ON THE USE OF DATA-FLOW TECHNIQUES
IN DATABASE MACHINES

by
HARAN BORAL

Computer Sciences Technical Report #432

May 1981

ON THE USE OF DATA—FﬁOW TECHNIQUES
IN DATABASE MACHINES

by
HARAN BORAL

A thesis submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY
(Computer Sciences)
at the
UNIVERSITY OF WISCONSIN - MADISON
1981

ii

ABSTRACT

The past decade has seen a number of design efforts in

the area of database machines. Research has shown that all

of the major designs suffer from some flaw leading to the
jnefficient execution of one or more operations. 1In this
thesis we show that the lack of systematic study of the
algorithms to be used by an architecture before a hardware
design is picked is the reason for these flawed designs.
We then ‘consider a number of possible algorithms for all
the relational algebra operators and introduce a new design
based on a group of these. The proposed machine utilizes a
local network communication mechanism and employs a data-

flow strategy for query processing.

Previous research has shown both advantages and disad-
vantages of using a data-flow query processing strategy.
In particular, it was shown that data movement between the
mass storage devices and processors is minimized at the
expense of additional control messages. In this design we
show how such a strategy can be employed without the large

control overhead.

We also consider the problem of associating logic with
a disk for the implementation of certain operations "on the

fly". Three design approaches are examined and compared.

iit

It is shown how an associative disk can be incorporated

into a database machine that supports both on-the-disk-and

off-the-disk processing.

iv

ACKNOWLEDGEMENTS

There are numerous people who have helped me along the way
and I would like thank them at this time. My advisor, Pro-
fessor David DeWitt, helped me formulate a number of my
ideas; provided more than generous support; was a good
friend; arranged for an excellent working environment; etc.
Professor Marvin Solomon was willing to provide some of his
time to help me prepare for the Foundations qualifier.
Professors Bob Cook and Jim Goodman read earlier drafts of
this dissertation and made numerous helpful comments. Pro-
fessor Cook also made a number of important suggestions
during my prliminary examination. My colleagues and
friends, Kevin Wilkinson and Dina Friedland, were always
willing to listen to my (sometimes jumbled) ideas and pro-

vide constructive criticisms.

TABLE OF CONTENTS

ABSTRACT 2 @ 0 0600066600000 aG00a@QO 000000 00800Q@000COCOCOEECSEd

ACKNOWLEDGEMENTS @ 6 0 86 000000080 O 000000 AO0O QOO OROGCECOEOs OO

TABLE OF CONTENTS 5 © ® 00 6 9 00000 0 GG 0 0008 GO0 GO eO0 00 &9

INTRODUCTION

®# ® € 08 38 0 000 60 0GCO 00000 ¢©0 G0 00000000900 0e0 OO

DATABASE MACHINES LITERATURE SURVEY .cccccsccccsccns
2.1 A Brief History of Database Machine Development

€ 9 89 5 8 % 609 0006@e® 0 e S VS S S EI #0000 038 E 00000 000CG0O0DBOOCOSOOSAS

2.2 ASSOCiatiVE DiSkS @ ® 60 009 03¢ 000030000 &0 eI S SOCOD

N

NN W

[38

[38\

° L]
NN NN B
L] e

ISENE SN NN N W g

L . L] - .

2.

DN
NN

DD WWO

£
4

1

2
3
4
5
6
7
8
£
1
2
3
3

CASSM 8 6 0 0 @S 008 0008 Q3 & 0000600000506 0dS I OOS O

RAP

@ ¢ 6 G 9006090 @GO 0868 00O0% 9 200G HEOG0 008002 eE 0O

RARES ‘....‘l..l‘l..'...‘l........l."'.i...
Purely Associative Arrays .ccceccccccccccsss

VERSO © 68 5 ® 8 0006 09 08 09 00 ¢ 0 E&A0 @ SOOI NSO 00 %S9 00

SURE © 0 8 08 © 0 80606038 00C 00000 ¢ &0 O00COCHOO0OOC OO OSSO

CAFS
Associative Disks that Use New Technologies
the-Disk Machines ..ecseccvsssoscsscsasascns
INFOPLEX evecscsascsscscoscocascacsscsosccoasccscss
DIRECT .oceocecccscasssssesscesoscncscasonesos
2.1 Overview of the Architecture ..ccoccecco
2.2 Algorithms for the Relational Operators

© % 0 0085 00609 © 000066060 C0 G 60000300 0GOSO SO 00

€ 8 © 8 0060 Q8 8 9 6 2 00 00 6 €0 0a0 G CE G S % &0 06% 6080800206 s o009

brid MaChines ® 5 4 8 8 0 ¢ 8 009 OGO OSRGOS G OSSOSO e SO 00

1 DBC
e2 HYPERTREE .ccceccoscocaoscesscsoanssosnscncacscscse
ustom Designed SISD ProCeSSOLS scsesccccsscccas
er formance Evaluation of Database Machines

M EEEEREEEEEEE I R B R R I AL A A L AL L B B B

1 Comparison of RAP to a Uni-processor DBMS ..
A Comparative Study of Database Machines ...
1 Physical CharacteristicCs csecccececceacss

AN

S 6 o ¢ o ¢ o o o

2
3
2
2
2
2
S

i

Operational Characteristicscceceee
RESULES eececvencssscscsncssccscsosscasannsns
3.1 Overhead-Intensive QUErY cceicscasss
3.2 Multi-Relation Data-Intensive Query
3.3 Data~Intensive QUEILY cccececssacccasne
3.4 SUMMALY seeecsesscssccssosacscscvosses

on G ® 6§ 20 90 0% 0 ¢ 0 0 @0 S GBS BSOSO DS SOOI G000 00

ii

iv

13
13
16

19
21
22
24

25
25
25
27

31
34
34
36
38

40
42
43
44

46
47

48
50

METHOD AND AL‘GORITHMS .l‘....C.ll‘..‘..lo..l...““.
3.1 Criticism of Database Machine ResearCh occssecces

3.2 Goals of Research ...

3.3 BAlgOrithms ..coececececccocovcccnccsccscccnnccce

3.3.1 Updates «eeessesssovssovssessaconsenencecnes
3.3.1.1 Delete cccesccsce cescsecccaccescanosescas
3.3.1.2 AppPend cecccocccccscscssssecsscsaossssconc
3.1.3 MOdify eoceecscocsccaccocscscssonocacecs
SeleCtiOn ..cccoccccscsscscssssossascssacasses
Project eceeecessccccscsossccasconnssscosces

wWwww
s e 8 o

WWwWwwwwww

L8]
°

s © e e © o © o

2
3
4
5
3.
3.
6

JOinllU.I..I....l....ll...‘!

Aggregate Operations ..ccicececcces

RN I R

5.1 Sc lar AggregatesS ccceecscosccccccccnccne
5.2 Aggregate Functions .c.cececccccccccacece

SuInmary ©6 © 0665060000000 0006008ces0 a0

vi

53
53
60
64
71
73
74

78
78
80
81
82
83
86

QUERY PROCESSING «cccccecccocosnccenssacccccsccnconoo 88
4.1 Introduction ...ececceccsccccssscscsscssccocscccce 88
4.2 Processor Allocation Strategy Study «ecccecececccce 89
4.2.1 The Four StrategiesS .cecsscescsccccsaccscccen 90
4.2.1.1 SIMD Assignment ..ccceecccsccccccccacccs 90

4.2.1.2 Packet-Level Assignment .c.ccccecccccocccs 90
4.2.1.3 Instruction-Level Assignment .cccscececes 92
4.2.1.4 Data-flow Assignment .cccccececoccvocnco 93
4.2.2 Hardware CharacteristiCsS escececcoccccccccccns 100
4.2.2.1 Query ProCeSSOLS ececsssscscesacssoscnce 100
4.2.2.2 CCD Memory Modules and Interconnection
MAbLTiX ceccececceccoscscsscscsssasansassooscossassas 101
4.2.2.3 Mass Storage Devices ceececccsccccccoccnsn 101
4,.2.3 Experiment Design .cceecececccecscccccccccccs 102
4.2.4 Simulation ResSUltS ccececececsccccccconcccnse 103
4.2.4.1 Establishment of a CCD Memory Module to
Processor RatioO e.cecscccosssscncsasccosccssccsncse 103
4.2.4.2 RAnalysis of the Simulation Results 107
4.2.4.3 Effect of Swapping on Performance 117
4.2.4.4 Effects of Database Size and Query
Processor Speed ...cececsscsescocsscssascsccscocce 120
4.2.4.5 Message ACtivity cecececccccccacncccccacs 122
4.2.5 SUMMALY sccccaecsscseascsocacosesvsssscassscsscs 124
4.3 A Comparative Study of Associative Disk Imple-
Mentations .e.ceeececesccscsasasccsacsosossccccncascse 127
4.3.1 Overview of the Three Organizations 129
4.3.2 Specifications of the Models .ccececcecccrccs 132
4.3.2.1 Physical CharacteristicCs .ccccececscensn 132
. 4.3.2.1.1 Mass Storage Device Specificaticn... 132
4.3.2.1.2 Associative Disk Specifications 132
4.3.2.1.3 Output Channel Specifications 135
4.3.2.2 Operational CharacteriStiCs eeessecesssss 137
4.3.2.2.1 Source Relation Organization 137
4.3.2.2.2 Selected Tuple Distribution 138
4.3.3 Experiments and ReSUltS ceccecceccaconcscccce 139
4.3.3.1 Impact of Output Buffer Availability ... 140
4.3.3.2 Comparison of the Three Organizations... 143
4.3.3.3 Impact of Clustering of Selected Tuples. 147
4.3.3.3.1 Impact of the Use of Mark bits and
Output Buffer Availability «.ececcecccceccnees 148
4.3.3.3.2 Comparison of the Three Organizations

- ocl.o‘-o-oo.‘o'oo.onoolo‘oo.‘..ooo...o-o.o.n lsl

4.3.3.4 Impact of Output Channel Service Policy

..‘Q'.......Q.....Q.I.O...".'.’..-C..“..IQ...‘. 153

4.3‘3.5 Sumary and Critique ® ® % & & 8 % 8 5 o 5 O 0 O O 8 08 154
4.4 Conclusions Q.‘IlQ.‘..Q.l...l"...l.‘....l.‘.... 158

viii

THE PROPOSED ARCHITECTURE .cccooeccaececncscsscnsccocse 161
5.1 Introduction .c.ccccesessssscsscccscacscocscasssce 161
5.2 Logical Organization c.ceecseececdocccccccscccnee 163
5.2.1 DesScCription (sceeissssestcsasasessdocaosaone 164
5.2.2 A Sample Instruction Execution .c.ccceccecne 164
.2.3 Comparison With DIRECT .cccccccccecccccccccs 166
.2.4 Outline of Architecture ..ccocccoccccecccsns 168
Physical Organization cc.cccescccrcccccnncccccns 168
3.1 Interconnection DeviCe scoceccsccscccccacscss 169
3.2 Temporary StOrage ccsececsecscsccccsansnasccs 176
3.3 Implementation of the Associative Disk 178
Query EXecUtioncceseecsscsccccccocccsosscacs 181
ntegrity ISSUES ..ccecessccacsccncccccncccccccs 193
1 Concurrency COntrol .cececccccccscncccccnnans 194
2 RECOVEIrY cecccceassossscsssccsssscsasccanasse 196
5.2.1 IP failure ccceccsecovsecsceccccceccccnssas 198
5.2.2 IC failUre ceceseceessnsoccsccsscsscnccesscs 199
5.5.2.3 Associative Disk Controller ...cccccscse 200
5.5.2.4 MC and communication mechanism ...cccece 201

5.6 SUMMALY ccccccecsassacssscaoscecssocscocsossccccs 201

I
.5
.5
5
5

CONCLUSION e ® @ 8 & 2 O 0 & ¢ O & @& e 6 0 ®# 0 0 & & 8 O o ¢ © 6 0 B D O O & O O O O e e ¢ O 203
6.1 summary Of WOLK .cccecocessccsoscscconsccccoscccncs 203
6.2 Contributions and Consequences of Research 208
6.3 Future Work 90 © 0 © 9 0 ¢ 0O ¢ O ® o 6 6 © 0 & O o 6 &6 2 &8 & O & 0 0 6 S 0 0O 5 © 211
APPENDIX A ®© 0 © ¢ 8 0 0 0 9 0 6 & © 0 ¢ 0 0O © @ @ 9 0 © 5 © © O & O © ® 0 9 9 9 C Q0 0 & 0O @ o 0 214
APPENDﬂIX B @ @ 6 © 6 © & © O H O © ¢ O © o ® 0 0 @ v & O O o 0 0 06 0 & ¢ O 6 O 9 0 G OO e 0 o o 220

BIBLIOGRAPHY ctce.o-oc..oaouc.o.ooollol‘c.ot.ooc.coo.e 221

CHAPTER 1

INTRODUCTION

The past decade has seen several design efforts in the
area ow database machines. These efforts were initiated
partly in response to the needs expressed by the user com-
acnwnw‘wmnm partly due to the availability of cheap and new
hardware. Data processing was changing £rom the tradi-
tional WOmmlww:m. single-user, batch mode to the on~line,
concurrent, multi-user mode. Also, the advent of
terminal-oriented, time-sharing computer systems, and
cmmncmnwm:mH< software systems, caused computer resources
to Umnwam more easily usable. These changes brought about
an w:Onwmmm in the user population, and to a larger extent
a mn0£ww in the size of databases. Databases of billions
and even trillions of bytes already exist today and there

are mn0wmnnwo=m for further growth.

eum concept of database machines originated with the
ADMS Umnxnmam computer at Bell Laboratories [1]. The
BOnw<mm»o= for the design of XDMS (and future database
amnswnwmv lay in the size and complexity of both data and
progranms to manage it. It was felt that by shifting the
database management system (DBMS) from a general-purpose
computer (termed the host) to another computer (termed the

"back-end"), dedicated to its execution, several gains

would be made. Of particular interest are: a possible
improvement of response time and better utilization of the
general-purpose computer by users of programs other than

the DBMS.

However, the performance enhancement achievable by
XDMS-like database machines is limited for three reasons.
The first reason is that XDMS was designed for the DBTG
Network model [2]. Application programs are written in a
high~level procedural language and executed on the host
computer. Calls to the DBMS are trapped by the host ané
forwarded to the back-end for execution. In this type of
an environment the communication overhead may well offset
any advantages gained by executing a relatively simple
operation, such as reading a single record, on the back-
end. The second, and more important, limitation is that in
such systems the back-end computer would be a conventional
von-Neumann machine. Such machines were designed for the
execution of numeric operations. In querying and updating
a database very little numeric processing is used; rather,
specialized instructions for text manipulation are needed.
Finally, we note that while a powerful machine can be used

as the back-end computer, no parallelism can be employed in

the manipulation of the data. Thus, database machine
researchers have been concentrating on the design of

special-purpose architectures that can support parallel

operations on data.

By 1980 a number of designs had emerged that use
mmnmwwmvwma for performance enhancement of query execution

in relational databases. However, it is only recently that
an attempt to compare the performance of the various
designs for w,umnnsamnx of queries was made by Hawthorn and
DeWitt ﬁuu. Since the machines compared were designed for

the same purpose: the execution of queries on a database

stored 1in a tabular mOnaw. one would expect that the study

would :m@m concluded that a specific design, or a design of
a particular type, is the best. It was thus surprising
that the ‘authors found that no one machine executed all the

benchmarked queries well.

In a subsequent paper, Hawthorn [4} shows that one
could classify databases according to the transaction types
that are executed on them. For example, transactions on
mnmnwmnwwmw databases will place radically different
requirements on the DBMS (and thus on the database machine)
than zonwm bibliographic search transactions on text data-
bases. mozmcmn. as stated above, this result does not
apply nownsm database machines studied in (3] since all of

these machines were designed to execute a small number of

1
~ Although some of the machines studied were designed to
handle a variety of data models, the underlying storage
structure viewed by the hardware is either the relational
model or a tabular structure similar to it.

well-defined high~level operations on a well-defined data

structure.

In this thesis we describe a new database machine
design. Our purpose in undertaking this task is threefold.
First, we feel that a database machine should execute all
its operations (in this case relational algebra operators)
efficiently. As has been shown in (3], this is not the
case with the present architectures. Second, we believe
that in order for a database machine design to be viable,
it must support a large number of transactions per time
unit. Many of the designs that have been described in the
literature make use of intra-instruction parallelism to
achieve this goal. The number of transactions that can be
supported by a machine that uses only intra-instruction
parallelism is limited because only a single transaction
can be active at a time. We thus feel that to be success-
ful, a database machine must support intra~instruction as
well as inter-instruction and inter-program ({query) paral-
ljelism. That is, the machine must be of the multiple

instruction stream, multiple data stream (MIMD) variety.

Third, we feel that because the operations as well as
the underlying data structures in relational databases are
well understood, a top down design method should be used in
the design of an architecture. The design process should

start with the study of a number of algorithms for all the

high-level operations to be executed by the amnswsm.u The

results of such a study would then be used to specify the
types of services (low-level primitives) required of the
smnmSman Finally, an architecture which implements these
low-level operations should be designed using off-the-shelf

=:0=|mxoWwo= technology.

In Chapter 2 we survey the database machine 1litera-
ture. de survey is divided into two major parts. In the
first m#nn we classify the existing designs into four dis-
tinct classes. Each machine type is characterized in terms
of mnn:wnmoncnmw features that distinguish it from the oth-
ers, and the algorithms it uses to implement the high-level
ommnmnwu:m. Examples from the literature are used to
illustrate the ideas described. The second part discusses

two performance evaluation studies of database machines.

Haﬂnsmnnmn 3 we describe the method used to arrive at
the final design. We begin with a critique of database
am03w:m, research. We argue that the reason database
machine research has been unsuccessful 1is the lack of
method wn the area. The goals of this dissertation are

described in some detail. Specifically, we advocate an

"algorithm directed" approach to the design of database

2 In the event that not all the operations are con-

sidered *o be equally important one may wish to study only
a subset of them. We believe that in the case of the rela-
ticnal algebra all the operations are important and have
therefore included all of them in our study.

machines rather than an "architecture directed™ one. We
follow this with a description of the algorithms that form

the basis for the architecture.

One of the performance evaluation studies discussed in
Chapter 2 compares a number of database machine designs of
two types and concludes that future machines should include
features from both types. In Chapter 4 we present some
results based on simulations of architectures of these two
classes. In particular, we examine the problem of proces-
sor allocation strategy in DIRECT [5], an MIMD database
machine. We also study the effect of bus contention on a
number of different architectures that process selections

directly on a disk.

Chapter 5 contains the description of the architecture
which implements the low-level cperations required by the
algorithms used. The description of the architecture is
broken down into a number of parts. We begin with a dis-
cussion of the physical components. In the description of
each component-type we discuss our choice of a particular
implementation and contrast it with a number of other pos-
sibilities. We continue by showing how the algorithms
specified earlier are actually implemented. Then, the
actions of the various components are characterized. We

conclude with a discussion of how data integrity is main-

tained through the implementation of concurrency control

and crash recovery mechanisms. CHAPTER 2
Chapter 6 will in i
J include our conclusions and an outline DATABASE MACHINES LITERATURE SURVEY
of mcncnﬂ research in this area.

{

2.1. A Brief History of Database Machine Development

A database machine is a collection of specialized
hardware intended to support basic database management
functions [6]1. This hardware is to be organized as an
independent machine which is able to communicate with any
number of general-purpose computers {(called hosts) and
i satisfy their requests. Some advantages claimed for a
separate machine approach are: economy through specializa-

tion for hardware, less complex software systems, data

sharing among many (possibly different) machines, isolation
of the protection function and its implementation free of
operating system constraints (1], increased perfor-

mance [6], and, simpler storage structures in the absence

of indices [7]. Some claimed disadvantages are: unbalanc-

ing of resources and response time overhead {1].

Typically, indices in a database occupy between 1 and
! 10 percent of the database size [8]. By their elimination
that much space becomes free. This is quite significant in

databases that store Howo bytes. Maintenance of these

indices is also eliminated. I+ is not clear, however,

whether one wants to eliminate the use of indices alto-

gether wl a database machine. DBC [9] is an example of a
database ; machine that wuses indexing to reduce the data
space nomvm searched for each query. We shall consider

this issue in a later section.

One ican basically ignore the claimed disadvantage of
the mwmmwn:pnw of load balancing given the trend of com-
puter :wmmsmnm costs. Response time overhead has been stu-
died by mmznnOnn and Stonebraker [10]. They classify rela-
tional nmmnwmm into three classes according to their execu-
tion nwa$ components. The classes are: overhead intensive,

: ! . . e s ;
data intensive, and multi-relation data intensive.

o<mm:mmm intensive queries are those queries for which
the omZM spends more time performing overhead functions
such as mwnmanOnm look up than it does executing code
awnmnnwmw related to the query. Data intensive queries are
those aaanmm that require the DBMS to scan large amounts
of mmnmw and therefore spend little of its time performing
ocmnsmmawmcunnwo:m. Finally, multi-relation data intensive
queries lare those queries that are data intensive but

H

nmmmnmsom more than a single relation (e.g. a query that

Mnnwcmmmwm join).
Hawthorn and Stonebraker show that for overhead inten-

|
sive queries a DBMS running on a conventional processor can
search an index, or use a hashing function, to find the

data as quickly, or faster, than a database machine would

10

because of the high communication cost - between the
@ .

machines. They also show, though, that for data intensive

queries the response time in database machines is signifi-

cantly better.

Most database machine researchers have concentrated on
the relational model [11]. Operations are performed on
relations, which are basically non-hierarchical collections
of objects. Tt 1is thus possible to view a relation as a
vector, where the base element is either a tuple, or a
fixed-size block of tuples. Processors can be allocated to
operate on some number (possibly one) of base elements.
Query languages for relational systems are typically non-
procedural and thus amenable to execution by a number of
processors.

It is not clear whether parallelism can be used in a
similar way to enhance the performance of all DBMSs.
Other, older, data models, such as the DBTG Network
model {2], were designed to optimize the execution of data-
base query programs by requiring the programmer to incor-
porate access path information into his program. In such
programs, access to the database is performed a record at a

time using physical links between the stored records.

Also, access to the database is through inherently sedquen-—
vrial procedural programs which constrain the amount of

parallelism attainable.

11

As jindicated earlier the first database machine imple-
mented @mm XDMS [1}. XDMS was designed to enhance the per-
mOnamanm of network type DBMSs. It is a single instruction
mnnmma.m single data stream (SISD) system and as such can
only mn%wmcm a minimal performance enhancement over a
mm:mnwwmncanmm computer handling all database activities.
A Hmnan number of database machine designs have been
ommmnmawmwsnm. We classify them into four categories. Our
npmmmwmwnmnwoa is similar to that of [12] and is intended
only nm simplify the description of the multitude of
an:w:mw found in the literature.

Slotnick [13] pioneered the idea of associating logic
with wmmm\tnwnm heads of rotating storage devices.
mHOn:nnr\m argument was that the logic could be employed to
search m:m data on the mass storage unit and thus limit the

amount vm data to be transferred to the host for further

processing. The idea received some attention and has been
used mmwnsm basis for a number of designs. The feature
that ww common to all of these designs is that a query is

1
executed on the disk, usually with the assistance of a sin-

'

gle controlling processor. For this reason we term such

database machines associative disks. In Section 2.2.1 we
describe the features of a number of associative disks.

The performance of RAP [l4], an associative disk type

database machine, is compared with that of an hypothetical

uni-processor DBMS in [15]. It is shown that for opera-
cions that can be processed in linear time on a uni-
processor, RAP outperforms the conventional systems by ord-
ers of magnitude. However, for operations that require
non~linear time on a uni-processor, RAP performs only mar-
ginally better. A number of "off-the~disk" database
machines have been offered as alternatives to associative
disks as a result of this. In Section 2.2.2 we survey two

of these designs.

Our next classification includes all database machines
that contain features from both associative disks and off~
the-disk machine categories. We term this group Hybrid
architectures. Two designs of this type are described in
Section 2.2.3. Recently, Epstein and Hawthorn {16] pointed
out that database machines that run on a specially designed

SISD computer can serve the needs of a large number of
medium size user groups better than expensive high-
performance machines that use parallelism. We thus
describe one such database machine in Section 2.2.4. The

following descriptions include both the architectural

specifications and algorithms for query processing.

In discussing the query processing algorithms we
assume that each machine must support a number of important
operations. These are: selection, join, projection, scalar

aggregates, aggregate functions, append, delete, and

13

modify. For a definition of these operations, particularly

the aggregates, see Appendix A.

i
.2. Associative Disks

1~

Following Slotnick”s paper, a number of researchers
Ammnxmnwﬂwqu. Minsky (18], and Parhami {19]) focused their
mnnm:nw@: on the design of logic~-per-track systems. None
of n:mmm is a comprehensive proposal for the implementation
of a database machine, but they served as a source of ideas

for future efforts.

1

.2.1. CASSM

CASSM [20,21] was the first database machine design to
employ parallelism. It was designed to support all three
major nmnw models. The storage medium used is a fixed head
disk swn: some logic in each head. The logic is consider-
ably acwm complex than that proposed by Slotnick (for exam-

ple, wnwnm: perform arithmetic operations).

mmmr data item is stored as an ordered pair:
<attribute name , value>
Data anam belonging to the same record are stored in a
v:wmwnmwww contiguous block preceded by record and relation
identifiers. A fixed number of mark bits are associated
with each attribute and each record. These are used to
identify result data of one operation that is the input to

a subsequent operation (this includes I/0 and garbage

14

collection operations). Strings are stored only once 1in
the database, separately from the records in which they are
values. 1In these cases the value field of the ordered pair
is a pointer to the string. These pointers are also used
for the Hamwmamrnmnwoa of databases using the Hierarchical

or Network data models.

The processing elements are controlled by a single
processor which is responsibie for communication with the
"outside world" (one or more host computers), distributing
instructions to the processors, and collating and process-
ing intermediate results. This -includes forming the result

relation at the end of a query.

When executing a selection gquery, a processing element
marks tuples belonging to the relation in one disk revolu-
tion. A second revolution is used to search the marked
crecords for the desired attribute and check its value;
qualifying attributes are marked. A third revolution is
used to output the marked attributes. In the event that
the marked attribute is a string, the third revolution is
used to chase the pointer in the value field of the marked

ordered pair. an additional, fourth, revolution is
required to output the marked string.

Joins are implemented using a hashing scheme and an
auxiliary memory. This scheme was first proposed for use

in the CAFS [22] and LEECH [23] database machines. The

15

hash function is applied to the joining attribute of the
smaller of the two relations. The result of each applica-
tion 1is used as the index to a bit vector in the auxiliary
memory (RAM is used). Associated with the set bit are the
attribute values that hashed to that index. Next, the hash
function is applied to the joining attribute of the tuples
in the second relation. The result is checked against the
bit vector, and if that bit is set, against the 1list of
values associated with it. If a match occurs the attribute
{in the ' second relation) is marked for output, the
corresponding bit in a new vector is marked, and the join-
ing value saved. In the next step the hash function is
applied to the first relation, this time checking the bit
position indexed by the hash value in the new vector. If
the bit »w set the values are compared. A match causes the
attribute (in the first relation) to be marked for output.
In the final step the marked attributes are collected by
the controller which forms the result relation by actually

amnmnwmwwwwam the join.

Since the CASSM processors can perform arithmetic

functions, aggregate operations can be processed locally.

The results from each processor are sent to the controller
for a collation of the intermediate results. Aggregate
functions 'are implemented as a sequence of selection sub-

queries, each designed to handle one partition.

16

Queries are executed in a single instruction stream,
multiple data stream (SIMD) mode, although the output of
values can be overlapped with the execution of another

instruction.

One of the problems with the CASSM is that the proces-
sors are connected via a single bus to the controller and
the auxiliary memory used in joins. Contention for the bus
among processing elements with output can severely hamper
the performance of the machine for all query types, but

especially the join [3].

2.2.2. RAP

In RAP [14,24,25], a tabular data structure, similar
to relations but allowing duplicates, is used for the
storage structure. Tuples are stored bitwise along a
track. Only tuples from one relation are allowed on a
track, although numerous tracks can be used to store a
relation. As in CASSM, a tuple is augmented with a fixed
number of mark bits (attributes are not} that serve the

same purpose. Processing of a selection operation is simi-

lar to CASSM, although it is faster because of the simpler

data structure. Also, the processing elements have the

capability of scanning for a number of different values in

parallel.

17

u0w=w are processed as a series of selection sub-
queries W: the larger relation, using the values of the
joining dttribute in the mawuwmn.nmwmﬂwon as the selection
nnwnmnwmh Like CASSM, RAP implements only an implicit
join. Hm an implicit join tuples to be joined together are
marked mm such. In order to materialize the join the
marked anHmm must be sent to the controller, where the
result relation is formed. The processing elements do not
have arithmetic capabilitles associated with them, necessi-
tating the transfer of tuples to the controller for the
mxmocnwom of aggregates. Aggregate functions are imple-
mented wm in CASSM, except that the processing elements

must send all of the tuples participating in the operation

to the oosnnonmn for all computations.

onwnmsmn and Sevcik [24] describe a virtual RAP
machine. In this organization the database resides on some
number of conventional mass storage devices. The RAP sys-
tem nonwwmnm of a number of cells, each with a pair of
tracks. Wasm controller assumes the additional responsibil-

ities of loading the tracks with data to be examined. Each

processor can examine only one track at a time. However,

while one track is being examined, the second can be loaded
under nnw supervision of the controller. This organization
is further described in [25] with an emphasis on the inter-

nal structure of the cells and data organization. it is

18

expected that the cells will employ one of the new memory
technologies, such as charged gouple devices (CCDs)
magnetic bubble memories (MBMs), or electronic beam
addressable memories (EBAMs), to implement their storage
component. The main advantage of these memory technologies
(especially MBMs) over disks is that the movement of the
stored bit stream can be halted at any time instance. This
feature helps to reduce time losses due to channel conten-
tion (see Section 4.3). Another advantage is their -higher

data delivery rates.

