and
sy = Sp(Bi.ct).
By Theorem 4.5.5, t; = S¢ (BJ.d") is A-adjacent to tz = Skz(Efa.da). By
Theorem 4.2.10, s and £, are in the same L'-initial A-cluster, and s, and {;

are in the same L'-initial A-cluster. =

Theorem 4.5.5. For A C I, let D be a regular (5' 5% B5°%) basis-determined
A-cad of E9 such that 53 is a basis for PP(A), and D' is CONT (4)-invariant.
Let L' be a B3-regularizing and CONT(4)-invariant clustering of D'. Let S’ be
the set of all L'-outer adjacencies except for nonisolated (0.1)[1,R] and non-
isolated (0,2)[1,2]. Then S'is L'-sufficient.

Praof. Suppose L is an A-clustering of D such that (1) each L'-initial cluster

is a subcluster of some L-cluster, and (2) for each adjacency (e,.ez) of S,
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any cell of Sp(e,) that is A-adjacent to a cell of Sp(ep) is in the same L-

cluster as that cell. Let (c%¢!) be a nonisolated (0,1)[1,2] L'-outer adja-
cency. Then there is a (1,2) L'-outer adjacency (d'.d?) with (c%d!) and
(c!,d?) L’'-inner adjacencies. Hence by Theorem 4.5.4, for any A-adjacent
cells 5,€Sp(c® and szeSp(c?), there exist A-adjacent cells t,€Sp(d!) and
t2€Sp(d?), such that s, and ¢, are in the same L'-initial cluster, and s and
tp are in the same L'-initial cluster. Since (d!,d?)eS "', by (2), t, and {3 are in
the same L-cluster C. By (1), the L'-initial cluster containing {, is a subclus-
ter of C, and the L'-initial cluster containing £z is a subcluster of C. Hence s,
and s, are in C. Let (c®c?) be a nonisolated (0.2)[1,2] L'-outer adjacency.
Then there is a (1,2) L'-outer adjacency (@',c?) with (c°.d!) an L'-inner adja-
cency. We have (d1,c?)eS ", and by an application of Theorem 4.5.4 similar
to the application of Theorem 4.5.4 above, we obtain that any cell of Sp(c?)
that is A-adjacent to a cell of Sp(c?) is in the same L-cluster as that cell.
Thus L has the property, for any L'-outer adjacency (e n.eg), that any cell of
Sp(e,) which is A-adjacent to a cell of Sp(ey) is in the same L-cluster as that
cell. Since L' is a B¥regularizing clustering of D', by Theorem 4,2.12, the set
of all L'-outer adjacencies is L'-sufficient. Hence L is the coarsest A-

clustering of D, and hence 5’ is L'-sufficient. ®

Theorem 4.5.6. For A C [, suppose D is a (B!,B% B3) cylindricity-refined A-
cad of E3. such that B9 is a basis for PP(A). Let (cy,cz) be an adjacency of D’
such that either c, is noncylindrical with respect to B3, or (c,.cp) is type
(0,1). Suppose s,€Sp(c;) and sz€Sp(ce) are A-adjacent. Let L' be any clus-
tering of D'. Then there is some t,€Sp(c,), in the L'-initial A-cluster contain-

ing s,. and some £2&Sp(cg) in the L'-initial A-cluster containing sz such
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that £, and ¢, are A-adjacent, and either both £, and {; are sections, or both
t, and £, are sectors.

Proof. By Theorems 3.4.3, 3.4.7, and 3.6.21, Sp(c?) has the unique section
boundary property in Sp(c 1), Suppose s, is a section. Then by Theorem
3.5.10, s, must be the boundary section of 53 in Sp(c?), so we are done. Sup-
pose Sy is a sector. If 5, is a sector then we are done, so suppose §; is a sec-
tion. Since D is (8',5% 5% basis-determined, there is some B €B?® vanishing
on §,, hence there is some nonzero 4€4 vanishing on s,, hence since s; and
sg are A-adjacent, 4; vanishes on s;. By Theorem 3.8.4, no nonzero element
of A vanishes on a 3-sector, hence dim(sz) < 2. Since dim(c,) < dim (c3),

and dim (sz) = dim (cp) + 1, we must have dim (sz) = 2 and dim (s1) =0.

By Lemma 3.3.19, any 4 which vanishes on sz vanishes everywhere on
Z(cg). By Theorem 3.5.3, ¢, € dcg, hence by Lemma 3.3.1, Z(c,) c8Z(cy).
hence any 4; which va.nisiles everywhere on Z(c,) also vanishes everywhere
on Z(c,). since V(4;) is closed. Hence if 4 vanishes on s, and sg, then it

vanishes everywhere on Z(c,) and Z{c).

By Theorems 3.5.8 and 3.5.9, either there is a 1-section £, of Sp(cg)
adjacent to both s, and s, or there is a 1-sector u; of Sp(c,) adjacent to
both s, and sz. Suppose the first case. By the preceding paragraph, any A
which vanishes on s, and sg also vanishes on ¢;. Consider any A; which van-
ishes on t,. By Theorem 3.5.10, s, is the boundary section of ¢, in Splcy).
hence s; C V(4) since V(4) is closed. Hence A; vanishes on s; and s,. Thus
t, and s, are A-adjacent. Also, £, and s; are A-adjacent, hence they are in
the same L'-initial A-cluster, so we are done with this case. In the second
case, by the preceding paragraph, each 4 which vanishes on s, and s also

vanishes on u,. Consider any A; which vanishes on u,. By Lemma 3.3.19, 4




119

vanishes on Z(c,), hence 4; vanishes on s;, hence 4 vanishes on s, and s».

Thus u, and sz are A-adjacent. Also, u, and s, are A-adjacent, hence in the

same L'-initial A-cluster, so we are done. ®

Theorem 4.5.7. For A C I3, let D be a (B! B? B3) basis-determined A-cad of
E? with cylindricity, such that B? is a basis for PP(A). Let (c%.c?) be a (0.2)
adjacency of D', such that ¢? is eylindrical with respect to B3 1f s,€Sp(c?)
and SgESD(Cz) are A-adjacent, then s5 is a section.

Proof. Suppose B,€PB is cylindrical on ¢9. Since B, vanishes on every cell of
Sp(c?), there is some nonzero A;€4 which vanishes on every cell of Sp(c?).
Suppose s3 is a sector. Then since 4; vanishes on sy, and s, is A-adjacent to
Sa, 4; vanishes on s3. but this contradicts Theorem 3.6.4, since any sector of

Sp(c?) is a 3-cell in E3. Hence s must be a section. e

Definition. For ACl,, 7= 2, let D be an A-cad of £7 and L' a clustering of
D'. An L-adequate set of A-udjacencies of D is a set S of A-adjacencies of D,

with the following property: if L is an A-clustering of D such that
(1) Each L'-initial A-cluster of Dis a subcluster of some L-cluster, and
(2) For each A-adjacency (s,.52)€S, s, and s are in the same L-cluster,

then L is the coarsest L-clustering of D.

Corollary 4.5.8. For A C I3, let D be a (B',5%,5°) cylindricity-refined A-cad
of E3 such that 5% is a basis for PP(A). Let L' be a B%regularizing cluster-
ing of D', and let S’ be an L'-sufficient set of adjacencies of D'. Let S be a set

of A-adjacencies of D defined as follows:

(i) For each adjacency (c,,cz)€S ' such that either c, is noncylindrical with

respect to B3, or (c,.cz) is type (0,1), if a section d, of Sp(cy) is A-
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adjacent to a section dz of Sp(cz). then (d;,dz)€S, and if a sector e, of
Sp(c,) is A-adjacent to a sector ez of Sp(cz), then (e,.e 2)€S, and

(2) if (cy.cg) is a (0,2) adjacency of S' such that e, is cylindrical with
respect to B3, then if a cell d; of Sp(c,) is A-adjacent to a section dz of

SD(Cg). then (d;.dg)Es.

Then S is L'-adequate.
Proof. Suppose L is an A-clustering of D such that

(1) Each L'-initial A-cluster of D is a subcluster of some L-cluster, and
(2) For each A-adjacency (s,.5;)€S, 5, and s are in the same L-cluster.

We claim that L is the coarsest A-clustering of D. Since S’ is L'-sufficient, it
suffices to show, for every (c,.cg) of S', that if s;€Sp(cy) is A-adjacent to
s.€Sp(cy), then s, and s, are in the same L-cluster. Suppose that either ¢,
is noncylindrical with respect to B3 or (c,c3) is type (0,1). Then by
Theorem 4.5.8, there is a ¢, in the same L'-initial A-cluster as s;, and a tp in
the same L'-initial A-cluster as s, such that either both ¢, and f; are sec-
tions, or both £, and £ are sectors. By hypothesis, (£,,£2)€S, hence £, and
ty are in the same L-cluster C. Then the L'-initial A-cluster containing £;
must be a subcluster of C, and the L’'-initial A-cluster containing ¢z must be
a subcluster of C. Hence s, and s, are both in C. Suppose (c.c3) is a (0.2)
adjacency, such that ¢, is cylindrical with respect to B3. By Theorem 4.5.7,
s, must be a section, hence by hypothesis, (s1.52)€S, hence 5, and sz are in
the same L-cluster. Hence L is the coarsest A-clustering of D, hence S is L'-

adequate.
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4.6 Sample point consiruction.

There are at least two conditions which determine what cell sample
points the clustering cad algorithm constructs for a cad of ET. First, there
will always be at least one cell in each cluster for which a sample point has
been constructed. Second, if r < 3 and the cad D of £7 is to be extended to
a cad of £T*!, then where D is an A-cad for 4 C [, where L is the coarsest
A-clustering of D, and where S is an L-sufficient set of outer adjacencies in
ET, for each (c,.c3)€S with dim(c,) < dim(cj), a sample point for ¢, will be

constructed.

There are two reasons for the first condition. First, if the cad D of £7 is
to be used for quantifier elimination for a formula whose unquantified matrix
is ¢(zy, . . ., zy), then it is necessary to have a sample point for each cluster
of D in order to carry out the quantifier elimination. Second, if the cad of E7
is to be extended to a cad K of E™*!, then for each cluster C of D, where a is
the sample point for C and R = R(C), we will determine how many sections
and sectors there are in Sg(R) by evaluating certain polynomials in /4 at
a, then isolating the real roots of the resulting polynomials in Q(a)[zr41]
The reason for the second condition is that the sample points whose con-

struction is specified there are required by the adjacency algorithms.

