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Abstract

We present and analyze several practical parallel al-
gorithms for multicomputers.

Chapter four presents two distributed algorithms for
implementing alpha-beta search on a tree of processors.
Each processor is an independent computer with its own
memory and is connected by communication lines to each of
its nearest neighbors. Measurements of the first
algorithm”s performance on the Arachne distributed operat-
ing system are presented. For each algorithm, a theoreti-
cal model is developed that predicts speedup with arbi-
trarily many processors.

Chapter five shows how locally-defined iterative
methods give rise to natural multicomputer algorithms. We
consider two interconnection topologies, the grid and the
tree. Each processor (or terminal processor in the case of
a tree multicomputer) engages in serial computation on its
region and communicates border values to its neighbors when

those values becoire available. As a focus for our investi-
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gation we consider the numerical solution of elliptic par-
tial differential equations. We concentrate on the Diri-
chlet problem for Laplace”s equation on a square region,
but our results can be generalized to situations involving
arbitrarily shaped domains (of any number of dimensions)
and elliptic equations with variable coefficients. Our
analysis derives the running time of the grid and the tree
algorithms with respect to per-message overhead, per-point
communication time, and per-point computation time. The
overall result is that the larger the problem, the closer
the algorithms approach optimal speedup. We also show how
to apply the tree algorithms to non-uniform regions.

A large-network algorithm solves a problem of size N

on a network of N processors. Chapter six presents a gen-
eral method for transforming large-network algorithms into

quotient-~network algorithms, which solve problems of size N

on networks with fewer processors. This transformation al-
lows algorithms to be designed assuming any number of pro-
cessing elements. The implementation of such algorithms on
a quotient network results in no loss of efficiency, and

often a great savings in hardware cost.
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Chapter 1 - Introduction

Three helping one another will do as
much as six men singly.

- Spanish Proverb

SHUTTLE DELAYED; COMPUTERS WOULDN’T TALK
- headline, The Capital Times
10 April 1981

Most computers consist of a single central processing
unit (CPU), a store of words, and a communications line
between them. A program”s task is to change the store’s
content in some significant way. It accomplishes this
change by passing information along the line, one word at a
time, back and forth between the CPU and store. Because of
its serial nature, Backus {[1] calls this line the "von Neu-
mann bottleneck".

The von Neumann bottleneck not only limits the speed
of ordinary computers, but also forces us to think of algo-
rithms in serial terms. In recent years, several computer
architectures have been proposed that avoid the von Neumann
bottleneck by allowing many computations to proceed simul-
taneously. Some of these architectures have been built and
are working [2,3,4,5,6,7].

We use the taxonomy of Flynn [8] to divide parallel

processors into two broad classes: MIMD and SIMD. In the

MIMD (Multiple Instruction stream, Multiple Data stream)
model, each processor is a separate computer with its own
program counter. Each processor computes independently of
all others. MIMD computers can be broken down into subc-
lasses: A multicomputer consists of several ordinary com-
puters connected only by communications lines. Arachne [7]
is a multicomputer. A multiprocessor consists of several
CPUs with shared access to a common memory. C.mmp [3] is a
multiprocessor.

In an SIMD network, a central controller broadcasts
one instruction at a time to all the processors in the net-
work, which then execute the instruction simultaneously on
their own data. Illiac IV [2] is an SIMD network.

If parallel architectures are to ever become widely
useful, we must learn how to use them efficiently. In this
thesis we investigate the use of parallel architectures in
performing certain computations. We assume throughout that
each processing unit has a private memory and is connected
by communications lines to some of the other processors.
Communication is restricted to data passed on these lines;
no shared memory exists in our model. Although we usually
assume the multicomputer model, Chapters 5 and 6 deal with
interconnection networks that may be SIMD or MIMD,

In Chapter 2 we discuss figures of merit for parallel

algorithms. Chapter 3 briefly surveys previous work in the



field of parallel algorithms. 1In Chapter 4 we present two
parallel alpha-beta search algorithms. The alpha-beta
pruning technique is used by programs that play games like
chess to speed :w the search of the tree of possible con-
tinuations. Alpha-~beta search presents a challenge to the
designer of parallel algorithms because of its inherently
serial nature: Results from searching one part of the loo-
kahead tree reduce the computation for searching another
part. If both searches proceed independently, these sav-
ings are reduced.

Chapter 5 presents several parallel implementations of
the Jacobi method. The Jacobi method is an important tech-
nique for numerically solving certain partial differential
equations such as the Dirichlet problem.

A large-network algorithm solves a problem of size N
on an interconnection network of N processors. 1In Chapter
6 we present a general method for transforming large-
network algorithms into quotient-network algorithms, which
solve problems of size N on networks with fewer processors.
This transformation allows algorithms to be designed for
certain interconnection topologies assuming any number of
processing elements.

In Chapter 7 we summarize the contributions of this

thesis and discuss areas for further work.

Chapter 2 - Judging Paralilel Algorithms

When the judge is unjust he is no longer
a judge but a transgressor.

- Phillips Brooks
Visions and Tasks

By what standards can we judge parallel algorithms?
The most commonly used gauge of a parallel algorithm”s per-

formance is speedup, which we define as:

time required by the best serial algorithm
time required by the parallel algorithm

speedup =
The running time for the parallel algorithm includes time
required for data movement. Sometimes speedup is of
overwhelming importance. For example, if a 24~hour
weather-prediction program that runs serially in 48 hours
could be made to run four times faster with a tenfold in-
crease in hardware, such a conversion might very well be
considered appropriate. Whenever someone must wait for a
program to complete, we may be willing to pay for more than
an N-fold increase in hardware to obtain an N-fold speedup.
Examples of such computations are database transactions and
work performed for interactive users.

Another criterion used to judgye parallel algorithms is

efficiency:

speedup
number of processors used

efficiency =
The use of this criterion assumes that cost is proportional

to the number of processors. This assumption is sometimes



overoptimistic, as for example in architectures that use a
crosspoint switch of complexity ZN to connect N processors
to N memories.

Sometimes the efficiency of a parallel algorithm is
greater than one, which leads us to conclude that the seri-
al algorithm to which it is compared is not the best avail-
able. For example, Baudet [9] found, for k equal to two or
three, more than k-fold speedup in performing alpha-beta
search with k processors. However, the serial algorithm
under comparison unwisely started the search with the win-
dow (~infinity,+infinity), instead of the usual narrow win-
dow. ({This algorithm is described in detail in Chapter
4.)

The designer of parallel algorithms hopes to achieve
an efficiency of one. Some algorithms achieve this (e.g.
Pease”s use of the perfect shuffle [10] to compute FFTs),
others come close (The efficiency of Batcher”s sorting al-
gorithm {11] is 1/logN), others fall short {Csanky”s algo-
rithm [12] computes the inverse of a matrix with efficiency
1/Nlogm) .

A third criterion is practicality, by which we mean
the likelihood that the required hardware will exist at
some time in the near future. Many of the algorithms re-
viewed in Chapter 3 are quite impractical. First, many of

these algorithms assume that all processors have equal and

non-interfering access to a common memory. Workable
hardware that fits this description is both expensive and
inefficient, especially when the number of processors is
jarge. (The best example is C.mmp [3], which uses an ex-
pensive crossbar switch to connect processors to memory,
and has serious probliems with memory contention.} Common
memory places a practical upper bound on the number of pro-
cessors that can be used. 1In effect, the von Neumann
bottleneck on a shared memory machine must serve many pro-
cessors instead of one. Second, many parallel algorithms

require N (or worse, sz processors to solve a problem of

size N.



Chapter 3 - Previous Research

The average Ph.D. thesis is nothing but
a transference of bones from one grave-
vard to another.

-~ J. Frank Dobie

The body of literature on parallel algorithms is ra-
pidly growing. Most of it assumes a C.mmp-like (MIMD,
shared-memory) architecture. In this section we review
previous results in parallel algorithms for sorting, numer-

ical methods, global structuring, and graph theory.

3.1. SORTING AND MERGING

Previous work in parallel sorting methods can be di-
vided into five broad categories: comparison-exchange net-
works, p-rallel tape sorting, multiprocessor methods, SIMD

methods, and vector sorting.

3.1.1. Comparison-exchange networks

A comparison-exchange network accepts N numbers on N
input lines and sorts them onto N output lines by means of

a network of comparison-exchange modules. After receiving

two numbers on its two input lines, a comparison-exchange
module always places the larger number on a particular out-

put line and the smaller on the other output line. A sort-

ing network, as we shall call it, can also be thought of as
a multiprocessor architecture with the following nonadap-
tivity constraint: Whenever two numbers xw and Nu are com~
pared, the subsequent comparisons in the case ww < xu are
identical to those in the case ww > xu~ except that i and j
are interchanged. Batcher, in one of the earliest results
on sorting networks [1l], shows how to sort N words in
{1/2)log N(log N + 1) steps with approximately ﬂw\mvwomwz
ranks of N/2 modules each. Stone [13], building on
Batcher”s work, accomplishes the same task with only one
rank of modules. Muller [14], by allowing the network to
contain AND and OR gates and single-pole, double-throw
switches, as well as the comparator modules, shows how to
sort N words in time O{(log N). Unfortunately, this scheme

uses OAZNV elements. Knuth [15] gives an excellent, but

dated, review of sorting networks.

3.1.2. Parallel tape sorting

Parallel tape sorting is a parallel version of exter-
nal tape sorting. Parallel tape sorting exploits the fact
that, after information has been placed on a tape by one
computer, the tape can be used immediately as input to
another computer. This technique is unique among parallel
sorting methods in not assuming special hardware. Given N

records, log N processors, and 4{(log N) tapes, Even [16}



gives a method that sorts the records onto a tape in time
3N-2, where it is assumed that a record can be read from

tape and written onto another tape in one time unit.