2.2.3. RARES

In RARES [26] a different storage format from RAP’s
is used. Tuples are stored across tracks in byte parallel
fashion. That is, byte 0 of a tuple is stored on track O0;
byte 1 of the same tuple is stored in the same position on
track 1; and so on. The tracks used to store a tuple form
a band. Band sizes vary according to the tuple length. It
may be necessary to use more than one disk "radius®" to
store a single tuple. The rationale for using this orthog-
onal storage layout is that in outputting selected tuples,
contention between the processing elements for the bus can
be reduced. This is based on the observation that in RAP,
a single processing element will tie the bus up for a rela-

tively long period of time (proporticnal to the tuple

length). While the bus is in use, the other processing

19

elements -can continue searching for qualifying tuples as
long as they have sufficient temporary storage to hold them
{RAP”S Onwowbmw design had none). The amount of temporary
storage .reguired by each processing element must be suffi~
cient to hold a few "average" size tuples (One of RAP’s
latest redesigns [25] mentions the figure of 1 Kbyte of
temporary storage). In RARES, on the other hand, the
amount of temporary storage needed is only a few bytes,
since each tuple is distributed across a large number of

tracks.

One feature of any design like RARES is that the data
must be sent to the controlling processor in a particular
sequence’ in order to allow the controller to construct the
tuple correctly. This places a constraint on the design of
the hardware (the storage medium) which may make it impos-

sible to censtruct.

RARES was designed to be part of a database machine
and thus there are no specifications of other relational

operators.

2.2.4. Purely Associative Arrays

The three systems described so far have one feature in
common, . they are pseudo-associative devices. Berra and
Oliver [27] discuss the use of fully associative arrays in

database machines. This approach calls for the use of a

20

bit slice associative processor with a fast staging buffer.
The processor is organized as a number of two dimensional
modules whose total storage capacity equals that of a disk
track. The buffer memory consists of a number of modules,
each of which has a capacity equal to that of the
processor”s {all of it). Loading the processor is per-
formed by a custom-designed I/O device which is capable of
selecting a module from the buffer, and distributing its
contents to all the modules in the processor in parallel.
While one buffer memory module is emptied into the proces-

sor, one or more of the other modules can be loaded from
the disk.

One advantage to this approach is that the complex
operations that require repeated scanning of data will be
executed much more efficiently than they would be on a
disk, if the data fits into memory. However, since the
amount memory in purely associative systems is limited (due
to its very high cost), generally, the data will have to be
swapped in and out of the device a large number of times,
possibly offsetting this gain. Oliver [28] describes and
compares the performance of RELACS, an associative proces-
sor designed for relational data management, to RAP. The
comparison is based on a performance study of RAP {15]
(see Section 2.6.1). It is shown that in the worst case,

RELACS performs at about the same level that RAP does.

21

However, in the best case it is about 3 orders of magnitude
faster. In the above, worst and best case refer to the

size of the associative memory.

2.2.5. VERSO

mwﬁom fixed head disks are now an (almost) obsolete
technology, more recent associative disk designs have been
using moving head disks. In VERSO {29], a single processor
is placed between the disk (which could be a conventional
moving head disk or one modified to allow parallel read
out} and the memory device into which the desired data is
to be mmwwcmnmm. The processor acts as an I/0 filter,
scanning the tuples and forwarding only those that match
the mmpmnnwoa criteria. In order to do this, the processor
must be able to scan the data as fast as the disk delivers
it. This problem is quite complicated because selections
can have varying complexity. To achieve this, the proces-
sor is organized as a finite state machine which executes
very simple microcode instructions. The processor must,
however, have the capability of directing the disk con-
troller to stop data delivery in the case that it cannot

keep up with its rate.

Bancilhon and Scholl [29] also discuss the possibility
of wusing VERSO to execute other relational operations. It
is shown, that if a new normal form is used for organizing

relations, the number of joins to be executed will be much

22

smaller than in the relational model. Thus, one could
afford to pay an occasional performance penalty and execute
the joins by the f£ilter (the new normal form also simpli-

fies the join algorithm).

2.2.6. SURE

SURE [30] uses a moving head disk modified to enable
parallel read out from all of the recording surfaces simul-
taneously. The output is collected into a single high=-
speed broadcast channel from which it is read by a number
of processors. Each processor is a very high~-speed pipe-~
lined unit with a simple instruction set geared towards
searching. A selection gquery is broken down into as many
simple components as possible, each of which is assigned to
one of the processors for execution. The actual number of
processors used for the execution of a selection query

mmnmnmm on its aoammewnm.H

Although both SURE and VERSO seem to be feasible
today, advances in disk technology may change that.
Recently, new disks have appeared on the market that pro-
vide higher data transfer rates. An example is the IBM

3380 [31] which has a data transfer rate of 3

Mbytes/second. Such disks place unusually high speed

H As an aside, it should be noted that SURE is an actual
example of a multiple instruction stream, single data
stream (MISD) architecture.

23

requirements on I/0 filters such as VERSO and SURE which
must operate in real time. It may be possible that as new
and mwmwmn disks are manufactured, processors can be
designed to keep up with the data delivery rates. However,
an alternative approach is currently under investigation in
the Technical University in Brauschweig for the design of
their new database machine RDBM [32].

Rather than broadcasting the data directly to the pro-
cessors it is delivered to a buffer memory (RAM in their
current :design). Some number of processors are connected
via a high-speed bus to the memory, from which blocks of
data aré read for processing. The number of processors can
be increased to offset an improved data transfer rate of a
new disk. In this type of an organization the critical
nnawo:mwn is the bus, which must be able to support a large
number of processors, as well as very high data transfer

rates.

Like RARES and VERSO, SURE is intended to function
only as a search processor, perhaps in the context of a
database machine or serving a DBMS on a general-purpose

computer.

2.2.7. . CAES

The final machine in this category 1is CAFS (8,22]

which is commercially available from ICL Ltd. The archi-

24

tecture of CAFS is quite similar to that of SURE. A paral-
lel readout disk is used, its output is placed on a high=-
speed broadcast channel where it is scanned by a number of
processing elements, each of which executes a vmnn.Om the
selection operation. However, unlike SURE, CAFS is

intended to serve as a database machine.

Joins and projections are executed using bit vectors
as in CASSM. However, a major difference between the two
machines 1is that only a single processor {specially
designed) is used to do this in CAFS. Using a single pro-
cessor (which must operate at the data delivery rate) elim-
inates all the memory conflict and bus contention problems

of CASSM.

2.2.8. Associative Disks that Use New Technologies

= T e

There are several research efforts taking place which
are examining the use of new memory technologies, particu-
larly MBMs, for the intelligent storage of relational data-
bases Huu~u».wm~um~uq‘um~wmum However, none of these
efforts have yet culminated in the design of a database
machine. Most of the research is geared towards the design
of chips that would have capabilities similar to those that

the RAP and CASSM cells have.

25

2.3. ff-the-Disk Machines
2.3.1. INFOPLEX

INFOPLEX [40] realizes database management functions
by way Omﬂm functional hierarchy. Some examples of possi-
ble mc:nnwm:mw levels would be a language interface level
and a mmnmwmnnmmm path level. Each function in the hierar-
chy is Mavwmamnnmm using a microprocessor complex. Data is
pipelined | between levels. Thus, both intra- and inter-
w:mnnconwoa parallelism can be attained. An intelligent
storage hierarchy employing different technologies of vary-
ing mmmmmwmnm cost is used to store the database. The
design of the organization is based on locality of refer-
ence observations in databases. Specifications of the

implementdtion of both the functional and storage hierar-

chies are very sketchy and, thus are not presented here.

2.3.2. DIRECT

In this section we describe the architecture and query

Mnonmmmwsw in DIRECT (5,41,42]}. The design of DIRECT is

accorded %o:mwmmnmwa more attention than other machines
for a number of reasons. First, it was through work on the

wamHmam:nwnwo: of DIRECT that we became throughly familiar

with issues in database machine design. Second, our work

on processor allocation strategies (reported in Section

4.2) was the prime catalyst for this dissertation.

26

Finally, by discussing the architecture of DIRECT and query
processing in it, we shall be able to clearly illustrate

the problems which must be addressed in designing an MIMD

database amnsw:m.w

In its original design DIRECT was intended to serve as
a back-end database machine to INGRES [43] although it
should be able to support any relational DBMS. The INGRES
parser converts all queries into a tree format. Leaf nodes
in the tree represent operations that are executed on per-
manent relations in the database. Non-leaf nodes operate
on temporary relations produced by their children nodes.
Since all the operations require at most two wnm:n rela-
tions and always produce a single output relation the query

tree is binary. 1In the remainder of this thesis we shall

assume that the input to the database machine is a query

tree in the form described above. An instruction to be

executed by the database machine will generally correspond

to a node in the nnmm.u

2 Of the various designs surveyed in this chapter only
DIRECT, INFOPLEX, HYPERTREE, and DBC (see Section 2.4 for
the description of the last two architectures) can operate
in MIMD mode. Of these, DIRECT is the only design that has
been’ implemented and about which sufficient information ex-
ists to make a large number of observations.

3 Note that this does not mean that an INGRES operator
(such as append) will correspond to a single node, although
this will generally be the case.

27

2.3.2.1. Qverview of the Architecture

The design of DIRECT was undertaken after a critical
look at other database machine research projects, particu~
larly RAP: It was felt that RAP (which in the mid 70°s was
the most advanced and best known database machine design)
suffered from a number of major shortcomings. One of these
was its performance in the execution of complex operations
such as the join (see Section 2.6.1). Another was the SIMD
nature of its operation. Since in SIMD machines only a
single instruction from a single program is executed at any
given time instance, the number of transactions per time
unit that such a database machine could support is limited.
Another mvmmnqmnwo: was that while a majority of the opera-
tions mxmfcnma by the processing elements in a database
machine ‘wncowcmm searching text, other capabilities are
sometimes needed (for example, arithmetic operations for
aggregates). Thus, DIRECT was designed to employ general-
purpose micro-processors that will operate in an MIMD mode.
Finally, the known algorithms for complex operations

require repeated scans of the data, thus a mechanism for

doing this efficiently was required.

In a DIRECT configuration there is some number of pro~-
cessors (termed query processors) whose function is to exe-
cute operations, such as selection, join, and update on the

database. These processors are controlled by a mini-

28

puter (termed back-end controller) which is responsible
- distributing instructions and overseeing data transfers
the processors. The database resides on some number of
is storage devices (moving head disks). Each relation is

‘anized as a vector of fixed size pages. A number of CCD

iory units serve as a distributed cache. The query pro-
sors and CCD devices are connected by a cross point
tch that has two important capabilities: any number of
cessors can read the same CCD device simultaneously:
.+ any two processors can read from any two CCD devices

currently. A mwame configuration is shown in Figure

The back-end controller initiates instructions as soon
resources become available. Unlike associative disks,
re the processors are physically bound to specific data,
ECT must have some algorithm for allocating the proces-
s (and CCD memories) to instructions (or data). Choice
the specific algorithm used for resource allocation in
ECT is discussed in Section 4.2. Initiating an instruc-~
n means sending the code to be executed to a number of
cessors. The code consists of a loop in which the pro-

sor:

requests a page of data to operate on from the back-
end

then waits for a message telling it which CCD device
to read the page from (or an instruction termination
message)

29

(3) reads the page
(4) notifies the controller of the completion of the read
(5) and proceeds to execute the instruction.

on

In the event that a processor has output, it requests from
the controller the address of an empty CCD device to which

the output can be written.

terconnect
device

The cache memory (CCD units) also serves as a tem-

n

porary storage device for result pages of one operation

that are to be used in a subsequent operation. This

feature obviates ¢the need for the mark bits used in a

disk
pr‘OC1
procy

number of the associative disk machines. There are several

reasons for using temporary relations rather than mark

Proc

bits. First, because of the small and fixed number of mark

bits per tuple, the number of concurrent operations execut-

able on any relation is limited to one (i.e. read locks are
4

exclusive).

Second, temporary relations offer the possibility of

back-end
 controlier

executing a number of update operations on a single rela-

tion concurrently. Each update operation produces its own

copy of the updated relation. Then, at commit time, the

controller can find conflicts (by checking the page tables

of the temporary relations against each other and against

the original page table). 1In the event that no conflicts

Figure 2.1: A DIRECT Configuration

host

4 It should be pointed out that [25] briefly discusses
the use of partitioned mark bits as a solution to this
problem.

31

are found (each update operation modified a different page)
a new 'page table H:OOannmnwsm all the modified pages can
be created. Otherwise, the controller creates a new rela-

tion with some of the results and issues instructions to

re-execute some of the updates on the new relation.

Third, output of the result can be executed more effi-

ciently, with the use of temporary relations since the data

to be ownwcn is organized as a small number of large pages.
If mark bits are employed the tuples to be sent to the host
will be scattered over a large number of data pages.
m:nnwmnEOnm. the original relation cannot be used by
another, unrelated, operation until all the selected tuples

have been transferred to the controller.

2.3.2.2. Algorithms for the Relational Operators

DIRECT executes selections similarly to the other sys-
tems mmwnn»vmw. The main differences are that the relation
must first be brought into the cache, and the processors

must request a data page from the controller each time they

are aoaw with their current page.

umwsm are executed using the broadcast capabilities of
the cross point switch. The larger of the two relations
being joined is designated as the outer relation, the other
is the 'inner relation. Each processor participating in the

join receives one page of the outer relation. If the page

32

is not sorted on the joining attribute, the processor sorts
it. Next, the pages of the inner relation, which are
sorted on the Jjoining attribute, are broadcast, one at a
time, to all the processors with an outer page. Each pro-
cessor joins its outer page with the incoming stream of
inner pages. When a processor”s output buffer fills, the
processor first sorts it on the attribute that is to be
used in the subsequent operation (if any) and then outputs
it to an empty CCD device. 1In the event that the number of
processors is smaller than the number of pages in the outer

relation a number of passes is used.

Projections are executed in a similar manner. The
outer and inner relations are one and the same. Rather
than joining two pages each processor searches for dupli-
cates and eliminates them as encountered (see Section 3.3.3

for a more precise description of the algorithm).

Aggregates are executed locally by the processors.
The partial results are sent to the back-end controller, cr
alternatively to another processor via the cache, for final

tallying. Aggregate functions are also executed locally.

" BEach processor keeps aggregate information about every par-

tition it sees. If the output buffer fills (i.e. the
number of partitions is very large), the processor writes
the buffer out and begins collecting the informaticn anew

for the remaining data. After this has been done for the

33

entire relation, a second phase of the algorithm begins, in
which the outputs of the processors are merged. A logical

binary wnmm is used for the merging.

Umawnn [41] discusses the problem of relation fragmen-
nmnwo:.m When parallelism is used in the execution of the
<mnwocm.nmwmnwoumw operators, each processor may output a
vmnnwmwwm filled buffer for use in subsequent operations.
The :canmn of processors allocated to the succeeding opera-
tion £www depend, to a degree, on the number of pages to be
overated on. Presumably the page size is chosen so that
the mmmm can be efficiently operated on while a high degree
of nonnwnnm:n< in processing the relation can be achieved.
If at a%m end of an operation, the output relation consists
of mvnnvxwamnmw% the same number of pages as did the input
nmwmnwoha~ and each of the pages is only partially filled,
then wnwmowwoswam operations the machine resources will not
be £mww utilized. To illustrate this point consider the

following example.

mcvmomm that two relations are to be restricted and
the anawnm are to be joined with each other. Let one
relation have 20 pages and the other 10. Assume that 20
mnonmmWOnm are used and that the selection ovmnmnwomm leave
WO nm&monwnw relations with 20 and 10 pages respectively.
Let nmm average "fullness" of each page be .l of its capa-

city. In this case, 20 processors will be allocated to the

34

join. Clearly, the amount of processing to be done by each
of the 20 processors executing the join is minimal. How~
ever, the number of control messages, and the number of CCD
memory devices used to execute this join will be the same

as if the original relations were to be joined.

The use of a compression operator to be applied to one
of the relations (the inner one) is proposed in [41].
Expressions are developed for picking the optimal number of
processors to execute this operator. Also, an argument for

compressing only the inner relation is presented.

2.4. Hybrid Machines

2.

(£

.1. DEC

DBC [9,44] is the first database machine designed to
incorporate both on-the-disk and off-the-disk processing
capabilities. It was specifically designed to support very

large databases (on the order of wowo

bytes}. 1t consists
of seven functionally different components. Oof particular
interest are the Mass Memory and Structure Memory com-
ponents. The mass memory uses several moving head disks,
with parallel readout capabilities, to store the database.
The heads of the disks are connected, via a switch, to a
number of processors which perform search operations. The

structure memory is to be constructed out of one of the new

memory technoleogies, such MBMs, CCDs, or EBAMs, ané is used

35

to hold an index. The index is different from indices used
in conventional DBMSs in that it specifies c¢ylinder
addresses. for predicates on relations. It is thus expected
to be considerably smaller than typical indices (about 1%
of the database size, perhaps less). 1In order to facili-
tate the use of the index, frequently accessed data, about
which the index information exists, is clustered in as few

cylinders as possible. The structure nemory, then, is used

to reduce the data space to be searched by the mass memory.

A Q:Wn% is sent to the .no:nHOHHM:m processor and
passes through a number of stages which re-organize it in a
form executable by the structure processor. The structure
processor: issues search queries to be executed by the mass
memory. wsm output from the mass memory passes through a
security | filter and from there to a post processing unit
for performance of the complex operations. Presently, the
mnﬂﬁwnmnnvnm of the post processing unit consists of a
number OmanonmmmOnm interconnected by a uni~directional

ring with a single controlling processor that has a commun-

ication wwsm to each processor [45]. 1In executing a com~
plex ovmanwo:. each processor receives a block of data and
noaacnwanmm some information about the data to the con-
troller. The controller collates the information from all
the processors, decides on the communication patterns

between the processors necessary to execute the operation,

38

and notifies the processors. Communication between the
processors (for data exchanges) 1is through the ring. One
problem with all the algorithms used by the post processing

unit is that it is assumed that the data to be operated on

will fit in the memories of all the processors.

2.4.2. HYPERTREE

The HYPERTREE [46] machine is another hybrid architec-
ture and is particularly interesting because of the way it
was designed. Examination of existing database machines
led to their classification according to the strategy used
to interconnect their various components. The result was
two classes: machines that used a simple one-to-one inter-
connection between processors and memories, such as RAP;
and machines that used a complex many-to-many strategy,
such as DIRECT. Each type of machine executed some opera-
tions efficiently. It was thus concluded that a database
machine should possess both kinds of communication capabil-~

ities.

The performance of a number of different interconnec-
tion strategies was examined for the execution of the
duplicate removal operation [47]. The various strategies
were characterized in terms of their merits and demerits.
An augmented physical binary tree structure was picked as
the best. In this scheme, processors are organized as a

binary tree, but with each node connected in some regular

37

manner to one of its siblings. Leaf nodes are intercon-
nected using the perfect shuffle structure [48] and are
no::mnnmm to disks (either Ffixed head disks or parallel
read out moving head disks can Um.cmmmy. The leaf nodes
are nmwmosmwcwm for the execution of the simple search
ommnmnwn:m. Thus, they act as data filters to the higher
level ammmm which are responsible for executing the complex

operations.

u0wsm are implemented using a parallelized version of
the nme hashing algorithm. Each processor constructs its
own bit vector in parallel with the others. The bit vector
is assumed to contain about twice as many entries as there
are unique values in the uOM:Mua attribute. Parent nodes
in nvmunnmm are responsible for ORing the bit vectors that
their nwwwanma produced. This procedure is executed on
both nmwmnwo:m. One node, presumably the root of the tree,
receives the final two vectors, representing the two rela-
tions, Mws& ANDs them to form a new vector. A copy of the
new nmcwm is sent to each leaf node which rehashes its por-
tion ow the data to see if it has any tuples that might
mmnnwnwvmnm in the join. In the event that such tuples are
found, wvmw are sent to a prespecified processor where they
are mnW:mww% joined. The prespecified processors are

picked .wn such a way that tuples that hash to the same

value will be sent to the same processor.

38

Projections (the duplicate elimination part) are
implemented using the binary tree or the perfect shuffle
connections. Execution of aggregate operations has not

been specified yet.

2.5. Custom Designed SISD Processors

In this section we describe some features of the IDM
database machine which 1is commercially available from
Britton-Lee Inc. Details about the IDM are very sketchy,
making this discussion somewhat unreliable. IDM was
designed to handle relational data management functions for
the "mid range” user [l6]. It can store databases of up to
32 Gbytes but is expected to be used for databases whose

size is 100 Mbytes to 1 Gbytes. IDM can accommodate a

transaction rate of between 100 and 1000 per minute.

One important component of the hardware 1is a custom
designed pipelined processor that operates at 10 MIPs
called the database accelerator. The accelerator was

designed to execute specific data management subroutines.

The major reason for designing this specialized piece of
hardware was the observation that most of the executicn
time of a relational DBMS is typically spent in a very
small portion of its code [16]. The IDM alsoc uses informa-
tion about the behavior of previously executed queries to

cache frequently accessed data.

2.6. Performance Evaluation of Database Machines

A5 is the case with almost any area of research, data
must be generated and evaluated before an underlying theory
to explain various m:mmoamsm can emerge. Until recently
database machine researchers concentrated on the design of
different architectures. Only after a number of designs
had been completed could researchers begin to evaluate
their work and attempt to form a theory. In this section
we present the results of two recent performance evaluation
studies. While these studies have some interesting
results, these are not sufficient to serve as an empirical
base for a theory. In Chapter 6 we present some thoughts
concerning the extension of these studies in a manner that

will help researchers develop the needed theoretical base.

2.6.1. Comparison of RAP to a Uni-processor DBMS

e

An analytic performance comparison between RAP and an
hypothetical uni-processor DBMS is described in [15]. A
number of assumptions, some favorable to one design, and
On:mnw to the other, are made. In particular, it is
assumed that: the database is stored on a fixed head disk;
the uni-processor DBMS has indices on every attribate; and,
the result set is always at most 3% of the number of tuples
in the relation. The second assumption clearly favors the

conventional DBMS. The third assumption, on the other

40

hand, favors RAP, since it places an artificial constraint
on the number of tuples to be retrieved. As we shall see
in Section 4.3 RAP-like database machines perform poorly if

a large number of tuples is to be retrieved.

It is shown that for the particular data used, RAP was
between 3 and 60 times as fast as the DBMS for selection
operations. When comparing the execution of updates, the
performance differential was found te be even more
dramatic, RAP is up to 5,000 times faster. This is due to
the extra effort associated with updating the indices by
the conventional DBMS. In general, the performance
improvement grows as the number of records to be retrieved
or updated is increased. For a join, with or without pro-
jection, RAP performs at approximately the same level as
the DBMS does. The primary factor in determining the per-
formance is the number obtained by dividing the number of
unique values being joined into the total number of tuples
in the relation. As this fraction decreases, RAP”s perfor-
mance degrades when compared to that of the DEMS. Thus,
for a join on two relation keys, RAP will perform well:;
whereas for a join on two non~key attributes it will per-
form at about the same level or worse than the conventional

DBMS.

The comparison clearly shows RAP“s performance to be

superior, except for the join operator. However, this

41

study leaves several unanswered problems and questions.
First, the assumed index includes an inverted list for each
attribute. While this may seem favorable to the conven-
tional DBMS, it is not. Generally, retrievals in a DBMS
will be expressed in terms of a small number of the attri-
butes so the additional inverted lists will seldom be used.
However, the time to update a relation increases consider-
ably in the presence of inverted lists, since each list
must be updated and reorganized. We conjecture that
mmnnmmmwwo the number of inverted lists will reduce the
ratio of performance for updates significantly but have
very little effect on the performance ratio for retrievals.
Second, the number of gualifying tuples should be allowed
to be higher than 3% of the number of tuples in the rela-
tion. Third, other operations, such as aggregates should
have been studied. Fourth, each query was made up of a
complex woonmn expression that included several predi-
cates. Such expressions are rarely used and can be handled
more mmmwww by RAP than by a conventional system. Finally,
the cost of actually performing the join in RAP, i.e. col-
lecting the marked tuples from both relations and con-
mnnconwno the result relation, should be incorporated into

the cost of the join.

While it is clear that incorporating the above changes

into the study will alter the results in favor of the DBMS,

42

we believe that RAP will still outperform the DBMS in the
execution of selections and updates, but not for joins and

duplicate elimination.

2.6.2. A Comparative Study of Database Machines

In {3] the performance of six database machine designs
and the relational DBMS INGRES [43] 1is compared for a
number of benchmark query programs. Since this 1is the
first attempt at a comparative performance evaluation of
database machines, we present a detailed discussion. Per-
formance in this study was measured in the amount of work,
expressed in units of time, each machine required to exe-

cute each query.

2.6.2.1. Physical Characteristics

The database machines covered were: Slotnick-type
associative disks {i.e. very limited processing capabili-
ties) which we shall refer to as AD, CAFS, CASSM, RAP (as
described in [24]), DBC, and DIRECT. The architectures of
all of these have been described in Sections 2.2-2.4. In
order to avoid an "apples and oranges” comparison some of
the architectures have been modified. Specifically, moving
head disks were assumed to be the mass storage devices
(adversely affecting the performance of AD and CASSM). A
processing rate of 2-3 MIPs was derived as necessary for

operating at the disk speed (based on IBM 3330 disk specif-

43

ications). The number of processors used was 8 for DIRECT,
16 for RAP, and 19 for the other machines. Other parame~
ters of importance were the host overhead and data process-
ing costs, which were based on measurements of INGRES [10]

and nnaac:wnmnwo: costs between the various machine com-

ponents.

A number of other assumptions about the architectures
and query processing on them have been made. An example is
the processing of joins and aggregates on DBC. At the time
that (3] was written, the specification of these operations
was very sketchy. Thus, assumptions that at this time we
Know nm be untrue, were made. Currently, DBC executes com—
plex ommnwnwo:m in the mOmm,mnonmmmwsm unit part of the
machine. The architecture of the post processing unit has
been mmmnwmwmm and the join algorithm has been described.
mosmcmm\ this description lacks a number of crucial
mmnmwwm. Also, specification of the projection and aggre-
gate WHQOnwnsam are still due. It should thus be recog-
nized that the architectures evaluated in [3] were, and to

a Hmnmw degree still are, "moving targets”".

2.6.2.2. Operational Characteristics

ThHe performance of three benchmark programs was com-

pared for all the machines and for a fast version of

44

nznwmm.w The three queries benchmarked belong to the three

slasses of relational queries described in [10]. These
are: overhead-intensive, for which the DBMS spends most of
its time executing code not directly associated with the
data; data-intensive, for which the DBMS has to scan large
amounts of data; and, multi-relation which includes a
multi-relation operations such as the join. Multi-relation
queries are generally also mmnm:wnﬂmsmw<m. The overhead
intensive query is a simple selection. The data intensive
query is an aggregate function.

An existing database was used for the performance
measures of INGRES. For each of the gqueries, a number of
observations were made that enabled evaluation of the per-
formance of the gueries on the database machines. These
included: the number of result tuples, the number of pages
in the relation(s) queried, and the distribution of the
result data in the relation. For each query, best case and
worst case egquations were developed to describe the total
amount of work and the expected response time on =2ach
machine. The definition of best case (and worst case) was
different for each machine. For example, for INGRES best

case meant that the relation was hashed (or indexed) and

1 Currently INGRES is an interpreted system, and as such
is quite slow. It is hypothesized that executing precom-
piled queries will jead to a decrease in the execution time
of at Lleast one half. Thus, the performance measurements
used are one half of what was actually observed on the ver-
sion of INGRES used at the time.

45

the the tuples to be retrieved resided on as few pages as
GOmmwnHm~ thus minimizing the amount of I/0 to be per-
mOnamm. For RAP and DIRECT, on the other hand, best case
means that the data to be scanned was resident in the cache
at the time the instruction was initiated. This could hap~-
pen either because the data was used in a previous instruc-
tion {or a concurrent instruction for DIRECT); or because a
smart prefetching algorithm brought it in from the mass
storage devices in anticipation of its use. The total
mEOc:m of work was defined as the sum of the time spent in
all the components of the machine. The response time was
defined as n:m. sum of all the component times that could

not cm overlapped.

2.5.2.3. Results

Because of the size of the benchmarked database only
wwawnwm conclusions can be made about the relative perfor-
mance of the machines (see our criticism below). For exam-
pie, ' in no case was the difference in performance as wmuch
as an order of magnitude. It is our belief that had a
=Hmnmw= database {larger than 1 Gbyte) been used the
results would have been more dramatic (and therefgre more

useful).