Although sample points for more than one cell of a cluster may be con-
structed, each cluster has one of its cells with a constructed sample point
designated as the representative cell of the cluster. The representative cell
of an i-cluster will be some i-cell of the cluster, which we can expect to have
a more easily constructed sample point than any lower dimensional cell of

the cluster.
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Suppose r = 1, and that we are constructing an A-cad D of E! for some
A C I, with the clustering cad algorithm. The coarsest A-clustering L of D is
obtained by putting each cell of D in a cluster by itself, hence by the first
condition above, we must construct a sample point for every cell of D, as in
the original cad algorithm. For = = 2, however, we will in general construct

sample points for only a proper subset of the cells of D.

4.7 Defining formula construction.

Let D be a derivative-regular (B!, ..., B") basis-determined cad of
ET, r=1, for which we wish to construct defining formulas. Let L' be a BT-
regularizing clustering of D'. Let ¢, and cz be cells of a cluster C of L. Let
¢1(Zy1, . .. .Tr—;) be a deflning formula for c;, and let ga(zy, ... .Zr-1) be a
defining formula for ¢z Let S = Sp(cy). and T = Sp(cz). Then for any k.
1<k < |S|, there exists a quantifier-free formula ¥, (zy,....zy) such that
the derivative-based defining formula for S is ¢, & Y. and the derivative-
based defining formula for T is gz & Y. It is clear that where c; is the
representative cell of C with derivative-based defining formula ¢, if we con-
struct defining formulas for Sp(c;), then for any c;#c; in C with defining for-
mula ¢;, we do not need to explicitly construct defining formulas for Sp(c;).
For each k. 1<k < Sp(c;). we replace ¢; by ¢; in ¢; &Y, to obtain a

defining formula ¢; & ¥ for the kth element of Sp(ej).

4.8 The 2-space and 3-space clustering algorithms

For ease of exposition, the versions of CLCAD2 and CLCAD3 we present
in this section do not correspond in some respects with the versions imple-

mented in the SAC-2 computer algebra system. For precise information on
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the implemented versions, SAC-2 listings must be consulted (see [COLBO] for

information on SAC-2).

CLCAD2(Ak:C.1,S,F)
[Clusiered cylindrical algebraic decomposition of 2-space. Ais a list of n=0
bivariate integral polynomials. k satisfles Osk=2. C is a list of the clusters of
the coarsest A-clustering L of a regular (B!,B%) basis-determined A-cad D of
E? where B! c I, is a basis and B? C [, is a finest squarefree basis for PP(A).
Iis a list of the (0,1)[0,1]. (0,1)[0.2], (0.1)[1.1]. (0,2)[0,2]. isolated (0,1){1.2].
isolated (0,2)(1.2], and (1,2)[1,2] L-outer adjacencies of D. Sis a list of sam-
ple points for certain cells of D, such that S contains a sample point for the
representative cell of every cluster in C, and S contains a sample point for
the lower-dimensional cell of each L-outer adjacency in 1. If k=1, then Fisa
list of deﬁning formulas for the cad of k-dimensional space induced by D. If
k = 0, then F is the null list.]
(1) [Initialize.] Set N«CONT(4). Set A«~PP(A). Set B« the finest square-
free basis for 4.
(2) [Determine D'.] if k = 2 then set P«APROJ(B); otherwise set
P«PROJ(B). Set P«N |y P. Set A«PP(P) Set B'«~ the finest
" squarefree basis for 4. Isolate the real roots of B’, and use the iso-
lating intervals to construct sample points for each cell of D',
recording these in S'. If k = 1, then construct a defining formula
for each cell of D' and record it in F’; otherwise set I’ <- ().
(3) [Determine D and the sign patterns of its cells.] For each cell ¢ of D' with

sample point a , let B’ = {B;{a,z3)| B;€B |. Isolate the real roots
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of B’, thereby determining |Sp(c)|. Determine the sign of of each
element of A on each section and sector of Sp(c) and save for use
in Step 6 below.

(4) [Construct defining formulas for D, if desired.] If k = 2 then for each cell
c of_ D', construct defining formulas for the sections and sectors of
Sp(c) (using F') and record them in F. Otherwise set F«F'".

(5) [Determine topological adjacencies of D.] Let ¢,.c2, . .. .Cm be the cells
of D' in increasing (left-to-right) order. For each pair ¢;.ci4; of
adjacent cells in D' , 1<i<m -1, use the section boundary adja-
cency algorithm to determine all topological adjacencies between a
section of Sp(c;) and a section of Sp(cy4+1), and between a sector of
Sp(cy) and a sector of Sp(ci+). Infer all other topological adjacen-
cies of D.

(6) [Determine maximal A-clusters and L-outer adjacencies.] Initialize C to
the L'-initial A-clusters of D in Z(c,), where L' denotes the cluster-
ing of D' which puts each cell in a cluster by itself. Fori =1 ...
m-1 do the remaining actions of this step: Add the L'-initial A-
clusters of D in Z(cy4+;) to C. For each previously determined topo-
logical adjacency (s¢.5¢+1) between an element s; of Sp(c;) and an
element s;4, of Sp(c;4+1). use the sign information saved in Step 3 to
determine whether the adjacency is A-algebraic. If so, then com-
bine the cluster containing s, and the cluster containing sa. If not,
then if appropriate, add the adjacency to I.

(7) [Final sample point construction.] If the representative cell sample

point of any cluster is currently unconstructed, then construct it
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and add it to S. If the sample point for the lower-dimensional cell

of any adjacency recorded in I is currently unconstructed, then

construct it and add it to S. Exite

As was mentioned in Section 4.6, every cluster manipulated by the clus-
tering cad algorithm has a representative cell whose dimension is the same
as the dimension of the cluster. We now describe how these representative
cells are chosen. In E!, a cluster contains exactly one cell, which will be its
representative cell. For an A-cad of E7,7 =2 or r =3, let L' denote the
inductively determined clustering of D'. When we construct each L'-initial
A-cluster of D, we arbitrarily designate one of its cells of highest dimension
as its representative cell. Suppose now that two clusters of D are to be com-
bined ("pasted together”). If their representative cells have different
dimensions, then we retain the one of higher dimension as the representa-
tive cell of the new cluster. If their representative cells have the same
dimension, we arbitrarily choose one as the representative cell of the new

cluster.

We now indicate briefly how we construct a (B!,B% 8% cylindricity-
refined cad D of £%. Suppose BeB? is cylindrical on a 0-cell c%=<a,b> of
D'. Let B’ ={Bi(a.b,z)| BieB® & By(a,b,2)#0}. We now augment B°.
Suppose, for example, that ¢! is a 1-section of D’ adjacent to c® and that d!
is a B-section of Z(c?). Suppose G€B? vanishes on c!. We compute R(x,2) =
pp(Resy(G.B)). As in the proof of Theorem 3.6.2, if the limit point of d! in
Z°(c®) is finite, there will be a root 7 of R(e,z) such that <a,b,7 > is this

limit point, so we add R(a.z) to B°. We proceed similarly to add other
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polynomials in @(a)(z] to B°, so that among their real roots are all the z-
coordinates of points of Z(c% which are required to be sections of Sp(c% by
the deflnition of cylindricity-refined cad. Finally we isolate the real roots of
all elements of B°, and for each such real root z;, we make <a,b,2z; > asec-
tion of Sp(c?).

1t may happen that by the awbove process we obtain more sections of
Z(c®) than are required by the definition of cylindricity-refined cad. But let
us note that if D is a (B!,5% B% cylindricity-refined cad of £, and if BeBlis
cylindrical on a O-cell c9 of D', then we may add any (finite) number of addi-
tional O-sections to Sp(c®) and obtain a cad D° which is still (B!, B%B%)
cylindricity-free. This is because each new section we add is contained in
V(B), so D’ is B%invariant, and hence D’ is a (B!,B? B%) cylindricity-refined

cad of £3.

CLCAD3(Ak:C,1.S.F)

[Clustered cylindrical algebraic decomposition of 3-space. Ais alist of n=0
trivariate integral polynomials. k satisfles Osk<3. C is a list of the clusters of
the coarsest A-clustering L of a regular (5!,5% 5% cylindricity-refined A-
cad D of E?. where B!c I, and B% C I, are bases, and B°C /3 is a finest
squarefree basis for PP(4). I is a list of certain of the L-outer adjacencies of
D. Sis a list of sample points for certain cells of D, such that S contains a
sample point for the representative cell of every cluster in C. Ifk=1,thenF
is a list of defining formulas for the cad of k-dimensional space induced by D.
If k = 0, then F is the null list. ]

(1) [Initialize.] Set N«CONT(4). Set A«PP(4). Set B+« the finest square-
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free basis for 4.

(2) [Determine D' and a B-regularizing clustering of D'.] if k = 3 then set
P«APROJ(B) and k'«k—1; otherwise set P«PROJ(B) and k'«k.
Set P«N U P. Call CLCAD2 with inputs P and k' to obtain outputs
C. I, S, and F'.

(3) [Dete.rmine D and the sign patterns of its cells.] For each representative
cell ¢ of a cluster K of C', de the remaining actions of this step.
Where a is the sample point for c, set
B*«{B(a.z)| BieB & Bi(a,z)#0}. lf cisaO-cel which is cylindr-
ical with respect to B, add additional elements of Q(a)[z] to B’ as
described earlier in this section, so that D will be (B!,B%B%)
cylindricity-refined. Isolate the real roots of B°, thereby deter-
mining |Sp(c)|. Determine the sign of each element of A on each
section and sector of Sp(c), and hence on each section and sector
of Sp(d) for any d in K, and save for use in Step 6 below.

(4) [Construct defining formulas for D, if desired.] if k < 3 then set F«Ff"’
and go to 5. For each representative cell ¢ of a cluster Kin C’, con-
struct defining formulas for the elements of Sp(c) (using F).
From these infer the defining formulas for Sp(d), for every d in K,
as described in Section 4.7. Record these defining formulas in F.