3.1.3. Multi-processor methods

Multi-processor methods use the architectural model of
many processors with equal access to a common memory. As
with most algorithms, most of the work done in parallel
sorting schemes assumes this architecture. Valiant [17]
gives an algorithm for sorting N words with N processors in
21logN*loglogN + O{log N) comparison steps. Gavril [18]
gives an algorithm that amnmmw two linearly ordered sets of
size N, with P < N processors in 2[log{(N + 1)] + (4N/P)
steps. Hirschberg [19] gives an algorithm that sorts N

words in time O(Klog N) using ZH +1/k

processors, for k an
arbitrary integer. Unfortunately, the amount of memory
necessary is MN, where the numbers to be sorted are in the
range [0,M~1]. Furthermore, memory fetch conflicts do ex-
ist. That is, the algorithm assumes an architecture that,
in one time unit, can satisfy multiple read requests to a
single memory cell. Preparata [20] improves on

Hirschberg”s algorithms by giving a family with identical

performance, but without memory fetch conflicts.

10

3.1.4. SIMD methods

Baudet [21] gives an algorithm for sorting N words on
K processors in time (Nlog N)/K + O(N). Hence, when K <<
log N, the speedup is optimal in the number of processors
used. Baudet”s method can thus be considered practical,
since performance can be boosted linearly with a small
number of processors. Thompson [22], on the other hand,

gives two algorithms for sorting ZM

words on an N-by-N
mesh-connected processor array (like the Illiac IV) in O(N)

routing and comparison steps.
3.1.5. Vector sorting

Stone [23] studies several different sorting methods
for one particular architecture, the CDC STAR computer. He
shows that although the zﬁwommzv computational complexity
of Batcher’s bitonic sorting algorithm is worse than
Quicksort”s, the bitonic sort”s good use of STAR”s vector
instructions allows it to out-perform Quicksort on vectors

of reasonable size.

3.2. NUMERICAL METHODS

In this section, we will review parallel numerical al-
gorithms that have been developed for the fast-Fourier

transform, zero-finding, adaptive quadrature, and matrix
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computations. A review of parallel algorithms for finite-

difference calculations is given in Chapter 5.

3.2.1. Fast-Fourier transform

One of the most important discoveries in algorithms in
recent years has been the fast-Fourier transform
(FFT} [24]. Pease [10] demonstrates that the perfect shuf-
fle interconnection pattern can yield optimal speedup in
the computation of the DFT. Specifically, he shows that
log N passes through N/2 multiply-add modules, alternating
with log N passes through an N-line shuffle-exchange, is
sufficient to compute the DFT of N points in time O(log N).
{We discuss both the FFT and the shuffle-exchange network
in detail in Chapter 6.)

Flanders [6] shows how to accomplish the necessary
routing for the computation of a DFT on a rectangular grid

of processors.

3.2.2. Adaptive Quadrature

Lemme [25] describes a parallel architecture for cal-~
culating finite-sum estimates of one~dimensional integrals.
The architecture consists of a tree of computers connected
by communications lines. 1In addition, all leaf processors
have Monmmm to a large common memory that specifies a queue

of tasks for each processor. These queues are managed by a

12

set of queue-balancing processors. The speedup associated
with this configuration is shown to be at least 0(N/log N)

with N processors.

3.2.3. Matrix methods

Parallel algorithms have been developed for solving
tridiagonal systems, band triangular systems, and for ma-
trix inversion and matrix multiplication.

Traub {26] and Stone [27] both consider the solution
of equations whose matrix has nonzero elements only on the
three central diagonals. Traub proposes an iterative
method, called Parallel Gauss, and shows that m processors
can solve a linear system of size m in time O(l). The
Paralliel Gauss method can be run on SIMD machines flike the
Iliiac IV), or on C.mmp-like machines. Stone [28] presents
an iterative method, called the odd-even reduction algo-
rithm, that under diagonal-dominance conditions converges
more quickly than Traub”’s parallel Gauss method.

Chen [29] considers the solution of lower-triangular
systems of equations. Chen gives direct methods for solv-
ing these systems, and shows that when the bandwidth of the
matrix is m+l (diagonals further than m away from the main
diagonal are all zero), these methods yield a speedup of

approximately p/m with p processors.
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Gentleman [30], by considering only data movement,
gives lower bounds to the parallel complexity of certain
matrix operations. 1In particular, he shows that for
machines with two-dimensional rectangular grid connectivity
{like the Illiac IV), multiplication and inversion of N-
by-N matrices inherently require O(N) steps.

Csanky [12] gives an algorithm that computes the in-
verse of an N-by-N matrix in time OAHommzv using oﬁz»v pro-
cessors. Preparata [31], by modifying Csanky”s algorithm,
shows that the same time bound can be achieved with
mzw+ﬁw\mv\ﬁwowmzv processors if multiplication of two N-
by-N matrices can be done in parallel in time O(log N) us-

ing z»\wom N processors.

3.3. GLOBAL STRUCTURING

Finkel [32] empirically investigates distributed algo-
rithms for imposing global structure on graphs. Pairing
algorithms match together in pairs as many neighboring
nodes as possible. Spanning tree algorithms select a sub-
set of the edges that provides a unigue path between any
two nodes. Finally, developing hierarchies generalizes the
pairing algorithms in two ways: First, nodes are organized
into groups of arbitrary size, rather than in pairs.

Second, these groups are then treated as nodes, to be

14

grouped into meta-groups, and so on. These algorithms as-
sume the graph to be identical to the physical network to-
pology. Moreover, information about the structure of the
graph is itself distributed: Each processor knows only of
its own immediate neighbors. These algorithms are there-
fore suitable not for processing arbitrary graphs on arbi-
trary networks, but for organizing a given physical network
as a basis for solving other problems.

Chang [33] assumes similar ground rules, and addresses
the tasks of finding a minimal spanning tree of a weighted
graph, distributing a list, and finding the extrema of a

set of nodes, given that their names obey a total ordering.

3.4. GRAPH THEORY

Most work in parallel graph-theoretic algorithms as-
sumes an architectural model of many computers with equal
access to a large common memory. Given an adjacency matrix
as input, Hirschberg [34] gives a parallel algorithm that

uses ZN

processors to compute the connected components of
an undirected graph with N nodes in time oﬂwommzv. Sa-
vage [35] presents a family of algorithms that use oﬁwomwzv
running time, and polynomial-in-N processors, to solve the

following problems for a graph with N nodes: For a con-

nected, undirected graph G, find a spanning tree, a cycle,
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a cycle basis, the bridges and bridge connected components,
and the biconnected components of G. For a connected, un-
directed, weighted graph, find a minimum spanning tree.

For a connected, directed graph, find a cycle, a shortest

cycle, the dominators, and the dominator tree.

Chapter 4 -~ Parallel Alpha-Beta Search

The axe is already laid at the root of
the trees; so every tree that fails to
yield good fruit will be cut down and
thrown into the fire.
- John the Baptist
By the Nine Gods he swore it,
And named a trysting day,
And bade his messengers ride forth
East and west and south and north,
To summon his array.

- "Lays of Ancient Rome"
Lord Macaulay

4.1. INTRODUCTION

The d-B search algorithm is central to most programs
that play games like chess. It is now well-known {36] that
an important component of the playing skill of such pro-
grams is the speed at which the search is conducted. For a
given amount of computing time, a faster search allows the
program to "see" farther into the future. 1In this Chapter
we present and analyze two parallel adaptations of the d-B

mHQOmwn:B. The first adaptation, which we call the tree-

splitting algorithm, speeds up the search of a large tree

of potential continuations by dynamically assigning subtree

searches for parailel execution.
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In section 2, we review the d-B algorithm. Section 3
discusses parallel implementations of the d-p algorithm
suggested by other workers. Section 4 formally describes
the tree-splitting algorithm. Section 5 presents perfor-
mance measurements for this algorithm taken on a network of
microprocessors. Section 6 discusses some possible optimi-
zations and variations of the algorithm. Section 7 derives
the obtainable speedup with k processors as k tends towards

Q0.

The second adaptation, mandatory work first, is a for-

malization of a method proposed by Akl, Barnard, and

poran [37]. Section 8 analyzes this algorithm. Section 9 bishop move 4

compares it with the tree-splitting algorithm. We close
with a number of suggestions for architectural design of

processor trees.

4.2. THE ALPHA-BETA ALGORITHM

Consider a board position from a game like chess or
checkers. All possible sequences of moves from this posi-
tion may be represented by a tree of positions called the

lookahead tree (Figure 4.1). The nodes of the tree

represent positions; the children of a node are moves from

that node. The root node of the tree represents the

Fig. 4.1.
current position. Since lookahead trees for most games are

18

.

Lookahead tree.
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often too large to be searched even by computer, they are
usually truncated at a certain level. Since we will later
be referring to a tree of processors, we reserve the fol-
lowing notation for nodes of lookahead trees: A node is
often called a position. A node”s child is its successor,
and its parent is its predecessor. If each interior node
has n successors, we say that the tree has degree n. The
level of a node or subtree is its distance from the root.

The o-B algorithm is an optimization of the minimax
algorithm, which we will review first. The two players are
called max and min; at the root node, it is max”s turn to
move. The minimax algorithm proceeds as follows: First,
each leaf of the! lockahead tree is assigned a static value
that reflects that position”s desirability. (High values
are desirable to max. In a game like chess, the main com-
ponent of the value is usually the material balance between
the two sides.)

The interior nodes of the lookahead tree may be given
minimax values recursively: If it is max”s turn to move at
node A, the value of A is the maximum of A”s successors”
values. If the game were to proceed to node A, it would
then be max”s turn to move. Max, being rational, would
choose the successor with the maximum value, say M. There-
fore, the subtree rooted at A must have M as its value, be-

cause M is the value of the leaf node we would reach if the
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game reached A. Similarly, if it is min”s turn to move at
a node, then the value of that node is the minimum of these
values.

We will use a version of the minimax procedure called
negamax: When it is max”s turn to move at a terminal node,
the node is assigned the same static value used in minimax.
When it is min”s turn to move, the static value assigned is
the negative of what it would be in the minimax case. The
value of an interior node at any level is defined to be the
maximum of the negatives of the values of its successors.