46

2.6.2.3.1. Overhead~-Intensive Query

The simple selection query was applied to a relation
of size 137 Kbytes. The results of the selection benchmark
showed that AD, CAFS, and DBC had the best performance.
RAP and DIRECT had the worst performance because of the
need to bring the data into their caches before it could be
scanned. INGRES and CASSM were about half way in between.
Tn the event that the data already resided in the cache RAP
and DIRECT had the best performance. These results show
that, for the data examined, a conventional DBMS, or an AD
device, best serve the needs of the selection operation.
It should be noted that because of the small relation size
only one cylinder was required for its storage, thus the
use of moving head disks for the mass storage devices did

not adversely affect the performance of AD cor CASSM.

2.6.2.3.2. Multi-Relation Data~Intensive Query

This query included a selection operation on one of
the relations and a join of the result of the selection
with another relation. 'The join required performing two
comparisons on each pair of tuples (i.e. two attributes had
to match). The selection was to be applied to the smallier
of the two relations which consisted of about 15 Kbytes.
The other relation was considerably larger and had 1.43

Mbytes. Various auxiliary storage structures were assumed

to exist for INGRES.

47

The results of this test are quite interesting and
somewhat counter-intuitive. First, the best and worst

times were very close for all the machines, except for

INGRES ‘and . RAP. Second, as expected, DIRECT showed the
best performance (for both cases). Third, AD which used
moving head disks, and is the simplest associative disk
type database machine (in the sense described in Section
2.2) exhibited the second best performance. Finally, both
CAFS and CASSM, which use hashing to implement Jjoins per-

formed worse than all the other machines (except INGRES).

The poor performance of CAFS and CASSM was attributed
to the fact that both machines could not perform the actual
join of the tuples until the marking of candidate tuples in
both nmwmnwoam was completed. AD, RAP, and DBC each imple-
mented the join by issuing separate selection sub-queries
on the second relation using the values obtained from the
selection on the first relation. It was assumed that while
one sub-query was executed by the processors, the con-
troller would be collating the results of the previous
sub-query and materializing the result tuples. However,
RAP performed worse than the other two machines because it
was sensitive to the second relation fitting in the cache.
Since the second relation in this query did not £it into
the cache RAP’s performance suffered. It should be noted,

though, that the equations developed for this query (and

43

the others) did not take into account the problem of bus
contention between the processors. As will be shown in
Section 4.3, contention has a significant impact on the

performance of various associative disks.

The high performance level attained by AD and DBC is
primarily attributed to the ability to overlap the execu-
tion of the searches with that of the actual join. DIRECT
performed well because of its ability to use the cache
efficiently (i.e. it is not necessary to £it the entire

second relation into it).

2.6.2.3.3. Data-Intensive Query

The final query benchmarked contained an aggregate
function mmmwwmm to a relation of size 97 Rbytes. This
particular query divided the relation into 17 distinct par-
titions. AD, CAFS, RAP, and DBC do not directly support
the implementation of aggregates. Also the processing ele-
ments in these systems are not capable of performing arith-
metic operations. Thus the algorithm used, was to retrieve
the values on which the relation is to be partitioned into
the controller, remove duplicates, and issue a number (in
this case 17) of selection sub-queries. The results of

each selection are tallied up by the controller.

Both the CASSM and DIRECT processing elements are

capable of performing arithmetic operations. The DIRECT

49

processors also have some temporary memory. Thus each pro-
cessor keeps a running value for each partition for all the

tuples it sees.

The results of the benchmarking of this query show
chat nvmms and DIRECT executed the query efficiently, pri-
marily because of the arithmetic capabilities of their pro-
cessing elements. DIRECT s performance was much better,
though, because of its ability to completely parcel out the
work among the processors. Each processor could proceed
with the ‘execution of the code independently of the others.
Therefore a high degree of parallelism was attained.
INGRES” performance did not significantly lag behind those

of the other database machines.

2.6.2.3.4. Summary

Hawthorn and DeWitt’s results are interesting and
vaOnnmnm for a number of reasons. First, it is shown that
for databases with a large number of overhead-intensive
queries ' a conventional uni-processor DBMS is probably the
most cost effective. This may imply that a database
machine : 1ike IDM is the best choice in this case. Second,
for data-intensive queries, the additional complexity of
some of the database machines was shown to be very helpful

in attaining a good performance behavior.

However, there are a number of problems with the
gtudy. First, we note that the database used for the
benchmarking was unrealistically small (12.3 Mbytes) .
Thus, the mmnmmnamnnm of the various machines under adverse
10ad conditions was not measured. We conjecture that
studying the sensitivity of the machines to variations in
the database size will lead to a more precise characteriza~
tion of the various machine performances and capabilities
(see Section 4.2.4.4). For example, the importance of the
index processor in DBC can be assessed. Also, the effect
of the size of the cache for both RAP and DIRECT should be
considered (in studying the behavior of RAP for the second
query, it was shown that the size of the cache was a signi-
ficant limiting factor in the possible execution improve-
ment). Second, the mass storage devices were old. Similar
equations should be developed for newer disks {such as the
IBM 3380) [31] which have a much higher storage capacity
and data transfer rates. Third, the performance of various
components of the machines was not modeled. As will be
shown in Section 4.2.4.5, the back-end controller in DIRECT
is a bottleneck under certain conditions. Also, as will be
shown in Section 4.3, the output bus of the various associ-
ative disks considerably slows down their execution time.
Pinally, it is not clear whether the values used for the
nost and controller overhead were accurate. We feel that

the cost of controlling the various machines should be

studied more closely.

The authors point out that although INGRES performed

relatively well in the execution of the first query (the
simple selection), associative disk type machines (AD,
CAFS, RAP, and CASSM) did better. On the other hand, it
was shown that data intensive queries require additional
hardware in order to perform reasonably. Thus, Hawthorn
and DeWitt [3] conclude by mnmcwuw that future database
aanMSmw should possess both on-the-disk and off-the-disk

processing capabilities, if they are to be used to enhance

the performance of all operations in a relational DBMS.

[N}

.7. Conclusion -

H:Mnswm chapter we have surveyed extensively the data-
base machine literature. We considered numerous architec-
tures, and classified them into four groups according to
wmnazmnm organizations. In describing specific machines
within mwns category, we provided an overview of the
hardware organization as well as a description of the algo-
rithms used to implement the various high-level relational
algebra operators. We have also discussed the query pro-

cessing strategies used by each machine-type.

We have also surveyed two comparative performarce

evaluation studies. These are the only studies of this

kind in tnis field. The first study [15] compared the per-

formance of RAP, an associative disk-type database machine

with that of an hypothetical uni-processor DBMS. The pur-

pose of the study was to show that database machines that
mB@wm< parallelism can provide a much higher performance
level than can be attained by DBMSs running on conventional
hardware. The second performance evaluation study
presented [3], compared the performance of several database
machine designs for three benchmarks. It was shown that no
one machine was best. A number of useful features in data-
base machines were identified and it was recommended that

future database machines possess these features.

53

CHAPTER 3

METHOD AND ALGORITHMS

In nwwm chapter we describe the method which we used
to design our proposed database machine. We begin with a
criticism: of past database machine research in order to
wwmvwwmanw the lack of methodology in previous design
efforts. .We then describe the goals of this thesis and the
methods wavwowmm to attain it. The remainder of the
chapter nwsnmwnm the ammnn»nnwmn~ and analysis, of the
parallel wPQONWn:Em to be employed in the architecture, and

a mcaamn<m0m the features that the hardware must provide in

order to implement the algorithms efficiently.

3.1. Criticism of Database Machine Research

In Chapter 2 we described a large number of database
machine Wmmwmsm and classified them into four distinct
groups. b these, three groups employ some form of paral-
lelism to speed up the execution of queries. The fourth
group is of no interest to this research effort and was
included ' for the sake of completeness. One reason for
grouping the architectures in the manner done was to sim-
plify their descriptions. Another, more important, reason
is an attempt, in this section, to show that research lead-

ing to the design of most of the machines has been "archi-

54

tecture directed". By "architecture directed" research we
mean that the architecture is developed without much con-
sideration for some, perhaps even the majority, of the
operations to be executed on it. Only after the architec-
ture is specified, algorithms for the operations it must
support are developed, using the available primitives.

A case in point is Slotnick”s logic~per~-track dev-
jces [13] from which all the associative disk database
machines and, to some extent, DBC are derived. The. basic
design goal of Slotnick’s organization was the efficient
execution of the selection operation to select records
which satisfy certain criterion. This capability can be
used to reduce the amount of data that need be transferred
between the mass storage device and the computer requiring
the data. It can also be used to reduce the amount of

machine time regquired to process the data.

Once the concept of database machines emerged, a
number of designs (most notably CASSM and RAP) used
Slotnick”s idea as the basic building block in the imple-
mentation of various operations. Other designs soon fol-
lowed with various enhancements. For example, the data
layout in RARES is organized to minimize contention for the
output bus among the processors; and DBC uses moving head
disks instead of the almost obsolete fixed head disks, in

conjunction with indexing to reduce the number of cylinders

55

to be -searched. 1In fact, an entire class of the machines
{which we have termed associative disks) has appeared which
combines the processing capabilities of a controlling pro-
cessor with those of the processing elements on the disk to

implement a number of high-level operations.

As has been shown in Section 2.2, a number of the
associative disks are intended to act as full fledged data-
base machines supporting all the high-level operations
required (generally, relational algebra operations). How=-
ever, some machines, such as RARES, VERSO, and SURE, were
ammwmnmu to support only a subset of these operations (gen-
erally selections) and could function in conjunction with a
conventjional DBMS or within a multi-processor database

machine.

An examination of the current literature yields some
interesting observations. One of these is that the archi-
tectures of the machines in those projects that are still
active ' (e.g. RAP and DBC) are significantly different from
the Onwuw:mw design specifications. This is due, in part,
to analyses of the machines (or machine components) that
revealed flaws which could be corrected (for example, the
incorporation of buffers in the cell processors of both RAP
and DBC}. However, it is also due to the realization by
the awm:»:m designers that in order to efficiently support

some operations, the architectures had to be changed.

56

For example, the latest version of RAP [49] uses
general-purpose micro-processors rather than specially
designed logic to implement the cell processor. This
enables the processing elements to process scalar aggre-
gates in place instead of sending every tuple to the con=-
troller, as in the original design. Similarly, the archi-
tecture of the post processing unit in DBC, which 1is
responsible for the execution of sorts, joins, and aggre-

gates, has undergone several revisions [45,50,51].

DIRECT 1is another product of an "architecture
directed" research. It was designed to operate on data off
the disk because of the observation that joins could not be
implemented efficiently on associative disk type database
machines. Thus, certain architectural features (particu-
larly the broadcasting cross point switch) were included in
the machine design to facilitate efficient repeated scans
of data. A beneficial side effect of the switch is that
algorithms for other complex operations can also be imple-
mented efficiently and with relatively little difficulty.
This is the reason why re-designs of DIRECT have not been
necessary. However, DIRECT is not a successful database
machine design because it performs WOOnHw for selections

and scalar aggregates.

In designing the HYPERTREE machine Goodman [47,46]

studied the operations of duplicate removal and join in

57

detail. ‘A number of interconnection schemes were con-
mwumnmm~u and each was characterized in terms of its advan-
tages and disadvantages under various conditions. It was
shown that the HYPERTREE structure had the most desirable
features of those present in the other schemes with the
least number of faults, This research represents a step in
the direction that we advocate in this thesis. However,
mvmnwmwnWﬁHoa of algorithms for aggregates is still needed.
It should be noted that the HYPERTREE machine was not
included: in Hawthorn and DeWitt”s performance evaluation
AMnmmcammww because of its recency). It is therefore inap-
propriate (and difficult) to make any statements about its

expected: performance relative to those machines compared.

We believe that the reason {3] concluded that there
was no :"best" database machine design is the same reason
that a number of database machines require repeated
redesigns, or perform poorly in some cases: lack of metho-
dology in their design. We have so far shown that the
research that led to a large number of original designs was
"architecture directed”™ rather than "algorithm directed”.
By "algorithm directed" research we mean that algorithms
for all of the high-~level operations to be executed by the
machine ' must be developed in the first stage of the
research. Using these algorithms a specification for low-

level hardware primitive operations that would support the

58

efficient implementation of all of these algorithms can be
generated. Only at this point should the researcher begin
the design of the machine that would provide these primi-

tives.

"Algorithm directed"™ computer architecture research
cannot be used by all machine designers. In many cases
there is very little information about the types of pro-
grams that will be run on the machine, or the range of
types of these programs is so large so as to cause the
machine design to be general-purpose. This, however, is
not the case for relational database machines. Both the

data structure and the types of operations are well-

defined. Furthermore, the number of different operations
that the machine must support is quite small (about ten}.
As a matter of fact, because this number is so small, not
only should the machine designer consider the algorithms
used for each operation; he should also study the structure
of programs to see if any information about patterns of
access to the data can be used to further tailor the design

to meet the user needs.

So far we have concentrated on describing the non-
architectural factors that must be considered prior to the
machine design. Additional factors that affect the ulti-

mate design include:

(1) Implementation considerations: Can existing technology
be used? Is the design amenable to implementation

59

using current techniques (e.g. VLSI)?

(2) Expansibility issues: Can the machine be easily
expanded according to the changing user needs?

(3) Bottlenecks: Is any one particular component of the
architecture likely to become a bottleneck under
either normal or abnormal operating conditions?

{4) Robustness: How crucial to the operation of the
machine is each component?

In examining the various machine proposals in light of
the above and other criteria, we find that several of the
machines suffer from a number of serious flaws. For exam-
ple [42], has shown that the controller in DIRECT does
indeed become a bottleneck (see Section 4.2). It 1is also
shown that similar problems will occur for most of the

associative disk designs. Other problems with associative

disks (bus contention) are described in [52] and (53] (see

Section 4.3).

We close this section with the observation that of the
large number of machines described in Chapter 2, only two:
IDM and CAFS, are commercially available. We «call the
reader”s attention to the fact that IDM uses no inter-
processor parallelism, and CAFS employs some form of pipe-
lining {although it has the capability of using a parallel
readout disk). Of the remaining machines only DIRECT is
actually running and supports all of the relational algebra

operations.

50

3.2. Goals of Research

In this dissertation we would 1like to develop the
design of a database machine using an ‘“algorithmic
approach”. That is, we shall use the study of the algo-
rithms to be employed and data access patterns of programs
to specify a machine architecture. We shall also apply

other, architectural, considerations, but these will be
used in the later stages of the design. Our intention is
to design as complete a database machine as possible. How-
ever, it is clear that the end product will be lacking in
several respects due to the enormity of the task at hand

and the relatively short time available. As a result of

our interest in the study of the algorithms to be used, and
our advocation of the algorithmic approach to the machine
design, our treatment of the more hardware oriented and

lower~level design decisions is incomplete.

Our intent is to design a database machine that can be
constructed from existing hardware devices and support a
large number of users. Because the execution of queries in
SIMD mode only permits intra~instruction parallelism, we
believe that SIMD-type machines cannot support a high
volume of transactions. We have thus decided to organize
the architecture so that it can operate in MIMD mode, where
inter-instruction and inter-program parallelism can be used

to enhance the performance of gquery programs in addition to

61

intra~instruction parallelism.

The organization of the remainder of this chapter, and
the next two chapters, reflects the design method described
above. ‘We begin with a description of the algorithms to be
used. The algorithms, and their analyses, are drawn
from [54]. 1In this paper several algorithms were presented
for each relational algebra operator. Generally, for each
owmnmnow there was one algorithm that used parallel sort-
ing, mdm another that used broadcasting of pages from an
unsorted relation. This implies that one could design a
database machine with parallel sorting as a basic operation
to be used in the implementation of algorithms for the
<mnwocm, operators. Alternatively, a machine that provides

an efficient broadcast capability can be developed.

The alternative algorithms for each operator are com~
pared in [54]. The results of this comparison are incon-
nwcmwcm in the sense that neither type of algorithms proved
to be better under all conditions. Therefore, we feel that
it is reasonable to choose one c¢lass of algorithms and
proceed from that point. In this thesis we have chosen the
broadcasting approach. Our primary reason is simplicity of
the control function. All three parallel sorting algo-
rithms presented in [34] are quite complicated to control.
The nownnowpmn must maintain a large number of tables which

are used to coordinate movements of pages between proces-

62

sors according to some ordering rules. Such algorithms
require a large number of messages, and synchronization
among the processors executing each operation. The broad-
casting algorithms, on the other hand, can be implemented
with a small number of messages. Also, in parallel with
this effort, Friedland [55] is investigating the use of
parallel sorting in database machines, particularly the

cost of controlling the algorithms.

There are two other known classes of algorithms for
database management: those that use hashing and those that
use indexing. Parallel algorithms that use hashing have
peen developed for the join operation by Goodman [46] for
the HYPERTREE machine. The Ohio State database machine
group has been investigating the use of indexing in data-
base machines. However, their study has been directed only
towards their use for the selection operation. Additional
work on the use of parallel index operations, particularly
for the implementation of Jjoins, has been done by Good-
man [46]. It is expected that after further study of the
other three classes of parallel algorithms for database
management, a comprehensive comparative evaluation can be

undertaken.

We continue the design process by examining data
access patterns of representative query programs in Chapter

4. Hawthorn and DeWwitt [3] have shown that queries should

be processed directly on the disk if they contain opera-
tions that can be processed using a single scan of a rela-
tion by m‘csw:mnonmmmOn. Otherwise the queries should be
processed off the disk. In Chapter 4, therefore, we exam-

ine problems associated with processing queries in these

two types of organizations.

Since DIRECT is the only off-the-disk database machine
about which sufficient detail has been published and with
which we have had some implementation experiences we begin
with an examination of processor allocation strategies for
it. We use this study to gain some insight into the data
access patterns exhibited by query programs using the algo-
rithms described in the previous chapter. This information
can be used to select an appropriate interconnection

mechanism between the processors.

Next we compare three associative disk designs. None
of the designs we examine exists - all of them are abstrac-
tions of associative disk design types representative of
those ummnnwumm in Chapter 2. The purpose of this study is
to quantify the relative performances of the three design
types. Once such information is available it can be used,
along with implementation and cost considerations, to
select the appropriate associative disk to be used in the

architecture.

64

3.3. Algorithms

The algorithms mmmmnwcmm in this section are for the
relational algebra operators as supported by INGRES [43].
The operators covered are: select, project, Jjoin, aggre~
gates (count, sum, average, etc.), aggregate functions,
append, delete, and modify (see Appendix A for their

description).

The algorithms presented below rely on a number of
general points described below. First, relations are
organized as collections of fixed size pages. The page
size should be large enough so that it constitutes an effi-
cient unit of transfer among the machine components, but at
the same time it should be small enough so that a large
number of processors, each examining a few (possibly one}
pages, can participate in the execution of the operation.
Second, each page in a given relation 1is sorted on some
attribute (or group of attributes). That attribute should
be the key, in the case that the relation is a permanent
relation in the database; the attribute used in the subse-
quent operation if the relation is a temporary relation; or
the entire tuple in some special cases. Therefore, it is

the responsibility of each algorithm to sort individual

pages (but not the entire relation) before they are output.

Third, the existence of a controlling processor which

is the only processor with access to control information,

65

such as page tables, is assumed. Finally, explicit mes-
sages are exchanged between the controller and processor
for each "basic operation" (i.e. read a page and search

it).

These same assumptions are also made in ([54]. How-
ever, the presentation and analysis of the algorithms in
{54] is based on a number of architectural specifications
which we outline below. It is important to understand that
these same algorithms can be implemented on any architec-
ture. The same parameters would be used to characterize
the algorithms. What would change from one architecture to

another are the values {(representing implementation costs)

assigned to each vmnmSmnmm. In our presentation we have
mnnmavnmm to remove as many of these assumptions as possi-
ble.

The first architectural assumption made in [54] is
that ~ a three level memory hierarchy is used. The middle,
cache, Hm<mww consists of several memory elements which are
noa:wonma to a number of processors with an interconnection

device whose capabilities are similar to DIRECT s cross

o]

oint switch. That is, two processors can read (write) two

separate memory elements simultaneously and, any number of

processors can read the contents of a single memory

L The collection of the memories in all the processors
forms the top level in the hierarchy, while the mass
storage devices form the bottom level.

66

element. It should be noted though, that there are a
number of ways of providing such a service, and that [54]
does not concern itself with its implementation.

It is also assumed that there are no processor-to-
processor interconnections, that is, all interprocessor
communication is via the shared cache. Using this model,
highly parameterized, precise equations, characterizing the
performance of several algorithms for each operator are
developed. In this presentation we describe some of the
algorithms from [54] and analyze them. Qur analysis is
different, though, because it does not assume the parallel
read capability granted by the <cache organization and
interconnection device. Rather, our mOnachmywsnwcam an
"1/0 parallelism characteristic”. This is a symbol that
represents the amount of parallelism that an architecture
allows in processing I/0 operations. A value of 1 indi-
cates that all I/0 operations can proceed in parallel;
whereas a value of p, the number of processors executing

the operation, indicates that no parallelism is allowed.

We begin with a definition of the parameters used in
the formulas. We then describe the update algorithms. We
show that these operations maintain the sort order of indi-
vidual pages. This is followed by the various retrieval
algorithms (which cannot change the order of the tuples in

the permanent relation pages). Throughout this discussion

we have assumed the syntax and semantics of QUEL [56]. It
should be noted that all of the algorithms operate with any

number of processors for all relation sizes.

The parameters used in [54] measure three types of
costs: I/0, processing, and communication. A number of
basic tasks, common to all the algorithms (e.g. reading a
page), have been identified. The execution time formula
for each algorithm is expressed in terms of the costs of
tnese basic steps. For different architectures, the param-
eters may have different values and may relate differently
to each other; for example, the I/0 cost may be more signi-

ficant than the processing cost for some architectures, but

not for others.

As indicated above data is moved and processed by page
units. We assume that a full page contains k tuples; C is
the cost of a simple operation such as comparing two attri-
butes or performing an addition; and the cost of moving a
tuple inside a page, is V time units. The I/0O parallelism
characteristic discussed above is indicated by P. We have
chosen to represent fixed costs by capital letters. Other
mmnmamnmmm (for example, the number of pages to Umﬂnmmmv
are represented by lower case letters. The basic tasks
used in evaluating the performance of the algorithms are:

(i) 1/Q cost: A read reguest moves a page into a

processor”s memory. We denote its cost by C.. The actual

68

value assigned to this parameter depends on the machine
organization employed. In (54] a memory hierarchy is
assumed. Thus the cost of a processor reading a page is
made up of two components: the probability that the page
is in the cache multiplied by the cost of reading from the
cache; and the probability that the page is not in the
cache multiplied by the cost of reading from the mass
storage device. The cost of writing a page is denoted by
nz. A value can be assigned to this parameter in a similar
manner to the read cost assignment.

{ii). Broadcast cost: This includes both the cost of

sending the page and receiving it and is denoted by nU.

(iii). Scan cost: If a page is to be scanned, the scan is

implemented using a binary search since we expect that each

page in the input to an operation is individually sorted on

the attribute({s) used by the search.? The number of tuples

in the page is assumed to be k. Thus, the scan cost nmn isg
computed as:
- *
Coc log k c
{iv). Merge cost: If two sorted pages are to be merged

the number of tuples in each page is assumed to be k. Since
all our operations both require and produce internall;

sorted pages, both pages will already be sorted. In the

2 A non-key selection requires a sequential search.

69

worst case, the number of comparisons required to perform
the merge of two sorted lists of length k is 2k [57]. The

number of tuples to be moved is the same. Thus, C the

n—.—s

cost of merging two pages is computed as:

Cu = 2k * (C + V)

(v). Page re~organization cost: There are two cases when

a page must be reorganized to keep the tuples in sorted
order. Ha:m first case occurs after the application of an
update operation which modifies the attribute on which the
page is sorted. We assume that the re-organization con~
sists of both tuple comparisons and movements and expect
that, on the average, half of the tuples in the page will
ne affected. As before, a page 1is assumed to have k

tuples. We compute no~ the re-organization cost as fol-

Co=k*(C+WM) /2

The second case occurs when a buffer containing new
tuples (e.g. the result of a projection or a page of an
intermediate relation) is to be used in a subsequent opera-
tion. ' Since all our operations require internally sorted
ovages, the page must be sorted before it is written by the
processor. We assume that the new page has k tuples
(though in many cases this number may be smaller) and that,

on the average, internal sorting of a page would require k

79

3

log k comparisons and moves.~ Thus, nmo~ the cost to inter-

nally sort a page is:

nmo =k log k * (C + V)

(vi). Communication cost: Since transfers of pages

between processors are considered as I/0 operations, only
page request, reply, and assignment messages from the con-

trolling processor to the other processors are considered

for the cost of communication. When a processor wants to
read or to write a page, it sends a request message to the
controller specifying the relation name and the page
number. The controller replies by sending to the processor
the address of the page. Since it is important to include
the cost of the request and reply messages in our defini-
tion of page read and write operations, we shall replace nn
by nn+n“nmncmma message) +C{reply message)}. Therefore, the
remaining communication cost of an algorithm can be wmeas~-
ured by the number of control assignment messages sent, An
example of these are messages necessary to allocate proces-
sors to an operation. Since the number of control messages
is small compared to the number of I/0 related messages,
and since these messages are short (they contain only a few
words of information), we are neglecting them in consider-

ing the costs of the algorithms.

3 Actually, this is an upper bound which is seldom
reached.

Table 3.1 summarizes the parameters described above.

3.3.1. Updates

Many of the retrieval algorithms presented in the fol-
lowing sections rely on the prdperty that each page is
sorted on some attribute or group of attributes. Permanent
relation pages are sorted on the relation key. It follows
then, that any update algorithm must keep the pages sorted.
A second property that must be preserved is that no dupli-
cates are introduced as a result of an update. We show
that our algorithms do indeed preserve these properties.
We shall also present an analysis of one algorithm”s com-

plexity.

We consider three update operations: delete, append,
and modify. Each operation specifies a relation to be

updated - and a qualification clause indicating the tuples to

Table 3.1
Parameter Description

Number of tuples per page

Time to compare two attributes
Time to move a tuple

Time to read a page

Time to write a page

Time to scan a page

Time to merge two sorted pages
Time to reorganize a page

Time to sort a page

Time to send a control message

wodWLEm”
2]

Ao ax
[¢]

msg

72

be affected.

For example: Delete emp where emp.eno < 153.

However, there may be cases where the qualification cri-
teria for an update operation is more complex than a simple
selection. For example, suppose we wanted to delete all
empioyees whose employee number is less than 153 and the
department in which they work is not the toy department. In

QUEL the gquery would be expressed as:

Delete emp where emp.enc < 153 and
emp.dno = dept.dno and dept.name != "toy".

Here we have to restrict both the employee and department
relations according to the selection criteria, perform the
join, and then apply the delete operation to nww employee
relation, using the values produced by the join as the

deletion criteria.

We term these two kinds of gualification clauses: sim-
ple and complex. A simple gualification is one that may be
applied in a single scan of the relation. A complex gqual-
ification is one which requires us to perform some inter-
relation operation(s), (e.g. Jjoin) in order to determine
the tuples to be updated. The algorithms presented below
handle both simple and complex updates.

For consistency reasons, we assume that updates are
atomic operations. That is, an update either successfully

terminates, or, in the event of a crash or abort, does not

affect the stored database. One reason for aborting update

73

operations is the introduction of duplicates into a rela-

tion.

3.3.1.1. Delete

A deletion operation is, wnnmmmmnn~ the negation of a
selection. If the gqualification 1is simple, no pre-

processing is required. Bach processor executing the dele-

tion will examine a unique subset of the relation. Tuples
satisfying the deletion criterion are removed from a page
and it is compressed and flushed out to the buffer memory.
The controller is informed of the size of the written page

and stores it as a new page of the relation.

Complex deletes require a pre-processing step to
determine the set of tuples to be removed. The set pro-
duced is a list of tuples which is broadcast to all the
processors that have pages of the source relation. Each
processor performs a modified merge of its source page with
every broadcast page. The modified merge consists of

deleting a tuple from the source relation page, 1if a key

value in a broadcast pacge matches the tuple’s key. As in
simple deletes, modified pages are written out as new pages

of the relation, replacing the corresponding source pages.

3.3.1.2. Append

A simple append is one in which a small number of

tuples are to be appended to a relation. The simple append

74

begins with the controller deciding where to add the addi-
tional tuples, based on the density of the pages in the
relation. The processors first search for duplicates of
those tuples to be appended. If duplicates are found by
any of the processors, the controller 1is informed, the
operation aborted, and the relation restored to its pre-
operation state. If no duplicates are found, tuples are
added to the pages designated by the controller. A page

chosen for appending will have to undergo re-organization

to preserve its sort order.

Complex appends are executed in a similar manner to
complex deletes. After the list of tuples to be appended
has been generated, the processors search for duplicates
using the modified merge described above. If the number of
new tuples is small they are added to designated pages.
Otherwise, the new pages are added to the relation’s page

table at the end of the operation.