(5) [Determine a set T of topological adjacencies of D, such that the subset
of all A-adjacencies of T is L'-adequate, where L' denotes the coar-
sest P-clustering of D'.] Use the section boundary adjacency algo-
rithm to determine all section-section and sector-sector adjacen-
cies between Sp(c;) and Sp(cy), for each {c;.c;)€]" such that either

c; is noncylindrical with respect to B or (c;,c5) is type (0.1), and to
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determine all adjacencies between an element of Sp(c;) and a sec-
tion of Sp(c;) for each (ci,05)€l' such that dim (c;) = 0,
dim(c;) = 2, and ¢, is cylindrical with respect to B.

(6) [Determine maximal A-clusters and L-outer adjacencies.] Initialize
I1«(),.C«(). For each adjacency (ci.c;)€/’', do the remaining
actions of this step. If not previously done, add the L'-initial A-
clusters of D in Z(R (X)) to C, where K; denotes the cluster of C’
containing c¢;. Similarly, if not previously done, add the L'-initial
A-clusters of D in Z(R(K;)) to C, where K; is the cluster of C' con-
taining c;. For each previously determined topological adjacency
(s;.5;) between an element sy of Sp(c;) and an element s; of Sp(c;).
use the sign information saved in Step 3 to determine whether the
adjacency is A-algebraic. If so, then combine the cluster contain-
ing s; and the cluster containing s;. If not, then add (s;.57) to L

(7) [Final sample point construction.] If the representative cell sample
point of any cluster in C is currently unconstructed, then con-

struct it and add it to S. Exits
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CHAPTER 5

THE SECTION BOUNDARY ADJACENCY ALGORITHM

5.1 Overview

Let D be a (B!,5%) basis-determined cad of £%, and let (¢ 1.C2) be 2 (0,1)
adjacency of D'. The 2-space section boundary adjacency algorithm finds all
adjacencies between sections of Sp(c ,) and sections of Sp(cz), and between
sectors of Sp(c,) and sectors of Sp(cg). By Theorem 3.3.24, Sp(ce) has the
unique section boundary property in Sp(c,), hence finding the section-
section adjacencies between the two stacks amounts to finding the boundary
section in Sp(c,) (if any) of each section of Sp(cz). By Theorem 3.3.14, it is
clear that from knowledge of boundary sections, we can infer the adjacen-
cies between sectors of Sp(c,) and sectors of Sp(cg). Section 5.2 gives the
theorem on which section-section adjacency determination relies, and an

abstract algorithm for the 2-space section boundary adjacency algorithm.

The general strategy of the 3-space section boundary adjacency algo-
rithm is to reduce determination of the adjacencies between sections of two
adjacent stacks in ES to determination of the adjacencies between sections
of a certain pair of adjacent stacks in E?. This is accomplished by "project-

ing” the adjacent stacks in £ into £° in an appropriate manner.

For some A C I3, let D be a (B',5% 5% cylindricity-refined A-cad of ES,
such that 5% is the irreducible basis for PP(A). We may distinguish four
kinds of adjacencies (c;.c;) between cells of D: a {1,2) adjacency. a (0,1)

adjacency, a {0.2) adjacency where the O-cell is noncylindrical with respect
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to B3, and a (0.2) adjacency where the O-cell is cylindricel with respect to
B3,

For the first three of these kinds, Theorems 3.4.3, 3.4.7, and 3.6.21
insure that Sj(c?) has the unique section boundary property in Sp(eh).
Thus, as in 2-space, finding the section-section adjacencies between the two
stacks a:ﬁounts to finding the boundary section in Sp(c,) (if any) of each'
section of Sp(cz), and we then apply Theorem 3.3.14 to infer the adjacencies
between sectors of Sp(c,) and sectors of Sp(cz).

When (c,,c3) is a (0,2) adjacency of D' with ¢, a cylindrical 0-cell (for
the remainder of this chapter, we will say "cylindrical” instead of "cylindri-
cal with respect to B%"), the situation is more complicated. Let s be a 2-
section of Sp(cz). Since D is (B'.5%FPY) basis-determined, s C V(B) for
some unique B€B? (by Corollary 3.6.6). 1f B is not cylindrical on ¢, then by
Theorem 3.8.7, there is a unique section t of Sp(cy) such that
t =8s N Z°’(c,), and the algorithm determines t just as though ¢, were non-
cylindrical. If B is cylindrical on c,, then the sections and sectors of Sp(c?!)
which are adjacent to s are determined by application of Theorem 3.6.18.
Since by Theorem 4.5.7, there can be no A-adjacency between a sector of
Splca) and a cell of Sp(cy), the 3-space section boundary adjacency algo-
rithm does not attempt to determine any topological adjacencies between a

sector of Sp(cz) and a cell of Sp(c)).

Sections 5.3-5.5 discuss individually these various kinds of adjacencies

between cells of D',

5.2 The 2-space algorithm.
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Theorem 5.2.1 Let A < I; and a,’',8,b1,b2€F be such that a < a', b; < g < by

d®= < &> is the unique section of S(4g.@) in @x[by,bz], where @ = {aj. A
is regular on R = (a.a'], and no nonzero 4; €A vanishes at any point of
[a,a']x{d,} or [a,a']x{bs}. Then for any section d' of S(Ag.R), dY is the
unique limit point of d! in Z(a) if and only if
d! ) fa'ix(by,bg)#0.

Proof. Let d! be an f -section. By Theorem 3.6.16, f can be extended to a
continuous map h:Q \J R-+E°. Suppose that d! N {a'}x(b;,bg)#4. Then we
have f(a')€(b,bg). Let z°= < a.f; > be the unique limit point of d! in
Z°(Q), and suppose 8;#f8. There exists a nonzero 4 €4 which vanishes on d!,
and since V{(4;) is closed, 4; vanishes at zo. A4; is not cylindrical at a since
A,(a.b,)#0, hence 20 is a section of S(4q.@), and so either f; < b, or §; > bai
assume without loss of generality the former. Then h(a) < b,and h(a’) > b,,
hence by the Intermediate Value Theorem, there exists a’€(a,a’') such that
R(a®) = f(a’) = b, Hence where d!c V(4) for some nonzero Ag&A4,
A(a’,b,) = 0, contrary to hypothesis. Hence g, = §.

Suppose d° is the unique limit point of d! in Z°(Q). If
d! M {a'{x(b,bz) = 0, then either f(a') < b, or f(a') = bz assume without
loss of generality the latter. Then h(a) < bz and h(a') = b,. Hence there
exists a’c(a.a’] such that h(a”) = f(a") = by. Hence where d! c V(4),
A#0, we have A(a’bz)=0, contrary to hypothesis. Hence

dl M fa'ix(b,,by)# 0. =

Clearly we can prove a corresponding theorem for o' < a, i.e. R to the
left of @. Analogously, a second version of the two-space section boundary

adjacency algorithm we present below can be given.
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The following theorem is used in step (1) of SBAAZ.

Theorem 5.2.2. Suppose A</, and b€E. Then there exist b,bzck,
b, < b < by, such that A is regular on [b1,b) and (b,bz].

Proof. Let P = PROJ(A). Since there are only flnitely many ai€F at which
some nonzero element of P vanishes, we can choose by,ba€E with
b, < b < bz such that no nonzero element of P vanishes on [61,b) and no
nonzero element of P vanishes on (&,b;]. Hence [b,b) and (b,b,] are P-

invariant regions in E!, hence by Theorem 2.2.15, A is regular on each. s

For any H < /[y, or for any H € @(a){z] for some real algebraic number
a, by the real roots of H we mean the set of all y€£ such that some H,eH

has ¥ as a root.

SBAAR(A,a,b L)
[Section boundary adjacency algorithm for E? A cCI; aisareal algebraic
number. Let 4 = {4i(a.y)|A4€A & A(ay)=0}, and let 8, .5 ., fn.n =0, be
the real roots of 4. b is a list (bg, . . ., by) of rational numbers such that
bj-y < f; <bj, for 1sj=n. Let ' > a be such that A is regular on
R = (a,a']. Let @ = {a]. L is a list of all section-section and sector-sector
adjacencies between S(4q.Q) and S(4z. R).]
(1) [Determine rational a' > a such that A is regular on R = (a.a'], and for
0=j <n, no nonzero 4 €4 vanishes at any point of [a.a']x{b;].]
Set P«PROJ{A). Add M(x), the integral minimal polynomial of «,
to P. Isolate the real roots of P, thereby obtaining an open isolat-
ing interval (u,v) for a. Set a'«wv. (A is regular on (a,'].) While

there is some j,0<j <n, and some nonzero 4 €A, such that
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A(z,b;) has a real root in [a,a'], set a’ to a rational approximate
) p

midpoint of the interval (a,a’]. (Since A(oby)#0 for 0 < j < n, this
loop will terminate.)

(2) [Initialize loop.] Set A°«{4(a'y)|4€4 & A(a'y)#0{. Set m« the
number of real roots of A° in (-=,bg). (m is the number of sec-
tions of S(Ag.R) whose limit point in Z°(a) is <a, - > ). Record
(in L) that sector 0 of S(4q.q) is adjacent to sector m of S(Agp.R).

(3) [Process each section of S(4q.Q).] For j = 1...,n do the following four
things: First, set my+« the number of real roots of 4° in (b5-1.51).
Second, record that the j%* section of S(A4g.€Q) is adjacent to sec-
tions m+1 ,..., m+my of S(4g.K). Third, record that sector j of
S(Aq.Q) is adjacent to sector m+m; of S(4p.R). Fourth, set

mem+m;. Exite

Where A is as in the SBAAZ specifications, we note that the rational
numbers bg, ...,b, are easily obtained from the endpoints of isolating
intervals for the real roots of A. (Here, as throughout the thesis, isolating

intervals are assumed by definition to have rational endpoints.)

5.3 Adjacencies in 3-space over a (1.2) adjacency.

Notation. Where Q denotes the rational numbers, for any r=0, let @, denote

@[z,.. ...z, ). the ring of rational polynomials in r variables.

Definition. For any FeQ., the similar integral polynomial for F, written
sip (F), is the unique integer primitive, positive element of /- similar to F.

(An element G of /, is integer primitive if there is no integer different from
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4
+1 and -1 which divides each coefficient of G.)

Definition. Let R be a region in E™~!, r = 2, and let S be a stack over R. Let
R’ be a subregion of R. The stack {s M Z(R')|s€S] is the restriction of S to

R’, written S |z .