The negamax algorithm can be cast into an ad hoc
Pascal-like language. The following program is adapted

from Knuth [38] :

function negamax{p:position):integer;
var m: integer;
i,d : 1..MAXCHILD;
succ : array([l..MAXCHILD] of position;
begin ;
determine the successor positions
succ[l}, ..., succid];

if @ = 0 then * terminal node }

negamax := staticvalue(p)

return{m);
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The d-B algorithm evaluates the lookahead tree without

i tigatin
pursuing irrelevant branches. Suppose we are investig g

i ve we
the successors in a game of chess, and the first mo

jook at is a bishop move. After analyzing it, we decide
that it will gain us a pawn. Next we consider a queen
move. In considering our opponent”s replies to the gueen
move, we discover one that can irrefutably capture the

in-
gueen; she has moved to a dangerous spot. We need not

- tea. 3 . £ the
yvestigate our opponent”s remaining replies; in light o

worth of the bishop move, the gueen move is already

discredited.

The d-B search algorithm [38] formalizes this notion:

e . s . i er:
function alphabeta{p : position; d,B integer) integer;
var i,d @ 1..MAXCHILD;

succ : arrayil..MAXCHILD] of position;

begin N
determine the successor positions

succ{l]l, ««er succldl;
if 4 = 0 then
alphabeta := staticvalue(p)

or i := 1 to d do

o := max(d, - mw@:mumnmﬁmsaomwu. |W.|QVV“
if d > B then return{d) { cutoff }
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return(d);
end

end.

The function alphabeta obeys the accuracy _roperty:

For a given position p, and for values of d and B such that
d < B,

if negamax(p) < d, then alphabeta(p,d,B)

in

d

B

negamax (p)

if negamax(p) > B, then alphabeta(p,d,B)

Iv

if d<negamax(p)<B, then alphabeta(p,d,B)

The first and second cases above are called failing

low and failing high respectively. 1In the third case, suc-

cess, alphabeta accurately reports the negamax value of the
tree. Success is assured if d = - @ and w =, The pair

An~vv is called the window for the search.

To return to our example: When alphabeta is called
with p representing the queen move, it is min”s move. B is
the cutoff value generated by the bishop move. The better
the bishop move was for max, the lower is B. (Within the
routine alphabeta, high values for d and B are good for the
player whose move it is. A high value for d indicates that
a good alternative for that player exists somewhere in the
tree. A low value for B indicates that a good alternative
exists for the other player somewhere else in the tree.)
When the successor that captures the queen is evaluated, d

becomes larger than W. and a cutoff occurs.
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d~p pruning serves to reduce the branching factor,

which is the ratio between the number of nodes searched in
a tree of height N and one of height N-1, as N tends to .
Both theory [38] and practice [39] agree that with good
move ordering (investigating best moves first}, d-B pruning
reduces the branching factor from the degree of the looka-
head tree nearly to the square root of that degree. For a
given amount of computing time, this reduction nearly dou~
bles the depth of the accessible lookahead tree.

When the algorithm is performed on a serial computer,
the value of one successor can be used to save work in
evaluating its siblings later on. Nevertheless, greater
speed can be obtained by conducting d-B search in a paral-
lel fashion.

We will restrict our attention to parallel computers
built as a tree of serial computers. A node in this tree

is a processor, the parent of a node is its master, and the

child of a node is its slave.

4.3. RELATED WORK

In this section we review previous research in paral-

lel alpha-beta algorithms.
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4.3.1. Parallel-Aspiration Search

In order to introduce parallelism, Baudet [9] rejects
decomposition of the lookahead tree in favor of a parallel

aspiration search, in which all slave processors search the

entire lookahead tree, but with different initial le win-
dows. These windows are disjoint, and in the simplest
variant their union covers the range from - @ to + Co.
Since each window is considerably smaller than (- oo+ oo,
each processor can conduct its search more gquickly. When
the processor whose window contains the true minimax value
of the tree finishes, it reports this value, and move
selection is complete. Baudet analyzes several variants of
this algorithm under the assumption of randomly distributed
terminal values, and concludes that the obtainable speedup
is limited by a constant independent of the number of pro-
cessors available. This maximum is established to be ap-~
proximately 5 or 6. Surprisingly, for k equal to 2 or 3,
Baudet”s method yields more than k-way speedup with k pro-
cessors. Baudet infers that the serial d-pB search algo-
rithm is not optimal, and estimates that a 15 to 25 percent
speedup may be gained by starting the search with a narrow
window.

Since a narrow window does not speed up a successful
search when moves are ordered best-first, Baudet”s method

yields no speedup under best-first move ordering.
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4.3.2. Mandatory-Work-First Search

Aki, Barnard, and Doran [37] distinguish between those
parts of a subtree that must be searched and those parts
whose need to be searched is contingent upon search results
in other parts of the tree. By searching mandatory nodes
first, their algorithm attempts to achieve as many of the
cutoffs seen in the serial case as possible. This tech-
nique leads to an algorithm that we discuss in detail in

Section 4.8.

4.4, THE TREE-SPLITTING ALGORITHM

A natural way to implement the d-B algorithm on paral-
lel processors divides the lookahead tree into its subtrees
at the top level and queues them for paralliel assignment to
a pool of slave processors. Each processor computes the
value of its assigned subtree by using either serial d-B
search {if it is a leaf processor) or parallel d-B search
{if it has slaves of its own). When it finishes, it re-
ports the value computed to its master. As a master re-
ceives responses from its slaves, it narrows its window and
tells working slaves about the improved window. When all
subtrees have been evaluated, the master is able to compute

the value of its position.
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4.4.1. The Leaf Algorithm

The leaf algorithm runs at leaf nodes of the processor
tree. We will describe its interactions with its master by
means of remote procedure calls. The algorithm can also be
expressed in a message~passing or shared-memory form. The
master calls the function leafdB (iine 19) remotely. A
master can interrupt a search in progress to tell its slave
of a newly-narrowed window by invoking the asynchronous
"update” procedure in the slave (line 3). The variables d
and B (line 1) are global arrays, not formal parameters, in
order to facilitate updating their values in each recursive
call of alphabeta when the new window arrives.

Here is the leaf algorithm:

1d,p : array[l..MAXDEPTH] of integer;

asynchronous procedure update(newd, newP : integer);

3

4 { update is cailed asynchronously by my master
5 to inform me of the new window (newd,newp} }

6 var tmp : integer;

7 k ¢ 1..MAXDEPTH;

8

9

begin
for k := 1 to MAXDEPTH do

10  begin { update d,p arrays }

11 dlk] := max{d[k],newd);
12 Blkl := min(B[k],newB);
13 tmp := newd;

14 newd := -newp:

15 newB := -tmp;

16 end
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17 end;

19 function leafdB(p : position; Q.m : integer) : integer;

20 begin

21 d[1] == d;

22 BI1] := B;

23 return(alphabeta(p,1}));
24 end;

26 function alphabeta{p:position; depth:integer): integer;

27 var succ:array[l..MAXCHILD] of position; *mconmmmOnmw
28  succno : 1.,MAXCHILD; { which successor }

29 succlim : 1..MAXCHILD; | how many successors }

30 begin

31 determine the successors succ[ll, ..., succ[sucelim];

32 if succlim = 0 then return{staticvalue(p));

33 for succno := 1 to succlim do
34 begin m evaluate each successor w

35 dldepth+1l] := - Bldepth];

36 Bldepth+l] := - d[depth];

37 d[depth] := max(d[depth],

38 -~alphabeta (succ[succno] ,depth+l)};
39 if d[depth] > Bldepth] then

40 return(d[depth]); { cutoff occurs }

41 end * for succno w
42 return ({[depthl);
43 end; { function alphabeta }

4.4.2. The Interior Algorithm

The interior algorithm w:nmnMOHQW runs on interior
nodes of the processor tree. When interiordB is activated,

it mm:mmmnmm all successors of the position to be evaluated
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(line 25). Each of its slaves is requested to evaluate one
of these positions; the remaining positions are queued for
later service. Newly-narrowed windows are relayed to
slaves by use of "update" calls (line 3.

The master may take various actions when its slave re-
turns. First, if the returned value causes the current d
value to increase, then the master sends -d as an updated B
value to all of its active slaves (line 39). Second, if o
has been increased so that it becomes greater than or equal
to B, then an d~B cutoff occurs. The nonpositive-width
window is sent to all active slaves, quickly terminating
them {line 39). Meanwhile, the master empties its queue of
waiting successor positions. (In the algorithm shown
below, this effect is achieved by invoking slaves with
negative-width windows.} Third, if the queue of unevaluat-
ed successor positions is non-empty, the reporting slave is
assigned the next position from the queue,

When all successors have been evaluated, the master
returns the final value to its master. In a game situa-
tion, the algorithm at the root node might serve as the
user interface, and would remember which move has the max-

imum value.
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Here is the interior algorithm:

var own.owv : integer; * global Q.v w
q : integer; { depth of processor tree }
asynchronous procedure update(newd{, newB : integer};

H
N
u
n *:mmwnmHmnmwwmmmm%:oznouocmwwdwawawmnmn
m nOM:mOnEBWOMWUmsms5w:mos A:m£ﬂ~:mzvv w
6 begin

7 atomically do

8 begin

9 gld := max{gld,newd);

10 glp := min(glp,newp);

11 end; { atomically do }

12  parfor all slaveid do

13 mHm<mwm.c®mmnmAIQHW~|QHQV"

14 end; { update }

16 function interiordB(p: position ; Q~v" integer) : integer:

17 var succ: array[l..MAXCHILD] of position; { successors }
18  succno : 1l..MAXCHILD; { which successor }

19 succlim : 1..MAXCHILD; { how many successors }

20 tmp : array[l..MAXCHILD] of integer;

21 function g : integer:

22 begin
23 gid := «;

[o 4
24 mHv = W“
25 determine the successors succ[l]l, ..., succlsucclim];
26 if succlim = 0 then return(staticvalue(p));
27 if depth(succ[li]) < q then

28 g := M:nmmwonﬂv“

29 else g := Hmmmnv“

30 arfor succno := 1 to succlim do

31 begin

32 when slaveid := idleslave(} do

33 tmp[succno] :=

30
34 -slaveid.g(succ[succno},~glB,-gld};
35 if tmp[succno]l > gld then
36 begin
37 atomically do gld := max(tmp[succno],gld):
38 for all slaveid do
39 slaveid.update(-glB,-gld);
40 end; { if tmplsuccno] > gld }
41 return{gld};

r

42 end; { parfor succno w

43 end; m interior %

4.4.3. Alpha Raising

As an optimization of the interior algorithm, the mas-
ter running on the root node may send a special o-B window
to a slave working on the last unevaluated successor. This
window is (~d~1,-d) instead of the usual (-B,-d). If that
successor is not the best, then the slave”s search will
fail high as usual, but the minimal window speeds its
search, If that successor is best, then the smaller window
causes the search to fail low, again terminating faster.