3.3.1.3. Modify

There are two cases to consider for the modify opera-
tion. In the case that the modified attribute(s) does not
contain the relation key (or part of it} we are assured
that no duplicate tuples will be introduced into the rela-
tion as a result of the application of this operation. In
this case, each processor executes the same code as the

simple delete, applying the modification to matching tuples

75

rather than deleting them. The same holds for a complex,
non-~-key modify. Note that no page re-organization is
required since the page is sorted on the relation key which

is un-affected.

In the case that the query modifies some part of the

key, the algorithm must check for duplicates. To do this

we must have a list of the new key values, and check the
source relation for duplicates using this list, before we
apply the update. Our algorithm works in a similar manner
to the algorithm for non-key modifies with one exception.
When a tuple to be modified is found, the processor deletes
that tuple £rom the source page, modifies it, and writes
the modified tuple into a separate buffer. After all the
pages of the relation have been scanned, each page contain-
ing modified tuples is sorted on the relation key. The new
pages are then broadcast to all processors that contain
mocnommnmwmnwon pages to check for duplicates. As 1in the
other update operations, if duplicates are found the opera-~
tion wm aborted and the user notified. Otherwise, the new
pages .are added to the source relation page table. Note
that in this case it must be ascertained that if duplicates
exist among the modified tuples only one of these should be
added to the relation. If more than one page of modified
tuples exists this may require non-linear time in the

number of pages.

76

As the update algorithms are all quite similar, we
shall provide a performance analysis of only one of them.
We chose to analyze the simple key modify since it 1is one
of the more complicated algorithms, and it has elements
that appear in all the others. The- execution time of the

simple key modify by p processors is given by the following

formula:
T_ e (n/p) * (T3] o+ (P2
P {n/p 1 1
stage; stage,
zsmnmnb
HW = mtnn+nmn+no+m*n£+nu\xvwAOmo+m*n£v
and

2 .
Ty = m*0n+H mhnc+nsv

In the first stage each processor examines (n/p)
source relation pages, looking for tuples matching the
qualification {c,. + Cgo) - We assume that on the average jJ
such tuples exist in each source relation page. Each page

containing qualifying tuples.needs to be reorganized (C,)

o
and written out (C)) after the matching tuples have been
modified and moved to the buffer. Finally, the new tuples

need to be sorted and written out ((j/k} * {Cqp * c e

4 Note that we assume that in the event that P£l, the
reading of one page by one processor can be o<mnpmmmma.uw
the execution of "most" of the remainder Ow the operation
by another processor. In fact, if a precise characteriza-
tion of the time necessary to execute each sub-step shows
this to be true, a much smaller number of processors could
be used to attain the same performance level.

77

In the second stage, the processors search for the
possible introduction of duplicates into the relation. Let
1” denote the number of pages containing modified source
tuples. Then each processor reads a page of the source
celation and all of the 1° pages. The processor performs
the modified merge described above. Finally, if no dupli-
cates are found, the 1° new pages are added to the source

relation page table.

We conclude this section with two observations.
First, all the update algorithms operate in linear time.

That is, given p processors, each algorithm would be exe~

5 1t

cuted by the p processors in n/p "basic” time units.
should be noted that the basic time unit used in the algo-
rithm for one operation may differ from that used by the

algorithm for another.

Second, at no time will we experience page overflow
proolems as a result of the execution of any of these algo-
rithms. This is clear for the delete operation. Both
appends and modifies add new tuples to pages that are
sparse (the controller is assumed to have such information
about every page in the database) or form new pages.

Periodic reorganizations of relations may have to be under-

3 The one possible case where this may not be true is
for the key modify with more than one page of modified tu-
ples and less processors than pages are available for the
duplicate removal.

78
taken if too many pages become too sparse.

3.3.2. Selection

The algorithm we use for the selection operator is the
crudest and the simplest: a scan of the relation. Each

page is scanned using a binary search, if it sorted on the

attribute being selected. Otherwise a sequential search is
employed. It is clear that this algorithm (using the
sequential search) can be implemented "on the fly" if the

processor (s) executing it can keep up with the disk speed.

3.3.3. Project

The projection of a relation with domains d1,d2,...,d4n
on a subset of domains di,dj,...,dm requires the execution
of two distinct operations. First the source relation must
be reduced to a "vertical" sub-relation by discarding all
domains other than d4i,dj,...,dm. Then, since discarding
attributes may introduce duplicate tuples, these must be

removed in order to produce a proper relation.

We assume that pages have already been reduced to a
vertical form by the previous operation and there are no
intra-page duplicates. Each processor reads one page. Let
a processor be labeled according to the page number of the
wm@m it read (that is, the processor that read page i |is

Xxnown as MHV. Starting with P and continuing with ?

p’ P
Hw...~mm~ each processor, in turn, broadcasts its page and

79

then exits. If processor P, recelves page i, then j<i. P,

] 3
compares the two pages and eliminates any duplicates found

from its page. Note that mu will not see page i if i<j.
Consequently, it is guaranteed that only one copy of each

tuple will remain in the relation {that copy will reside in

the highest numbered page of all the pages that had a copy

of it).

In the general case when the number of processors (D),
is smaller than the number or pages (n), our algorithm
works in a number of distinct phases. Each phase produces
p projected pages and sees p less pages than the previous
phase. In phase i there are (i=-l)*p pages that have
already been projected, p pages in the processors”
memories, and n-{i*p) unprojected pages. Each phase begins
with each of the p processors reading a page. Then the n-
{i*p) unprojected pages are broadcast to the p processors

for duplicate removal. After this step has completed, mn

Unommnmmnm its page and exits. The remaining processors
follow suit. The cost of phase i is thus:
m:nn+ﬁ:|w»mv*Anu+nav+Avxwv»Anu+na+ntv+m*ns
If n = p*m, there are m phases and the total cost of the
algorithm is:
- - * Dk
M*PHC_+m(m=1) p/2* (Cp#Cp) #m(p=1) * (CpCp#C) +m BP*C,
This may be rewritten as:

(n/p)BC_+ (n2/2p+n/2-n/p) * (Co+C) + (n=0/p+(n/P)) *C,,

80

which is of the order of aw\um operations. WNote that if n

is not an exact multiple of p, the last phase would use

only n mod p processors and thus terminate faster.

A number of improvements to this algorithm are dis-

cussed in [54]. WNamely, if a large number of duplicates is

expected (this could happen when the key is projected out
of the relation) parts of the relation can be compressed to
reduce the number of pages in the relation. In particular,
this can be done at the time that the p processors read

their individual pages at the beginning of each phase.

3.3.4. Join

Given two relations R and T, the “"smaller" relation
(i.e. the one with fewer pages) is chosen as the inner
telation, and the larger (say R) becomes the outer rela-
tion. The first step is for the processors to each read a
i1ifferent page of the outer relation. WNext, all pages of
the inner relation, T, are seguentially broadcast to the
orocessors. As each page of T is received by a processor,
it joins the page with its page from R. By joining two
sages we mean the following: first the join is performed
>y merging, then the result page is sorted on the attribute
3f the subsequent operation (if there is one), and finally

:he result page is written out.

8l

Let n and m be the sizes, in pages, of the relations R
and T, and suppose n>m. Let p be the number of processors
assigned to perform the join of R and T. S 1is the Jjoin
selectivity Ffactor and indicates the average number of
pages produced by the join of a single page of R with a
single page of T. If p = n, the execution time of this
algorithm is:

T({read a page of R)
+ m*T(broadcast a page of T)
+ m*T{join 2 pages)
The number of result pages written depends on the join
selectivity factor S defined by:
S = size(R join T)/(m*n)
If p<n, the same process must to be repeated n/p times
yielding:
.:\wv;Am»nn+a*anc+na+m*ﬂnmo+m:ntvvv
In the case that the subsequent operation will use the

same attribute the result pages need not be sorted.

3.3.5. Agaregate Operations

To compute a scalar aggregate, a processor maintains
two nwmwamu a count field and the aggregate value itself.
The count field specifies the number of tuples contributing
to the aggregate value and is used in averaging and ini-

tialization. When processing aggregate functions, a third

field 1is also required to identify the partition (since a

processor may be accumulating aggregate values for more

than one partition at the same time). For aggregate func~
tions, we want to account for the space required to main-

tain these fields ("result tuples”) and that is the purpose

P

of parameter “r” below. In the following discussion, we

assume these parameters:

of pages in source relation

of processors to process aggregate

for agg functions, # of partitions

for agg functions, # of result tuples per page
} of operations to apply for a simple
qualification (if query has one), else 0

anszvo

3.3.5.1. Scalar Aggregates

Scalar aggregates may be processed in a single pass
over a relation. We use the obvious algorithm. Each pro-
cessor computes an aggregate value for the pages it sees.
When the pages are exhausted, we have p partial results and
a single processor must combine them to produce the final
value. If the aggregate operator is a "unique" operator,
the source relation must first be projected on the agg_att
so that duplicate tuples are eliminated. The cost of the
algorithm is then:

Tsc_agg = T(exec gqual) (if complex qual)
+ T(project) (if unique agg_op)
+ T(partial results)
+ T{combine p partials)
We are concerned with the time needed to produce and com-

bine the partial results since the time required to execute

the qualification and project the source relation have been

83

covered previously.

T(partial results) =

A:\mu»Am*nn+ﬁn+wv*nmov+namm
Each processor sees (n/p) pages. To process the page it
must read it, apply a qualification to it (if simple) and
update the partial result. Thus, each tuple requires a
:cacmnv of comparisons for the gqualification plus an addi-
tional operation (e.g. add) to process the aggregate. The
time mo send the partial result is just the cost of a mes-
sage. The processor which combines the partial results
simply reads p messages and performs p arithmetic opera-
tions (note, the cost of the message is accounted for by
the partial results formula). Thus, T(combine partials) =

p*C.

3.3.5.2. Aggregate Functions

In this section we describe the steps necessary for
the w?mwmamanmnwo: of an algorithm that uses broadcasting
for the processing of aggregate functions. Recall that we
must consider two types of gqualifications: an src_qual
restricts the source relation to which the aggregate opera-
tion is applied; and a by_gual restricts the number of par-
titions. When an aggregate function contains an src_gqual,
any algorithm for processing the aggregate must begin by
determining the set of desired partitions so that any par-

titions which are removed by applying the src_gual (e.g.

84

managers with zero counts, above} can be included in the

result of the query.

Our algorithm works as follows. We begin by determin-

ing the set of desired partitions. TI£ the query contains a

by_qual (whether simple or complex), it is applied to the
source relation in order to eliminate "unwanted" parti-
tions. Then, the resulting relation (or the source relation
if the relation did not contain a by_gual), is projected on
the by_list attributes to determine the “names"” of the
desired partitions. The pages of the source relation are
then broadcast to all processors and each processor com-
putes the aggregate value for (m/p) partitions. If the
number of partitions is greater than r {the number of
result tuples per page), the source relation may have to be
broadcast more than once. The c¢ost of this algorithm
(assuming no qualifications and non-unique aggregates) may
be summarized as:
T({project by_list) + T(process partitions)

While processing partitions each processor sees every bpage
of the source relation (n pages). Each tuple must be
placed in the correct partition (depending on the number cf
passes over the source relation, there are either m/p or r
possible partitions) and we assume that the partitions are
sorted So a binary search may be used. When the broadcast

is complete, the processor must write its result. Let b =

85

“ﬁa\nv\mm denote the number of complete broadcasts of the

source relation. The cost to process partitions is:

T{process partitions) = Uﬁnﬁnd + {log xvnmnv + mnsv
where x = min {(r,m/p)

If the gquery has a simple src_gual, it may be pro-
cessed the same time as the aggregate is computed. This
adds an additional g comparisons per tuple (see parameters
defined @ above). In the event that the src_gual is a com=
plex one an additional step is required to apply it to the
source relation before we can begin processing the parti-
vions. If a unique aggregate is specified, we must elim-
inate acvwwmmnmm in the agg_att. This can be done along
with the projection of the by_list step as follows. Each
processor needs an additional buffer. In addition to the
projection on the by_list each processor also performs a
projection on the attributes specified in the by_list and
the agg_att (treating them as a single value) and places
the result in the additional buffer. This requires an
additional comparison per tuple. 1In effect, the additional
pages generated by this step replace those of the source
relation in the partition processing phase of the algo-

rithm.

This suggests an optimization to the original algo-
rithm (regardless of whether the aggregate operation is an

unique one or not). In the projection on the by_list phase

86

a vertical sub-relation of the original source relation can
be formed which will contain only those attributes neces-
sary for the remainder of the operation. The motivation of
this, is the smaller number of bytes that have to be broad-

cast in the subsequent phase of the operation.

As can be seen, the performance of this algorithm
depends on the complexity of the operation it has to per-
form. 1If we consider only the partition processing step
then the time required to perform it is linear in the
number of pages that need to be broadcast. Since the pro-
jection of the by_list can, at best, perform linearly in
the number of pages in the source relation, the total cost
of this algorithm is dominated by the time to do the pro-

jection.

3.3.6. Summar

In the previous sections we have described and
analyzed the performance of the algorithms to be used in
our machine. We next use these descriptions to specify

what low-level primitives the architecture must provide.

In order to perform aggregates (whether scalar or
function) each processor must have arithmetic processing
capabilities. It must also have string handling operations
since the majority of the search related operations deal

with character type data. Each processor must also have

37

sufficient memory to hold at 1least three {four for the
optimization suggested for the aggregate function algo-

rithm) mwmmm of a relation at a time.
Each processor should be able to send a message (data

page) to any other processor. Furthermore, the machine
should be able to support a large number of these opera-
tions in parallel (i.e. we want the value of P, the 1/0
parallelism characteristic, to be as close as possible to
1). Also, each processor must have the capability of
broadcasting a message to any number of other processors.
Since we expect the machine to be executing a large number
of instructions {(i.e. modify, aggregate function) at any
given time instance, the broadcast of a message should not
block communication between processors executing other

instructions.

88

CHAPTER 4

QUERY PROCESSING

4.1. Introduction

The results of [3] (see Section 2.6.2) show that in
order to be successful a database machine must possess both
ron-the-disk" and "off-the-disk" processing capabilities.
DIRECT was the only database machine with off-the-disk
capabilities that was examined in [3]. All the other data-
base machines examined processed instructions directly on
the disk. However, the machine organization of some of

these was considerably different.

As indicated in Section 2.6.2, a large number of sim—
plifying assumptions were made concerning all the architec-
tures examined. In particular, no cost was assigned to the
processor and CCD management function of the back-end con-
troller in DIRECT, and the cost of outputting result tuples
to the controller in the various on-the-disk machines was
ignored. In this chapter we examine these two problems in
detail. We begin with a look at processor allocation stra-
tegies for DIRECT. We show that one particular strategy is
the most sensitive to the data access patterns exhibited by
a number of benchmark query programs. We also show that

this strategy suffers from a high control overhead. We

59

then compare the performance of three associative disk
ordanizations in order to determine the performance dif=-
ferentials which could be used to pick the most cost effec-

tive organization for future use.

4.2. Processor Allocation Strategy Study

In this section we discuss four processor allocation
strategies that can be used by DIRECT. (The reader is
referred novmmnnwos 2.3.2 for an overview and a sample
organization of DIRECT.) We then describe a simulation
which we used to evaluate them, and its results. This work
originally appeared in [42]. The original purpose of this
study was to find the most ~suitable policy €for resource
management in DIRECT. This problem did not arise in asso-
ciative disk-type database machines because processors are
physically associated with memory elements. In DIRECT, as
in any MIMD computer, some policy for allocating processors
and amlOnw units to tasks is essential. Once the study was
completed, we began investigations of a new architecture,
described in the following chapter, which incorporates both
on~the-~disk and off-the-disk processing capabilities. We
were able to use information about access patterns to the

database by query programs during the design.

The algorithms used to execute the instructions were
the ones described in Section 3.3. However, it should be

sOnmm that 'the query trees were restricted to have only

90

selection and join operations. As was seen in Section 3.3
the algorithms for the remaining operations (DIRECT has the
capability of using any of the algorithms described in
[54].) are similar to the algorithms for the selection and

join operations.

4.2.1. The Four Strategies

4.2.1.1. SIMD Assignment

One of the original design objectives of DIRECT was to
avoid the SIMD nature of previous database machines such as
RAP and CASSM. We include an SIMD strategy, however, in
order to obtain a measure of the performance mwmmmnmanwmw
between it and a number of MIMD strategies. In the SIMD
assignment strategy, all processors are assigned to execute
the same instruction from a single query simultaneously.
When the current instruction terminates, the back-end con-
troller assigns the next instruction from the same query
packet to all processors. This continues until the packet
has terminated at which point the controller selects the

next query packet to execute.

4.2.1.2. Packet-Level Assignment

In this strategy, when the back-end controller decides
to execute a query packet, it examines the query packet and
attempts to estimate a priori the "optimal®™ number of pro-

cessors to assign to it. The estimation heuristic uses the

91

.=

number and size of the source relations referenced by the
operations, and the number and type of operators in the
packet. . Once this value has been computed it remains fixed

throughout the execution of the query.

After the back~end controller estimates how many pro-
cessors should be assigned to a packet, it examines the
packet and selects an executable (enabled) instruction. An
instruction is enabled when its input relation(s) exist,
Clearly, if the query is in a tree format, all leaf nodes
are immediately executable. A node higher up in the tree
is enabled whenever all of its descendents have finished

executing.

Let QPS represent an estimate of the "optimal"™ number
of processors to be assigned to the query packet. If the
instruction selected for execution is a selection, then the
controller will assign xuzﬂ_mw*~ommv processors to the

instruction where _mw_ is the number of pages in S the

it
source relation to be restricted. If the operation is a
join of relations §; and mu~ then szAzwa_mw_._mWWV\ommv
processors are assigned. Selecting the larger of the two
relations mw and mu as the outer relation means that, if
zwxﬁmmw_._mu~v < QPS, each processor will join one page of
the outer relation with every page of the inner relation.
This mmvnowns maximizes the degree of concurrency and hence

minimizes execution time.

92

At this point, if all the processors assigned to the
packet have not been utilized, the next executable instruc-
tion from the packet is initiated. This continues until
either all the processors assigned to the packet are exe-
cuting some instruction from it, or until no more execut-
able instructions are available {their inputs have not been
generated). If there are no more executable instructions,
the available processors are placed on an idle list associ-
ated with the packet until an instruction is enabled. 1Idle
processors are not assigned to another packet before execu-
tion of all the instructions in the current packet is com-

pleted.

A packet is initiated even if the number of available
processors 1is less than the optimal number. When proces-
sors become free (another packet terminates) they are allo-
cated to the sub-optimal packet. Only when all executing
packets are optimal can a new packet be initiated. Thus,

at most one sub-optimal packet is executing.

4.2.1.3. Instruction-Level Assignment

For this strategy, scheduling and processor assignment
is performed on an instruction by instruction basis. The
optimal number of processors assigned to an individual
selection or join instruction is limited only by the total

number of processors available. If the total number of

processors available is MAXQPS, then for a selection

93

QPS = MIN (|S;| , MAXQPS)

and for a join

QPS = MIN (MAX (]S5,]| , _mu_v . MAXQPS)

When a processor becomes idle, the back-end controller
first attempts to assign the processor to any executing
instruction which does not have its optimal number of pro=-
cessors. If no sub-optimal instructions exist, the proces-
sor 1s assigned to an enabled instruction from a query
packet which is currently being executed. If there are no
enabled instructions from the currently executing packets,
then a new packet is initiated. If there are no packets
awaiting execution, then the processor is placed on an idle
list until a new packet arrives from the host or an

instruction from an executing packet is enabled.

4.2.1.4. Data-flow Assignment

In this strateqgy a page of a relation is the basic
unit which is used for scheduling decisions. This means
that an instruction can be initiated as soon as at least
one page of each participating relation exists. Assigning
processors to operate based on the availability of pages

rather than relations, offers the possibility of having a

very flexible processor allocation strategy. Furthermore,
it Dbecomes possible to distribute processors across all
nodes of the query tree and to pipeline pages of intermedi-

ate relations between them. This will reduce page traffic

94

between the CCD memory and the mass storage device(s)
because after a page of an intermediate relation is pro-

duced by one processor it will be read by a processor exe-
cuting the subsequent instruction.

The processing of queries im a data-flow manner is
related to the idea of processing relational queries in a
pipelined fashion which has been suggested by Smith and
Chang {58] and Yao [59]. There are, however, two impor-
tant differences between the two strategies. In the pipe~
lined strategy, there will be at most one precessor execut-
ing each node in the tree and therefore the concurrency
obtained will be 1limited by the number of nodes in the

query tree. With the data-flow strategy we can have any
number of processors executing each node and can dynami-
cally adjust which processors are executing which nodes in
the query tree in order to maximize performance. The other
major difference is that in the data-flow strategy we never
need to wait for one node to completely finish before ini-~

tiating the subsequent operator as has been suggested is

necessary for pipelining [59}.

One problem with the data-flow strategy is that at
times decisions need to be made based on insufficient
information. For example, when a join is initiated it is
not known which relation should be the outer relation, if

both relations are produced by a previous operation. The

95

solution used 1is to pick the outer relation based on past
statistics of similar operations on the relations in gques~
tion. Such statistics have been termed selectivity factors
and are reported to be used extensively in System R [60].
Although the «collection and use of selectivity factors is
not a subject of this research we note that various factors
can be of help in deciding the cardinality of a result
relation. One example is knowledge of whether a key is the

attribute being operated on.

In observing a number of runs of earlier versions of
the DIRECT simulation we found that for the broadcast algo-
rithms there were two types of I/0 operations: point-to-
point transfers and Wnommnmmnm. The point-to~-point

nmamnmnm were required in the beginning of each operation
to load each processor with its data portion. For example,
for the join algorithm this meant loading pages from the
outer relation into the processors’ memories. Once this
was done a broadcast phase would begin. For the projection
operation this meant broadcasting each processor”s page to

the others. Thus, the number of I/0 operations required by

each operation should be linear in the size of the rela-

tions.

A problem that became apparent with time was that the
actual number of I/0 operations was approximately quadratic

in the size of the relations for the so c¢alled complex

96

operations {join, projection). We realized that there was
a conflict in using broadcasting on the one hand (which
»:wnomcnmm artificial synchronization into the execution of
queries but reduces the amount of I/0), and wmnmlmwos
(which ideally should be entirely asynchronous) on the

other hand.

Since data-flow is an advanced form of pipelining we
compromised on the following pipelined method for processor
assignment. Each processor executing an operation that is
producing an outer relation was re-assigned to the subse-
quent instruction when its output buffer £illed. This was
done instead of flushing the output buffer to temporary
storage and continuing the execution of the ncnnm:n opera-
tion. Thus the actual number of point-to-point transfers
was reduced considerably. In fact, the only time during
which such transfers were required was in the execution of
leaf nodes in the gquery tree. The effect of this modified
strategy 1is to introduce some amount of synchronization in
the processing of individual instructions which leads to a

reduction in the number of I/0 operations due to a better

use of the broadcast facility.

To implement this scheme, our scheduling algorithm
viewed each query tree as a collection of groups of opera-
tions, rather than as a collection of operations. Each

group consisted of a limb (or a chain) in the tree. A limb

97

was defined to be a number of nodes, starting with a leaf,
each of which produced the outer relation to be used in the
subsequent operation., Clearly, for any tree with n levels
there can be only a single limb with n nodes (although
there may be none). If each limb was assigned a unique
name, a new tree, whose nodes represented the named limbs,
could be constructed showing the dependencies among the
limbs. For an example see Figure 4.1. This dependency
tree was used by the scheduler to decide the order of
scheduling of the limbs. Care had to be taken that the
leaf nodes in the dependency tree were initiated before any
of their parent nodes began execution. This was necessary
since processors were committed to the execution of a limb
until its end (unless the number of its pages reduced
between stages). If a leaf node (representing a limb pro-
ducing an : inner relation to be used by an operation in
another limb) is not initiated before 1its parent in the
tree 1is, it 1is possible to reach a deadlock situation if
all the processors in the machine are assigned ¢to other
limbs in the tree which (directly or indirectly) depend on
the Hme limb’s output. Note, however, that if a suffi-
cient numper of processors is available, all the limbs can
be initiated at approximately the same time (this is actu-

ally the ideal scheduling policy).

Figure 4.la: A Sample Query Tree

® ©
©

Figure 4.1b: Corresponding Precedence Tree

98

99

Earlier in this section we claimed that one of the
advantages of the data-flow query processing strategy is
that processors could be allocated to all the nodes in a
query tree to achieve maximal benefit of the pipelining
behavior of the strategy. Clearly, this is not the case in
this modified strategy. What we can say, though, is that
processors can be allocated to all nodes in the dependency
tree (recall that each node represents a limb). The level
of inter-instruction parallelism within a limb is not
expected to be high - only 1 or 2 active instruction execu-
tions at a time. It is important to realize, though, that
while it is no longer possible to have processors assigned
to every node in the query tree, a substantial level of
inter~instruction parallelism 1is attained through the

inter-limb concurrency.

Another problem is that of relation fragmentation.
Since operations are initiated before all of the data is
present, the relation compression method of [41] cannot be
used in the data-flow approach. Initial experimentation
with this strategy showed that the effects of relation
fragmentation can be so severe as to cause this strategy to
perform worse than the other strategies described above. A
dynamic, compression scheme is employed. 1In this scheme
each producer of inner relation pages attempts to merge its

own output page with other uncompressed pages of the inner

100

relation which have not been read by any of the consuming
processors. The compression results are almost never as
good as in the other scheme because of the restriction that

only those pages seen by no processors can be compressed.

4.2.2. Hardware Characteristics

4.2.2.1. Query Processors

The performance characteristics of a processor are
based on the instruction execution times of a PDP LSI~
11/03 [61]. There are three main operations which depend

on these execution times:

(1) The time required to transfer a page between a CCD
memory module and the local memory of a processor.

(2) The time required to determine if a tuple from a rela-
tion satisfies a selection criterion.

(3) The time required to join two tuples.
The time to transfer a page between a processor”s main

memory and a CCD memory module was assumed to be 33 ms
based on an LSI~11/03 Q bus bandwidth of 500 Rbytes/second
and a page size of 16 Kbytes.

For the purposes of the simulation it is assumed that
eéach attribute in a relation is a character string and that
if the tuple does not satisfy the selection criterion three
tenths of the characters in the attribute are examined

1

before a match failure occurs.” Also, on the average, three

i This assumption is not rooted in any fact. As far as
we know such data is not available. The number we chose,

101

tenths of the characters of the Jjoining attributes from
both tuples are compared before a failure is determined.
For both operations the entire attribute needs to be exam-

ined for the detection of a successful match.

4.2.2.2. CCD Memory Modules and Interconnection Matrix

The bandwidth of an individual memory module was
assumed to be 2 Mbytes/second based on INTEL 2314 CCD
chips. This implies that a 16 Kbyte page could be
transferred into (from) a CCD memory module in 8.2 ms if
the transfer rate was not limited by the LSI-11 Q bus or
the disk transfer rate {see Section 4.2.2.3). Furthermore,
it is wmmcamm that the interconnection matrix does not

impact CCD memory performance (see [5,62]).

4.2.2.3. Mass Storage Devices

Since DIRECT is a virtual memory machine, pages of
relations which are not being referenced by an active query
packet, are resident on one or more mass storage devices.
When a page is initially referenced, it is loaded into a
CCD memory module. IBM 3330 disks were used as the model
for the mass storage devices (see [63] for specifications).
The transfer time for a 16 Kbyte page is 20 ms. The time

to seek N tracks is

as some others in the following few pages, sSeems "reason-
able".

102

10 + N * 0.148 ms
and the latency time is 8.4 ms. It is assumed that there

are two disks available for relation storage and swapping.

4.2.3. Experiment Design

The database used to evaluate the four processor
assignment strategies consists of 15 relations. The size
(in pages) of each relation was randomly chosen from an
exponential distribution with a mean size of 23 pages,
minimum relation size of 1 page, and a maximum relation
size of 100 pages. The tuple length of each relation was
chosen from an exponential distribution with a mean size of
55 bytes, a minimum size of 10 bytes, and a maximum size of

100 bytes. The total database size 1is 5.5 megabytes.

Appendix B contains detailed information on each relation.

For each selection the fraction of tuples which
satisfy the selection condition was chosen from an exponen-
tial distribution with minimum of 0, maximum of 1, and mean
of 0.125 {(chosen to produce result relations with a reason-
able size). For each join the fraction of tuples (of the
product of the number of tuples in both pages) which
satisfy the Jjoin qualification was selected based on
exponential distribution with minimum of 0, maximum of 1,
and a mean of 0.0035 (again chosen to produce reasonably

sized result relations).

103

Six different sets of queries were chosen to evaluate
the alternative processor allocation strategies. Classes I
to IV each contain five query packets and correspond to a
range of overhead-intensive gqueries (Class I) to multi~
relation data-intensive gqueries (Class IV) ([10]. Tests Mix
I and Mix II each contain ten query packets and represent
what we feel to be a reasonable mix of the different

classes of queries. Table 4.1 summarizes the six different

experiments.

We feel that Classes II and III contain the types of
queries which are typically performed by users in accessing
relational databases. This is why Mix I and Mix II include
a high. percentage of gqueries from these two classes. If
views are supported by the relational database system, and
Gueries are modified according to the view, it has been
observed by the System R group [64] that it is not unusual
for a wmodified query to contain f£ive to seven join opera-
tions. Therefore, the results of Class IV may be as signi-
ficant as the results of Mix I and Mix II, because Class IV

contains a large number of joins in each query packet.