Definition. Let Q and R be regions in £7~!, 7 = 2, such that § C 3R, and let
S(Q) and S(R) be stacks over Q and R. Let U and V be regions in £5~1, s = 2,
such that U c dV, and let S(U) and S(V) be stacks over U and V. The pair
(S(Q).S(R)) is said to be isomorphic to the pair. (S(U),S(V)), written
(S(@).S(R))~(S(U).S(V)), if S(Q)] = [S(U). IS(R)| = |S(V)|, and for any
ky=>1, kg =1, S (Q) is adjacent to Si,(F) if and only if Sg,(U) is adjacent to

Se(V).

Theorem 5.3.1. Let D be a regular (B! 5% 5% basis-determined cad of E3.
Let (c!,c?) be a (1,2) adjacency of D’ with ¢! a 1-sector and c? to the right of
cl. Let <a,b> be a point of ¢! with b rational. Let
B® = i{sip(B(x.b,2))|BeBF3. Let a' >a be a rational number such that
where [/ = (a,a'], B® is regular on I. Then B? is regular on R = Ix{b}, and
wherep = {a}, @ = {<a,b>},

(S(Bp.p).S(Bf 1)) = (Sp(c?).Sp(c?)).
Proof. Clearly B9 is regular on R, and

(S(Bpp).S(Bf 1))~ (Sp(ct)q . Sp(c?)|r)
We claim that

(Sp(e)lq . Sp(c®)|g) ~ (Sp(c).Sp(c?).
Let S(c!) = Splcl), S(c?) = Sp(c?), T(Q) = Sp(ct)|q. and T(R) = Sp(c?) |z

Obviously |T(@)| = |S(c!)| and | T(R)| = |S(c?)|. Foranyk,=1,kz=1,if




135

T.,(Q) is adjacent to Tel(R). clearly S (c') is adjacent to Sk,(c?). Con-
versely, suppose that s = S,,l(ci) is adjacent to t = S,,a(cz), and suppose that
both s and t are sections. Let s’ = T;; (@), and t' = Te,(R). By Theorem
3.6.2, t' has a unique limit point <a,b,y > €Z°(@). Sincet’ C t, <a,b,y> is
5. limit point of t. By Theorem 3.4.7, S(c?) has the unique section boundary
property in S(c!), hence by Theorem 3.5.10, s is the boundary section of t in
S°(c!). Hence <a,b,y> = s N Z(Q), ie. <a,b,y> = s, hence s’ is adja-
cent to t'. It is clear from this argument that T(R) has the unique section
boundary property in T(Q), hence by Theorems 3.3.14 and 3.5.10, we see that
for any k= 1, kg =1, if Se,(c') is adjacent to Sk,(c?). then Ty (Q) is adja-

cent to Ty, (R). Hence (Sp(c!)lq . Sp(c?)[r) ¥ (Sp(c'),Sp(c?). =

Clearly with minor changes we obtain a version of Theorem 5.3.1 for the
case c? to the left of c!. Also, if ¢! is a 1-section and c? is a R-sector, we
have two similar Theorems, one if c¢? is below ¢!, and another if it is above.

The following is one of these.

Theorem 5.3.2. Let D be a regular (5! 5% 5%) basis-determined cad of E8,
Let (c!,c?) be a (1.2) adjacency of D' with ¢! a 1-section and c? above ¢!, Let
<a ,b> be a point of ¢! with a rational. Let B° = {sip(B(a.y.z))|B€B%. Let
b > b be a rational number such that where J = (b.b'], B’ is regular on J.

Then B2 is regular on R = {a{xJ, and where p = (b}, @ = {<a,b >,
(S(Bp.p).S(B}.J)) ™ (Sp(c).Sp(c?).
We now describe the action of the 3-space section boundary adjacency

algorithm, SBAAS, for the case (c'.c?) a (1,2) adjacency, ¢! a l-sector, and

c? to the right of ¢! (the case covered by Theorem 5.3.1). At the time SBAA3
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is called, CLCAD? will have already constructed a sample point <a,b> for c!?
with b rational. We form the set B° of Theorem 5.3.1, set P = PROJ(E"),
and add the integral minimal polynomial for a to P. We then isolate the real
roots of P. Among the isolating intervals obtained is an open isolating inter-
val (u,v) for a. Setting @' = v, we have that B’ isregularon/ = (a,a']. Let
B = {B(a,b.z)|BcB%. We isolate the realroots fy, ... .fn. 7 =0, of B, and
from the endpoints of the isolating intervals obtain a list b = (bg, . . . by ) of
rational numbers such that b;.; < f; < by for 1 < j <n. We then call SBAAZ
with inputs B°, o, and b to obtain the section-section and sector-sector
adjacencies between S(Bp.p) and S(Br.[), wherep = {a}. By Theorem 5.3.1,
from these adjacencies we immediately obtain the section-section and

sector-sector adjacencies between Sp(c?) and Sp(c?).

The other three possible dispositions of ¢! and c? are handled similarly
by SBAAS.
5.4 Adjacencies in 3-space over a (0,1) adjacency.

Notation. We let 7, denote the projection that sends a point <x,y.z> of E% to
<y.z>. We let m, denote the projection that sends a point <x.y,z> of E? to

<x,z2>.

Theorem 5.4.1. Let F be a nonzero element of /3, and let G = pp(F). Then

there are real algebraic numbers aj, ....0. k=0, such that V(F) =
V(G) U Z(a)) U Z(ag) - - U Z(ak).
Proaf. Where H = cont(F), we have F = GH. Thus where a,, ... . k=0,

are the real roots of H, V(F) = V(&) U Z(a,) U Z(ag) - - U Z(a). =
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Theorem 5.4.2. Let D be a cad of E? Let (c¢%c?!) be a (0,1) adjacency of D

such that c¢? = <a,b>, ¢! is a 1-sector, and c© is below c!. Let B3 c /g be a

basis which is regular on c!. Let M(x) be the integral minimal polynomial of
a. Let B = {pp(Res, (M .B)|B<B®. Then there is an open interval (b,b") in
E, such that {a} x (b,b') cc!, B® is regular on (b,b'), and where d? = (b},
d! = (b,b'), if a section s of S(B3.c!)is adjacent to a section t of S(B%.cO,
then §' = m.(s) N Z(d!) is a section of S(B,,.d"), t' = mz(t) is a section of
S(Bjo.d%, and s’ is adjacent to t'.

Proaf. By Theorem 5.2.2, there is an open interval (b ,b') in E such that B° is
regular on (b,b'). Clearly &' can be chosen so that a x (b,b') is contained in

cl.

Let d% = {b] and d! = (b,b'). Every section s of S(BJ.c') is contained
in ¥(B) N V(H), for some BcB® where M(x) is viewed as a polynomial in
x.y, and z. We have deg:(M)>0 If degz(F) = 0, then by definition,
Res,(M.B) = B(0,y.z), hence Res,(#.B) vanishes on me(s). If deg.(B) >0,
then since s ¢ V(B) N V(#), by Theorem 5 of [COL71], Res.(M,B) vanishes
on mz(s). We have Res (H#,B)#=0, for if Res;(#.5) = 0, then by Theorem 2 of
[COL71], M and B have a common factor of positive degree in X, contradict-
ing the primitivity of B. Since mz (z) is a section, for any @ €F, there exists
at most one point at which mz(s) meets Z(a,). Hence by Theorem 5.4.1,
V(pp (Res.(#,B))) contains all except possibly finitely many points of mz{s).
Then since V{pp (Res,(H#.B))) is closed, it contains all points of . (s). Since
no element of B° is cylindrical on d!, every element of B° is delineable on
d!, in particular, pp(Res,(M,B)) is delineable on d'. Hence m,(s) N Z(dh)

is a section of S(8,;,2").
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Now suppose that s is adjacent to a section t of § (Bfo,c 9). Thentis a
limit point of s, hence every open ball in ES centered at t contains a point of
s. For any open ball U in E? centered at t' = mz(t), there is an open ball V in
ES3 centered at t such that U = m,(V). Hence where p is the point of s con-
tained in V, m;(p) is contained in U, hence #' is a limit point of mz(s). It is
then easy to see that t' is a limit point of s' = (m;(s) N Z(d!) ), hence t’ is

adjacent to s'.

As shown earlier, there exists H€B° which vanishes on s', hence since
V(H) is closed, V(H) vanishes on t'. Since H is primitive, it is not cylindrical

on d% hence t' is a section of S(By.d%). «

Clearly only minor changes are needed in the above theorem and proof

in case c% is above c!. The next theorem deals with the case of ¢! a section.

Theorem 5.4.3. Let D be a cad of E% Let (c%c?!) be a (0,1) adjacency of D
such that ¢% = <a,b> and c!is a 1-section. Let e! be the unique 1-section of
D’ such that ¢!  Sp(e!), and assume that e! is to the right of a. Let B®C I3
be a basis which is regular on c¢!. Let G(x,y) be an element of /3 of positive
degree such that c! ¢ V(G). Let B® = {pp(Resy(G.B)|B€B%. Then there is
an open interval (a,a') € e! such that B° is regular on (a.a'), and where
d® = {a}, d! = (a.a'), if a section s of S(BJ.c!) is adjacent to a section t of
S(B%.cY%, then s’ = my(s) N Z(d') is a section of S(B,.d'), t' =m(t)isa
section of §(F;;.d%, and §’ is adjacent to t'.

Proaf. We alter the proof of Theorem 5.4.2 so that G(x.y) plays the role of
M(x), and we eliminate y instead of x using resultants. Apart from these
changes, the proof of Theorem 5.4.3 is the same as the proof of Theorem

5.4.2 ¢«
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Theorems 5.4.2 and 5.4.3 alone do not provide an algorithm for determi-

nation of adjacencies between S(B%.c%) and S(Bi.c'). In general,

(S(B0.d%.S(B;1.d") will not be isomorphic to (S(B%.¢9.5(82.ch), for

the stacks of the first pair will typically contain more sections than those of
the second. To obtain an adjacency algorith_m. we will apply SBAAR to deter-

mine the section-section adjacencies between S(5j,.d°) and S(B,i.d"). then

extract from this set, in a manner to be explained, the section-section adja-

cencies between S(B%.c°) and S(B3.c!), then infer from these the sector-

sector adjacencies between S(B%.c®) and S(B3.c?).