In either case, the root master determines which successor
is the best move, even though its value may not be calcu=~
lated. By speeding the search of the last successor, the
idle time of the other slaves is reduced. (This narrow

window given to the root”s last subtree search can also be

used in serial o-B search, as discussed in the appendix.)
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We can generalize this technique in the following way,
called alpha raising: Suppose that each successor of the
root is being evaluated by a different slave, and that
mwmcmwxm current o value, QH~ is lower than any other, and
that mHm<mN has the second lowest d value, say Qm. Update
QP to Qwiw~ speeding up mwmcmw. If this update causes
mwm<mw\m otherwise successful search to fail low, then the
reported value is still lower than all others, and that

move is still discovered to be best.

4.5, MEASUREMENTS OF THE ALGORITHM

Measurements of the performance of the tree-splitting
algorithm have been taken on a network of LSI-11 microcom-
puters running under the Arachne [7] operating system.

The game of checkers was used to generate lookahead
trees. Static evaluation was based on the difference in a
combination of material, central board position for kings
and advancement for men. Moves were ordered best-first ac~
cording to their static values. General d-raising was not
employed except for the special case for the last succes-
sor.

A single LSI-11 machine searches lookahead trees at a
rate of about 100 unpruned nodes per second. Inter-machine

messages can be sent at a rate of about 70 per second.
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Only 5 processors were available in Arachne at the
time of these experiments, so it was not possible to
directly test processor trees of height greater than one.
An estimate of the speedup of a tree of height two was made
by exploiting the following fact: Since a master spends
most of its time waiting for its slaves to finish their as-
signed tasks, the speed of a master is proportional to the
speed of its slaves. One way to speed up a leaf processor
is to replace it with a processor tree of height one.
Therefore we can roughly equate the speedup of a height-two
processor tree in searching a height-x lookahead tree with
the product <o<w. where <o is the speedup of a height-one
processor tree in searching a height-x lookahead tree, and
KH is the speedup of a height~one processor tree in search-
ing a lookahead tree of height x-1.

Ten board positions, By wees Bygr were chosen for use
in these experiments. These positions actually arose dur-
ing a human-machine game; they span the entire game. All
lookahead trees from these positions were expanded to a
depth of 8.

Two sets of experiments were performed. The two dif-~
fered only in that the first set used one master and two
slaves, while the second set used one master and three
slaves. Within each experiment, <o was measured directly

for each B, by evaluating the tree both serially and with
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the parallel algorithm running on a depth-one processor
tree. Table 1 summarizes measurements of <o.

The ten board positions gave rise to 84 successors, so
84 EVALUATE commands were given to slaves while Ko was be-
ing measured. These 84 commands were saved, and times for
both parallel and serial evaluation were measured for each

command. The aggregate speedup for a group of commands is

the total time required to execute them serially divided by
the total time required to execute them in parallel. For
each ww~ the aggregate speedup KH for its subtree evalua-

tions was computed. Table 2 summarizes measurements of KH.

Table 1: <c for each wW~ i=l,...,10

2 slaves 3 slaves
minimum 1.37 1.37
average 1.81 2.34
maximum 2.36 3.15
standard
deviation 0.31 0.56

Table 2: Kw for each mw. i=1,...,10

. 2 slaves 3 slaves
minimum 1,03 1.38
average 1.46 1.96
maximum 1.77 2.60
standard
deviation 0.22 0.38
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Surprisingly, more than k-way speedup was occasionally
achieved with k slaves: Three out of the ten mw were sped
up by more than 2 with 2 slaves, and two of those three
were sped up by more than 3 with 3 slaves. Of the 84 sub-
trees of the wwm~ 4 were sped up by more than 2 with 2
slaves, and 9 were sped up by more than 3 with 3 slaves; 2
of those achieved 6-way speedup. In each such case, sub-
tree evaluations finished in a different order than they
were assigned. While one large subtree was being evaluated
by one slave, another smaller subtree was assigned and fin-
ished. The large subtree”s evaluation then received an UP-
DATE message that sped it up or even terminated it. In
fact, time-consuming searches are more likely than short
ones to receive these messages. In particular, the search

that receives the final (-d-1,-d) window is likely to be

larger than average.

4.6. OPTIMIZATIONS

Since the tree-splitting algorithm can be optimized in
several ways, it should be considered the simplest variant
of a family of tree-decomposing algorithms for d-B search.
As a first optimization, since most of a master”s time is
spent waiting for messages, that time could be spent pro-

fitably doing subtree searches. However, only the deepest
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masters could hope to compete with their slaves in conduct-
ing searches. All other masters are by themselves slower
than their slaves because their slaves have slaves below
them to help. However, more than half of all masters con-
trol leaf processors, and greater speedup should be
achieved by running a leaf algorithm along with these mas-
ters on the same processors. We might expect an additional
1.5~way speedup from this technique.

A second optimization groups several higher-level mas-
ters onto a single processor. For example, the 3 highest
processors in a binary processor tree could be replaced by
3 processes running on a single processor.

Third, a master might evaluate a position by assigning
that position”s successor’s successors to slaves, rather
than that position”s successors. Although this technigque
involves more message-passing, some advantage might result,
because all of a master”s slaves would work on finishing
the position”s first subtree before going on to the second.
The evaluation of the second subtree would then receive the
full benefit of the beta value generated by the first sub-
tree. Furthermore, when slaves become idle as one subtree
is finished, they can immediately be set to work on the
next subtree.

Since most game-playing programs must make their move

within a certain time limit, any speedup in tree search

36

ability will generally be used to search a deeper lookahead
tree. If we have an unlimited supply of processors to form
into a binary tree, we can obtain an unlimited speedup only
if the search is not limited in time. Otherwise we cannot,
because we would eventually violate our premise that the
lookahead tree is at least as deep as the processor tree.

A new layer on the processor tree does not buy another full
ply in the lookahead tree. For example, several speedups
of 1.5 would be needed to search a 6-times larger chess
lookahead tree, or about one additional ply. The depth of
the processor tree would grow faster than the depth of the
tree it searches and eventually would catch up. The only
way to avoid this limit is to increase the fan-out of the
processor tree. If the fan-out is high enough that no suc-
cessor need ever be queued for evaluation by a slave, then
the size of the maximum lookahead tree that can be evaluat-
ed within the time limit is limited only by the time re-
quired for EVALUATE commands to propagate from the root to
the leaves. Long before this limitation is reached, we

would run out of silicon for making the processors.

4.7. ANALYSIS OF SPEEDUP

We now turn to a formal analysis of the speedup that

can be gained in searching large lookahead trees as the



number of available processors grows without bound. For
this purpose we introduce Palphabeta, a simplified version
of the tree-splitting algorithm. This algorithm is in gen-
eral less efficient than the version already discussed, but
is more amenable to analysis. Much of the analysis in this
section is a "parallelization" of results of Knuth [38].
Indeed, when g = 0 and £ = 1, Theorem 1 and Corollary 1
reduce to Knuth’s results.

As before, the processors will be arratged in a uni-
form tree. Let f > 1 be the fan-out of the processor tree
{uniform for all interior nodes), and let q > 1 be its
depth (uniform for all terminal nodes). Let g + s be the
depth of the lookahead tree, where s > 1. We assume that
the lookahead tree has a uniform degree and that this de-
gree, df, is a multiple of f, where 4 is > 2. Here is Pal-
phabeta:
function Palphabeta(p:position; n~vuw:ﬁmmmnV" integer;

var i : integer;
function g : integer;
begin
determine the successSOrs Py, ««-r Pyg-
if &mmnsawwv < g then
:= Palphabeta

g
else g := alphabeta;

W OO~ U o W N

for i := 1 to d do
egin
d:=max(d, max ~g(p5r=Be—c)) s
(i~-1) f<i<i~ £

e
-
F:
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12 if d > B then returnic):
13 end;
i4 return(d);
15 end;

The f calls to function g in line 11 are intended to
occur in parallel, activating functions existing on each of
the £ slaves. Serial d-p search is activated on leaf
slaves; Palphabeta is activated on all others. Unlike the
tree-splitting algorithm, Palphabeta waits until all slaves
finish before assigning additional tasks. However, the two
algorithms behave identically when searching either a
best-first or worst—first ordered "theoretical" tree of un-
iform degree and depth. When we restrict ourselves to one
of these lookahead trees, we can therefore make conclusions
about the behavior of the tree-splitting algorithm by

studying Palphabeta.

4,7.1. Worst-first ordering

le search produces no cutoffs if, whenever the call
alphabeta(p,d,B) is made, the following relation holds

among the successors mH~ <+er Pgt

d < |:mmmamxAvHv < 4ee < l:mmmsmxAmav < B.

We call this ordering worst first. If no cutoffs occur, it

is easy to calculate the time necessary for Palphabeta to
finish. Assume that a processor can generate £ successors,

send messages to all of its f slaves and receive replies in



39

time w. {This figure counts message overhead time but does
not include computation time at the slaves.) Assume also
that the serial le algorithm takes time n to search a
lookahead tree with n terminal positions. Let a, be the
time necessary for a processor at distance n from the
leaves to evaluate its assigned position. A leaf processor
executes the serial algorithm to depth s. Thus we have

ag = ﬁmmvm. An interior processor gives d batches of as-
signments to its slaves, and each batch takes time W plus
the time for the slave processor to complete its calcula-

nwo:.evmm2m5m4m a1 < mAT+m:v. a:mmowcnwosnonzwm

recurrence relation is

ma = T ulxmonM||n +
which is the total time for Palphabeta to complete. Since
the time for the serial algorithm to examine the same tree
is Ammva+m. the speedup for large s is £9. There are
Ama+wnwv\ﬁmlwv processors, roughly mm, so when no pruning
occurs the parallel algorithm yields speedup that is rough-

ly eqgual to the number of processors used.