4.2.4. Simulation Results

4.2.4.1. Establishment of a CCD Memory Module to Processor

Ratio

104
TABLE 4.1
Number of Number of Source
Testname Queries Description Pages Read by Test
Class I 5 Each with 1 S only 183
Class II 5 Each with 1 J & 2 S 250
i 3
Class III 5 2 Queries: 2 J & 3 S 39
3 Queries: 3 J & 4 S
Class IV 5 2 Queries: 4 J & 5§ 529
1 Query: 5J & 6 S
1 Query: 6 J & 7 8
1 Query: 7 J & 8 S
Mix I 10 2 Queries from Class I 624
3 Queries from Class II
3 Queries from Class III
2 Queries from Class IV
Mix II 10 1 Query from Class I 644

4 Queries from Class II
4 Queries from Class III
1 Query from Class IV

S: Selection
J: Join
The first test performed served two functioms. Its
primary purpose was to establish an appropriate ratio of
CCD memory modules to query processors. Once this value
was established it would be used in all subsequent tests.
The second function of this experiment was to determine how
the performance of each processor assignment strategy is

affected by this ratio. It was felt that this should pro-

vide some indication about how efficiently each strategy

108
uses the CCD memory modules available.

To perform this experiment the number of processors

available was fixed at 50 and Mix I was tested on all stra-

tegies for five different CCD memory sizes: 50, 100, 150,
200, and 250. Figure 4.2 contains the results of this
experiment. The performance of the SIMD, packet-level, and
instruction-level strategies continues to improve as the
number of CCD memory modules increases. If the number of
CCD memory modules is increased beyond 250, this trend con-
tinues c:nwu enough modules are present so that pages from
source, intermediate, and final relations never have to be
ejected to secondary memory. The data-flow strategy, on
the other hand, is not significantly affected by the number
of CCD memory modules present. This result seems to indi-
cate that this strategy indeed succeeds at using pages from
intermediate relations before they are paged out. This
saves a write operation to mass storage followed by a read
operation when the intermediate relation is subsequently

accessed.

The reason that the packet-level strategy is less
affected by an increase in the number of modules available
than the instruction~level strategy seems to be that it is
less flexible and hence has better locality properties than
the instruction-level strategy. While this argument should

also apply to the SIMD strategy the results indicate other-

106

x104
i0p
i o SIND
B A PRCKET
3 M INSTRUCTIGN
9 ¢ DRATR-FLBH
m.lu
- L
D =
=z A
=) qw.
ud
o B
- L
- m.
n b
= st
w R
= L
- 4
- B
=) L
p— mw
=
o R
H e
w mw
1
o.]] i !]
1] S0 100 150 200

NUMBER OF CCO MODULES

Figure 4.2: CCD to Processor Ratio

250

107

wise. Therefore, there may be another, yet undiscovered,

reason why the packet-level strategy behaves this way.

Although not presented, similar results were obtained
at several other levels of processors and for other tests.
Thus, as a compromise between the thriftiness of the data-
f£low strategy and the greediness of the SIMD, packet-level,
and instruction-level strategies, a CCD memory module to
processor ratio of 2:1 was chosen. This ratio was used in
all subsequent tests. Therefore, in the results presented
below, if there are n processors in the configuration, 2*n

CCD memory modules will be used.

4.2.4.2. Analysis of the Simulation Results

Using this 2:1 ratio, each of the six tests (Classes I
through IV and Mixes I and II) was executed using each
alternative strategy for a range of available processors
from 10 to 100, in steps of 10. The results of these
experiments are presented in Figures 4.3 through 4.8. The
reader, when examining the graphs, should be aware that the
schedule cf packets and instructions for any given proces-
sor level is not necessarily an optimal one. At any given
point in time, when the back-end controller makes a deci-
gion regarding which instruction a processor should be
assigned to, or which page should be ejected from CCD
memory, it chooses the "best" option. This local (immedi-

ate) optimization does not always produce an optimal

x10%f
14/=

12

10

EXECUTION TIME IN MILLISECGNDS

0

NSTRUCTIGN

S
wmnxmﬂ
DRTR-FLGKW

ul
a
u}
o

| I “ ! ! | 1 1 !]

s

10 20 30 40 S50 60 70 80 SC 100

NUMBER BF PRBCESSGRS

Figure 4.3: Class I

108

x
-3

tpp 2anbt

I1 sse1d

S¥OSS3I0Yd J8 H3BUNN

*p @anbtryg

.
:

III SseTd

SYPSS338¥d 48 YIBUNN

EXECUTIOGN TIME IN MILLISECONDS

X
— - [n w [V . bl (ﬂg
o o (=] o0 (=] o (=] o o om - [= T
e T B A I L BRI BN LRI
fang B8
o
wi
o
by BN
(=]
ol
o
[Jcadc
<L Qo)
o DZDr
—4NOIZT
DX
ol »20
o ~—o
g—‘
-
[Is]
at 2
—
ol
[=)
EXECUTION TIME IN MILLISECONDS
X
-
Long = §
o (el nN [o~ o m ~3 o w [TS
Ol|l|l|lll|llI|I'I|I‘l"l|'l‘l'lll]lll['l
-
g
Wi
o
e@APo
i
3 BZ Do
—SCNCIX
DHXO
- [t
P M-
-
g"'i
©w -
| o
e z
—
ol
[

60T

0Tt

111 112

xagef o PHCKRET xigef S PACKET
1 @ INSTRUCTIGN 141- @ INSTRUCTIEN
- © DATA-FLONW - ® DATR-FLOW
12} 12k

10 10

EXECUTION TIME IN MILLISECONDS
~ @ @
|l|||||ll|

EXECUTIGN TIME IN MILLISECONDS
o o w
| S S I N A SR A SRR |

0 R I TR SRS SN S MU SO o N N NS UUUNN SN NS RN N N
@ 10 20 30 40 S0 SC 70 80 SC 100 0 10 20 30 40 S50 &0 70 80 S0 100
NUMBER GF PROCESSGRS NUMBER OF PRGCESSGRS

Figure 4.6: Class IV Figure 4.7: Mix I

x104T

14

12
[ip] 3
pom
= L
= L
o
L 10~
S b
- L
-
=

ml.
= L
w .
= r N
- -
- L
s L
= L
o) A
[
h L
> -
7%

NI-

)] i | ! !] ! |]]

NUMBER BF PRGBCESSGRS

Figure 4.8: Mix II

113

schedule. Consequently, certain anomalies can occur in the
results. For example, in Class II (Figure 4.4), as the

number of processors available increases from 30 to 40, the

execution time of the packet strategy increases instead of
decreasing as expected. There is certainly some schedule
of packets for this case in which the execution time either
decreases or remains constant as the number of processors
is increased from 30 to 40. It is simply the case that the
back-end controller made a decision that, in the long run,

turned out to be a bad decision.

One obvious result from these experiments is that the
SIMD strategy always performs significantly poorer than all
the other strategies. A surprising result illustrated by
these tests is the relatively good performance of the
packet-level strateqgy when compared with the instruction-
level strategy. The execution time of Class I for both is
identical because each query packet contains only one
instruction. For Class IT their performance is very simi-
lar. Class III is the only case where the instruction-
level strategy is significantly better than the packet-
level strategy. For Class IV, over the range of 40 to 90
processors, the packet-level strategy actually outperforms
the instruction-~level strategy. This apparently occurs
because the packet-level strategy thrashes less. 1In the

packet-level strategy, as a processor finishes executing an

11s

instruction it is either re-assigned to another instruction
.w: the same packet, or is left idle until an instruction in
the packet 1is enabled. Under identical conditions the
instruction-level strategy may assign the free processor to
an instruction from another packet, or even initiate a new
packet. Executing this new instruction will probably
result in pages from secondary memory replacing pages
currently in the CCD memory. As a consequence, when an
instruction from the original packet is finally enabled,
its operands will most 1likely have been paged out.
Finally, for Mixes I and II the performance of the

instruction-level strategy is about 10% better than that of

the packet~level strategy.

These tests clearly indicate the superiority of the
data-flow strategy for processor allocation. 1In all the
tests, ranging from overhead~intensive (Class I) to
execution~intensive (Class 1IV), and the two mixes (Mix I
and II), the data-flow strategy always performed signifi-
cantly better than any of the other three strategies. If
Mix I and Mix Il are taken to be representative of typical
gquery mixes, then, for a given number of processors and CCD
memory modules, the data~flow strategy was mmnnmxwamnmww
three times as fast as the SIMD strategy and about 1.3 and
1.7 times as fast as the instruction-level and packet-level

strategies. Furthermore, when one examines the performance

115

of each strategy under heavy loads (less than 50 processors
available), the data-flow strategy demonstrates an even

greater performance improvement.

Initially the relative performance of the data-flow
and instruction-level strategies on Mix I and Mix II was
somewhat puzzling because the data-flow is only marginally
better than the instruction-level for Classes II.and III
(which make up most of Mix I and Mix II). As an explana-
tion we hypothesized that the data-flow strategy, because
it is an advanced form of pipelining, tends to utilize the
CCD cache more efficiently (this is borne out by the ear-
lier experiment). Further reflection on the problem led to
the observation that the queries in Class II are not as
iikely to benefit from the effects of the pipelining, since
each query contains only three operators. However, the
performance of Class III, in which some of the queries con-
tained up to seven operators and consequently should have
benefited from the pipelining characteristics of the data~
flow strategy, seem to contradict the hypothesis. 1In a
further attempt to verify the hypothesis we tried two
experiments. The first was to increase the number of
queries in Class III from five to ten (we also increased
the number of relations in the database so that the effects
of two queries referencing the same relation were minim=-

jzed). For this variation of test Class III, the data~flow

117
strategy was 11.6% faster than the instruction-level stra-

tegy (originally it was only 2.3% faster). This seems to

indicate that the original Class III test did not generate

sufficient CCD activity for the benefits of pipelining to

appear. The second experiment ccnducted 1is described in

the next section.

4.2.4.3. Effect of Swapping on Performance

The next experiment conducted was

to determine the

impact that swapping pages between CCD memory modules and

secondary memory has on guery execution time. It was felt

that this was a very significant experiment because it has

been argued that database machines which use paging will

always be I/0 bound [65].

To determine this effect the simulations for the

data-flow and instruction-level strategies were modified so

that the time to transfer a ©page between

a CCD memory

module and a disk is 0 ms. In this way it appears that the

bandwidth of the channel and disk are infinite. Figures

4.9 and 4.10 present the results of this experiment.

For the instruction~level strategy {(Figure 4.9), the

improvement averaged over all processor levels is 39.3%.

Thus swapping has the effect of decreasing system

nvnocwsmcn slightly more than one third. While signifi-

cant, the overhead of swapping is not as high as expected.

118
%1047 M INFINITE CHRNNEL: INSTRUCTIGN
e & INSTRUCTIGN
mll
[{p] L
o
s L
3 L
Q
w 5+
S -
-} -
-
= An
= !
" L
= L
b 3
=
g L
— L
e} 20
C o
w
> =
w
wlc
o. 1 1 i] ! i i i]]

G 10 20 30 40 S50 &3 70 80

NUMBER BF PRBCESSGRS

Figure 4.9: Infinite Channel

S0

100

EXECUTION TIME IN MILLISECONDS

NFINITE CHANNEL: DATR-FLOW

At @1
x10 & DRTA-FLGW

) | ! ! | ! ! i 1 1 J
Q 10 20 30 40 SO 60 70 80 Sd 100

NUMBER B8F PRBCESSORS

Figure 4.10: Infinite Channel

119

iz20

For the data-flow strategy the improvement averaged over
all the processor levels is 18.4%. This figure clearly
indicates that virtual memory database machines can be
organized in such a way as to avoid being I/0 bound.

The difference in improvement shown by the two stra-
tegies in the "infinite disk" case is 21%. This value is
approximately the same as the difference between the
instruction-level and data-flow strategies for tests Mix I
and Mix II as shown in Figures 4.7 and 4.8, and seem to
show that the cleverer use of the CCD cache by the data-

flow strategy was the main reason for its superiority.

4.2.4.4. Effects of Database Size and Query Processor

Speed

The last two experiments conducted attempted to meas-
ure the sensitivity of the results we have presented so far
to the two parameters we consider the most important: data~

base size and instruction execution time of the processor.

To determine the sensitivity of the instruction-level
and data-flow strategies to the size of the database being
accessed we modified test Mix I by doubling the size of
each relation 1in the database. On the average, the data-
flow strategy is 22.1% faster than the instruction-level
strategy. Somewhat better results were obtained with other

tests on this and other enlarged (in both the number of

121

relations and the average number of pages per relation)
databases. In general, as the database referenced
increases in size, the percentage improvement of the data-
flow strategy over the other strategies tends to increase
for most tests. As stated earlier, we feel the reason for
this increase is due to the improved CCD management exhi-

bited by the data~flow strategy.

The second sensitivity experiment we performed was to
dcuble the speed of the processor by cutting in one half
the execution time of each instruction and doubling the DMA
transfer rate. For Mix I, on the average, the data-flow
strategy was 35.5% faster than the instruction-level stra-
tegy (an increase of 11% over the difference between the
two strategies for Mix I with the normal processor speeds).
This result seems to again demonstrate the effect of pipe-
lining in the data-flow strategy. However, compared to the
results with normal processor speeds, the execution time
decreased by only 21% for the data-flow strategy and only
6% for the instruction-level strategy. This implies that
given the present hardware components performances,
increasing the performance of one component {in this case
the processor speed) does not mean that system performance

will increase by the same factor.

4.2.4.5. Message Activity

While the back-end controller requirements for each

strategy have not been modeled, the message activity of
each strategy was. Each operator which is sent to a pro-~
cessor is counted as one message. In the SIMD strategy,
the distribution of the operator to all processors is
counted as only one message since it is assumed that the
controller in such a database machine could broadcast con-
trol nmessages. Each relation page request executed by a
processor is counted as three messages: one to the back-end
controller to make the request, one to the processor from
the controller containing the CCD memory module number, and
another from the processor, to signal that it has read
(written) the memory module so that the controller can
update its tables accordingly. When "end-of-relation” is
received on a page request {(i.e. there are no more pages

available), only two messages are exchanged.

Figure 4.11 shows the number of messages sent between
the set of processors and the back-end controller for all
the strategies running test Mix I. As is shown, this 1is
one measure in which the data-flow strategy performs poorer
than all the other strategies. There are a number of rea-
moammonn:wmnmmcwn. mMnmn.nrmnmwmo=H<mmnnwmw

compression of intermediate relation pages at any time.

Examination of the simulation results with the trace turned

x10?
250

Hz
ACKET
NSTRUCTIGN
ATR~-FLAGNW

225

200

175

150

125

100

NUMBER OF MESSAGES

s

50

25

i ! l ! l L

o

!

i
10 20 30 40 S0 60 70

NUMBER O8F PROCESSGRS

(=)

Figure 4.11l: Messages

80

S0

ey

123

124

on, revealed that there were a number of cases where the
dynamic compression scheme employed, had no effect. This
happened when the first page of the inner relation was read
by a processor executing the subsequent operation before
additional pages of that relation were mnomcnmm.m A second
reason, which also affects the number of messages in the
other strategies, is that no advantage 1is taken of the
broadcast facility with regards to messages. When a pro-
cessor needs a page, it requests the address of ‘the CCD
module in which the page resides from the back-end con-
troller. The controller sends its reply only to the
requesting processor (as opposed to broadcasting it). If
two different processors that need to read the same page
receive the replies to their requests at almost the same
time, they will read the page almost simultaneously. How=
ever, they will both have to send request messages and
receive individual reply messages from the back~end con-

troller in order to achieve this.

4.2.5. Summary

In this section the superiority of a data-flow
approach to processor scheduling in DIRECT was demon=-

strated. This was shown in a number of ways:

2 Recall that the strategy used is to compress only
pages that have not been read by any processors. Thus,
once the first page is read, no compression can take place.

125

(1) A smaller number of CCD modules are needed for a given
number of processors.

(2) In a data-flow organization the performance is always
better than the other approaches. Almost always at
least one and half times as good as the closest com-
petitor.

{3) The traffic between the mass storage units and the CCD
buffer is kept to a minimum.

(4) However, the number of messages exchanged between the
processors and the controller is always higher.

Furthermore, these results were obtained under two assump-
tions favorable to the other approaches. These were the
chosen CCD to processor ratio of 2:1, and the availability
of two mass storage units, rather than one, for back up
storage. Given the data~flow approach thriftiness and the
other approaches’ greediness in usage of CCD modules these

are significant assumptions.

An important problem exposed by this research is the
high 1level of message traffic activity. Regardless of the
processor assignment strategy employed, the amount of mes-
sage traffic which must be supported is very high. If
8,000 back-end controller instructions are required to pro-
cess each of the 7,500 messages passed in executing Mix I
for 10 processors, {a figure derived from UNIX pipe code
efficiency} [66], then 60 million instructions will be exe-
cuted just to process the messages. If each instruction
takes one micro-second then 60 seconds will be required to
process the messages (60 seconds are also required to exe-

cute the queries for the data-flow strategy). It is impor-

126

tant to notice that any decrease in query execution time by
the use of additional processors may be offset by the
increased time reguired to process messages in the back-end
controller. For example, using the data-flow strategy and
50 processors, 27 seconds are required to execute the query
and 178 seconds will be required by the back-end controller

to process the messages.

There are three potential solutions for this problem.
The simplest is to increase the page size. Increasing the
page size by an order of magnitude should decrease message
activity by a similar factor. However, there may also be a
decrease in the maximal degree of concurrency possiblis.
Another solution is to nmm:nm the cost of vnonmmmmnm an
individual message by implementing message handling
software in microcode on the back-end controller rather
than reducing the volume of messages. This could help sig-
nificantly. The ultimate solution, however, is to design a
new architecture which would be tailored to the algoritkms
described in the previous chapter with distributed control.
If at all possible, the total number of messages required
to implement the algorithms should be reduced. 1In the fol~

lowing chapter we present a detailed description of such an

architecture which is based, to some degree, on [67].

127

4.3. A Comparative Study of Associative Disk Implementa-

tions

In this section we examine three types of associative
disk designs in detail. OQur purpose to is to glean as much
information as possible about each design type in order to
enable an intelligent choice of an associative disk design
for our database machine. This work has initially been

reported in {52,53].

The three associative disk types examined are:
mnonmmmOnammnnnnunx machines (PPT}) as exemplified by
RAP (14}, processor-per-head machines (PPH) with parallel
readout disks as in DBC [9], and processor-per-disk
machines Ammuv.u In undertaking this study we believed that
the machines could be classified according to such
categories as cost and performance based on their type,

rather than the particular technology or variation on

organization used.

It is clear that under ideal <conditions (e.g., an
infinite bandwidth channel between the disk and the output
device) PPT-type devices will be superior to the other
designs. As an example consider a relation that occupies 5

cylinders, each with 20 recording surfaces. With an

3 A PPT-type device that uses off-the~shelf bubble
memory chips 1is also considered in [53]. Although these
additional results are interesting, we do not include them
here for reasons of brevity.

128

infinite bandwidth output channel, a simple selection
operation in a PPT machine could be executed in a single
revolution. A PPH machine would require S revolutions
while the PPD machine would require 100 revolutions. Furth-~
ermore, both the PPH and the PPD machines will require

additional time for the track-to-track seek times.

We feel that in order to obtain a realistic measure of
the relative performances of these designs, one needs o
consider a number of factors. One of these is the
bandwidth of the channel connecting the associative disk to
the host computer. Contention for the channel due to
insufficient bandwidth may necessitate additional revolu-
tions in order to completely process the data on the flvy.
Another factor is the availability of auxiliary information
about the data. For example, DBC has the ability to res-
trict the number of cylinders to be searched through the
use of indices and data clustering. A third factor is the
processing capabilities of the processor associated with
the disk. Space limitations on the read head of a fixed-
head disk may force each processor in a PPT organization to
have only a small amount of memory for temporary storage of
selected tuples, further aggravating the delay due to chan-

nel contention.

129

4.3.1. Querview of the Three Organizations

In this section we present a very brief description of
the three organizations examined. More detail is available

in Section 2.2.1 and in [52,53].

The PPT organization we modeled is very similar to RAP
as described in ([14]. There are, however, a number of
differences. First, our initial experiments do not use
mark bits, although later we will show what their effect on
performance is. Second, the processors are assumed to be
able to compare only a single pair of values at a time.
Third, each processor has available to it some number of
buffers whose size is a multiple of the tuple length. The
purpose of the buffers is to serve as temporary storage for
selected data before it is output to the bus. The size of
each buffer, and the number of buffers per processors are
parameters that are varied in the simulation. A sample PPT

organization is shown in Figure 4.12.

Our PPH organization is modeled on the Track Informa-

tion Processors of the Mass Memory component of the DBC

{44]. As with PPT, each processor has a number of tem-
porary storage buffers for the same purpose. A sample PPH
organization is shown in Figure 4.13.

In modeling PPD we did not have to consider a specific
architecture.

The processor is assumed to be able to keep

up with the disk data transfer rate. Since in PPD there is

(=
M.v w
= -
= = 2
=3 w o
8 a3 5
o Q. - > >~
2 L
v | =
o S a
(%5
— -]
« o
— Q
L allaljlalja o
= wlltoltejto
c
=% T
<3
== sng
- S
(&) n
w3
@
L%
=3
el
a.
®
©
Yo
)
iy
-
wn O
=3
T o
e
Q.

130

tracks per platter

Figure 4.12: PPT with two

Disk Controller

1 Control

Controlling

Processor

P
Data

cp

ce

cp

—{ cp

Host
Processor

sng

Cell Processor —~

ion

t

Figure 4.13: A PPH organiza

131

132

no contention for a global resource (such as an output bus)
it was not necessary to simulate its behavior. A sample

PPD organization is shown in Figure 4.14.

4.3.2.

Specifications of t'e Models

In this section we describe the physical and logical
characteristics of the PPT, PPH, and PPD associative disks

modeled.

4.3.2.1. Physical Characteristics

4.3.2.1.1. Mass Storage Device Specifications

The mass storage device employed in our medels is
based on the IBM 3330 disk drive [63]. This am<wnm has 404
cylinders with 19 tracks {recording surfaces) per cylinder.
Each track holds 13,030 bytes. The rotational speed of this
disk drive is one revolution every 16.7 ms. Head movement
of the disk was modeled as two components: a time to start
the head moving (10 ms) and a track-to-track movement time
(0.10 ms). Thus, seeking from one cylinder to the next

requires 10.1 ms and seeking 50 cylinders requires 15 ms.

4.3.2.1.2. Associative Disk Specifications

The PPH associative disk organization was modeled as a
modified IBM 3330 disk drive with 19 processors (one per

recording surface) and some number of output buffers per

processor. In order to experiment with the effect of

Channel

Disk Coniroller

cp

Host
Processor

Read - Write Head

Figure 4.14: A PPD organization

33

134

output buffer size, the size of each output buffer was not
fixed. Instead each was assumed to hold an integral number

of tuples and was varied in different experiments.

Modeling the PPT associative disk organization was the
most difficult. One choice would have been to assume that
the PPT was implemented using a commercially available
fixed-head disk drive such as the IBM 2305 Model 2 [63].
This device has 768 heads/tracks with a capacity of 14,660
bytes per track. Its rotational speed is 10 ms. This
choice would have limited our experiments to relations with
a maximum size of 5.4 Mbytes (which occupy only 22
cylinders of the 3330 moving head drive). Instead we
decided to model the physical characteristics of the 2PT
design as a 3330 disk drive with one head for each of the
7676 tracks (404 cvlinders * 19 tracks/cylinder) and some
output buffers per head. while constructing such a device
is probably out bf the question, modeling the PPT associa-
tive disk this way enables us to establish a performance

baseline by which the performance of the PPH and PPD organ-

izations can be gauged.

The rotational speed for the PPT design was assumed to
be 16.7 ms. While this value is somewhat higher than that
of the 2305 Model 2 fixed head disk, it was chosen in order

to avoid (in our minds at least} an "apples and oranges”

comparison of the three approaches. If we had assumed a

135

rotational speed of 10 ms then we would have had to make
the processors in the PPT design approximately 50% faster

(in order to process the same amount of data in two thirds

the time}.

Finally, the PPD associative disk organization was
modeled as one IBM 3330 disk drive and one processor. As
discussed earlier, the speed of the processor in all of the
designs was assumed to be sufficient to permit processing
selection operations at the speed at which data is
delivered by the selected read head. For IBM 3330 disk
drives this rate is approximately 800 Kbytes/second. Thus
the processor has approximately 1.25 microseconds to exam-
ine each byte. Assuming that 3 instructions are required
to examine a byte and that every byte must be examined,

then the processor must be approximately a 2.4 MIP proces-

sS0r.

4.3.2.1.3. Qutput Channel Specifications

As discussed in Section 2.2, all cell processors were
assumed to be connected to a single output channel for the
transfer of selected tuples to the controlling processor.
We :assumed that this output channel operated independently
and -asynchronously from the cell processors. The bandwidth
of :this channel was assumed to be 2.0 Mbytes/seccond based
on the maximum bandwidth of the VAX 11/780°s Mass Bus

Adapter. It should be noted that the output channel has to

136

be as fast as the disk data transfer rate, although it can
be faster. The disk transfer rate determines the processor
speed, while the output channel bandwidth affects the rate
at which output buffers in the processors will be emptied
‘(loading and unloading of the buffers are asynchronous

operations).

The servicing of the cell processors by the output
channel was modeled in two different ways: round robin and
first come, first served. For the round robin service
algorithm, we assumed that 1 micro-second was required for
the output channel to poll the next cell processor to see
whether it had a full output buffer to be transferred to

the host.

Modeling the first come, Eirst served servicing stra-
tegy required accounting for the overhead of arbitrating
between two or more processors which attempt to acquire the
output channel simultaneously. An implementation of this
arbitration mwoommm would certainly be more complex and
time consuming than having the output channel simply
advance to the next processor. Therefore, we assumed that
for this strategy 3 micro-seconds would be required to
establish which requesting cell processoc would be serviced

next by the output channel.

137

4.3.2.2. Operaticnal Characteristics

4.3.2.2.1. Source Relation Organization

For the PPD and PPH associative disks relations are
stored in such a manner as to occupy the minimum number of
cylinders possible. That is, tuples from a relation must
first £ill an entire track before a second track is used,
then an entire cylinder, etc. In this way, the number of
cylinders which must be searched to execute a selection
operation on a relation is minimized and non-essential seek
operations are eliminated. This organization is termed

compressed. It is used for the PPD and PPH associative

disks in all experiments conducted.

As first suggested by Sadowski and Schuster [68], con-
currency can be maximized in the processing of a selection
operation in a PPT associative disk if tuples from a rela-
tion are wuniformly distributed across all tracks. This

organization is termed horizontal and permits all cell pro-

cessors to participate in every selection ommnmnwoz.a The
horizontal organization was used for the PPT associative

disk in all experiments conducted.

4

Assuming that the relation has as many &
are chosum y tuples as there

138

4.3.2.2.2. Selected Tuple Distribution

A separate issue from the organization of the rela-
tions on the mass storage device is the distribution of the
tuples which satisfy the selection criterion. For our

experiments we considered two possible distributions: uni-

form and clustered. The uniform distribution implies that,

on the average, the same number of result tuples are
selected from every track that participates. However, if
every cell processor in the PPH and PPT associative disks
produced exactly the same number of tuples, then artificial
contention for the output bus would occur. Therefore, the
actual number of tuples selected from each nnmnx,smm deter-
mined by random selection ‘from a normal distribution.
Furthermore, the positions of the selected tuples within

the track were randomly selected.

The selected tuples may form a clustered distributicn

in two cases which we term sorted and indexed. The sorted

case occurs when a relation is sorted on an attribute, and
that attribute is referenced in the selection criterion of
the query (e.g. a relation corresponding to names in the
phone book and the query: retrieve name="smith"). In this
case a limited number of tracks will hold qualifying tuples
but all tracks holding tuples from the relation must oe

examined. Furthermore, every track which contains gualify-

ing tuples (except possibly the first and the last) will

139

contain nothing but qualifying tuples from the source rela-

awoa.m

The second case of a clustered distribution of
selected tuples occurs when there is a non-dense primary
index (such as an ISAM index) on the attribute being quali-
£ied. As in the previous case, only a limited number of
tracks will hold qualifying tuples. However, the existence
of the index permits the search to be restricted to only
those cvlinders containing qualifying tuples. Since all

processors in the PPT design are active simultaneously,

these mto cases of the clustered distribution are the same.

4.3.3. Experiments and Results

In this section the results of a number of experiments
that we conducted are presented. We obtained our results
from an event driven simulation written in Pascal and run
on a VAX 11/780. As described in the previous sections,
the models utilized were as realistic as possible. We ran
the simulation using relation sizes of 10,000, 100,000, and

1,000,000 tuples. The tuple size was varied from 20 to 100

o 1,000 anmm.m Wwe felt that these tuple lengths

represented three realistic cases: a relation with 20 byte

° As a consequence of the horizontal data organization

employed by PPT associative disks, tracks containing quali-
£ying tuples will also contain tuples from other relations.