The extraction is specified as follows: For every section s of § (Bfg.c").

the projection of s (under whichever of 7, or my is appropriate) is a section

of S(B;0.d%. For every section t of S(B3 .c!), the projection of t is a sec-
tion of S(B;i.dl). The adjacencies we wish to extract are thogse where the
section of S(By.d% involved is the projection of a section of S(B%.c?. and
the section of S(B,;.d') involved is the projection of a section of S(BJ .c!).
In other words, the adjacencies we want to extract are those which are the
projection of a section-section adjacency between S(B%.c?% and S(B&.ch).
We now describe how this is done. |

We may assume without loss of generality that c% and c! are as in

Theorem 5.4.2. Assume we have chosen &' > b such that the conclusions of

Theorem 5.4.2 hold. We choose some rational & ‘e(b,b'). Let
H® ={B(a,b,z)|BcB® & B(a.b,z)#0]
H'={B(a.b’z)| BB
K°={B'(b,2)|B'eB"}
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Kl'={B'(b°.2)|B'€B"}.
Every real root of H? is a real root of K9, and every real root of H! is a real

root of K!. The real roots of H° H!, K° and K'! are in one-one correspon-
dence with the z-coordinates of sample points for the sections of certain
stacks, as follows:

H® «- S(B%.c?)

H' «» S(B3.c!)

K® «» S(Bj.d%

K' «- S(B;.d").
Since our two projection operators m, and 7, have no effect on 2z-
coordinates, our task reduces to being able to decide whether a particular

root of K® is a root of H° and whether a particular root of X! is a root of H'.

Consider, say, H® and K°. We apply a particular root isolation algorithm
(available in the SAC-2 system) to H® which provides us with a list of pairs of
the form (1,P), where I is an open isolating interval for a real root of HY and
P(x) is a squarefree algebraic polynomial which has exactly one root in I

For K° we obtain a list of pairs of the form (J,Q), with similar specifications.

Let a be a particular root of HY represented by the pair (I.,P). Suppose
we wish to test whether the root of K® represented by the pair (J,Q) is «. Let
K=INJ. If K= 0 then obviously the answer is no. Suppose X = (wu)#d.
If sign(P(u)) = sign(P(v)), then P does not have a root in K, hence a ¢ X,
hence a&J, and hence (J,Q) does not represent a. If
sign (P(u))#sign(P(v)), then a€K, hence a&/. But every root of HYis a
root of X°, hence a is a root of K° hence a is the unique root of K%in J.

Hence (J,Q) represents a.
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Having determined the section-section adjacencies between S(8%.c%)

and S(Bf .c1), we infer the sector-sector adjacencies between them by

exactly the same method used by SBAAZ2 to infer sector-sector adjacencies

from section-section adjacencies.
5.5 Adjacencies in 3-space over a (0.2) adjacency.

Theorem 5.5.1. Let D be a (B',5% 5% cylindricity-refined cad of E%. Let
(c%c?) be a (0,2) adjacency of D’. Let c!'€D' be a c¢%bounding 1-cell of c?.
Let s be a section of Sp(c?), and suppose that where B is the unique element
of B? for which s ¢ V(B), that B is not cylindrical on ¢% Then for any sec-
tion t of Sp(c®), s and t are adjacent if and only if there exists a section u of
Sp(c!) such that uis adjacent to both s and t.

Proof. Suppose there exists such a section u. Since t and u are adjacent,
one must contain a limit point of the other, and similarly for u and s. Then
t € du, and by Theorem 3.4.8, u C ds, hence by Lemmma 3.3.11, ¢ C ds, hence
t is adjacent to s. Suppose conversely that s and t are adjacent. By
Theorem 3.4.7, Sp(c®) has the unique section boundary property in Sp(c!).
Let u be the boundary section of s in Sp(c!). By Theorems 3.4.3 and 3.6.21,
Sp(c!) has the unique section boundary property in Sp(c?); let w be the
boundary section of u in Sp(c®). By Theorem 3.6.7, w = t, hence u is adja-

cent to bothsand t. =

SBAA3 utilizes Theorem 5.5.1 as follows. Let D, ¢ c? and c! be as
specified in the hypotheses of the theorem. Assume that the section-section
adjacencies between Sp(c? and Sp(c!), and between Sp(c!) and Sp(c?),
. have previously been determined. Let L, and L; denote the respective lists

of adjacencies. Then for every occurrence of an adjacency {d%d!) in L, and
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an adjacency (el,e?) in L, with d! = e!, we record the section-section adja-
cency (d%e?) between Sp(c® and Sp(c?). By Theorem 5.5.1, we obtain
exactly the set of section-section adjacencies between Sp(c?) and Sp(c?) in
this ﬁay. When c® is noncylindrical, by Theorems 3.4.3, 3.4.7, and 3.3.14, it is
clear that sector-sector adjacencies between Sp(c% and Sp(c?) may be

inferred from the section-section adjacencies between the two stacks.

Suppose now that D is a (B!, 52 8%) cylindricity-refined cad of E3, (c%c?)
is a (0,2) adjacency of D', and c® is cylindrical. Let s be a section of Sp(c?),
let B be the unique element of B3 such that s ¢ V(B), and suppose B is
cylindrical on c® We wish to determine all elements of Sp(c? which are
adjacent to s. Let H = STRAT(c®) | RES(F), and let K be the H-set of z-
values of s over ¢9 Let c9=<a,b> CLCADS will construct a cylindricity-
refined cad of £% such that for every z €K, <a,b,z> is a section of Sp(c9).
Hence, by Theorem 38.6.18, where z, = min(K), and z; = max(K), the ele-
ments of Sp(c% between <a,b,z; > and <a,b,zp > inclusive are precisely

the elements of Sp(c?) adjacent to s.

By definition of K, for each z €KX, there exists a 1-cell c!in £? such that
<a.b,z> is the unique limit point in Z°(c%) of some 1-section t of Z°(c!), and
hence <a,b,z> is the unique section of Sp(c% adjacent to t. SBAA3 essen-
tially uses the algorithm described in Section 5.4 to find the (unique) adja-
cency between t and a section of Sp(c?), for each such section t. In this way
a collection of sections of Sp(c®) is obtained. The one of lowest index will be
<a.b,z, >, the one of highest index will be <a.,b,22 >, and so we will have

determined all elements of Sp(c®) which are adjacent to s.
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We now describe this process in somewhat more detail. From the

deflnition of H-set of z-values, we see that the 1-cell ¢! referred to above is

of one of two kinds. First, it may be a c®-bounding 1-cell of c? In this case,
cleD’, and t will be the boundary section of s in Sp(c!). We will have previ-
ously applied SBAA3 to determine adjacencies between Sp(c!) and Sp(c?),
and between Sp(c®) and Sp(c!). t is either the +w=-section of Z°(c!), the -=-
section of Z°(c!), or a section of Sp(c!). In the first -case,
8t N Z2°(c% = <a.b, + = >, in the second case, 3t M Z°(c% = <a,b,~= >,
and in the third case, 8t M Z°(c%) is a section u of Sp(c?). In the third case,
u is determined from the adjacencies found by SBAA3 between Sp(c? and
Sp(ct).

Where D is the coarsest H-invariant refinement of D', the second possi-
bility for ¢! is that it is a 1-section of I which is adjacent to ¢® and which
meets c?. We determine all the cells ¢! of this second kind as follows. Let
P = PROJ(H U B% U {M(z)], where M(z) is the integral minimal polyno-
mial of a. We isolate the real roots of P, obtaining an open isclating interval
(u,v) for a (with rational number endpoints). Set @' =v. Then H B? is
regular on (z,@]. Let U = (HA(a.y)|BeB?, and let V =
1Q(a’y)|QeH U B?. Let d} and df be the c%bounding 1-cells of c?
Assume that both d! and d} are sections of D', the minor changes neces-
sary in our discussion if either is a sector will be evident. Furthermore,
assume without loss of generality that for some 1-cell e in the D-induced cad
of E!, d! is below d} in Sp{e). There is a unique point <a'.g, > of
Z(a') N d}. and a unique point < a' 83> of Z(a') M di.and Bz > B, fyisa
real root of both U and V, and @3 is a real root of both U and V. The real

roots of U are in cne-one correspondence with the y-coordinates of sample
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points for the sections of Sp-(e). Since we know the indices of d{ and dJ in
Spe), we immediately know which two consecutive real roots of U are §,
and ;. By a "root matching” process similar to that described at the end of
Section 5.4, we find where #, and Sz occur in the ordered sequence of real
roots of V. There will be additional real roots 7, ... 7. k 20, of V such
that 8; <71 < -+ <7 < Pz For each 7;, <a’',y; > is a sample point of al-
section of J which is adjacent to c® and which meets c?, and every such 1-
section of U gives rise to a 7;. Thus the 7;'s determine all the 1-cells c! of

the second kind.

For each ¥, i.e. for each ¢!, we find a @€H of positive degree which van-
ishes at <a',7; >, and hence for which ¢! ¢ V(@). We then apply the algo-
rithm described in Section 5.4 to determine section-section adjacencies
between Sp(c?)|,; and Sp(c?). t is the element of Sp{c?)|,1 whose index is
the same as the index of s in Sp(c?®). Thus we can use the list of section-
section adjacencies between Sp(c?)lc! and Sp(c?) to determine

at N Z°(c9).




145

CHAPTER 6

PERFORMANCE OF THE ALGORITHMS

Before turning tomthe examples, we mention two reasons why the clus-
tering cad algorithm may prove to be faster in a particular case than the
original. The first has to do with sample point construction. Define the
degree of an algebraic point to be the degree of the smallest algebraic
extension of the rationals containing all of its coordinates. In the original
cad algorithm, much of the time is spent in constructing sample points of
high degree. The clustering cad algorithm has two advantages in this
regard, first, that fewer sample points are constructed, and second, that the
sample points which are constructed tend to be those of lower degree.
Second, if r = 3, clusters will be constructed for the induced cad of E®?, and
in extending the cad of E? to a cad of E3, the clustering algorithm will per-
form certain computations once for each cluster in E?, whereas the original

algorithm would perform them once for each cell in EZ.