4.7.2. Best-first ordering

We will now investigate what happens when the look-

ahead tree is ordered best-first.
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Definition., We will use the Dewey decimal system to name
nodes in both processor trees and lookahead trees. The

root is named by the null string. The j successors of a
node whose name is 8y...3, are named by mw...mxw through

mw...mxu.

Definition. We say that the successors of a position

a;...a, are in best~first order if

negamax(a,...a_} = -negamax(a;...a_1).
1 n 1 n

Definition. We say a position aj...a, in the lookahead

tree is (q,f)~-critical if a; is (g,f)~restricted for all

even values of i or for all odd values of i. An entry ay

is (g,f)-restricted if

l1<i<g and 1< a

s £

e

or g < i and a; = 1.

Theorem 4.1. Consider a lookahead tree for which the value
of the root position is not + o and for which the succes-
sors of every position are in best-first order. The paral-
lel d-B procedure Palphabeta examines exactly the (g,f)-
critical positions of this lookahead tree.

Proof. We will call a (q,f)=-critical position a;...a, a
type 1 position if all the a; are (g, f)-restricted; it is
of type 2 i mu is its first entry not (q,f)-restricted and

n-j is even; otherwise (that is, when n-j is odd), it is of

type 3. Type 3 nodes have a, {q,f)-restricted., The fol~-
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lowing statements can be established by induction on the
depth of the position p. (Text in brackets refers to posi-
tions of depth < qg.)

(1) A type 1 position is examined by calling
[Plalphabeta(p,+ co,— ). If it is not terminal, its suc-
cessor position[s] wwm~ Por ever vmu is [are] of type 1,
and F(p) = rmAmHv # + . This [These] successor
position{s] is [are] examined by calling
ﬂwumwmzmumnmavw.u o, + ). The other successor positions
Pyr seer Pgr M©m+w. veoy mmmu are of type 2, and are alil
examined by calling _mumwm:mcmnmﬁmw~| Qsmﬁvwvv.

(2) A type 2 position p is examined by calling
[P]alphabeta(p,- «©,B), where - < B < F(p). If it is not
terminal, its successor[s] mHm. P2, ceny mm_ is [are] of
type 3, and F(p) = |mA@Hv. This [These] successor
position{s] is [are] examined by calling
mwumwvwmumnmﬁvw.lv.+ ). Since F(p) = xmﬁmwv > v. cutoff
occurs, and [Plalphabeta does not examine the other succes-
SOIS Py, «eer Pgg [Ppypr ---r Pggl-

(3) A type 3 position p is examined by calling
[P]alphabeta(p,d,+ o) where F(p) < o < + o If it is not
terminal, each of its successors P; is of type 2, and they
are all examined by calling mmgmwmrmvmwmﬁm».l o,-() . All

of these searches fail high.
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It follows by induction on the depth of p that the
{g,f)-critical positions, and no others, are examined.

Q.E.D.

Figure 4.2 shows the best-first lookahead tree of de-
gree four and depth four that is examined by Palphabeta
running on a processor tree of fanout two and depth two.
Corollary 4.1. If every position on levels 0,1, ..., g¥s-1
of a lookahead tree of depth gt+s satisfying the conditions
of Theorem 4.1 has exactly df successors, for d some fixed
constant, and for f the constant appearing in Palphabeta,
then the parallel procedure Palphabeta (along with alphabe-
ta, which it calls), running on a processor tree of fan-out
£ and height q, examines exactly

terminal positions.

1
Proof. There are mrn\muﬁmmvﬂ~@+mv\m4 sequences mw...aa+m~

with me»Mmm for all i, such that a; is (g,f)-restricted

for all even values of i. There are mﬁn\wqﬁmmvhﬁa+mv\wp

, {q,f}-restricted for all odd values

such sequences with ay

of i. We subtract £ for the sequences {1, ..., £191°%,
that we counted twice.

Q.E.D.

Lemma 4.1. Given positive constants a, b, ¢, d, and 1~

the relations
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ag = a; a: < wm + a, + amuwvasn
Uo = b; Us+w = W + cyi
€y = C# Cphs1 T mAW + U:v.

are satisfied by the sequences
(n evens) a + :A:vmmﬁuw+v+ov+wlcanu|=w.
n (n 0dd:) a + h(n-1) [d(3p+b+e) +p-b-c]-np
+ mﬁznwv\wamAT+Uv+W|Uvn
ﬂ (n even:) P + Nwmﬁsv + Aw+cvm5\w~
U: = 1y/2
ﬂ (n odd:} T + Nmmﬁs+wv + calm Y/ ;

[ (n even:) 2pg (n+2) + ca™?,
“0 7 | (n odar) 2pg(n+1) + %+Sm§+:\w"
where the function g is defined by
gn) = (@2 - ay/@- 1,
and the function h is defined by

hin) = (@2 - 1)/t - 1.

Proof. straightforward algebra.

Theorem 4.2. Under the conditions of Corollary 4.1, and

assuming also that (1) serial d-B search is performed in
time equal to the number of leaves visited, and (2) in 1
units of time, a processor can generate f successors of a
position, send a message to each of its f slaves, and re-
ceive the f replies, the total time for Palphabeta to com-

plete is
(q even:) (anls/2) ¢ (@anls/21 .,
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+ sAaVﬁmﬁwm+ﬂmmvrm\m;+Ammvﬁm\m4v+w
—apls/2lage/20 - par

(q odad:) (afyls/2d 4 anl /21 3

+ UﬁauwwHm‘uw+Ammvrm\mg+~mmvﬂm\m4v+w
lﬁmmvhm\mulammvﬂm\mgw B Wm

+ mﬁmnww\mHaAw+ﬁmmvhm\mgv+wnAamvrm\muv.

Proof. Let a s U:~ and <y represent the time required for

a processor at distance n from the leaves of the processor
tree to search type 1, 2, and 3 positions, respectively.

Then these sequences satisfy the relations
anls/2d ¢+ @nls/2t .1, a

fl

ag ntl = 1m+m:+ﬁmlwvvsﬂ

by = (@nl¥2, by =p+cy

n+l
cy Ammvﬂm\54, Cpey = 8P * B

By substituting the constant expressions for agr Uo. and ¢y

0

to find mﬂ by the formulas given by Lemma 4.1, we obtain
the desired formula.

Q.E.D.

Under conditions of best-first search, the parallel
o-B algorithm gives oﬁxw\wv speedup with k processors for
searching large lookahead trees. The next theorem formal-
izes this result:

Theorem 4.3. Suppose that Palphabeta runs on a processor

tree of depth g > 1 and fan-out £ > 1. Suppose that the

lookahead tree to be searched is arranged in best-first
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order and is of degree df and depth g+s, where d 2 1.
Denote by R the time for alphabeta to search this tree, and
by P the time for Palphabeta to search the tree. Then

LM r/p = £9/2
s =>

Proof. The time for the serial algorithm is

apltsra /2l gnltsta) /27 )
from Corollary 4.1. If we divide this quantity by the ex-
pression given by Theorem 4.2 for P, and take the limit as

s goes to oo, we obtain the desired result.

Q.E.D.

4.7.2. Discussion

The improvement that alphabeta search shows over
negamax search is due to the cutoffs it achieves. Parallel
execution tends to lose some of that advantage, since sub-~
trees that the serial algorithm would avoid are searched
before information is available to cut them off. This si-
tuation is most extreme if the lookahead tree is ordered
best-first; in this case the serial algorithm enjoys the
most cutoffs. However, our analysis shows that even in
this case, oﬂxw\mv speedup can still be expected. At the
other extreme, if the lookahead tree is ordered worst-
first, then no cutoffs are found in either the serial or

the parallel algorithm. In this case, the parallel algo-
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rithm performs no wasted work, and speedup is O(k}.

We can now compare the measurements presented in Sec-
tion 5 with these theoretical bounds. If we take <o<w to
be the speedup achieved by a processor tree of depth two,
then the measured speedup for height-two processor trees of
fan-out two and three is 2.64 and 4.59 respectively. Table
3 summarizes theoretical best-first, theoretical worst-

first, and measured speedups for processor trees of height

one and two, and of fan-out two and three.
Table 3: Speedup
q £ worst-first best-first measured
1 2 2 1.41 1.81
1 3 3 1.73 2.34
2 2 4 2.00 2.64
2 3 9 3.00 4.59

In checkers, certain simplifying assumptions used for
the analysis are not true. The lookahead tree is neither

regular nor ordered best- (nor worst-) first. Therefore,

slave processors do not finish in unison. Nonetheless, our
implementation results with checkers display speedups that
lie between the two analytically derived extremes.

Although tests with more processors should be run, these
limited results show that the formal analyses are not un-

reasonable.
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4.7.4. Random Order

Under best-first and worst-first ordering of uniform
lookahead trees, sibling slaves finish simultaneously be-
cause each slave”s pruned lookahead tree has the same size
and shape. This fact makes it possible to calculate, for a
given processor tree and lookahead tree, the exact finish-
ing time for the algorithm Palphabeta. In this section, we
analyze the behavior of the slightly weaker algorithm
Pbound (no deep cutoffs) under the assumption that terminal
values are independent, identically distributed random
variables. Restated, this assumption says that no two ter-
minal values are equal, and that any one of the n! order-
ings of the terminal values is as likely as any other.
Although the expected finishing times for sibling slaves
are identical, the finishing times themselves may be
unequal. Pbound must therefore wait for the last busy
slave to finish before assigning the next batch of tasks.
For this reason, we will not attempt to calculate the ex-
pected finishing time for the parallel algorithm under con-
ditions of random ordering of terminal nodes. We will,
however, present a "parallel®" version of Knuth”s [38]
analysis of the serial algorithm under conditions of random
order. The analyses of the parallel and serial cases both
yield estimates of the expected number of terminal posi-~

tions examined. Only in the serial case, however, does



this estimate yield a direct estimate of the finishing time
of the algorithm.