6 We did not run a test for the case of 1,000,000 tuples
each of size 1,000 bytes because the total relation size

would have exceeded the storage capabilities of the IBM
3330 disk we were modeling.

140

tuples can represent an index; 100 byte tuples represent
what we feel to be the "average" tuple size; Finally, 1,000
byte tuples can be found in relations describing personnel
information in a corporate database. For all experiments

performed, the data distribution was horizontal for the PPT

design and compressed for the PPH and PPD designs.

4.3.3.1. Impact of Output Buffer Availability

The first set of experiments explored the impact of
the number of output buffers available to each cell proces-
sor on the relative performance of the three associative
disk designs. In each of these experiments a uniform dis-
tribution of selected tuples was assumed. Access to the
output channel was done in a round-robin fashion. Tables
4.2 and 4.3 present the results of this set of experiments
for the PPH and PPT organizations for a relation with
100,000 tuples of size 100 bytes and for queries with 3
different selectivity factor. A selectivity factor indi-

cates the fraction of tuples from the relation which

satisfy the selection criteria of the query. Similar
results were observed for the other tests. It was not
necessary to conduct this experiment for the PPD organiza~
tion since it uses only a single processor, and thus there
will be no contention for the output channel.

Initially we were puzzled by the results presented in

Tables 4.2 and 4.3 as we had expected the performance of

141

Table 4.2
PPH - 19 Processors
.Hoo,ooo Tuples of Size 100 bytes
Uniform Distribution of Selected Tuples

Execution Time in Revolutions
Selectivity Factor of Query

Output Buffers

4 Size in Tuples .0001 .005 .10

2 1 82 82 82

2 5 82 83 89

S 2 82 82 83

10 1 82 82 82

101 8 82 83 83
Table 4.3

PPT - 7676 Processors
.Hoo.ooo Tuples of Size 100 bytes
Uniform Distribution of Selected Tuples

Execution Time in Revolutions
OCWMJn mcmmmnm Selectivity Factor of Query
4 Size in Tuples .0001 .005 .10

~

-
-
W

31
2 5 1 3 31
5 2 1 3 31
10 1 1 3 31

both designs to be significantly impacted by the number and

142

size of the output buffers available. Additional experi~-
ments and an analysis of the problem indicated that there
are three primary factors which determine the execution
time of a query: bandwidth of the output bus, the numper
of bytes to be transferred to the host, and the distribu-~
tion of the selected tuples ameng the tracks. Consider,
for example, the above experiment. For a selectivity fac-
tor of 0.1, the query will produce 10,000 one hundred byte
tuples. For an output bus bandwidth of 2 Mbytes/second,
0.5 seconds are required to move the qualified tuples £from
the cell processors to the host. Ideally, in the PPT
design the query should be executed in 1 revolution. How-
ever, a minimum of thirty revolutions is required just to
transfer the selected tuples to the host regardless of the
number or size of the output buffers. For the PPT design
our calculations and experiments indicate that, until the
bandwidth of the output bus reaches at least 60
Mbytes/second (the minimum bandwidth to transfer one mil-
lion bytes in one revolution), having more than one output
buffer per processor has iittle or no impact on perfor-
mance. For the remaining experiments we have chosen to use
2 buffers of size 1 for the PPT design in order to permit
some parallelism within a cell processor since there are
cases where the blocking of processors does impact perfor-

mance adversely.

143

The PPH design is unaffected by the number and size of
the output buffers available for a completely different
reason in this experiment. The relation being processed
will occupy 41 cylinders of the disk. Hence the minimum
execution time for the query (regardless of the selectivity

factor) is one revolution for each seek operation plus one

revolution for each nwwwnmmn.q Thus, the minimum execution
time is 82 revolutions which is approximately the perfor-
mance obtained for all tests presented in Table 4.2. Since
82 revolutions are required to process the query and only
30 are required to transfer the selected tuples over the
ocutput bus to nmm host, the bus is not a bottleneck for the
PPH design. For the experiments presented in the following
section we have used 2 buffers of size 1. In Section
4.3.3.3 we examine the impact of the number of buffers and

their size on the performance of the PPT and PPH designs

when the selected tuples are from a clustered distribution.

4.3.3.2. Comparison of the Three Organizations

The relative performance of each of the associative
disk designs on selection operations with varying selec-

tivity factors are shown in Tables 4.4-4.6 for a relation

P

Note that we do not assume the availability of posi-
tional sensing disks. Thus an entire revolution is required
for each seek. A discussion of the effect of such devices
on the performance of the PPH and PPD designs is included
in Section 4.3.3.5.

144

with 100,000 tuples of size 20, 100, and 1000 bytes respec-
tively. The values for the PPD organization were obtained
by use of the following formula:

time = revs * 0.016666 seconds/revolution
where

revs = 1 + (19 * numcyls) + numcyls - 1
and where numcyls is the number of cylinders the relation
occupies and 19 is the number of recording surfaces on the
disk. The initial revolution is required for the seek to
the first cylinder occupied by the relation. Nineteen

Table 4.4
100,000 Tuples of Size 20 bytes

Uniform Distribution of Selected Tuples

Selectivity Factor Execution Time in Seconds

of Query PPT eeH £PD
.0001 .008 .300 3.0
.0005 .go8 .317 3.0
.001 .009 .367 3.0
.005 .013 .417 3.0
.01 . .018 .383 3.0
.05 .066 .433 3.0
.1 .116 .433 3.0

PPT: 7676 processors each with 2 buffers of size 1
PPH: 19 processors each with 2 buffers of size 1
PPD: 1 processor

145

Table 4.5
100,000 Tuples of Size 100 bytes

Uniform Distribution of Selected Tuples

Selectivity Factor Execution Time in Seconds

146

Table 4.6
100,000 Tuples of Size 1000 bytes

Uniform Distribution of Selected Tuples

Selectivity Factor Execution Time in Seconds

of Query peT e PED
.0001 .011 1.37 13.6
.0005 .012 1.37 13.6
.001 .015 1.37 13.6
.005 .034 1.37 13.6
.01 .059 1.37 13.6
.08 .266 1.37 13.6
.1 .516 1.37 13.6

of Query PeT pei PR
.0001 .03S 13.5 135
.0005 .041 13.5 135
.001 .066 13.5 135
.005 .261 13.5 135
.01 .510 13.5 135
.05 2.52 13.5 135
.1 5.02 14.0 135

PPT: 7676 processors each with 2 buffers of size 1
PPH: 19 processors each with 2 buffers of size 1
PPD: 1 processor

revolutions are required for each cylinder. Finally, an
additional revolution, to allow for the track to track seek

time is required between cylinders.

Based on these experiments we have developed a number
of ‘'conclusicns regarding the performance of these three
associative disk organizations. First, a lower bound on
the PPH performance can be obtained from the PPD formula
with the removal of the figure of 19 to reflect the paral-

lel readout capability. Second, PPH generally performs at,

or close to, the lower bound. Third, in general, for a

PPT: 7676 processors each with 2 buffers Om.mwnm 1

PPH: 19 processors each with 2 buffers of size 1

PPD: 1 processor
uniform distribution of selected tuples PPH will execute
queries approximately 10 times faster than PPD since there
are 20 revolutions for each cylinder in the FPPD organiza-
tion (1 for positioning and 19 for readout) and 2 in the

PPE (1l for positioning and 1 for readout).

A fourth observation based on these results is that

the performance of the PPT organization degrades linearly,

cos :]
more or less, as the selectivity factor increases.

8 Because of the expense of running our mwacwmnwos we
were not able to confirm this conjecture for higher selec-
tivity factors.

147

Finally, in all the experiments conducted (Tables 4.4-4.6
present the results of only a few experiments) the PPT
organization proved superior to the PPH organization which
was better than the PPD. However, unlike the PPH machine,
where contention for the channel did not seem to markedly
degrade performance, the PPT organization suffers very
hneavily from this problem. We see that for small selec~
civity factors (.0001-.001) the PPT machine can complete
the query in 2 or 3 revolutions whereas the PPH machine
requires approximately twice the number of cylinders occu-
pied by the relation. However, for large selectivity fac-
tors (.1} PPT is only 3 to 4 times as fast as PPH regard-
less of the relation size. We feel that this is remarkable
considering the fact that the PPT design which was modeled

had 404 times as many processors as the PPH design.

4.3.3.1. Impact of Clustering of Selected Tuples

As discussed in Section 4.3.2.2.2, the selected tuples
can originate from a relatively limited number of tracks
when either the relation is sorted on the attribute being
qualified or a non-dense primary index exists on it. In
this section we evaluate the performance of the three
designs for these two cases.

Because the experiments on the impact of output buffer
size and availability presented in Section 4.3.3.1 were

conducted using a uniform distribution of selected tuples,

148

we began this set of experiments by re-examining the impact
of output buffer size on the performance of the PPT and PPH
designs. In addition we examined whether mark bits could
be used as an alternative technique for emhancing the per-

formance of the these two designs.

4.3.3.3.1. Impact of the Use of Mark bits and Output

Buffer Availability

If mark bits are employed in a PPT or PPH desian when
a cell processor finds a qualifying tuple it sets the mark
bit [14] associated with the tuple and attempts to place
the tuple in one of its output buffers (whenever a marked
tuple is placed in an output buffer, the mark bit is alwavs
turned off). By the end of the first revolution all guali-
fying tuples will have been marked. In subsequent revolu-
tions (if they are necessary), whenever an output buffer
becomes available, each cell processor will stuff the next
marked tuple it finds. Recall that without mark bits, a
blocked cell processor in the PPT or PPH design must wait
an integral number of disk revolutions before it may resume
(so that it continues precisely where it left off). Thus
when mark bits are employed, once an output buffer becomes
available the -processor can resume outputting tuples
without having to wait until it again reaches the position
at which all output buffers were Filled (saving at least

1/2 of a revolution on the average}.

149

It is important to notice that our use of mark bits
differs from the applications that have been suggested pre-
viously [14,20,37]. 1In earlier research, mark bits played
an important part in processing entire queries {including
joins, projections, etc.) directly on the disk through the
use of multiple mark bits and multiple revolutions. In the
experiments presented below, we are only concerned in
evaluating the performance of associative disks when exe-
cuting selections "on-the-fly". We use mark bits only as a
technique for wamnocwnw system performance by reducing the
amount of processor idle time, and not as a means of

increasing the disk processing capabilities.

In the tables below the impact of mark bits and larger
output buffers on the performance of the PPH and PPT

designs is presented. The results for the case when the
relation is sorted on the attribute being qualified are
presented in Tables 4.7 and 4.9 for the PPH and PPT
designs, respectively. The impact on the PPH design when a
non-dense primary index exists on the attribute being qual-

ified is presented in Table ».m.w

The results presented in Table 4.9 show that the wuse

of mark bits or larger output buffers has little or no

k4 Recall that because of the horizontal tuple layout
across eeils in the PPT design the number of cells to be
searched for the indexed case is the same as in the sorted
case and thus the execution times are the same.

Table 4.7
PPH -~ 19 Processors
100,000 Tuples of Size 100 bytes
Clustered Distribution of Selected Tuples
Sorted Case

150

Execution Time in Revolutions

Output Buffers Selectivity Factor of Query

[Size .0001 .005 .10

2 1 82 115 319

2 8 82 88 129

2 1 with mark bits 81 82 109
Table 4.8

PPH - 19 Processors :
100,000 Tuples of Size 100 bytes
Clustered Distribution of Selected Tuples
Indexed Case

Execution Time in Revolutions
Selectivity Factor of Query

Output Buffers

Size L0001 .005 .10
2 1 2 36 247
2 S 2 9 57
2 1 with mark bits 2 3 38

Table 4.9
PPT -~ 7676 Processors
100,000 Tuples of Size 100 bytes
Clustered Distribution of Selected Tuples

Execution Time in Revolutions

Qutput Buffers Selectivity Factor of Query
Size .0001 .005 .10
2 1 5 8 36
2 5 5 8 31
2 1 with mark bits 5 8 36

impact on the performance of the PPT design when the data
selected is clustered on a few tracks. This occurs because
the performance of the design is limited by the bandwidth
of the output bus. However, the use of mark bits has a
dramatic effect on the performance of the PPH design for
both occurrences of clustered data. For a selectivity fac-
tor of 0.1, use of mark bits improves performance by as
much as a factor of 3 for the sorted case and 6.5 for the
index case. We therefore opt for their wuse in the PPH

design in the experiments presented below.

4.3.3.3.2. Comparison of the Three Organizations

The performance of the three associative disk designs
is presented below in Tables 4.10 (sorted case) and 4.11
(index case) for queries referencing a relation with

100,000 tuples of 100 bytes. One consequence of the

152

Table 4.10
100,000 Tuples of Size 100 bytes

Clustered Distribution of Selected Tuples
Sorted Case

Selectivity Factor Execution Time in Seconds

of Query eeT pril PPD
L0001 .076 1.33 13.6
.0005 .108 1.33 13.6
.001 .110 1.33 13.6
.005 .128 1.35 13.6
.01 .150 1.38 13.6
.05 .342 1.57 13.6
.1 .5392 1.80 13.6

selected data clustering test is that performance of the
PPT machine further degrades due to output channel conten-
tion. The PPH machine suffers, to a lesser extent, £from
the same problem (despite the additicnal buffer space) in

the sorted case. Finally, the PPD design 1is unaffected

since there is no channel contention of any sort.

Examination of Table 4.11 {the index test) yields some

interesting results. The first is, that both the PPH and

PPD machines are able to capitalize on the availability of
the index information. Second, the performance improvement
in PPH and PPD is such that PPT is still better but not

superior. Finally, PPD is almost as good as PPH. We feel

153

Table 4.11
100,000 Tuples of Size 100 bytes

Clustered Distribution of Selected Tuples
Indexed Case

Selectivity Factor Execution Time in Seconds
of Query PET J33:] PRD
.0001 .076 .018 .333
.0005 .109 .023 .333
.001 .110 .030 .333
.005 .128 .050 .333
.01 .150 .082 .333
.05 .342 .324 1.00
1 .592 .632 1.67

PPT: 7676 processors each with 2 buffers of size 1
PPH: 19 processors each with 2 buffers of size 1
and mark bits

PPD: 1 processor
that this implies that machines that use indexing to reduce
the search space, such as DBC, should utilize a PPD
approach to the Mass Memory component since it is consider=-
ably <cheaper and less complex while attaining almost the

same performance level as that of PPH approach.

4.3.3.4. Impact of Output Channel Service Policy

The final set of experiments we conducted were to
investigate the impact of the service strateqgy of the out-

put channel. We modeled two strategies: round robin and

154

first-come-first~served. Our expectations that no signifi-
cant difference would be observed in the PPH machine
because of the small number of processors involved were
confirmed. We felt that some performance improvement
should take place in the PPT machine that uses the first-
come-first-served service policy. However, no such
improvement was found Dbecause the execution time is dom-

inated by the time to output the tuples.

4.3.3.5. Summary and Critigue

In this section we have presented a model for associa-
tive disks and simulation results of three different asso-
ciative disk designs using this model. Our results show
that in general, as expected, PPT outperformed the other
two. In testing the effect of the amount of output data on
the performance of each machine we found no effect on tne
performance of PPD, minimal effect on the PPH’s perfor-
mance, and significant degradation in PPT”s performance.
Furthermore, it was shown that PPT is insensitive to vari-
ous data organizations on the disk (e.g. an index on the

qualified attribute) while both PPH and PPD were able to

utilize such access mechanisms to significantly reduce the
amount of data space searched. This result {(with respect
to PPH) is not surprising and was used by the DBC designers
in the design of the Mass Memory component of their

machine [69]. However, what we f£ind interesting is that

155

PPD performs almost as well as PPH when there is an index
on the qualified attributed. While this may seem perplex-
ing to the reader we wish to point out that although very
few cylinders are actually searched, most of them will out-
put large amounts of data causing channel contention (in

the PPH case) to affect performance in a very adverse way.

This result leads to a number of conclusions about
associative disks. First, the use of indexing (as in DBC)
in combination with a PPH or PPD design will provide good
performance. We feel that if a cost effectiveness study of
these designs (with the presence of indices) was performed,
PPD "would emerge as best (PPH will probably be a close
second). Second, if parallel readout disks are to be
employed, then the best associative disk design is a SURE-
like {30] PPD machine which employs indexing, since such a
machine incorporates the parallel readout capability of the
PPH mmmwm: while avoiding its channel contention pitfalls.
However, this approach requires a very high performance
processor in order to keep up with the disk.10 Finally, PPD

machines (without indexing or parallel readout disks)

10 The SURE project used a Siemens disk with 9 parallel
read heads. If a SURE-like architecture is to be used in
an IBM 3330 we estimate that the processor will have to
overate at approximately 23 MIPs., While such processors
are probably not within the realm of today”s technology it
should be noted that the processor will have a very simple
instruction set {simplifying its organization). Also, the
types of operations processed allow for a pipelined imple-
mentation.

156

provide a very cheap and simple way of £iltering out
undesirable data. There are numerous applications where
such a feature can be wutilized. One example is the
Research Storage System (RSS) of System R zswnm is respon-
sible for eliminating undesired tuples from the data stream

examined by higher levels [60].

Although not presented here, our study was extended to
cover PPT organizations that employ off-the-shelf bubble
memory chips. Although, these chips are very slow when
compared with disks we were able to show that their perior-
mance was better than PPH for the clustered case and at
times even better than PPT. The reason for this is the
ability of the chips to start and stop rotation of bits
(bubbles) at will. Thus, at the time that a processor is
blocked it can stop the movement of its bubbles, and resume
processing immediately after having one of its buffers emp-
tied.

Qur models have a number of shortcomings. The first
is that they do not include the cost of using indices. We

feel that a thorough study of the maintenance and access

cost of indexing needs to be undertaken in order to confirm
our statement concerning the relative performance of the
three machines. Second, our model <can be improved by
incorporating positional sensing hardware in the disks.

This feature would enable processors to begin scanning the

157

data at any sector boundary on the disk instead of waiting
for a specific bit position on a track. In our simulation
we model the track-to-track seek time with the formula:

) seektime = 10 + numtracks * .0l

The value computed is then rounded up to the next multiple
of the rotation time. With positional sensing disks this
would not be necessary. The IBM 3330, which we modeled,
has a rotation time of 16.7 ms. Thus, incorporation of
this feature into the simulation means a net savings of

about 6.6 ms per cylinder.

While the performance of the PPD design will indeed
improve by almost 6.6 ms for each cylinder processed, the
PPy design will not, in general improve as much. This 1is
due to the {observed) fact that PPH is able to empty most
of its full buffers during the additional rotation in
between cylinders. Using positional sensing devices will
cut down on the idle time in between cylinders and thus on
the time the processors have to empty their buffers. The
net effect, we feel, would be to still cut down on the

search time but to a lesser degree than in PPD. It should
se noted that this savings does not apply to PPT devices.

A final problem with our models is that the disk
employed, the IBM 3330, is old. New disks, such as the IBM

3380 {31}, have a much larger storage capacity due to

nigher storage density per track (47,476 bytes per track as

158

opposed to 13,030 bytes per track) and more cylinders per
disk (more than twice as many as in the IBM 3330). We
believe that such disks will tend to favor the PPD design
because more bytes per track implies more tuples per track
and consequently means more output channel no:nmanwo:.ww
Another reason for investigating the new disks is that they
provide a small amount of storage space accessed by fixed
heads. This space can be used to store the index. The IBM
3380 provides two cylinders with this capability { approxi-
mately 1.5 Mbytes of storage), this is about 0.25% of the
total disk storage. An analysis of the storage require~-
ments of indices is required before the use of the fixed

head storage in the IBM 3380 disk can be assessed.

4.4. Conclusions

In this chapter we have considered two important
issues necessary for the design of a database machine that
incorporates both on-the-disk and off-the-disk processing
capabilities. We first looked at the problem of processor

assignment in DIRECT. We compared four different stra-

tegies and showed that a data-flow strategy outperformed

the others because of its ability to adapt itself to th

1)

1 Another feature of the more modern disks is their
higher speed data transfer rates, 3,0 Mbytes/second for the
IBM 3380. Such high data rates place further constraints
on the processor speed. For example, in PPH or PPD tne
processor would have to process instructions at a rate of
10 MIPs rather than 2.4.

159

data access patterns exhibited by the various benchmark
query programs. We :mcm.wpmo shown that all the strategies
require such a large number of messages as to cause the
back-end controller in DIRECT to become a bottleneck. The
data-flow strategy was worse in that respect than the oth-

ers.

In comparing the performance of DIRECT for the various
mnonmwm0n allocation strategies we used some of the algo-
rithms developed in the previous chapter. For these algo-
rithms, there are two types of communications that an
architecture must support: point-to-point transfers and
broadcasts. However, using the data~flow processor alloca-
tion strategy we have mso&: that the majority of communica-
tions between processors (or processors and memories) is of
the broadcast type. Thus, any architecture that is to use
the algorithms of Chapter 3 and the data-flow processor
allocation strategy must support an efficient broadcast
mmnwwwn<. It is important to notice that this facility

must allow for a multiple number of broadcasts simultane-

ously.

‘The second issue we considered was a comparison of the
different associative disk types that have been proposed.
Our intention was to evaluate these organizations wunder a
number of realistic assumptions and obtain some information

about their relative performance for a number of different

queries. OQur
organizations,

should be used.

160

results have shown that one of the simpler

processor~per~head or

processor-per-disk

161

CHAPTER 5

THE PROPOSED ARCEITECTURE

5.1. Introduction

In Chapter 3 we proposed and analyzed a number of
vmnmwwmw algorithms to be used in our architecture. Then
in Chapter 4 we examined a number of different gquery pro-
cessing strategies for DIRECT using n:mMm algorithms. We
concluded that a data-flow strategy was superior because of
its sensitivity to the data access patterns of the query
programs. However, we also showed that this strategy
requires a large number of messages between the processors
and controller. 1In this chapter we shall use these results
in the design of a new MIMD database machine which will
support all the relational algebra operations as defined in

INGRES [43] and described in Appendix A.

DIRECT certainly possesses the hardware and software
capabilities required for the implementation of the algo-
rithms described in Chapter 3 and supporting the data~flow
query processing strategy. There are, however, numerous
reasons why a new architecture should be designed rather
than improving DIRECT.

First, Hawthorn and DeWitt {3] have shown that DIRECT,

and in general, any machine that cannot process simple

162

ingtructions such as selections and scalar aggregates
directly on the mass storage device, cannot support their
efficient implementation at all. Second, in Chapter 4 we
have shown that the number of messages required to process
a join (this can be generalized to projections and aggre-
gate functions) may cause the controller to become a
bottleneck. In fact, we can show, analytically, that for a
join the number of messages will be guadratic in the number
of pages of the two relations. Thus, we see that it is
insufficient to provide a broadcast mechanism that will
reduce the number of I/0 operations; some means of reducing
the number of control messages is also required. One of
the reasons for the large number of messages is that all
inter-processor communication takes place through the
shared memory cache which is controlled by the back-end
controller. A final ecriticism, one that has appeared
several times in the literature, concerns the cross point
switch that connects the processors to the cache memory
units. For example, Goodman {46] criticizes this switch

for its cost and poor expansibility features.

What features should the new architecture possess in
order to overcome these, and other difficulties? Clearly,
for the efficient execution of simple selections and scalar
aggregates some processing capabilities must be associated

with the mass storage devices. Second, if the algorithms

163

described in Chapter 3 are tc be employed then the function
of the controlling processor must be distributed. Third,
the broadcasting capabilities of the cross point switch in
DIRECT must be retained, although a different, cheaper and
more easily expansible, implementation for the interconnec-
tion device must be found. Fourth, the machine (particu~
larly the interconnection device) must permit MIMD activity
in order to support a high number of transactions per
minute. Finally, the data~flow processor allocation stra=-
tegy described in Chapter 3 was shown to be the best and

should be utilized.

The remainder of this chapter is organized as follows.
We begin with a discussion of the logical machine organiza-
tion., We present a rationale for assigning various control
and non-control functions to component types and outline
the actions that these components will perform. Next, we
describe the physical organization which we propose. We

then describe the various steps taken by the machine com-~

ponents during the execution of a particular query. We

conclude with an overview of the implementation of the data

integrity functions.

5.2. Logical Organization

5.2.1. Description

In (67] we presented a preliminary design for an MIMD
database machine that employs a data-flow query processing
strategy. In this design the controlling functions of the
back-end controller in DIRECT were distributed. Two types
of processors were designated for controlling the execution
of instructions: a Master Controller (MC) and an

Instruction Controller (IC). The MC is responsible for:
(1) Communication with host computers.
{2) 1Initliating instructions.
(3) Performing data integrity maintenance functions.
(4) Controlling resource allocation in the machine.
The IC is responsible for controlling the execution of

an individual instruction. A third type of processor, an
Instruction Processor {IP), is responsible for executing
code as instructed by an IC. A database machine configura-
tion of this type would consist of a single MC, several

1Cs, and a pool of IPs.

at instruction initiation time the MC picks an IC and
assigns a number of IPs to it for the execution of the
instruction. The IC is responsible for getting the data
required for the instruction execution from mass storage or

from other IC groups and allocating it to its IPs.

5.2.2. A sample Instruction Execution

A join operation would be executed on this architec-

ture in the following manner. First, the MC would pick an

165

IC to control the execution of the instruction. The 1IC
will receive page tables and other descriptive information
about the two relations to be joined. The MC will also
attempt to allocate the "optimal" number of IPs to the IC.
Next, pages of the outer relation (see Section 3.3.4 for a
description of the algorithm) would be fetched from mass

storage and distributed, one at a time, to the IPs.

After the outer relation pages have been distributed
to the IPs the inner relation pages must be broadcast.
Each IP sets up an "inner relation control"” (IRC) vector
which 1is used to monitor which pages of the inner relation
it has seen. 1Initially the vector is empty. Upon receipt
of an inner relation page an IP creates an entry for that
page in its IRC. The IC also reads the page and stores it

in its temporary storage area (see Section 5.3.2).

Should an IP £ill 1its output buffer during the
instruction execution it must £flush it out. Since in this

case the query packet consists of a single instruction (the

join) the output page is sent to the IC where it is tem-
porarily stored. At the end of the instruction execution
the IC will collect and reorganize the result pages from
all the IPs and pass them on to the MC. The MC will for~-
ward them to the host computer from which the gquery ori-

ginated.

After the inner relation has been broadcast in 1its
entirety, the IC solicits a status report from all its IPs.
Each IP informs the IC whether it missed any inner relation
pages. An IP can miss an inner relation page while prepar-
ing an output buffer for transmission to the IC {e.g. sort-
ing it). In the event that some (possibly all) of the
inner relation pages are needed (not necessarily by the

same IP) they are rebroadcast by the IC.

After an IP has flushed its output buffer it informs
the MC that it is ready for a new task assignment. Simi-
larly, after the IC has finished reorganizing the output
relation and sending it to its destination it also informs

the MC that it is idle.

5.2.3. Comparison With DIRECT

The execution of a join on DIRECT is somewhat similar
to the description above. First, outer relation pages are
distributed to the IPs. Next, the inner relation pages are
broadcast. Full output buffers are flushed out to tem-
porary storage (a CCD module in DIRECT). There are, how-

ever, several important differences.

First, in DIRECT distribution of both outer and inner
relation pages is on demand by the IPs. Therefore, the
number of control messages that are required to control the

execution of a Jjoin is quadratic in the size of the two

167

relations. In our architecture, messages are exchanged
only at prespecified points in the execution of the opera-
tion: at instruction set up time, outer relation pages dis-
tribution time, and at the end of wa:mm relation pages dis-~
tribution time. The number of messages required is linear

in the size of the outer relation.

Second, the back-end controller of DIRECT is its only
controlling processor. While - this may not prove to be a
problem when there is only a single instruction executing,
we have shown that when a number of queries are active the
back-end controller is a bottleneck (see Section 4.2.4.5).
In the proposed architecture this cannot happen because the
control of each instruction is overseen by a different IC.
Alsc the number of messages required is linear in the size
of the outer relation rather than quadratic in the size of

both relations.

Third, although not described, the interconnection
device used by the proposed architecture is considerably
simpler, cheaper, and more easily expansible than the cross
point switch of DIRECT. One advantage that the cross point
switch has is that it allows a multiple number Omw point-
to-point transfers to take place simultaneously. This can-
not be done on broadcast buses. However, we shall subse-
quently show that such a feature is not of great importance

in our organization.

168

5.2.4. Outline of Architecture

In this thesis we propose to adopt the processing
hierarchy of the MC, IC, and IP. In addition to these com~
ponents, there will be several associative disks (see Sec-
tion 4,3). All communications with host computers will be
handled by the MC which will also be responsible for
instruction initiation and resource allocation. The asso-
ciative disks will be responsible for the execution of sim-
ple selections, scalar aggregates, and under certain condi-
tions, some of the update operations. Each IC and its
allocated IPs will form an IC group for the duration of an
instruction execution. The hardware must allow several IC
groups to be active at the same time (i.e., the simple
interconnection device used in the illustration above is

insufficient). Processors in each IC group should be able

to communicate with each other reqgardless of activity in

other groups. In the next section we describe this

hardware organization.