6.1 The folium of Descartes

The purpose of our first example is to illustrate the output produced by
the clustering cad algorithm. This output constitutes the last eighteen

pages of Section 6.1. We begin with a brief commentary on the output.

The folium of Descartes ([SEI6B], p. 37) is the curve in £° which is the

locus of
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Flzy)=y?-3zy +z% = 0.
A sketch of the curve is:

Where A = { F |, the A-invariant cad D of E? constructed by both cad algo-

rithms may be diagrammed as follows:
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In the diagram, each "dot" is a O-cell, each "arc" is a 1-cell, and each "white
region” is a 2-cell. We see that the induced cad of E! consists of five cells,
which we may label from left to right as ¢, ¢a, 3, €4, and cs. €y, €3, and cg
are 1-cells; cp and ¢, are O-cells. Sp(c,) has three cells, Sp(cz) has three
cells, Sp(ca) has seven cells, Sp(c,) has five cells, and Sp(cs) has three cells,
so D has 21 cells. Clearly the coarsest A-clustering of D has four clusters,

(the union of) one of which is the folium itself.

The original cad algorithm takes 28 seconds (on a VAX 11/780 computer
with the UNIX operating system) to construct D, and the clustering cad algo-
rithm takes 1B seconds to construct D and the four clusters. In both cases,

defining formulas for the cells of D were constructed.

In the output, cells are referred to by their indez. The index of a cell in

a cad of £, r =1, is an r-tuple of positive integers defined inductively as
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follows. Any cell of a cad H of £' is the i?* cell in the left-to-right ordering of
cells of H, for some i = 1; its index is then (i). If r > 1, any celld of acad H
of ET is in a stack S = Sy(c), for some c€H". If (i, ... ,1~;) is the index of

c,andifd = S;, j = 1, then (i, . . . ,ir—1.J) is the index of d.

At various places in the output below the sample points of cells are
displayed. There are two parts to the display of a cell sample point: first, an
exact description of it as specified in Section 2.4, and second, an approxima-
tion to five decimal places. Cells for which no sample point representation
in the sense of Section 2.4 was constructed by the clustering cad algorithm
are identified by the line "*** SAMPLE POINT UNCONSTRUCTED ***".

For each cluster in £%, the output below first gives the index and dimen-
sion of its representative cell (abbreviated as "REP CELL"), then a list of the
cells which belong to the cluster, then the polynomials in A (if any) which
vanish on each cell of the cluster, and finally the sample point of the
representative cell.

In the display of defining formulas for cells, a vertical bar ("[") is used

to denote "or".

This concludes our commentary; the output now follows.
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BIVARIATE INPUT POLYNOMIALS TO CAD ALGORITHM

Y -3 XY+ X

DIMENSION UP TO WHICH DEFINING FORMULAS TO BE CONSTRUCTED

FINEST SQUAREFREE BASIS FOR BIVARIATE INPUT POLYNOMIALS

Y -3 XY+ X

CONTENTS OF BIVARIATE INPUT POLYNOMIALS

()

AUGMENTED PROJECTION OF BIVARIATE BASIS

5 3
- 27 X + 108 X

UNIVARIATE INPUT POLYNOMIALS TO CAD ALGORITHM
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6 3
- 27 X + 108 X

FINEST SQUAREFREE BASIS FOR UNIVARIATE INPUT POLYNOMIALS

INDUCED CAD OF 1-SPACE

TOTAL OF 5 CELLS IN 1-DIMENSIONAL SPACE

CELL NO. 1 INDEX = (1) DIMENSION = 1
SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE
-1

SAMPLE POINT - APPROXIMATE
( -1.00000 )

DEFINING FORMULA

( X <0)
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CELL NO. 2 INDEX = (2) DIMENSION = .0

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

0

SAMPLE POINT - APPROXIMATE
( 0.00000 )

DEFINING FORMULA

( X =0)
CELL NO. 3 INDEX = (3) DIMENSION = 1

SAMPLE POINT - EXACT

SAMPLE POINT COORDINATES ARE
1

SAMPLE POINT - APPROXIMATE

( 1.00000 )

DEFINING FORMULA

3

( ( X>0) & ( X -4<0) & ( X=2<x0))

CELL NO. 4 INDEX = (4) DIMENSION = 0

SAMPLE POINT - EXACT
LET A BE THE UNIQUE ROOT OF

3
u -4

BETWEEN 1 AND 2
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SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE

a

SAMPLE POINT - APPROXIMATE
( 1.58740 )

DEFINING FORMULA

3

(( X=-1>0) & ( X-2<0) & ( X -4 0) )

CELL NO. 5 INDEX = (5) DIMENSION = 1
SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE
2

SAMPLE POINT - APPROXIMATE
( 2.00000 )

DEFINING FORMULA

3
(( X=-1>0) & ( X =-4>0))

CELL INDICES FOR CAD OF 2-SPACE

1. (1,1) 2-CELL
2. (1,2) 1-CELL
3. (1,3) 2-CELL
4. (2,1) 1-CELL
5. (2,2) 0-CELL
6. (2,3) 1-CELL
7. (3,1) 2-CELL
8. (3,2) 1-CELL
9. (3,3) 2-CELL
10. (3,4) 1-CELL

11l. (3,5) 2-CELL
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12. (3,6) 1-CELL
13. (3,7) 2-CELL
14. (4,1) 1-CELL
15. (4,2) 0-CELL
16. (4,3) 1-CELL
17. (4,4) 0-CELL
1%3. (4,5) 1-CELL
19. (5,1) 2-CELL
20. (5,2) 1-CELL
21. (5,3) 2-CELL

CLUSTERS FOR 2-SPACE

TOTAL OF 4 CLUSTERS IN 2-DIMENSIONAL SPACE

CLUSTER NO. 1 REP CELL INDEX = (5,3) REP CELL DIMENSI
ON = 2

CONSTITUENT CELLS
(5,3)
(3,3)
(4,3)
(3,7)
(1,3)
(2,3)
(4,5)

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

-1

SAMPLE POINT - APPROXIMATE
( 2.00000 , -1.00000 )

CLUSTER NO. 2 REP CELL INDEX = (5,2) REP CELL DIMENSI
ON = 1
CONSTITUENT CELLS
(5,2)
(3,56)

(3,4)
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(3,2)
(1,2)
(2,2)
(4,2)
(4,4)

POLYNOMIALS VANISHING ON THE CLUSTER

3 3
Y -3 XY+ X

SAMPLE POINT - EXACT
LET A BE THE UNIQUE ROOT OF

3
U -6 U + 8

BETWEEN -4 AND -2
SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE

A

SAMPLE POINT - APPROXIMATE
( 2.00000 , -2.95137 )

CLUSTER NO. 3 REP CELL INDEX = (5,1) REP CELL DIMENSI
ON = 2

CONSTITUENT CELLS
(5,1)
(3,1)
(1,1)
(2,1)
(4,1)

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE
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SAMPLE POINT - APPROXIMATE
( 2.00000 , -8.00000 )

CLUSTER NO. 4 REP CELL INDEX = (3,5) REP CELL DIMENSI
ON = 2

CONSTITUENT CELLS
(3,5)

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

1

SAMPLE POINT - APPROXIMATE
( 1.00000 , 1.00000 )

CAD OF 2-SPACE

TOTAL OF 21 CELLS IN 2-DIMENSIONAL SPACE

CELL NO. 1 INDEX = (1,1) DIMENSION = 2

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

-4

SAMPLE POINT - APPROXIMATE
( -1.00000 , -4.00000 )

DEFINING FORMULA
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3 3
(( X<0)&( Y -3XY+X <0))

CELL NO. 2 INDEX = (1,2) DIMENSION = 1

SAMPLE POINT - EXACT
LET A BE THE UNIQUE ROOT OF

3 :
u +30-1

BETWEEN 0 AND 2
SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE

A

SAMPLE POINT - APPROXIMATE
( -1.00000 , 0.32218 )

DEFINING FORMULA

3 3
(( X<0) & (¥ -3XY¥Y+X =20))

CELL NO. 3 INDEX = (1,3) DIMENSION = 2

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

5

SAMPLE POINT - APPROXIMATE
( -1.00000 , 5.00000 )
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DEFINING FORMULA

3 3

(( X<0) & (¥ -3XY+X >0))

CELL NO. 4 INDEX = (2,1) DIMENSION = 1

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

0

-1

SAMPLE POINT - APPROXIMATE

DEFINING FORMULA

3 3
(( X=0)& (¥ -3XY+X <0))

CELL NO. 5 INDEX = (2,2) DIMENSION = 0
**%* SAMPLE POINT UNCONSTRUCTED ***
DEFINING FORMULA

3 3
( ( X=0) & ( ¥ -3 XY+X =20))

CELL NO. 6 INDEX = (2,3) DIMENSION = 1

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE
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2

SAMPLE POINT - APPROXIMATE
( 0.00000 , 2.00000 )

DEFINING FORMULA

3 3
(( X=0) & (¥ -3XY+X >0))

CELL NO. 7 INDEX = (3,1) DIMENSION = 2

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

- 2

SAMPLE POINT - APPROXIMATE
( 1.00000 , -2.00000 )

DEFINING FORMULA
3
((( X>0) & ( X -4<0) &( X-2<0)) &

2 3
( (( ¥Y<0) & ( ¥ -X>0))&( ¥ -3XY¥Y

3
+ X < 0) ))

CELL NO. 8 INDEX = (3,2) DIMENSION = 1
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SAMPLE POINT - EXACT
LET A BE THE UNIQUE ROOT OF

3
Uu -3U0+1

BETWEEN -2 AND -7/4
SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE

A

SAMPLE POINT - APPROXIMATE
( 1.00000 , -1.87939 )

DEFINING FORMULA

3
((( X>0) & ( X -4<0) & ( X=-2<0)) &

2 3
( (( ¥Y<0)e&( ¥ -X>0))&( ¥ -3X¥Y

CELL NO. 9 INDEX = (3,3) DIMENSION = 2

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

0

SAMPLE POINT - APPROXIMATE
( 1.00000 , 0.00000 )

DEFINING FORMULA
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( (( X>0) & ( X -4<0) & ( X=-2<0)) &

2 3
(((( ¥Y<o0) & ( ¥ -X>0)) & ( ¥ -3XY¥

3 2 ;
+X >0)) 1 (( ¥Y<0) &« (¥ -=Xx=0))1¢€(

: 2
(( ¥Y<o0)&( ¥ =-Xx<0))1l yYy=0)1¢CC

2 3 3
¥Y>0)& (¥ -X<0)))&( ¥ -3XY¥Y+X

>0) ) ) )

CELL NO. 10 INDEX = (3,4) DIMENSION = 1

SAMPLE POINT - EXACT
LET A BE THE UNIQUE ROOT OF

3
Uu -30+1

BETWEEN 1/4 AND 1/2
SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE

A

SAMPLE POINT - APPROXIMATE
( 1.00000 , 0.34730 )

DEFINING FORMULA

3
((( X>0) & ( X =-4<0) & ( X=-2<0)) &

2
( ( ( ( ¥Y<0) & ( ¥ =-X<0)) Il ¢ y¥Y=0)1(

2 3
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( ¥Y>0) & (¥ =-X<0)))& (¥ -3XY¥

3
+ X =.0.).))