Here is parallel d-B search without deep cutoffs:

function Pbound(p : position ; limit : integer) : integer ;
var m,i,t,d : integer ;

begin
determine the successors Pyr eses mmm“
m

if mmﬁwvﬁwwv < g then fn := Pbound else fn := bound;
for i := 1 tod do
begin t := max ~fn(p.s,~m);
(i-1) f<jgi-£ 3
if t > m thenm := ¢t;
if m > limit then return(m);
end; -

Pbound is called with limit = @ on the root node of
the lookahead tree. On leaf processors, Pbound activates

the serial algorithm without deep cutoffs:

function bound({p : position ; limit : integer ) : integer ;
var m,i,t,d : integer ;
begin

ermine the successors Pyr «+vr Pgi
d = 0 then return{staticvalue(p) else

begin t = - Uoc:mA@w.IEV“
if t > m then m := t;
if m > limit then return(m);

50

return(m);

end;

Let T(d,h) be the number of terminal positions exam-
ined by bound{p,m) in a tree rooted at p of depth h and de-
gree d with randomly distributed terminal values.

Knuth [38] establishes that T(d,h) satisfies

e (@ef < Tiah) < oy,

where = and c, depend on d but not h, and £, and r, satis—

fy nwm\H: a < £y and r, £ Q»Q\H: d, for certain constants

c3 and C,- As part of the proof of this result, the ine-
quality
(a1 (L (g aHEh/2 s/1/s g g
1<ixkd 1<j<d

is established for a certain choice of s, t satisfying 1/s
+ 1/t = 1.

We begin by presenting a lemma due to Knuth and then
adapting it to our own use.

Lemma 4.2. Suppose that mw.w. . wwnw~m and Zir eenn

Nunw mnmw:mmwm:mm:nmmazmsnmmOmhwuwvmm:mAulwvwsmmvmsn
dent identically distributed random variables.

Then 1

m i1+ (5-1)/a\
i-1 )

is the probability that
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(4.2) max (min(Y eeey Y )) < min 2
1<k<i kel? 7000 Tked Ty ey K
Proof. If i = 1, the ieft hand side is - . If j = 1, the
right hand side is + co. 1In both cases, the probability
that the relation holds is 1.

Assume then that i,j > 1. Consider the minimum ele-

ment Y , over all 1<k,<i and l<t.<d. The probability
xH.nH 1 1
that it is less than min Z, is
1<k<j
(i-1)4d
({i-1)d + j-1)

Removing the elements mww‘w~ cesr wa.m from con-
sideration, we consider the minimum of the remaining Ys on
the left of (4.2), say Y . The probability that Y

_ANLUN XN~ﬁN
is less than the right-hand side of (4.2) is

{i-2)d

(ti-2)d + 3-1)

and so on. Hence (4.2) happens exactly when &x e < RHS
17"y

and mx e < RHS and ... and Mx € < RHS, so (4.2) has
2'%2 i-1f"i-1

probability

(i-1)}d(i-2)d ... 1d

((i=1)d + §=1) {((i-2)d + F=L)...(d + § - 1)
(i-1) 1 ((3-1)/at

(i-1 + (3-L)y/a)!

Awuu + {j-1)/4a\
i-1

/
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Q.E.D.

Lemma 4.3. (Corollary to Lemma 4.2): If MH 11 ey
14
wawnwvm~mm and NH~ casy NAuuwvm are independent sequences

of ((i-1)f)df and (j-1)f independent identically distribut-

ed random variables, then the probability vww that
max min Mx m < min Nw
1<k<(i~1)f l<m<df ™’ 1<k<(3-1) £
is
1
P.. =
H A:Em + :.,:EV
{(i-1) £

Proof. This Lemma is simply Lemma 4.2 with a change of

variables.

Substitute: daf for
(i-1)f + 1 for
(i=1)f + 1 for

e e Q0
~ =

Q.E.D.
Since the simple formuia k* is always within 12% of

le+x
k-1 v‘

for 0 < x < 1 and k a positive integer [38], we will ap~

proximate wwu by
(4.3) Pjy = ((=1)F + 1y~ 3-1/d
Theorem 4.4. Let T(d,f,h) be the expected number of termi-

nal positions examined by the parallel d-B procedure

without deep cutoffs on a processor tree of degree f and
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height h in a random uniform lookahead tree of degree 4f
and height h. Then
T(d,£,h) < £ c(d, ) r(d,n"

where r{d,f} is the largest eigenvalue of the matrix

C\@HH 12 « e = A\mvuvﬁ

vPq1  Pgp -+ - VPag

and c{d,f) is a constant. The gquantities p in zm g were
r

ij
defined in Lemma 4.3.

Proof. As before, assign Dewey decimal names to the posi-
tions of the lookahead tree. Define the functions

[(n-1)/£] + 1

G(n)
and

H{n)

i

Lin=1)/£]f + 1.
The nth successor position is a member of the G(n)th batch
of successor positions to be assigned to slaves. The first
member of that batch is the H(n)th successor position.

When Pbound examines position aye.eay g "limit" is

min :mamamxﬁmw...m xv~
1<k<H *WBIH@

SO its successor ag...ap is examined if and only if

Ay... i camine 4
1 a._1 is examin d an

-min  negamax({a;...a_ ,k)
l<k<H (ay) 1 el
< min negamax (a4 ...a__ok)
1<k<H(ay_ ;) 1T w2
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Abbreviate this inequality by Po- Then ay...ay is examined
if and only if mw. MN~ ..sy and w: hold. ms holds with
probability @wu~ where i = mAmB|HV and j = oamav. Further-

more, ws is a function of the terminal values

mnmnpacmwcmﬁmp...manwuxva+w...dzv
for

HMuAmﬁmsndv and all 0 < k, b < df
or =

= mAmB:HV and waAmﬁmav and all 0 < b < df.

3
Therefore ma is independent of MH. ceay maam. Let x be the

probability that wH...mr is examined. Then we have {assum-

ing, without loss of generality, that h is odd)

¥ < Pga;)6(a,P6(a5)6(a,) *** Po(a,_,)G(a,_;)
and

¥ < Pg(ayGlam)Pe(ay)elag) ** Pela,_;)G(ay
Thus

* < VPg(a;)6(a,) VPG (ay) G ay Tt YPG(a,_j)Glay)
(for even or odd h).

Hence the expected number of terminal positions examined is

less than

—

vp VP ...m
PR N L PMCTCTIE R R AL TENP LI

S
= f mu 4\@ . L\@
l<a;, 75,828 ajaz "aa3 ah-12h

&) MH ¥Pa s Y w, mm vp

1<a;<d  1<E,<d 2 1<a,<d 155, <d ap_13y’

i
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: : h
which is £ nw.:. where the sequences 0w.=~ 1 <ix<d, are
defined by
nw.o =1 forl<ixgad
(4.4) c. = MH ;2C i
i,n+l e (@quu.s. for 1 < i g 4.

e

Now define generating functions aw~ for 1 < i £ 4, as

follows:

OM..ANV = M c 2"

n>0 i,n
Then (4.4) is equivalent to

C;lz} -1+ M VP

..Nouauv for 1 < i < d.

1<jcd -7
Set C(z) = AOHANV...nmmnvwe~ and define the matrix
z ¥p z vp e e . .z VP
11 12 1d
2z QMNH z Q@mm P 4 (Umm
Z = . . .

. - .

z i@mw z K@mw e e . . Z Q@mm .
T

Then (-1 -1 ... =1) (2-I)C, where I is the identity ma-

trix. By Cramer”s rule, OHANv = U(z)/V(z), where U and V

are polynomials defined by

-1 Z YPya « + « Z VP
12 1d
-1 z vpas -1 . .z P
U(z) = det . .22 .
-1 z ﬁvmm P 4 «@mm -1

and V(z) = det(Z ~ I).

Note that r is an eigenvalue of zm £ if and only if 1/r is
14

a root of V(z). Since OHANV is a quotient of polynomials,
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it can be represented [40] as

—
c (z) = [_ G {1/(2-B})).
1 1<k<n k k
where ww- ceer m: are the distinct roots of V, and mw. veer

ns are polynomials such that the degree of mw is the multi-

plicity of Ww.

Every matrix of real, positive elements possesses One
positive eigenvalue of multiplicity one that is strictly
larger, in absolute value, than all the other eigen-
values [41]. 3m~m is positive; let Lir i=1l, ...y, n, be

its eigenvalues, with ry the largest. If the eigenvalues

= H\mw~ weey L _ T w\mz of zm~m are distinct, we have

ty n

Cy(z) = E + MH e./(z-1/1;) E + MH -e.r,./{l-2r;)
1 1<7<d i i 1<1<d iti i’

T e
E + [_ lmwnwnw z .

n>0 1<ix<d

i

. . _ h
Since £y is the largest of the Liv ow.s = oﬁnwv. If the
eigenvalues of 3@ ¢ are not distinct, the representation of
14
OHNNV involves polynomials of degree higher than one. Even
so, the linear term containing ry still dominates.

Q.E.D.

Lemma 4.4. Suppose the real-valued sequence a;, a,r 3¢

... obeys the rule

mn < 2nm ¥ %n mn = ;2,30

Then the sequence mH\H. mm\w~ mu\u. ... either diverges to

a

- 0o or converges.
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Proof. It suffices to consider the case where the 1im inf,
d, of the second sequence is finite. Let € > 0, and choose
m such that ma\a <o + €. Since every integer n can be ex-

pressed as n = gm + r with 0 < r < m, we have

= < ga_+ a_.
3, = Bgmir = 9Cp r
hence
a a ga_+a a am a
n_ _ gmr__ . m__I =0l 4 JE
n gqm+r qm+r m qmtr n
hence
a gm a
r
B = € - B T L
n gm+r n
hence lim sup ms\: =d
n->+o
and so lim a./n =d.
n
n -> + o
0.E.D.

pefinition. Let T(d,h}) be the number of terminal positions

examined by a given algorithm in a lookahead tree of degree

d and height h. The branching factor of T is

1im T(d,h) /D,
h ->®

if the limit exists.

Theorem 4.5. Let T(d,f,h) be as defined in Theorem 4.4.