5.3. Physical Organization

There are three issues that must be addressed in this
section: the interconnection between the ICs and IPs, th
implementation of storage for temporary relations, and the
organization of the associative disks. We begin with a
discussion of the interconnection device to be used. We

then argue against the use of some of the alternative

169

interconnections that could be employed. WNext we offer a
solution to the temporary storage problem. We close this
section with a discussion of the associative disk implemen-

tation.

5.3.1. Interconnection Device

The interconnection device must be able to support
MIMD activity and communications of two types: point-to-
point and broadcast. Recall that a side-effect of our use
of limbs (see Section 4.2.1.4) for scheduling instructions
for execution is that broadcasts are used much more fre-
quently than point-to-point transfers.

Maglaris and Lissack [70] have suggested using a
wroadband, coaxial cable broadcast bus that uses frequency
multiplexed, RF-modulated channels to allow for several
simultaneous communications over a single bus. Each chan-
nel, overating at a different frequency, can support a data
transmission rate compatible with the processor bus
pandwidth, say 10 Mbps. az:mw several simultaneous commun-—
ications ican take place. A single, specially designated,

channel, which we term the control <channel, is used for

coordinating activities on the machine. For example, pro-
cessors that wish to establish a 1link must obtain a
reserved channel through the use of the control channel.
Once a reserved channel has been assigned to them they can

switch frequency and proceed with their “session",

170

undisturbed, over their own reserved channel.

The transmission technology used is CATV. This tech-
nology can provide a transmission capacity of 400 Mbps. It
is not clear at this point how many channels, each provid-
ing a communications medium of 1 to 10 Mbps, can be sup-
ported by this technology. Levy and Rothberg [71] claim
that a transmission bandwidth of between 2.5 and 3 Hz is

required per bit. Thus, only approximately 15 channels,

each supporting a 10 Mbps transfer rate, can operate simul-

nmsmocmww.w Others, ([70], for example) allege that only 1

Hz per bit is required, leading to the figure of 40 chan-
nels.
In our architecture the MC will be responsible for all

resource assignment. It will always monitor the control

channel. In its idle state, any processor (IC, 1IP, or

associative disk) will be listening to the control channel.
Figure 5.1 shows the mmwmummm machine in an idle state.

All the processors (MC, ICs, IPs, and associative disks)

are monitoring the control n:m::mw.m At the time that the

MC decides to initiate the execution of an instruction

{actually a 1limb) it picks an IC to control it and

1 Alternatively, 150 1 Mbps channels can be supported.
The actual bandwidth required will depend on a number of
factors such as processor speed and can only be determined
at a later stage of the design.

2 Although not shown, disks are associated with each IC.

control
channel

171 172

allocates some IPs and a channel to the IC. The MC then
sends the selection operation and the channel address to
the associative disks that contain the data for this
instruction. The processors switch frequencies to operate
in the assigned channel (their operation will be described
in subsequent sections). Figure 5.2 shows the machine with
two active instructions, each utilizing a separate channel.
Note that not all the machine rescurces are being utilized.
At the time that a processor (IP, IC, or assoclative disk)
terminates its current task it switches frequency back to
the control channel, informs the MC that it is ready for a

new task and waits for a new assignment message.

Since the interconnection we described above is
ETHERNET-based {72] there are a number of problems that we
must address, in particular, reliable delivery of messages.
There are a number of different reasons why a message can

be lost on an ETHERMET-like broadcast bus. We thus regquire

that an acknowledgement of receipt (which may contain a

$E 066D

reply) be sent by the receiver of any message. As will be

Figure 5.1: Machine in Idle State

| — . :

seen later, in certain cases: broadcast of a stream of data
o " pages, we relax this condition tc allow for a single ack=-
v =
W m nowledge message at the end of the stream.
v <
% Mm What other interconnection devices can satisfy these
- v

requirements? One possibility is a switch such as a cross

point switch (73] or a multi-stage network such as the

PP S A

173

Figure 5.2: Machine Executing Two Instructions

174

banyan [74]. Such switches can be characterized as fol-

Hozm.u Two entities that wish to converse must establish a
1ink. Links are physical and are obtained through requests
to a central controller. Once a link has been established,
data (message) exchanges proceed efficiently since, in
effect, a hard-wired line exists between the two entities.

Switches are expansible.

Although most of the properties described above are
desirable from our point of view, we reject switches as
viable interconnection devices because of the central con-
trol that is inherent in their operation. Our experiences
with the DIRECT simulation have shown that the controller
of a switch can easily become a bottleneck (see Section

4.2.4.5).

A second possible alternative is a .high~speed ring.
Rings possess several favorable features but have two major
problems that make them unacceptable. The first problem is
expansibility. As nodes are added to the ring the time
required for a message to travel from one node to another
increases linearly. A second, and more important problem,

is that rings lack efficient broadcast capabilities.

3 Our characterization is applied to all switches and as
such is not always precise. For example, some types of
switches are more easily expansible than others.

175

Taylor {75] suggests the implementation of a local
network that will include (features from both rings and
local broadcast networks. The interconnection bus is
assumed to be constructed from optic fibers; lasers will be
used to transmit packets. To handle the high data transfer
rates in the taps, optic fiber buffers are used to hold the
data until the tap”s logic can access it a bit at a time.
Each tap has under its control a repeater whose purpose is
to amplify the signal as it travels on the optic fiber. By
judicious control of the repeater the tap can either read a
message exclusively, in shared mode, or not at all. It is
postulated that taps that can provide such capabilities for
data transmission rates greater than 1 Gbit could be con-

structed in the middle to late 19807s.

Another feature of this design is that several
transmissions can take place simultaneously using different

frequencies. Thus, this interconnection device appears to

be the most suitable for our needs. However, it requires
what we term "exotic technology” which will most likely not
se available "off the shelf" within the next year or two.
e nave therefore chosen to adopt the frequency multiplexed
broadcast bus approach suggested in [70]. Should the tech-
nology described by Taylor in {75] become commercially

available we may wish to modify our design.

176

5.3.2. Temporary Storage

Each IC must have some amount of memory for the
storage of pages in anticipation of their use by the IPs.
Two different uses for such a cache memory arise in this
context. The first is for saving outer relation pages that
could not be consumed because of an insufficient number of
processors (see query execution example in Section 3.4).
This problem can occur if an operation, say a join, which
is generating the outer relation for the subsequent opera-
tion, has produced more pages than there are processors

assigned to that Oanwnwo:.»

The second, and more frecuent,
use is the saving of inner relation pages until it has been
ascertained that every page has been seen by every proces-
gor that will need to see it.

The presentation and analysis of our algorithms in
Chapter 3 reflects our belief that, in the general case,
there will be an insufficient number of processors avail-
able for the execution of an operation. 1In such an event,
the algorithms for the "complex" operations (join, project,
aggregate functions) will require multiple passes over the

data. In particular, the inner relation will have to be

broadcast once for each pass. This means that the entire

4 Recall that if an operation is producing the relation
to be used as the outer relation in the subsequent opera-
tion then both operations ate on the same limb in the guery
tree and the processors executing the child operation will
be assigred to the parent operation.

177

inner relation will have to be stored in temporary storage

for the duration of the instruction execution.

An important point to realize is that access to the
inner relation pages will be sequential and in a well
defined order. Thus, the temporary storage can be organ-
ized in an hierarchical manner. A small number of pages
would be kept in a fast memory, from which they could be
read with little or no latency. The remaining pages, those
that will not be needed immediately, could be kept on a
slower memory device and brought into the higher level
memory in anticipation of their use. It is not clear how
large and how fast the higher level memory need be. Some

factors determining this are:

{1) The processing speed of the IPs

(2) The transfer rate of the interconnection device

(3} The size of pages

The secondary memory can be implemented using a small disk.

Disks with storage capacities of 40 and 60 Mbytes are
available on the market for prices as low as $6,000. One
oroblem that may arise 1is whether an IC will become a
bottleneck in attempting to control its assigned 1IPs and
the temporary storage memory. We shall address this prob-
lem in a subsequent section after the role of the various

components in the machine has been presented in more

detail.

£ the Associative Disk

5.3.3. Implementation

Databases will reside on several associative disks.
In section 4.3 we described and compared three different
approaches to associative disk design. The results show
that the processor-per-track approach provides the best
performance under nearly all conditions. Such organiza-
tions require either fixed head disks or one of the new
memory technologies. Fixed head disks constitute an
{almost) obsolete technology and provide a storage capacity
which is a small fraction of the capacity of moving head
disks. The new memory technologies that may someday
replace disks, such as MBMs, possess several attractive
features that lend themselves to their use in a processor-—
per-track organization. However, the cost per bit of such
devices 1is still two to three orders of magnitude more
expensive than it is for moving head disks [76]. Thus, it
is not expected that these memory technologies will repilace
moving head disks in the near future. We have therefore
chosen not to consider processor-per-track assoclative

disks as a possibility for use in our architecture.

The comparison of processor-per-head and processor-
per-disk organizations (see Section 4.3) showed that the
processor-per-head organization is superior. However, it
has also been shown that when indexing is used the perfor-

mance differential is not as significant. As of now no

179

comprehensive study of the use of indexing in a multi-
processor environment has been undertaken which shows their
benefits and mwmmmcmsnmmmw.m We have thus not incorporated
indexing into the present machine design. However, at a
later time, when their use is more clearly understood, this
may be a direction we would want to pursue. Therefore, the
associative disk should be an easily replaceable part of

the machine. We propose the following organization.

Each associative disk will be an independent unit. It
will consist of the disk, its associated processing
element({s), a controlling processor, and some amount of
work space. The controlling processor will have access to
information about the contents of the disk, such as rela-
tion and page tables. It will be responsible for communi-

cation with other components of the architecture, such as

the MC and the various currently active ICs. The MC will

send to it lists of tasks to be executed. These will be
scheduled by the associative disk controller based on such
criteria as the current cylinder being scanned. The tem—
porary storage will be used to hold pages that need to be
sent, and for results of intermediate noavcnmnwosm as

described later.

5 .
) It should be noted, though, that DBC and HYPERTREE use
indexing, although in a limited sense.

180

If wsmmanom is to be incorporated into the assccia-
tive disk it will be done internally and in a manner
invisible to the remainder of the machine. We expect that
additional memories. and processors will be used for this
purpose. These additional resources will also be con-
trolled by the same associative disk controller. Thus, the
only effect of such changes to the architecture, as seen by
the other machine components, will be to receive data at a

faster rate.

The operations to be supported by the associative disk
are selections, scalar aggregates, simple updates (disal-
lowing the introduction of duplicates) and the attribute
elimination part of projections. By simple updates we mean
update operations that define the tuples to be modified

using a simple predicate {i.e. attribute = constant).

An associative disk”s output consists of unsorted
pages which may contain duplicates. Each page is prefixed
with a header identifying itself by a number and its rela-
tion by name. These pages are placed on a channel speci-
fied by the MC at the time the instruction is assigned to

the associative disk.

6 In discussing indexing, we refer to their restricted
use as in DBC. if indices are to be used in performing
operations other than selections, the organization of the
machine will most likely undergo major revisions.

181

In

.4. Query Execution

Although the architecture was described in consider-
able detail in the previous section, additional information
needs to be specified so that query execution on the
machine can be better understood. In this section we
describe the execution of one query in terms of the actions
taken by each component type. Some of these actions are
obvious and need little or no explanation. Other actions
will require more exposition. It 1is felt that only by
going through a query execution will all the details and
the rationale for the actions taken by the components be

understood.

The guery we have chosen to describe consists of two

selection operation followed by a projection on one of the

"

esult relations and a join. Its tree representation is
shown in #igure 5.3a. The query consists of two limbs
named A and B as shown in Figure 5.3b. Since limb B8 pro-
duces data that is used by an instruction in limb A it must
be scheduled first. 1In Figures 5.4a-5.4c we show the exe-
cution of the projection instruction (limb B) by an IC
group (tne selection will be done by the associative disk

on the fly),

We assume that the associative disk produces 5 output
pages. The MC, however, allocates only 3 IPs to the execu-

tion of the instruction (perhaps it made a bad estimate of

Figure 5.3: Query Tree for Example

® ©
©

figure 5.3b: Precedence Tree for Example

182

= U

183

code

M start?
AD

Figure 5.4a

* ves

184

the result relation size or it simply did not have a suffi-
cient number of processors available). Therefore, two
phases will be required to execute this instruction. The
sequence of messages between the IC, IPs, and associative
disk required to set up the instruction execution is shown
in Figure 5.4a. Initially the IC sends a message to its
IPs assigning them IP identifiers for the duration of the
instruction execution. These identifiers will be increas~
ing integers beginning with 0. The code to be executed is
also included. 1In the event that this instruction produces

data used by another instruction in another limb the chan-

nel fregquency of the parent limb is also manHOmmm.q

In Figure 5.4b we show the message exchanges required
to distribute the outer relation pages. Once all outer

relation pages have been sent by the associative disk it

can switch frequency to the control channel and receive its
next task. The associative disk has no knowledge of the
“names® of the IPs assigned to this instruction or even
their number. It therefore broadcasts each page to all
processors on the channel. Pages are identified with the
relation name and a unique page number. These numbers are

increasing integers beginning with 0. Every IP and the IC

7 This information may not be available at limb initia-
tion time. In such cases the IC will have to get it from
the MC when the need for it arises. For the purposes of
this description we shall assume that the IC has this in-
formation.

AD

SO
o

>
_;O*‘J

..)F.) -
OV

>
0

S~

N

>
-0

Figure 5.4b

T

&

memu

ack

page

ack

page

ack

| w “ M ﬁ page
¥
_ﬁ .W _w _m >D~ 3
P | | | ack
ﬂ —m ~m _m AD
P | | | page
n _m _w _m ‘>DH 4
ﬂ\ _ W ﬂ H ack
_ﬂ~ _mv _m _W .Pﬂ
1 L L e
~ﬁ gm _m _W)

ﬂ\ ~ _ _ PW bye
_ﬁ M@ _ﬂ _m 4

Pignee 5.4b ~ continued

186

187

read each page broadcast by the disk. However, only Hm»
Keeps page page; and acknowledges its receipt with a mes-
sage addressed to the disk controller and the IC. The IC,
by examining the source of the acknowledgement and the page

identifier can ensure that the correct IP read the page.

Since in our example the number of pages 1is greater
than the number of IPs by 2 the IC will read the additional
pages and acknowledge their receipt. The pages will be
stored in the IC”s temporary storage area and will be dis-
tributed to the IPs in subsegquent phases of the execution

of this instruction.

-

Figure 5.4c shows the sequence of messages required
for the execution of the broadcast step of the algorithm.
This step is initiated with a message from the IC to all

the 1IPs describing what is to follow. In this case first

“he IC will broadcast pages 4 and 3. Each IP will read the
pages (one at a time) and search for duplicates in its own
page. In the event that any duplicates are found they are
eliminated from the IP”s own page {see Section 3.3.3 for
the description of the algorithm}. Next, HMN broadcasts
its page. Hmw and IP, repeat the preceding duplicate elim-
ination step. HMN\m page is now purged of any duplicates
and can be used in the subsequent operation. HmN obtains a
page number for its output page from the IC (not shown in

the figure) since this page is a part of a new relation.

“ init

O
oL han

e
pags,

%
N e

0O
oo~

Pagey

O
o

page

0
oL han

O
oV

Figure 5.4c

188

189

The IP then switches frequency to limb A”“s channel, broad-

casts its page, and waits for an acknowledgement. After

the acknowledgement is received the IP has terminated its

part of the limb execution and informs the MC that it is

idle.

After eliminating duplicates between its page and
page, Hmw executes the same procedure. Huo is the last
processor in the group and can therefore obtain a page
identifier immediately after it has eliminated duplicates
between its page and page; . Both HMH and Hmo return to the
channel after broadcasting their page on limb A”s channel
for execution of the second phase of the algorithm. Since
the steps taken by the various processors in this phase are

the same as in the previous phase we will not show them in

a figure or describe them.

It should be noted that at the time that an IP broad-
casts 1its page to the other IPs for duplicate elimination
the IC also reads that page. The page 1is stored in the
IC’s tempgorary storage. After all the IPs have finished
executing the instruction the IC switches frequency to the
subsequent instruction”s channel and checks with its IC
whether the correct number of mmmmm have been received. 1If

not, a backup copy of each page produced exists in the pro-

ducing IC"s temporary storage and can easily be retrieved.

190

In Figures 5.5a~5.5d we show the execution of 1limb A
by a separate IC group. We stress the fact that the execu-
tion of this limb can proceed independently of and con-
currently with the execution of limb B. We assume that a
sufficient number of processors was allocated to HON for
the execution of limb A. We label the IPs executing limb A

m@m~ Hmm- and HMm in order to differentiate them from the

IPs executing limb B.

Figure 5.5a shows the state of execution of 1limb A
after the first two pages of the selected relation have
distributed to HMm and HMM but before the third page had
been sent to IPJ. IP, {executing limb B) then broadcasts
its output page. Since the IPs executing limb A are not
ready for it only Hnm will read it and acknowledge its

receipt.

Figure 5.5b shows the state of execution after all the
outer relation pages have been distributed. IP, (executing
1imb B) is shown broadcasting its page. At this time all
the IP2s executing 1limb A are ready to read it and do so.
Hnm also reads it and is the only processor to acknowledge

receipt.

Figure 5.5c shows Hnw sending an end of relation teor)
message to Hnw. This message includes the number of pages
that Hnm should have received. If the number received is

smaller than the number that should have been received H0w

191

| _ ~ _ a Pagey [_ ~ _ | eor
_ﬂw :u@ :w :m _W _Om :mu. __w. :m_ _ﬁ .
_Mum _W _mu_ _*n_ _Wu ek
0 1 2 2
A [T 1 ove
_Om __nmv :w :m _O‘_
Figure 5.5a
Figure 5.5¢
_mu _Wu. mﬂ. wmu_ _wu P
2 ° ! 2 ! __ “ _ _ status
_Om :m fu _m
ﬂ _ ﬁ ack
Ic, _m_ _m. _m. P
A Figure 5.5d

Figure 5.5b

192

193

can retrieve the missing pages from its temporary storage

and send them to Hnm.

In Figure 5.5d we show Hnm soliciting a status regqguest
from its allocated IPs. The request includes the number of
inner relation pages that each IP should have received.
Zach 1IP will respond with a message indicating whether any
page are missing. In our example, each IP will request
Page, since none of them were ready to read it at the time
it was broadcast. Other pages may also be requested due to

other problems.

At the end of this instruction execution Hnm will col-
lect the result page from the IPs, format the result rela-

tion, and send it to its destination.

. Integrity Issues

5.

ju

Operating in an MIMD environment allows a large number
of programs to access the same data "simultaneously”.
Therefore a number of mechanisms to guarantee data
integrity are required. Specifically, there must a con-
currency control monn< and means for recovery from crashes
of various components without affecting the stored data-

8

bese.” In this section we outline the mechanisms we propose

8 The issue of providing stable storage on disks has
neen addressed in the literature (see [77] for an example},
we ignore it in this discussion and focus on recovery from
the failure of processors.

194
to use in our machine.

5.5.1. Concurrency Control

A large number of algorithms for concurrency control
have been proposed in the literature. These cover a wide
spectrum, from centralized locking algorithms to distri=-
buted non-locking ones. Our concurrency control algorithm
need only apply to source relations in the database since
temporary relations are created exclusively per packet. 1In
our machine access to these relations is performed only by
the associative disks. Therefore, placing the concurrency
control function in the associative disk controller appears
to be the most logical. Clearly, in the event that a query
only references source relations that reside on a single

disk the associative disk controller will have all the

information necessary to make a decision concerning that
query. However, it is certainly the case that queries will

9

reference relations that reside on different disks, thus

our algorithm must also handle this more difficult case.

3 This brings up an interesting research question: how
should we place relations on disks? One reason for placing
relations that frequently appear in the same guery on one
disk, is to simplify the concurrency control task. Howev-
er, if these relations are placed on separate disks, a
higher degree of parallelism can be attained in the execu-
tion of the queries than if they were placed on the same
disk. In fact, the problem is to determine whether th
cost of the additional parallelism inherent in distributing
the data as much as possible is not offset by the cost of
the additional overhead incurred in maintaining the in-
tegrity of the data. Clearly, some empirical knowledge

195

We therefore must provide .a facility for communication
between the associative disk controllers. At each point in
time an associative disk will be serving at most one IC
group. The only entity in the machine that knows what each
associative disk is doing is the MC. Thus, any contact
between two associative disk controllers requires assis-
tance from the MC. Rather than having the second disk con-
troller find out over which channel it can communicate with
the first, we have chosen to implement the inter disk con-

troller communication through & "mailbox" mechanism in the

MC. This means that each disk controller will have to
periodically check its mailbox in the xn.wo

At transaction commit time the controlling IC will
send a commit message to all the disk controllers that pro-
cessed the leaf nodes in this transaction through their
mailboxes 1n the MC. Since we require each associative
disk controller to check its mailbox frequently we are
guaranteed that each of the participating disks will pro-
cess the commit message soon after it was sent. BEach disk
will vperform conflict analysis locally and send its diag-

nosis to the MC. The MC will be responsible for doing the

concerning the rate of updates to the relations, the fse-
guency of wuse in retrieval queries, the cost of messages
etc., will have to be used in making this judgement.

1

10 Recall that we require each associative disk con-
troiler to periodically check with the MC whether there are
any ICs +that need to write to it. Therefore checking the
mailbox can be done at almost no additional cost.

final analysis and informing the disk controllers of its
outcome. In the event that a deadlock situation is
detected an abort message will be sent to the disks and the

MC will have to restart the transaction.

The particular policies and algorithms used for the
above are not discussed here for a number of reasons.
First and foremost is that of a number of possible policies
it is not clear which is best suited for what type of

environment. No empirical comparisons of the various poli-

cies exist although Wilkinson [78] currently is studying a
number of these for a local broadcast network. Second,
choice of the algorithms and policy is independent of the
architecture and thus is irrelevant to the main purpose of

this thesis.

5.5.2. Recovery

In this section we consider the effects of the failure
of five component types on the operation of the architec-
ture. These are: IP, IC, mmmonwmnw<m disk controller, the
local communication network, and the MC. It is clear the
in the event that the MC or the local communication network
fail the machine cannot continue operating. Failure of a
number of IPs or ICs should not cause the machine to cease
operations, although performance will suffer. Finally,
€ailure of an associative disk controller in effect reduces

vhe amount of data that can be accessed. Thus, only

197

queries that use data on other disks can executed. OQur
description is informal and is only intended to show that
at various points during the execution of the instruction
some processor 1is able to detect the failure of another
processor and thereby abort the execution of an instruc-
tion. Clearly, a more rigorous specification is required.
However, our purpose at this stage is only to show that

failure detection and recovery from certain failures is

possible in the proposed architecture.

In general, failure detection leads to the abortion of

the entire packet which contained the instruction executed

with the faulty component. For retrieval packets (ones
that do not contain any update instructions) this seems
unnecessarily harsh. Clearly, a more elegant, though more
expensive, alternative would be to attempt to reproduce

onlv the data lost through the particular component

mwwwunm.ww This can be done if sufficient information con-
cerning the source of the data in each page is kept. It
should be noted that the amount of information per tuple
grows for each additional operation. The actual cost of
this approach needs to be investigated to determine whether
rhe additional overhead is indeed offset by the savings

accrued. Another possibility is to store some of the tem-

1 This is particularly relevant in the event of a sin-
gle IP failure.

198

porary relations at various checkpoints in the execution of
a query. Then, at recovery time execution would have to be

restarted only from the last checkpoint.

In the course of an update operation, new pages are
written to disk but not incorporated into the relation
until transaction commit time. At that point all the new
pages replace the old pages in a single atomic operation.

If an abort signal is received by the associative disk con-

troller at any time during the execution of an update
operation any new pages already written to disk (but not

committed) are simply removed.

5.5.2.1. IP failure

We consider the effect of an IP failure at three dif-
ferent points during an instruction execution: while pro-
cessing an outer relation page, an inner relation page, and
an output relation page. We show that nmaac:»nmnwo:
between processors at various points in the instruction
execution act as checkpoints, used by the contreolling IC to
determine if any of its IPs have failed. During the outer
relation pages distribution time each IP is responsible for
acknowledging the receipt of a page. Since the IC is
eavesdropping on the traffic over its channel it can assess
whether any IP has failed. When inner relation pages are
distributed, it 1is the IC”s responsibility to acknowladge

receipt. However, since after the entire inner relation

199

has been broadcast each IP must respond to the IC request
for a status report, this response can be used by the IC as

a checkpoint.

Finally, if the IC group is producing an inner rela-
zion to be used in a subsequent operation, each IP must
broadcast its output page to the IC group executing that
instruction. Before doing so, each IP must obtain a unique
identifier for its page from its controlling IC. We
require that each producing IC send the number of pages
produced to the consuming IC after all of these pages have
been broadcast. The consuming IC checks this number
against the number of pages received and can thus determine

whether any IPs have failed between the time that they

requested a page number and the time they sent their page.

[[21)

.5.2.2. IC failure

Detection of an IC failure can be performed by one of
many different components in the machine depending on the
time that the IC failed. As with the IP failure detection
we specify a number of points in an instruction execution
at which the IC is expected to communicate with some other
machine component. We require an associative disk produc-
ing a relation to send a special end of relation message
{which could be piggybacked on the last page sent) and the
IC to respond to it. The IPs can detect failure if an end

of a relation message (ocuter or inner} is heard and no

200

solicitation of a status report from the IC 1is received.
Also, if the inner relation producer is another IC group
the producing and consuming ICs must "shake hands" at the

end of the first operation,

5.5.2.3. Asscciative Disk Controller

The associative disk controller must communicate with
several IC groups and the MC. Since we require the con-
troller to periodically check its mailbox in the MC this
check can be used by the associative disk controller to
inform the MC that it is operating successfully. The con-
troller can also inform the MC at that point of -any failure
of one of the processors that is part of the associative

disk complex.

The failure of the associative disk controller can
have a more serious effect on the integrity of data than
the failure of an IP or an IC because all the page tables
of relations that are participating in active instructions
reside in its memory. Of particular importance are the
page tables of relations being updated. This problem has
been addressed in a number of studies for both a central-
jzed and distributed DBMS (see [79] for an extensive dis-
cussion). Generally, these techniques involve using a log
to record all the write actions on the database and rolling
a copy of the database out along with the log to a "safe"

storage medium. After a crash the database could bde

201

restored to a state which is known to be correct (although

it may not be the most recent correct state).

5.5.2.4. MC and communication mechanism

Integrity maintenance has been shown to be the func-
tion of the ICs (issuing commit and abort commands) and the
associative disk controllers (implementing these commands).
Although both the MC and the local network play an impor-
tant role in relaying messages between the various com-
ponents their failure will not affect the integrity of the
data because of the local logs kept 1in each associative

disk.

5.6. Summary

In this chapter we have presented our architecture.
We tegan with a discussion of the rationale of adopting the
MC-IC-I? control hierarchy. We then showed how the various

components in the machine are interconnected. We illus-

srated the operation of the machine using a sample query
and a detailed description of the steps taken by each com-
ponent during the execution of each instruction. We con-
cluded with a discussion of the actions necessary to main-
tain data wunmmnwnw and an outline of a proposed implemen-

tation.

There are several unanswered gquestions and unclear

points about the architecture. For example, can the

202

architecture be extended to allow for more than the number
of processors supported by one cable? In fact, what is
that number? The answer to the first question is a prob-
able 'yes. We believe that multiple systems of the type
described in this chapter can be interconnected in some
manner. One possibility is the use of gateways [72].

Another possibility is a multi~bus structure such as the

LENS [80].

The second question is more tricky to answer because
it requires some gquantitative information concerning the
capabilities of the various components, the expected load
on the system, etc. With the availability of such informa=-
tion a simulation of this architecture can be implemented
which will answer this, and several other questions. For
example, what should the ratio of ICs to 1Ps be? How

should relations be distributed among the various disks?

203

CHAPTER 6

CONCLUSION

(=)}

6.1. Summary of Work

In this dissertation we have presented the design of a
relational database machine. This research is different
from other work in a number of aspects though. Most impor-
tant among these 1is the design methodology employed. We
believe that past database 'machine research has been
“"architecture directed”. The lack of understanding of the
high-level operations and programs ‘to be executed by the
architecture has generally resulted in incomplete and/or

partially inefficient machine organizations.

As an alternative we offer an "algorithm directed"®
approach. Essentially this is a top down design methodol-
ogy. We advocate a careful study of the structure of all
the algorithms to be employed by the machine as well as the
structure of programs to be executed on it. Such a study
can yield some gqualitative and quantitative information
that can be used by the computer architect in designing an
architecture that is both complete and efficiently meets
the user needs. We believe that this approach is viable

for relational database machine design for a number of rea-

sons.

204

First, the underlying data structure to which opera-
tions are applied as well as the operations themselves are
well understood and not 1likely to change. Second, the
number of high-level operations supported by a relational
nmwmnwoamwcmZmAmsmnsmnmmOnmmmanmmmamoswnmvwmmmz.

This enables ‘the designer to search for algorithms that are

both efficient and yet share a sufficient number of

features in common to enable him to design an architecture
with few primitive operations. Finally, nearly all pro-
grams expressed in the various high-level relational alge-
bra languages can be compiled into the same format. There-

fore the data access patterns to the database are known.