CELL NO. 11 INDEX = (3,5) DIMENSION = 2

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

1

SAMPLE POINT - APPROXIMATE
( 1.00000 , 1.00000 )

DEFINING FORMULA

3
( (( X>0) &( X =-4<0) & ( X=-2¢<0)) &
2
( (¢ ¥Y<0)s&( ¥ -=X<o0))Y !l ( y=0)1
2 3
(( ¥Y>0) & ( ¥ -X<0)))&( ¥ -3X¥Y
3 2

+X <0)Y)Yy 1l (C ¥Y>0)s&( ¥ -=x=0))1 ¢«
2 3 3

( ¥Y>0) & ( ¥ =X>0)) & ( ¥ -3XY+X

<0) ) ))

CELL NO. 12 INDEX = (3,6) DIMENSION = 1

SAMPLE POINT - EXACT
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LET A BE THE UNIQUE ROOT OF

3
U -3U0+1

BETWEEN 3/2 AND 2
SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE

A

SAMPLE POINT - APPROXIMATE
( 1.00000 , 1.53209 )

DEFINING FORMULA

3
((( X>0) &( X -4<0)&( X=-2<0)) &

2 3
( (( ¥Y>0) & ( ¥ -X>0))&( ¥ -3XY

CELL NO. 13 INDEX = (3,7) DIMENSION = 2

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

3

SAMPLE POINT - APPROXIMATE
( 1.00000 , 3.00000 )

DEFINING FORMULA
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( ( ( X>0) & ( X -4<0) & ( X-2<<0)) &

2 3
((( ¥>0) & ( ¥ -X>0))&( ¥ =-3XY
3
+ X >0)))
CELL NO. 14 INDEX = (4,1) DIMENSION = 1

SAMPLE POINT - EXACT
LET A BE THE UNIQUE ROOT OF

3
u -4

BETWEEN 1 AND 2
SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE

- 4

SAMPLE POINT - APPROXIMATE
( 1.58740 , -4.00000 )

DEFINING FORMULA

((( X=-1>0)& ( X=-2<0) & ( X =-4=209)

2 3
) &8 ( ( ( ¥Y<0) & (Y -X>0)) & ( Y

3
-3 XY+ X <0)Y))Y)

CELL NO. 15 INDEX = (4,2) DIMENSION = O

*** SAMPLE POINT UNCONSTRUCTED ***
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DEFINING FORMULA

e
9

( ( ( X=-1>0) & ( Xx=-2<0) & ( X -4

0 )

2 3
) & ((( ¥Y<0)&( ¥ -X>0)) & ( Y

3"
-3XY+X =0)))

CELL NO. 16 INDEX = (4,3) DIMENSION = 1

SAMPLE POINT - EXACT
LET A BE THE UNIQUE ROOT OF

3
u -4

BETWEEN 1 AND 2
SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE

0

SAMPLE POINT - APPROXIMATE
( 1.58740 , 0.00000 )

DEFINING FORMULA

3
((( X=-1>0)&( X-2<0)&( X =-4=20)
2 3
Yy & ( ( ( ( ¥Y<O0)& ( ¥ =X>0)) & ( ¥
3 2
-3 XY+X >0))1 (( ¥Y<o0) & (¥ -X=20)
2
Yy 1 ((( ¥Y<0o)y&( ¥ =X<0))» 1| ( ¥Y=20)
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l ¢ ¥Y>0) & (¥ =-X<0)))))

CELL NO. 17 INDEX = (4,4) DIMENSION = 0

SAMPLE POINT - EXACT
LET A BE THE UNIQUE ROOT OF

3
u -4

BETWEEN 1 AND 2
SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE

2
1/2 A

SAMPLE POINT - APPROXIMATE
( 1.58740 , 1.25992 )

DEFINING FORMULA

((( X=-=1>0) & ( X=-2<0) & k X -4=20)

2
) &« ( ( ¥>0) & (¥ -X

0) )

CELL NO. 18 INDEX = (4,5) DIMENSION

(]
| d

SAMPLE POINT - EXACT
LET A BE THE UNIQUE ROQT OF

3
u -4

BETWEEN 1 AND 2
SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE
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5

SAMPLE POINT - APPROXIMATE
( 1.58740 , 5.00000 )

DEFINING FORMULA

3
((( X=-1>0) & ( X=-2<0)&( X -4=0)

2
) & ( ( ¥Y>0) & (¥ =X>0)))

CELL NO. 19 INDEX = (5,1) DIMENSION = 2

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

- 8

SAMPLE POINT - APPROXIMATE
( 2.00000 , -8.00000 )

DEFINING FORMULA

3 3
((( X=-1>0) & ( X =-4>0)) & ( Y
3
-3XY+X <0))
CELL NO. 20 INDEX = (5,2) DIMENSION = 1

SAMPLE POINT - EXACT
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LET A BE THE UNIQUE ROOT OF

3
Uu -6 U+ 8

BETWEEN -4 AND -2
SAMPLE POINT COORDINATES AS ELEMENTS OF Q(A) ARE

A

‘

SAMPLE POINT - APPROXIMATE
( 2.00000 , =-2.95137 )

DEFINING FORMULA

3 3
((( X=-1>0) & ( X -4>0)) & ( ¥

3
-3XY+X =0))

CELL NO. 21 INDEX = (5,3) DIMENSION = 2

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

-1

SAMPLE POINT - APPROXIMATE
( 2.00000 , -1.00000 )

DEFINING FORMULA

3 3
( (( X=-1>0) & ( X =-4>0)) & ( Y

3
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-3XY+X >0))
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6.2 A lucmnode.
The locus of the following equation is a tacnade ([WALSO], p. 58):

Flzy) =y*-2y® + y?-3z% + 2z*.= 0.
A sketch of the curve is:

Where A = { F |, the A-cad D of £? constructed by both cad algorithms (with

no defining formula construction) may be diagrammed as follows:
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D has 55 cells. Clearly the coarsest A-clustering of D has five clusters.

The original cad algorithm takes 1508 seconds to construct D, and the
clustering cad algorithm takes 107 seconds to construct D and the five clus-
ters. (No defining formulas were constructed in the runs for which these
times were recorded). The clustering cad algorithm does not construct

sample points for the following cells:
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When we examine the sample points constructed by the original cad algo-
rithm for these cells, we find that (8,2) and (6,4) have degree one, and (4.2),
(4,8), (8,2), and (B,6) all have degree 12. The highest degree of a sample
point constructed by the clustering cad algorithm is six: all told it con-
structs 16 sample points of degree six. Typical of these is the sample point
<a,f > for the cell (10,2). The primitive element ¥ is the unique root

between 1 and 2 of the irreducible polynomial
2048z - 4608z* + 37z% + 12
The representation of a as an element of @(y) is just

x

and the representation of 8 as an element of @(7) is
- (1024, 827)z* + (2904/ 827)z% + (B9/ 827).

By contrast, the sample point < a,8 > for (4.2) constructed by the original
cad algorithm has as its primitive element ¥ the unique root between -3/16

and -5/32 of the irreducible polynomial

4194304z 12 - 18777216z + 16252928z!0 + 10354688z°
+ 94023680z® - 747077632z + 2135581952z - 3371340736z
+ 3113787697z* - 1566148632z% + 29810752Bz°% + 45313632z

- 16210224 .
The representation for « as an element of @(7) is

4923B815479762671626303500343508992z !}
5699418637196372990604169471139679

_ 21222614548 188407287762050978545664 !¢
94990310619939549843402B82451899465
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1386354430095762598348637079887872z°
9499031081993954984340282451899465

22459157500220841804159378123905024 z°
9499031081993954984340282451899465

433607154519565513142935378266828800z7
1899806212398790906868056490379893

. 230958379275345987544817176593570176z°
1899806212398790996868056490379893

2534 166782361796348607493034344227268z°
9499031061993954984340282451899485

- 2978725779788826468601926218390113601z*
94990310619939549843402824518089465

3538 10058208455944363039772266549605223=3
1823813963902839356993334230764697280

14674169912537006831664266762010585093z2
3039689939838065594988890384607682880

_ 569839598669758986443265747215467869=
1519844906991903279749444519230391440

180951R277765743862833236022769504869
759922484959516398747222596151957<0

-+

The representation for § as an element of @(7) is
) 4923815479762671626303500343508992z !!
5699418637196372990604168471139679

21222614548188407287762050978545664 z 1°
9499031061993954984340282451 899465

1386354430095762598348637079887872z°
9499031061993954984340282451899465

22459157500220841804159378123905024 z°
9499031061993954984340282451899465

. 43369715451956551314293537826628800z’
1899806212398790996868056490379893

230958379275345987544817176593570176z°
1899806R212398790996868056490379893

-+
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_ 253418678238 1798348607493034344227268z°
9499031061993954984340282451899465

29787257797688826468601926218390113691z*
9499031061993954984 34028245 1899465

_ 3538100582084559443 83039772266549605223z3
1823813963902839356993334230764697280

14674169912537006831664266762010585093z2
303968993983806559498889038460782680

7218240956616622661927102664456859309z
151984496991903279749444519230391440

1809512777685743862833236022769504869
75992248495951639874722259615195720 )'

+

8.3 A quartic surface.

Our next example is a cad D of £7 such that the induced cad of E? con-
tains a cylindrical O-cell. Where
F(z,y.z) =y’ +zy?-z°
we take A = §{ F|. F is primitive, and one easily sees that F is cylindrical at

<0,0>€£%. (This example was proposed by S. McCallum).