Then the branching factor of T,

(4.5) B = lim T(d,h, 5P,
h -> oo

satisfies
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ik M7 W

log df log d
for certain constants C3:Cy > 0 independent of 4 and f.
Proof. Since eﬁm~rwsmve~m~=w.mv is the number of positions
that would be examined by Pbound if "limit" were set to +
for all positions at height rw in a lookahead tree of depth
h

+ UN. we have e~m~=H+sm.mv w eﬁm~rp.mweAm~3m~mv. Hence

1
by Lemma 4.4 applied to log T(d,h,f), the limit in (4.5)

exists.

Lower bound: The parallel d-B routine without deep cut-
offs, Pbound, examines at least as many nodes as its serial
counterpart, bound, since each "1limit" in the parallel case
is greater than its counterpart in the serial case. As
mentioned above, Knuth has proven that the branching factor
of the number of terminal positions examined by bound in a
tree of depth h and degree df is greater than or equal to

mmow\womﬁmmv.

Upper bound: Let s and t be positive real numbers with i/s
+ 1/t = 1, and let E be an eigenvalue of the matrix A =

Amwwv. Suppose Ax = Ex. Then

2] L g 0o L] La
i i j
MAMHAMHTM.
i 3

.m\{\mAMTm.._ ys,
J 3 3

by Holder”s inequality;

s ,1/s
i3%51 )




hence mm~ < AMH AMH wmn _ ys/t)1/s,

We will use this inequality to show that r(d4d,f)

A

o»m\wom d, for a certain constant cy and for r(d,£f) as de-
fined in Theorem 4.4. Let mww = &@wu~ E = r{d,f), and use
approximation (4.3) for mMu. For all s and t such that 1/s

+ 1/t = 1, we have

rdH < ()« Y ((i-b genmt((GT1/2d) s/t 178

lgigd 1gi<d
T e((ie
< M () gmtliEen/2a) ys/t ) 1/s
l<ix<d 1<j<d

in

o»m\ws d, for a suitable s, t, and Cyr by (4.1}.

Theorem 4.4 and this upper bound for r(d,f) give us the
desired upper bound on the branching factor.

Q.E.D.

Theorem 4.5 deals with lookahead trees that are the
same depth as the processor tree that searches them. In
the next theorem we extend the analysis to the more general
situation in which the lookahead tree can be deeper than
the processor tree.

Theorem 4.6. The expected number of terminal positions ex-
amined by Pbound in a random uniform game tree of degree df
and height g+s, evaluated by a processor tree of degree 4
and height g, where d > 2, q > 0 and £ 2 1, is asymptoti-

cally less than
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cg(d,£) £ r(d,H) ry@n)®,
where r(d,f) was given upper and lower bounds in Theorem
4.5, and ry satisfies

dfc, dfc,
mmmm=Ee < rg {df) g —momemeee

log (df) log (df)
for the constants cq and cy appearing in Theorem 4.5, and
where om«m.mv is a constant independent of g and s.
Proof. Since the values of the positions assigned for
evaluation to leaf processors have random values, Theorem
4.4 implies that the number of these positions P satisfies
P < cld,f) £2 r(a,nH9.
‘Theorem 4.5 tells us that r(d,f) satisfies

deg dc
————zeem < r{d,f) £ -m——m—-

log{df}) log 4

If we set "limit" at level g of the lookahead tree to
+ oo, then each leaf processor evaluating one position at
level g would examine less than omﬁmmvnwﬁmmvm terminal po-

sitions {38], where nwﬁmmv satisfies

nnnnnnn < ry(Af) < =m=="am

and nuAmmv is a-constant independent of s.
The result follows with c.(d,f) set to nﬁm.mvowﬁmmv.

Q.E.D.
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4.7.5. Discussion of Theorem 4.6

In searching a lookahead tree of degree df and height
g + s, the serial algorithm examines, on the average, at
least
qg+s
mmOu
terminal nodes, where <y depends only on df and Cq is a
constant. The parallel algorithm examines less than
de, \@ afe, \°

£4 4 4_
log 4 log (4f)

(4.6}

s
terminal nodes on the average.

Under best-first and worst-first ordering, the finish-
ing time for Palphabeta can be accurately estimated by di-
viding the amount of work to be done by the number of work-
ers (terminal processors). This method of estimation is
somewhat optimistic when applied to Pbound or the Tree-
Splitting Algorithm under random ordering, because in
Pbound a master waits until all successors in a batch of £
have been evaluated before assigning the next batch, and in
both Pbound and the Tree-Splitting Algorithm a master waits
until the last successor is evaluated before receiving
another position.

While we await more powerful methods, let us make the
estimate anyway. Dividing (4.6) by the number of terminal

processors, mn. gives us
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q s
. mnn mmnb
5 log d log(d£)
as the finishing time, and so the speedup would be at least
s+q q

‘(3 ga (1098
Cg Cy log (4f) .

The factor Anw\oavm+a

appears in this expression be-
cause we used an optimistic bound for the serial algorithm
and a pessimistic bound for the parallel algorithm. We can
most likely remove it. The resulting expression is of ord-
er

f log d g

log 4@ + log £

Recall that speedup under worst-first ordering is of order
£4

r

and by Theorem 4.3, speedup under best-first ordering is of

order
£9/2,

Speedup under both random and best-first ordering is clear-
ly less than speedup under worst-first ordering. Speedup
under random ordering is asymptotically greater than speed-

up under best-first ordering whenever

...... ————e > Vi

i.e. whenever
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a > g\VE-1

4,8. MANDATORY-WORK-FIRST SEARCH

Under best-first ordering of the lookahead tree, Pal-
phabeta achieves only oaxw\wv speedup with k processors.
The cause of this inefficiency is clear: As Palphabeta
evaluates group after group of children, if one of the
children in the group is sufficiently good to produce a
cutoff, then all of the work performed on its younger si-
blings within that group is wasted. If the tree is ordered
best-first, all slaves but the first perform needless work.
The serial algorithm, under the same ordering, avoids
searching these younger siblings.

This section investigates an approach to avoid this
extra work in a parallel alpha-beta algorithm. This ap-
proach exploits the "mandatory-work-first" distinction
first proposed by Akl, Barnard and Doran [37}. By using
this distinction to explicitly schedule node evaluations
within a tree of processors, we produce a distributed algo~-
rithm whose finishing time can be calculated for a given
regular processor tree and a given best-first or worst-
first lookahead tree. This calculation will show that

speedup obtained is "almost optimal™ in the number of pro-~
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cessors used, in a sense that we will make clear later.

The algorithm, which we will call "mwf" as short for
"mandatory-work-first", is a parallelization of the serial
alpha-beta algorithm without deep cutoffs. We briefly re-
view that algorithm, called bound:

function bound({p : position; limit : integer ) : integer;
var m,i,t,d8 : integer ;
begin

determine the successors Pyr ---r Pgi

e
if @ = 0 then return(staticvalue(p)) else

begin m := - oo
for i :=1 to d do
begin £ = - Uocamﬂww.lsvw
if t > m then m := ¢;
if m > limit then return(m);
end;

return(m);

end;
end;

Bound misses some cutoffs achieved by alphabeta, but not
.Bmsm. Under best-first ordering, the tree searched by
bound (p,0) can be described as follows {(Figure 4.3): All
nodes searched are either type 1 or type 2. The root node
is type 1. The first child of a type-1 node is type 1: the
remaining children are type 2. The first child of a type~2
node is type 1; the remaining children are cut off. As

Knuth and Moore show [38], the branching factor of the tree

just described is



Tree searched by bound.

65

66

@- 382+ 1/,
while the branching factor of the alphabeta tree is

mw\w
under the same conditions of best-first ordering and uni-
form degree d.

We now define mwf; under best-first ordering, it will
examine the same nodes as "bound". As in the serial algo-
rithm, mwf evaluates a type-1 node by recursively evaluat-
ing all of its children. Type-2 nodes are only partially
evaluated; if necessary, they are later completely re-
evaluated. In evaluating X, a type-2 node, mwf will tenta~-
tively predict that its second and later children will be
cut off. Only the first child of X is evaluated (complete-
ly, since it is type 1}, providing a lower bound for the
negamax value of X. Later, when the evaluation of ¥, the
oldest (therefore type-1) sibling of X, is completed, Y’s
value is compared with X”s lower bound. If Y’s value is
not higher than X“s lower bound then the prediction was ac-
curate, and the other children of X need not be evaluated.
If ¥'s value is higher than X”s, then X, which has been
partially evaluated, must be re-evaluated. X’"s evaluation
is resumed where it left off, and its remaining children
are evaluated until all are evaluated or a cutoff occurs.

There are several ways to map this algorithm onto a

tree architecture. We will choose a fairly straightforward
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implementation and suggest modifications later. We will
content ourselves with an algorithm that is accurate, if
not quick, when moves are not ordered best-first. (If we
only insist that the algorithm be accurate when moves are
ordered best~first, we could cheat by always picking the
first move.) 1In particular, mwf will simply use the rou-
tine intended for evaluation of type-1 nodes when re-
evaluating type-2 nodes, even though more sophisticated
re-evaluations are possible.