In Chapter 3 we discuss in detail the pros and cons of
narchitecture directed” and "algorithm directed” computer
architecture research. We then go on to describe and

analyze the algorithms to be employed in the architecture.

Algorithms used by a relational DBMS can generally be
classified into four o»mmmmw depending on the underlying
primitive operation used: hashing, sorting, indexing, and
nested loops. Algorithms in all of these classes can be
generalized for use on a multi-processor. In this disser-
tation we chose to concentrate only on the parallel nested
HoovmmHQOnwn:am. wnommnmmﬂwsmwmcmmmnOHmmcnmn:m

amount of inter-processor data communications. Parallel

algorithms that employ hashing have been studied by Good-

205

man [46] for wuse in the implementation of the join opera-
tion. Friedland [55] is currently studying the use of
parallel sorting for the implementation of projections,

joins, and aggregate functions.

Hawthorn and DeWitt [3] have shown that operations
that can be implemented in linear time on a uni-processor

are best implemented by database machines that can process

queries on the fly as data is read off the disk. They have
also shown that queries that contain other operations are
best executed on database machines that process data off
the disk. In Chapter 4, therefore, we studied problems
related to the implementation of these two architecture
types in an attempt to integrate them into a single organi-

zation.

We began with a study of alternative processor alloca-
tion strategies for DIRECT. We were able to conclude that
a data-flow strategy yielded the best performance. We also
showed that for all the strategies examined (even an SIMD
strategy) the time required to process the control messages
by the back-end controller exceeded the time required by

the query processors to execute the queries.

Our second effort was targeted towards database

machines that process gqueries directly on the disk ({(associ-

ative disks). Several associative disk designs have

appeared in the literature, some differing only slightly,

206

others in major details. We felt that if such a processing
capability was to be integrated into a database machine
additional information about the organization of these

designs and their relative performances was required.

We classified associative disks into three categories
and implemented a simulation of three organizations
representing these categories. We studied the behavior of
the organizations for a benchmark of selection queries
under different database size, result set size, and data

distribution assumptions. We showed that a design based on

a processor-per-track organization outperformed the other

organizations. However, such a design is not deemed to be
implementable. Also, if index information is available
then both processor-per-head and processor-per-disk reach a
performance level comparable with the processor~per—track

design.

Finally, in Chapter 5, we described the proposed
architecture. The machine organization consists of several
instruction processors (IPs) controlled by a number of
instruction controllers (ICs). Each IC has some number of
IPs allocated to it for the duration of an instruction exe-
cution. Communication between an IC and its IPs is over a
broadcast bus that uses broadband technology to support
multiple channels, each operating at a different frequency.

Assignment of instructions, IPs, and channels to ICs is

207

performed by a single master controller (MC) processor.

The MC-IC~IP control hierarchy was chosen as a means
for avoiding the control bottleneck that DIRECT suffers
from. In this organization separate channels are used for
separate tasks. Each IC need only handle messages pertain-
ing to the instruction it controls. The MC, on the other
hand, processes only resource allocation messages. &an
additional feature of the architecture and this control
hierarchy 1is that the overall number of messages required
to oversee the execution of any single instruction was
reduced considerably from the number required by DIRECT.
In particular, requests for specific pages by each IP were
eliminated. The IC (representing the memory component)
plays a passive role in page distribution. Each IP keeps
track of those pages that it sees. Only at the end of the
instruction execution do IPs inform their controlling IC

whether they require additional pages.

The database resides on a number of mass storage dev-
ices. Each device has some number (possibly one) of pro-
cessors which perform simple operations {such as selections
and scalar aggregates) on the data as it is read off the
disk. Each such associative disk has a controller associ-
ated with it. The controller communicates with the MC and
the ICs as the need to do so arises (i.e. initiate a search

operation). It is also responsible for overseeing the

208
operation of the processing elements on the disk, collect-
ing their output, and sending it to the its destination.

Data integrity functions, such as concurrency control
and crash recovery, are handled by the associative disk

controllers with some assistance from the MC.

6.2. Contributions and Consequences of Research

We believe that the research reported on in this
dissertation makes a number of contributions, particularly
to the database machine area. By completing the
algorithm-based design of a database machine we believe
that we have made a step towards legitimizing the notion of

"algorithm directed" computer architecture research.

Of particular interest is the fact that although the
algorithms described in Chapter 3 are the same as those
used by the architecture of Chapter 5 there are several
differences between them. For example, our original
description of the algorithms assumed the existence of a

central controller. This controller assumed an active role

in controlling the execution of an instruction. Explicit
message exchanges were required between the controller and

a processor executing an operation for each page seen by

that processor. In our machine organization each instruc-
tion controller plays a passive, rather than an active,

role in an instruction execution.

209

Another important point is that the description of the

algorithms in Chapter 3 is independent of the inter-
processor communication facility provided by the machine.
These same algorithms can be, and in fact have been, imple-~
mented on DIRECT which wuses shared memory for inter-~
processor nmaa::»nmnwon. In our architecture direct pro-

cessor to processor interconnections exist.

Our argument here is that the study of the algorithms
can and should be divorced from architectural considera-
tions as much as possible. Additional work, primarily in
the design of more special purpose machines, is needed
before "full? legitimization for the approach advocated

here can be claimed.

In the process of arriving at our design we have pro-

vided a framework for comparing associative disk designs.

Our comparison of three different associative disk types
showed that the DBC approach of using moving head disks
with indexing to cut down the search space is indeed suc-
cessful. It was also shown that associative disks that
employ a standard moving head disk (i.e. the processor-
per-disk organization) also perform well if index informa-

tion is available.

Our investigation of the application of data-flow
machine technigues to database machines resulted in a

number of interesting observations. First, we showed that

210

some form of data-flow scheduling can indeed improve per-
formance. However, "pure" data-flow proved to be an unsuc-
cessful strategy because of the high inter-processor com-
munication cost incurred. In fact, we believe that this
result may be of some interest to data-flow machine

designers.

In essence the data-flow machine approach to the exe-
cution of our algorithms would be to unfold the nested
loops structure entirely. This would enable the machine to
execute the program employing the maximal degree of paral-
ielism. This form of maximal loop unfolding is employed by
nearly every data-flow machine design for the execution of
a variety of programs. Recently, Gostelow and Thomas [81]
presented the results of a simulation study of the Irvine
data-flow machine., A number of different programs (matrix
multiplication, £fast fourier transform, and others) were
simulated. It was shown that the high level of inter-
processor communication dominated the execution time of the

various programs simulated.

We believe that because two independent studies each
using a different set of problems and simulating a dif-
ferent architecture arrived at the same results, these
results are significant. Additional research into the
tradeoffs between massive parallelism and minimization of

communication costs is needed.

211

A final contribution of this research is that the pro-
posed architecture can be constructed using off-the~shelf
components. Judging from experiences with the implementa-
tion of DIRECT, which required a number of custom designed

components, this is an important feature.

6.3. Future Work

There are several avenues of research to be explored
based on this work. In this section we describe a number
of these. We begin with a discussion of research in data-

base machines and end with some points concerning data-flow

machines.

One of the problems with the description of the archi-
tecture at this time is that it is vague at points. The
difficulty is rooted in the fact that the machine organiza-
tion 1is flexible. Its structure is intended to change over
time to adapt to changing user needs. What is needed then
is a tool that would "compile" a user community”s profile
into a specific configuration. Such a tool can most likely
be designed. However, considerable experience with simula-
tion of the machine is needed in order to understand the
interactions and relationships between the component types.
For example, such a simulation would lead to the determina-
tion of the speed of an individual channel, the page size

to be used, and the ratio of ICs to IPs.

212

Two other purposes of such a simulation would be to
gain some insights into possible performance bottlenecks
and to compare the performance of this machine to others.
This latter point is of particular interest. A consider-
able body of database machine literature has appeared.
However, little of it is concerned with comparative perfor-
mance evaluation. One exception is the work of DeWitt and
Hawthorn [3,82]. Both of these papers take an analytic
approach to performance evaluation. Although both papers
raise some interesting issues and result in some concrete
conclusions it is clear that their results are limited. It
seems as though the next step in comparing the performances

of several database machines must be simulation.

Such a simulation must be designed in such a manner as
to encompass a large range of database machine architec-
tures that employ different algorithms. The input parame-
ters to the simulation must be rooted in the "real world",
that is they must be based on observed executions of pro-
grams on existing databases. The reason for using such
"r0al” data is for the evaluators of the machines to escape
criticisms of the use of biased data. Hawthorn [4] has
argued that transactions of different types will require
different types of database machines. Therefore the data
used must reflect a wide a range of transactions to deter-—

mine the suitability of the various machines to different

213

transaction types. However, data reflecting different

views of the future transaction types must also be tested.

Another interesting area of research is the study of
the use of indexing for the execution of entire queries.
In such a system an index would be maintained for each

attribute in the database. By executing a query on the

index rather than the database less processing power (and
communication and I/0 overhead) would be required resulting
in faster execution. However, the disadvantages of main-
taining the index (both in terms of storage overhead and
the increased complexity of update operations) as well as

the cost to materialize result relations must be assessed.

We have stated earlier in this chapter that we believe
that designers of data-flow machines should study the vari-
ous performance tradeoffs in general purpose data-flow
machines. of particular interest is the effect of
increased parallelism on the cost of communication. We
intuit that the results of such a study will require us to
investigate means of algorithm evaluation that would take
into account features other than degree in mmnmwwmwwma when
labeling an algorithm ‘"good". Once such tools mmnoam
available new algorithms for execution on data-flow
machines ({perhaps also for other parallel machines) can be

designed.

214

APPENDIX A

In this appendix we briefly describe the relational
algebra operations. We shall use INGRES [43] its query
language QUEL ([56] to jllustrate some of the operations.
Figure A.l contains an instantiation of the Employee rela-
tion and will be used in our examples. We group the opera-

tions into two classes: retrieval and update.

The retrieval operations are selection, projection,
join, and aggregates. A selection operation retrieves a
horizontal subset of a relation based on a simple predicate
applied to one or more of the attributes in the relation.
For example:

retrieve (emp.all) where emp.name = "Smith”
or emp.name = "Brown"

results in a new relation which contains the employee

Employee Name Dept Task Salary Manager
Relation:

Smith Toys Clerk 300.00 Johnson
Miller Shoes Buyer 650.00 Bergman
Jones Books Acct 550.00 Harris

Brown Shoes Clerk 400.00 Conners

Figure A.1: The Employee Relation

215

records of Smith and Brown.

A projection retrieves a vertical subset of a relation
not allowing for duplicate tuples. For example
retrieve (emp.dept) where emp.dept = "Shoes”
will result in a new relation containing & single tuple
made up of a single attribute (whose value will naturally

be Shoes).

A join operation operates on two input relations. The
predicate statement performs a relational operation (=, >,
etc.) between an attribute in one relation and a compatible
attribute in the other relation. A match will cause the
"jJoin"” of the two tuples to occur. For example, suppose
our database had an another relation in it containing some
information about every department. In particular, the
location of each department was specified. Then to find
the location of all the employees in the company it is
necessary to form the join of the two relations:

retrieve (emp.all , department.all) where

emp.dept = department.dept

Clearly, there are many instances where one would like
to combine the operations described above in a single
query. For example, to find the location of manager Smith
we would use the following statement:

retrieve (emp.manager , department,location) where

emp.dept = department.dept and

216

emp.manager = "Smith"
This query applies all three operations we have discussed
so far. The clause
emp.manager = "Smith"
represents the application of the restriction operation.

emp.dept = department.dept

is a join between the two relations. Finally, retrieving

only two attributes is an instantiation of a projection.

The general form of a retrieval operation is:
RETRIEVE (target_list) WHERE qual
where qual can be any number of the retrieval operations

described above joined by ANDs and ORs.

In contrast with other relational operations join,
project, etc., there is no commonly accepted set of aggre-
gate operations among existing relational database systems.
We thus discuss the operator in more detail than its prede~
cessors. We distinguish between "scalar" aggregates and
aggregate “functions". Scalar aggregates are aggregations
(average, max, etc.) over an entire relation. Aggregate
functions first divide a relation into non-intersecting
partitions (based on some attribute value, e.g. sex) and
then compute scalar aggregates on the individual parti-
tions. Thus, given a source relation, scalar aggregates
compute a single result while aggregate functions produce a

set of results (i.e. a result relation). The two types of

217
aggregates have the following form:
scalar: agg_op (agg_att where qual)
function: agg_op (agg_att by_list where by gual)
where src_gual
by list: by att-l by att-2 by ... by att-n
agg_op: sum, avg, count, max, min, sumu,

avgu, countu

The agg_att is the attribute over which the aggregate is
being computed. The aggregate operators {(agg_op above) are
self-explanatory except for those with the "u" suffix. The
“u" denotes "unique” and implies that duplicates (tuples
which match on the agg_att) will be eliminated before the

aggregate is computed.

Qualifications may be added ("where qual") to compute
an aggregate over a subset of tuples in a relation. For
aggregate functions, the partitioning attributes are speci-
fied with the by list. WNote that relations may be parti-
tioned on more than one attribute (e.g. partitioning
employees by department and task within department). Also
note that the result of an aggregate function may depend on
qualifications outside the aggregate (src_gual) (this will
be discussed in more detail later). In contrast, scalar
aggregates are "self-contained" and are not affected by the

rest of the query.

218

To understand why two different qualifications are
required for an aggregate function consider the following
example:

count .(emp.name by emp.mgr) where emp.sal > 500

This query requests a count of the number of employees

under each manager earning more than $500. However, even
if a manager does not have any employees earning more than
$500 (e.g. Johnson in Figure A.l), he should not be
excluded from the list and his count should be set to 0. If
we applied the qualification first and then computed the
aggregate function on the resuit, we would miss those
managers, since all their employees were removed by the
qualification. As another example, consider:

count (emp.name by emp.mgr where emp.mgr!="Bergman")
where emp.sal > 500

Clearly, in this case we want to include the count for all
managers other than Bergman. Thus, we need to distinguish
between restrictions on the source tuples and restrictions
on the set of possible partitions. This is why we allow
for two different types of qualifications in aggregate
functrions. Qualifications inside the aggregate (the
"by_gual"), in addition to selecting a subset of the source
relation, have the effect of eliminating unwanted parti-
tions (e.g. manager Bergman above). While gqualifications
outside the aggregate {(the "src_gual”} primarily affect the

source relation, they may have the undesirable side effect

219

of removing desired partitions (e.g. managers for whom no
employees earn more than $500) and we must correct for
this.

The second group of operations are updates. Included

in this group are delete, append, and modify. The syntax

of the update operations is:
UPDATE relation WHERE qual.

qual can be a composition of any number of the retrieval
operations (although typically it will consist of a single
selection). In the case of an append operation, the values
to be assigned to the various attributes in the relation
can be formed by the qual clause or can be supplied by the
user. A replace operation is used to replace the value of

one or more attributes in a relation.

RELATION

WA U WN

b ot e et Bt
e WoHo

APPENDIX B

TEST DATABASE

PAGES TUPLE WIDTH
27 41
36 41
40 57
34 20
28 99

5 63
12 35
7 11
8 26
20 41
38 38
40 37
40 42
10 14
9 77

220

(1]

f2]

(31

(4}

[61

{71

[8}

{9]

[10]

221

BIBLIOGRAPHY

R.H. Canaday, R.D. Harrison, E.L. Ivie, J.L. Ryder,
and L.A. Wehr, "A Back-end Computer for Data Base
Management,” CACM 17 , 10, (Oct. 1974).

CODASYL Data Base Task Group, Report, ACM, New York
(April 1971).

P, Hawthorn and D.J. DeWitt, "Performance Evaluation
of Database Machines," IEEE Transactions on Software
Engineering, (To Appear 1981).

P. Hawthorn, "The Effect of the Target Applications on
the Design of Database Machines," Proc of the ACM SIG-
MOD 1981 International Conference of Management oOf
Data, (May 1981). - -

D.J. DeWitk, "DIRECT - A Multiprocessor Organization
for Supporting Relational Database Management Sys-
tems,” IEEE Transactions on Computers c-28, &6, {June
1979). -

D.K. Hsiao, "Data Base Machines are Coming Data Base
Machines are Coming," Computer 12, 3, (March 1979).

D.C.P. Smith and J.M. Smith, "Relational Data Base
Machines," Computer 12, 3, (March 1979).

G.F. Coulouris, J.M. Evans, and R.W.
"Towards content addressing
Journal 15, 2, (February 1972).

Mitchell,
in databases," Computer

J. Banerjee, R.I. Baum, and D.K. Hsiao, "Concepts and
Capabilities of a Database Computer,™ ACM TODS 3, 4,
(December 1978).

P. Hawthorn and M.R. Stonebraker, and P. Hawthorn,
"Evaluation and Enhancement of the Performance of
Relational Database Management Systems," Proc. of the
ACM SIGMOD 1979 Int”l Conf. of Management of Data,

(1979).

[11]

[12]

[13]

[14]

[15]

[16.

[17]

18]

[19]

[20]

[21]

[22]

[23]

222

E.F. Codd, "A Relational Model of Data for Large
Shared Data Banks," CACM 13, 6, (June 1970).

S.Y¥.W. Su, H. Chang, G. Copeland, P. Fisher, E.
Lowenthal, and 8. Schuster, "Database Machines and
Some Issues on DBMS Standards,” Proc. NCC 49, (1980).

D.L. Slotnick , "Logic Per Track Device," in Advances
in Computers, ed. F. Alt,Academic Press, NY (1970).

E.A. Ozkarahan , S.A. Schuster, and XK.C. Smith, "RAP -
An Associative Processor for Data Base Management,”
Proc NCC 45, AFIPS Press, (1975).

E.A. Ozkarahan, S.A. Schuster, and K.C. Sevcik, "Per-
formance Evaluation of a Relational Associative Pro-
cessor," ACM TODS 2, 2, (June 1977).

R. Epstein and P. Hawthorn, "Design Decisions for the
Intelligent Database Machine,"” Proc NCC 49, AFIPS,
(1980) .

J.L. Parker, "A Logic per Track
IFIP Congress, (1971).

retrieval System,"

N. Minsky, "Rotating Storage Devices as Partially
Associative Memories," Proc FJCC, (1872).

B. Parhami, "A Highly Parallel Computing System for
Information Retrieval," Proc FJCC, (1972).

S.Y.W. Su and G.J. Lipovski, "CASSM: A Cellular System
for Very Large Data Bases,” Proc International Confer-
ence Very Large Data Bases, (September 1975).

S.Y.W. Su, H.B. Nguyen, A. Emam, and G.J. Lipovski,
"The Architectural Features and Implementation Tech=-
niques of the Multicell CASSM," IEEE Transactions on
Computers c-28, 6, (June 1979).

E. Babb, "Implementing a Relational Database by Means
of Specialized Hardware,” ACM TODS 4 , 1, (March
1979).

D.R. McGregor, R.G. Thomson, and W.N. Dawson, "High
Performance Hardware for Database Systems," in Systems
for Large Data Bases, North Holland (1976).

[24]

{25}

[26]

{27}

[28}]

{29]

(30}

[31]

{321
{331

[34]

{35]

223

E.A. Ozkarahan and K.C. Sevcik, "Analysis of Architec-
tural Features for Enhancing the Performance of a
Database Machine," ACM TODS 2, 4, (December 1977).

S.A. Schuster, H.B. Nguyen, E.A. Ozkarahan, and K.C.
Smith, "RAP.2 - An Associative Processor for Databases
and 1ts Applications," IEEE Transactions on Computers
c~28, 6, (June 1979).

8.C. Lin, D.C.P. Smith, and J.M. Smith, "The Design of
a Rotating Associative Memory for Relational Database
Applications," ACM TODS 1, 1, (March 1976).

P.B. Berra and E. Oliver, "The Role of Associative
Array Processors in Data Base Machine Architecture,”
Computer 12, 3, {(March 1879).

E. Oliver, "," in RELACS: An Associative Computer
Architecture to Support a Relational Data Model, Syra-
cuse University {1979).

F. Bancilhon and M. Scholl, "Design of a Backend Pro-
cessor for a Data Base Machine,” Proc of the ACM SIG-

MOD 1980 International Conference of Management of
Data, (May 1980).

H.O0. Leilich, G. Stiege, and H. Ch. Zeidler, "A Search
Processor for Data Base Management Systems,"” Proc 4th
Conference on Very Large Databases, {1978).

IBM Corporation, "IBM 3380 Direct Access Storage
description and User”s Guide,” IBM Document GA26~-
1664-0, File No. $/370-07,4300~-07 {1980).

G. Stiege, Personal Communication to D.J. DeWitt.
H. Chang and A. Nigam, "Major-Minor Loop Chips Adapted

for Associative Search in Relational Data Base," IEEE
Transactions on Magnetics mag-i4 , 6, (Nov 1978).

F. Chin and K.S. Fok, "Fast Sorting Algorithms on Uni-
form Ladders (Multiple Shift Register Loops) ," IEEE
Transactions on Computers c-29, 6, (June 1980).

K. Chung , A Study of Data Manipulation Algorithms in
Magnetic Bubble Memories , Deptartment of Computer
Science Univ of Illinois, Urbana-Champaign (June 1979)
Ph.D. Dissertation.

[36}

37}

[38}

[(39]

[40]

f41]

142]

[43]

{44]

45]

224

K.M. Chung, F. Luccio, and C.K. Wong, "On the Complex-
ity of Permuting Records in Magnetic Bubble Memory
Systems,” IEEE Transactions on Computers c¢-29%, 7,
(July 1980). -

K.L. Doty, J.D. Greenblatt, and 5.Y.W. Su, "Magnetic
Bubble Memory Architectures for Supporting Associative
Searching of Relational Databases," c-29, 11,
{November 1980). -

J.W.S. Liu and M. Jino, "Intelligent Magnetic Bubble
Memories and Their Applications in Data Base Manage-
ment Systems," IEEE Transactions on Computers ¢-28,
12, (pec 1979). -

P.K. White, "Bubble Memory Performance in System

Design ," Proceedings of the Fall 1979 Compcon Confer-
ence, {1979).

S.E. Madnick, "The INFOPLEX Database Computer: Con-
cepts and Directions," Proc IEEE Computer Conference,
(February 1979).

D.J. DeWitt, "Query Execution in DIRECT," Proc. of the

ACM SIGMOD 1979 1Int”l Conf. of Management of Data,
(May 1979). —

H. Boral and D.J. DeWitt, "Processor Allocation Stra-
tegies for Multiprocessor Database Machines,” ACM
TODS, (To Appear June 1981).

M.R. Stonebraker, E. Wong, and P. Kreps, "The
and Implementation
tember 1976).

Design
of INGRES," ACM TODS 1 , 3, (Sep~-

J. Banerjee, D.K. Hsiao, and K. Kannan, J.
and D.K. Hsiao, "Performance Study of a Database
Machine in Supporting Relational Databases," Proc.
Fourth International Conf. on VLDB. c¢-28, 6, (1979).

Banerjee,

D.K. Hsiao and J. Menon, D.K. Hsiao , and K. Kannan,
"The Architecture of a Database Computer -~ Part II:
The Design of Structure Memory and its Related Proces-
sors," Technical Report OSU--CISRC-TR-76-2, Computer
and Information Science Research Center The Ohio State
University, Columbus Ohio (July 1979).

[46]

[47]

[48]

{49]

[50]

{51]

[52]

[55]

[56]

225

J.R. Goodman, , University of California, Berkeley
(1980) Ph.D. Thesis.

J.R. Goodman and A.M. Despain, "A study of the inter-
connection of multiple processors in a data base
environment,” Proc. 1980 International Conference on
Parallel Processing, pp. 269-278 (August 1980).

H.S. Stone, "Parallel processing with the perfect
shuffle,” IEEE Transactions on Computers c-20, 2, pp.
133-161 (February 1971).

K. Oflazer and E.A. Ozkarahan, "RAP.3: A Multi-
Microprocessor Cell Architecture for the RAP Database
Machine," Proc. of the Int“l Workshop on High-level

Language Computer Architecture, (May 1980).

D.K. Hsiao and J. Menon, "Parallel Record-Sorting
Methods for Hardware Realization,” Technical Report
0OSU~CISRC~TR-80~7, Computer and Information Science
Research Center The Ohio State University (July 1980).

D.K. Hsiao and J. Menon, "Design and Analysis of Rela-
tional Join Operations of a Database Computer," Techn-
ical Report OSU-CISRC-TR-80-8, Computer and Informa-
tion Science Research Center The Ohio State University
(September 1980).

H. Boral, D.J. DeWitt, and W.K. Wilkinson, "Perfor-
mance Evaluation of Associative Disk Designs," The
Sixth Workshop on Computer Architecture for Non-
numeric Proressing, (Submitted June 1981),

H. Boral, D.J. DeWitt, and W.K. Wilkinson, "Perfor-
mance Evaluation of Four Associative Disk Designs,"
Information Systems, (Submitted March 1981).

H. Boral, D.J. DeWitt, D. Friedliand, and W.K. Wilkin-
son, "Parallel Algorithms for the Execution of Rela-
tional Database Operations,” ACM TODS, (Submitted
October 1980).

D. Friedland, , Computer Science Department, Univer-
sity of Wisconsin - Madison (1981) Ph.D. Thesis (In
Preparation).

K. Youssefi et. al., INGRES Version 6.0 Reference
Manual.

(57

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

226

D.E. Rnuth, The Art of Computer Programming Volume 1-
~-Fundamental A >Hm0npnnam (second edition), Addison-
Wesley (1973).

J.M. Smith and P. Chang, "Optimizing the Performance
of a Relational Algebra Database Interface," CACM 18,
10, (October 1975).

mu Bing Yao, "Optimization of Query Evaluation Algo-
rithms," ACM TODS 4, 2, (June 1979).

P. Griffiths Selinger, M.M. Astrahan, D.D. Chamberlin,
R.A. Lorie, and T.G. Price, "Access Path Selection in
a Relational Database Management System," Proc. of the
ACM SIGMOD 1979 International Conference of stmmmam:n
Om Data, (May 1979).

Digital Equipment Corporation , Microcomputer Hand~-
book. (1977).

D.J. DeWitt, "DIRECT ~ A Multiprocessor Organization
for Supporting Relational Database Management Sys-
tems," Proc. of the 5th Annual Symposium on Computer
Architecture, (Aprii 1978).

G.W. Gorsline , Computer Organization: Hardware /
Software,, Prentice-Hall (1980).

R.A. Lorie, Personal Communication to D. DeWitt.

M.R. Stonebraker, Personal Communication to D.J.
DeWitt.

G. Chesson, Personal Communication to D. DeWitt.

H. Boral and D.J. DeWitt, "Design Considerations for
Data-flow Database Machines," Proc of the ACM SIGMOD
1980 International Conference of Zm:mmmaman Om Data,
(May 1980).

P.J. Sadowski and S.A. Schuster, "Exploiting Paral-
lelism in a Relational Associative Processor," Fourth

Workshop on Computer Arch. for Non-numeric Processing,
(August 1978.7.

K. Kannan, "The Design of a Mass Memory for a Database
Computer,” Proc. of the Fifth Annual Symposium on Com-
puter Architecture, vanww 1978).

{70}

[71])

[72]

[731]

[74]

{751]

[761

[77]

[78]

{79]

[80]

{821

227

B. Maglaris and T. Lissack, "An Integrated Broadband
Local Network Architecture,” Proc. 5th Annual Local
Computer Networks Conference, (October 1980).

W.A. Levy and M. Rothberg, "Coaxial Cable Finds a
Home," Mini-Micro Systems 14, 3, (March 1981).

R.M. Metcalfe and D.R., Boggs, "Ethernet: Distributed
packet switching for local computer networks," CACM
19, 7, pp. 395-403 (July 1976).

N. Pippenger, "On Crossbar Switching Networks,"” IEEE

Transactions on Communications com-23, 6, (June 1975).

L.R. Goke and G.J. Lipovski, "Banyan networks for par-
titioning multiprocessor systems," lst Annual Sympo-
sium on Computer Architecture, pp. 21-28 (December
1973).

H.F. Taylor, "Multi-processor bus architecture,”
Report ERC41015.4FR, Rockwell International (June
1980).

C.S5. Chi, "Higher Densities for Disk Memories," IEEE
Spectrum 18, 3, (March 1981).

B. Lampson and H. Sturgis, "Crash Recovery in a Dis~
tributed Data Storage System," CACM, Computer Science
Lab., Xerox PARC, (Submitted 1979).

W.K. Wilkinson, , Computer Science Department, Univer-
sity of Wisconsin -~ Madison (1981) Ph.D. Thesis (In
Preparation).

J.N. Gray, "Notes on Database Operating Systems,"”
Report RJ2188, 1IBM, San Jose, California (1978).

R.A, Finkel and M.H. Solomon, "The 1lens interconnec-
tion strategy,” Proc. 1l4th Hawaii International
Conference on System Sciences, (January 1981).

Kim P, Gostelow and Robert E. Thomas, "Performance of
a Simulated Dataflow Computer,” 1EEE Transactions on
Computers C-29, 10, pp. 905-919 (October 1980).

D.J. DeWitt and P. Hawthorn, "A Performance Evaluation
of Database Machine Architectures,” Proc. VLDB-7,
(September 1981).