The augmented projection of A is P = {y3.zy® -z%. CONT(P) = { z }, and
the finest squarefree basis for PP(P) is {y.y + z.y -z}, so the polynomials
determining the induced cad of E?arez,y,y-z.andy + .

Thus D' has 17 cells as follows:

1. (1,1) 2-CELL
2. (1.2) 1-CELL
3. (1.3) 2-CELL
4 (1,4) 1-CELL
5. {1,5) 2-CELL
6. (1.6) 1-CELL
7. (1.7) 2-CELL
8. (21) 1-CELL




174

mmumummum
cagcalicacalica Jragca ey
srasiesielays
nmua...nzlnﬂ1.21.2
REINATETE
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D, constructed by the clustering cad algorithm,

<0,0> is cell (2,2) of D'".

has 51 cells as follows:

S I A AR ARSI A A A o v ot JaV I aV S o I aV I VI oV aVI AV I oa I an l ap ]

i i e o o N N L W N
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3333333333333333
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................

The coarsest A-clustering of D has three clusters, as follows:

REP CELL INDEX = (3,3,1) REP CELL DIMEN

CLUSTER NO. 1

SION =3

ENT CELLS

TN TN LN TN LTINS TN SN SN TN LI PN SN N N

AN A NO A A A AN DO M

SAMPLE POINT COORDINATES ARE

SAMPLE POINT - EXACT

-1/2
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-18

SAMPLE POINT - APPROXIMATE
( 1.00000 , -0.50000 , -16.00000 )

CLUSTER NO. 2 REP CELLINDEX = (3,7.2) REP CELL DIMEN
SION =2

CONSTITUENT CELLS
(3.7.2)
1,7,

oo

o> WSS I v I IRV IR (VIF AN I AV IR AN TR AV IR QU VIR AV IR AN JF AV A JE AV

et N N S N s e N e S Nt

DRI NPNON DD Len
N M Nt e Ssa N Nt s St

NN NNV~ 00N -

P~ P~ S P N SN N S P PN PN N PN PN S

POLYNOMIALS VANISHING ON THE CLUSTER
YIZ+XY? -X° "

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE
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-3/8
SAMPLE POINT - APPROXIMATE
( 1.00000 , 2.00000 , -0.37500 )
CLUSTER NO. 3 REP CELL INDEX = (3,7,1) REP CELL DIMEN
SION =3

CONSTITUENT CELLS

o~
L
N

-+ 00 02 CO 00 €O TO 0 I+ 1= 1 1 1

TN TN TN TN TN N TN TN N N PN TN
LWWNHFFWWWNF -
(ORI H o Rl v (e 6 ]
vvvvvvvvvvvvvv:

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

-1

SAMPLE POINT - APPROXIMATE
( 1.00000 , 2.00000 , -1.00000 )

The clustering cad algorithm takes 88 seconds to construct D and the three
clusters.

When given A as input, the original cad algorithm will construct an A-

cad H of E% with 45 cells. D and H differ only in that Sy(<0,0>) consists of
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the single 1-cell Z(<0,0>), whereas Sp(<0,0>) consists of seven cells. As

described in Chapters 3 and 4, the additional cells are needed to do cluster-

ing in £%. The original cad algorithm takes 18 seconds to construct H.

We now show the cells of Sp(<0,0>) as constructed by the clustering
cad algorithm.

CELLNO.23 INDEX =(2,2,1) DIMENSION =1

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

0

-1/2

SAMPLE POINT - APPROXIMATE
( 0.00000 , 0.00000 , -0.50000 )

DEFINING FORMULA

((X=0)&(Y+X=0)&((Z<0)&(
2727% -4>0)))

CELL NO. 24 INDEX =(2,2,2) DIMENSION =0
*** SAMPLE POINT UNCONSTRUCTED ***
DEFINING FORMULA

({X=0)&(Y+X=0)&((Z<0)&(
27Z° -4=0)))
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CELLNO.25 INDEX = (2.2,3) DIMENSION =1

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

0

-1/8

SAMPLE POINT - APPROXIMATE
( 0.00000 , 0.00000 , -0.12500 )

DEFINING FORMULA

((X=0)&(Y+X=0)&((((Z<0)&(
2772 -4<0))|(Z=0)|((Z>0)&(
277% -4<0)))&(Z<0)))

CELL NO. 26 INDEX = (2,2,4) DIMENSION =0
#»+ SAMPLE POINT UNCONSTRUCTED =**#
DEFINING FORMULA

((X=0)&(Y+X=0)&(Z2=0))

CELL NO.27 INDEX = (2,2,5) DIMENSION =1

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE
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1/4

SAMPLE POINT - APPROXIMATE
( 0.00000 , 0.00000 , 0.25000 )

DEFINING FORMULA

(( X=0)&( Y+X=0)&((Z2>0)&(((
Z<0)&( 2722 -4<0))|(Z=0)]((
Z>0)&(272%-4<0)))))

CELL NO.28 INDEX = (2,2,8) DIMENSION =0
==+ SAMPLE POINT UNCONSTRUCTED ***
DEFINING FORMULA

((X=0)&(Y+X=0)&(( Z>0)&(
27272 -4=0)))

CELLNO.29 INDEX = (2,2,7) DIMENSION =1

SAMPLE POINT - EXACT
SAMPLE POINT COORDINATES ARE

Q
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3/2

SAMPLE POINT - APPROXIMATE
( 0.00000, 0.00000 , 1.50000 )

DEFINING FORMULA

(( X=0)&(Y+X=0)&((Z>0) &(
277% -4>0)))

6.4 Three simultaneous surfaces

In this example the input to the clustering cad algorithm is the set A of

the following three trivariate polynomials:

F(zy,z) =3z -zy -4
Filzyz)=2z-y+z-1

Fyzy.z)=2°-2zz +y - 1.
~ The clustering cad algorithm takes 5573 seconds, or about 93 minutes, to

construct an A-invariant cad D of E?, and the coarsest A-clustering L of D. D
has 1541 cells and L has 30 clusters. The D-induced cad of £? has 201 cells
and 33 clusters, and the D-induced cad of E! has 17 cells. No defining for-
mulas were constructed. There are no clusters of L on which all three of the
polynomials vanish. Hence we may conclude that the system of polynomial
equations:

Flzyz)=0&Fy(zyz)=0&Fi(z,y.2) =0
has no real solutions.
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CHAPTER 7

SUMMARY

Let us summarize what has been done in this thesis. We have given a
new and complete presentation of the mathematical results which underlie
the original cad algorithm, and which continue to play an essential role in
the clustering cad algorithm. We have shown that in certain kinds of cad's,
cell boundaries have the property of being the union of other cells of the
cad. We have developed the clustering cad algorithm, which is usually more
eflicient than the original algorithm, and which produces clusters of
geometrical interest in their own right. We have developed an algorithm for
determining whether certain pairs of cells in a cad are adjacent (this adja-
cency algorithm is the joint work of G. Collins, D. Arnon, and S. McCallum).
Finally, we have written computer programs which provide the first com-
plete implementation of a cad algorithm, and given examples of their appli-
cation. Since these programs are an extension to the highly portable SAC-2

computer algebra system, they should be usable by any interested persons.

) There is much that could be done to continue the work reported in this
thesis. Of the many things that could be mentioned, one of the most
apparent is that we have hardly begun to investigate the application of our
programs to RCF quantifier elimination problems. What we hope we have
accomplished with this thesis is to advance the state of algorithms and
software for investigations pertaining to the geometric structure of semi-

algebraic sets.
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acceptable isolating interval, 36
adequate set of adjacencies, 119
adjacency of a cad, 83

algebraic component, 108
algebraic decomposition, 10
algebraic point, 14

algebraic polynomial, 31
augmented projection, 43
A-algebraic component, 108
A-adjacent, 103

A-cad, 103

A-cluster, 103

A-clustering, 104
A-decomposition, 103
A-invariant region, 13
A-regularizing clustering, 104
A-stack, 103

base of a cylinder, 10

basis, 31

basis for A, 32
basis-determined cad, 34
boundary, 50

boundary property, 50
boundary section, 56
bounding 1-cells of a 2-cell, 89

cell, 4

cluster, 103

clustering, 104

coarsest A-clustering, 108
coarsest squarefree basis, 32
cylinder, 10

cylindrical algebraic decomposition, 12
cylindrical decomposition, 12
cylindrical at a point, 27
cylindricity, cad with, 80
cylindricity-free cad, 80
cylindricity-refined cad, 98

decomposition, 10
definable set, 9
defining formula, 9
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degree of F on ¢, 29

degree sequence, 18

degree of an algebraic point, 145
delineable, 15

derivative, 19,

derivative set, 39

derivative-based defining formula, 44
derivative-regular cad, 45
derivative-regular polynomial, 39, 42
dimension of a cluster, 111

extended stack, 52

f-section, 10

finest squarefree basis, 32
F-induced stack over c, 18
F-invariant region, 13
F-section, 18

F-sector, 16

horizontally stratified, 90
H-set of z-values, 96

index of an element of a stack, 56
induced cylindrical decomposition, 12
inflnity section, 52

initial cluster, 107

inner adjacency, 104

integral minimal polynomial, 36
irreducible basis, 32

isolated adjacency, 112

leading term, 29
locally invariant, 17

maximal cluster, 108
multiplicity, 16

noncylindrical product, 29
noniscolated adjacency, 112

outer adjacency, 104

positive polynomial, 31

primitive element, 37

principal subresultant coefiicient, 18
projection, 30

psc set, 18 ~
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rational minimal polynomial, 368
reducta set, 30
reductum, 29

refinement of a basis, 32
refinement of a cad, determined by another cad, 85
refinement of a stack, 12

region, 9

regular cad, 103

regular polynomial, 27

representative cell, 121

gsection, 10

section boundary property, 55
sector, 10

serni-algebraic set, 9
squarefree basis, 31

stack, 11

standard atomic formula, 9
standard formula, 9

standard prenex formula, 9
strictly complex number, 15
strongly disjoint interval, 45
suflficient set of adjacencies, 109

topologically adjacent regions, 82

underlying region, 103
unique section boundary property, 55

vertically stratified, 90

188