The algorithm uses three functions. "Mwfl(p)" is
called on the root node and other type-l nodes. The posi-
tion p is to be evaluated. "Mwf2(p)" is called on type-2
nodes. The position p is to be partially evaluated.
"Mwfl{p)" is called on positions p that need to be re-
evaluated. "Alphabeta" is the serial alpha-beta algorithm
with deep cut-offs. It is used by terminal processors to
evaluate nodes assigned to them. We assume a processor
tree of height g and fanout f£. The lookahead tree is of
height g+s and degree d. The processor descriptors 1
through 4 denote the d slave processors. If p is a proces-
sor descriptor, then "p.fn()" denotes a remote call of the
function "£n" on processor p. Here is the mandatory~work-

first algorithm:
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1 function mwfl(position p) : integer ;
2 var i,d : integer ;

t : array[l..f] of integer:

j : processor ;
begin

if I am a leaf processor then

w

determine the successors ww~ seer Pgi

parfor i := 1 to 4 do

10 when a slave j is idle do

4
5
6
7 return(alphabeta(p,- co,+ ) );
8
9

[
=
[

if i = 1 then t[i] := - u.BSmwmmwv"
12 lse
13 mwfl = t{1];
14 parfor i := 2 to 4 do { re-evaluate if needed }

o

t[i] = - J.mwE2(py):

15 begin

16 when a slave j is idle do

17 if t[i} > mwfl then

18 begin

19 tli] := - u.azmwﬁvwv"
20 begincrit

21 if t[i] > mwfl then mwfl := t[i];
22 endcrit;

23 end;

24 end;

25 end;

Several constructs in mwfl need explanation: First, the
construct parfor (lines 9 to 12 and 14 to 24) denotes a
parallel for-loop. Conceptually, a separate process is
created for each iteration of the loop. After all of the
processes have completed their iteration, the program con-

tinues as a single process at the next statement after the
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parfor loop. Second, the construct "when <CONDITION> do

<BODY>" (lines 10, 17) is similar to "await" in conditional
critical regions [42]. The process pauses before <BODY>,
proceeding only when <CONDITION> becomes true. This combi-
nation of blocking and parallel for-loop implements a queue
of positions with the slaves as servers. Third, the con~

struct "begincrit <STMT.LIST> endcrit" denotes a critical

region. Only one process is allowed inside the critical
region at a time. The use of a critical region (lines 20
to 22) ensures that the comparison and assignment of mwfl
is an atomic operation. The function mwfl calls mwf2 re-
motely (line 12). Here is mwf2:

function mwf2Z({p : position) : integer ;
pl : position;

begin

generate the first successor position pl;
mwf2 1= - BSmwAmHv"
end;

4.8.1. Best-First Order

We now analyze the finishing time of mwf under best-~
first ordering of the lookahead tree. Define a(i,]j} to be
the finishing time of mwf in evaluating a type-1 node of
height j (in the lookahead tree) on a processor tree of
height i and fanout £. An interior processor evaluates a
type-1 node by assigning the node”s children to its slaves.
The 8-1 type-2 children are partially evaluated on these

slaves by evaluating their type-1 children. If performed
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by one slave, these evaluations would therefore take time
a(i-1,3~1) + (d-1)a(i-1,3-2),

not counting message~-passing time. With f slaves to do the

work, the best time would cut this figure by a factor of f.

The worst time occurs if with one type-2 position left in

the queue, all f slaves finish their current task simul=-

taneously, and only one can be assigned the final task.

The finishing times would be
a{i-1,3-1) + (d-l)a(i-1,i=-2)
£

+ m

in the best case and
af(i-1,3-1) + (d+f-2)a(i-1,j-2)
£

+ m”
in the worst case, where m and m” denote message-passing
times. Although m and m” depend on 4 and f, they are in-
dependent of i and j. At the terminal processors, a type-1
node is evaluated with serial alpha-beta search with deep
cutoffs. Hence

a(0,4) = 2a3/2,
To solve this two~dimensional recurrence relation, we need
the following lemma. We omit the proof, which involves
straightforward algebraic manipulations.
Lemma 4.5. Suppose the two-dimensional sequence a(i,3)

obeys the recurrence relation

a(i,j) = M(a(i-1,3-1) + Na(i-1,3-2)) + K,
and that
a(o,4) = aal’/?,
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where M, N, K, and A are positive real numbers. Then

M+MN) T-1

~1/2.1 , (
AR e

ati,§) = amia317/2(1 4 yq

This lemma allows us to prove the following theorem.
Theorem 4.7. Suppose that mwf runs on a processor tree of
depth g > 1 and fanout f£. Suppose that the lookahead tree
to be searched is arranged in best-first order and is of

degree d > 2 and depth g+s, where s > gq. Let X be the fin~-

ishing time of mwf. Then
- q_.
x 2 2(1/5) %% 21+ @-na" V39 4 peld) 1)

and

2 q.
x < 2(1/6)96%/% (144239 + preld mwm 1)
Proof. For the first inequality, substitute

1/f for M,

d-1 for N,

m for K,

2 for A,

g+s for j, and

g for i
in the formula given by Lemma 4.5 for a(i,j). For the
second inequality, substitute

1/f for M,
d+£-2 for N,
m” for K,

2 for A,

q+s for j, and

q for i
in the formula given by Lemma 4.5 for a(i,j).

Q.E.D.
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Now that we have calculated the finishing time of the
parallel algorithm, we can express the speedup in terms of
the number of terminal processors.

Corollary 4.2. Under the assumptions of Theorem 4.7, and
under the additional assumption that s >> g, the speedup S
of the mwf algorithm with P terminal processors satisfies

H:Hsmﬁw+mlw\m+ﬁm»~vacwv w-w:map+mxwxmlm-wv
p <s <P

Proof. For the lookahead tree under consideration, Corol-
lary 4.1 (Section 4.7.2) says that the finishing time for
the serial alpha-beta algorithm with deep cutoffs is ap-
proximately

2g(sta) /2
If we divide this quantity by the bounds given on the fin-
ishing time given by Theorem 4.7 {(Section 4.8.1), and take
the limit as s goes to oo, we obtain the desired result,

Q.E.D.

As d increases, the speedup approaches P, the number
of terminal processors. Hence we use the term "almost op-

timal" to describe mwf under best-first ordering.

4.8,2. Worst-First Order

We defined worst-first order earlier as a particularly
poor ordering of the tree under which the serial alpha-beta

algorithm achieves no cutoffs. We now analyze the finish-
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ing time of mwfl under the assumption that the lookahead
tree is arranged in worst-first order. Mwfl running on a
processor P evaluates a node N by queuing N”s children for
evaluation on P”s slaves. N”s first child is evaluated
with mwfl, and the others are partially evaluated with
mwf2. When partial evaluations are finished, mwfl discov-
ers it must re-evaluate each of N”s d-1 younger children.
These children are queued for re-evaluation by mwfl on P’s
slaves. In all, we have d invocations of mwfl and d-1 in-
vocations of mwf2. As in the best-first ordering of the
lookahead tree, the £ slaves can finish most quickly by
finishing their last assignments simultaneously, or most
slowly by finishing simultaneously with one more task to be

performed. The finishing times would be
da(i-1,3i-1) + (d-1)a(i-i,j-2)
t

+m

in the best case and
(@+f-La(i-1,3-1) + (d-1a(i-1,3-2) o
£

in the worst case. A terminal processor evaluates its as-
signed nodes with the serial alphabeta algorithm. We as-
sume that the serial algorithm evaluates a tree in time
equal to the number of leaf nodes on the tree. Hence
a{0,3) = mu. With these recursive relationships, we can
use Lemma 4.5 to calculate bounds on the finishing times
and speedups for mwfl under worst-first ordering.

Theorem 4.8. Suppose that mwf runs on a processor tree of
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depth q > 1 and fanout f£. Suppose that the lookahead tree
to be searched is arranged in worst-first order and is of
degree d > 2 and depth gts, where s > g. Denote by X the

finishing time of mwf. Then
a_
x> /63351 + (a-1)/a% 9 + meldlEd)

and

q_
X < ((@+£-1) /)98 (14 (@-1) /((are-1yan + m7 LB

Proof. For the first inequality, substitute

d/f for M,
{d-1)/d4 for N,
m for K,

1 for A,

a2 for a,

gt+s for j, and
g for i

in the formula given by Lemma 4.5 for a{i,j). For the
second inequality, substitute

(d+£f-1) /£ for M,
(d-1) /(d+£-1) for N,
m” for K,

1 for A,

mm for d,
g+s for j, and

q for i

in the formula given by Lemma 4.5 for a(i,j).

Q.E.D.

Corollary 4.3. Under the assumptions of Theorem 4.8, and
under the additional assumption that s >> q, the speedup S

of the mwf algorithm with P terminal processors satisfies



75

1-1n, (1+£d”1-d72) 1-Ing(1+d71-a7%)

P <S8 <P
Proof. For the lookahead tree under consideration, the
finishing time for the serial alpha-beta algorithm with
deep cutoffs is the number of terminal nodes, which is
gs+a_
If we divide this quantity by the bounds given on the fin-
ishing time given by Theorem 4.8, and take the limit as s
goes to oo, we obtain the desired result.

Q.E.D.

4.8.3. Other Orderings

Mwf is deficient in ways that the analysis above does
not reveal. First, the re-evaluation of a partially
evaluated node searches all the node”s children, even
though the first child has already been evaluated. A more
sophisticated mHQOnwwra would resume the search at the
second child. This deficiency does not appear under best-
first order because no nodes are re-evaluated, and does not
significantly affect the algorithm”s performance under
worst-first order because the re-evaluation involves d
times as much work as the partial evaluation. Second, mwf
does not attempt to pass d-B values to recursive calls on
itself, even when these windows are available. This defi~
ciency is insignificant under best-first order because mwf

"predicts” all shallow cutoffs that such values could pro-
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duce. Under worst-first order, cutoffs are not possible
and so windows are useless.

These deficiencies occur in the murky area between
best-first and worst-first ordering of uniform lookahead
trees. The only other "benchmark" lookahead tree available
for theoretical treatment is the tree of uniform depth and
height with randomly distributed terminal values. But as
we have already seen, analyses assuming random ordering are
fairly difficult. Further research in this area might be
directed toward creating other analyzable orderings of
lookahead trees. For example, one might consider a looka-
head tree that is originally randomly ordered. As it is
being searched, however, heuristics are applied that suc-
cessfully reorder best branches first in a certain percen-
tage of cases. By making this percentage a parameter, an
analysis might be able to model practical situations.

Mwf is a parallelization of the serial algorithm
without deep cutoffs. A parallelization of the serial al-
gorithm with deep cutoffs might be possible. Such a paral-
iel algorithm would likely be more complicated than mwf,

but might be more efficient.
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4.9, COMPARISON OF PALPHABETA AND MWF

We have now analyzed two different parallel alpha-beta
algorithms, Palphabeta and mwf, under conditions of best-
first and worst-first ordering. In each of the four possi-
ble (algorithm, ordering) combinations, we have derived a
formula representing the speedup gained with P terminal

processors. Table 4 summarizes these formulas.

ordering of Lookahead Tree

Best-First Worst-First
Palphabeta: mw\m - P
mwf:
~-1/2 .~1 - w+mlwlmxm,
- 1+d -d ) 1-1n_( }
upper bound mH H:mh P £
-1/2 -1 _ mm|w|a|wv
- +d +(£-2)d 7) 1-1n_ {1+
lower bound mH wsmﬁw ( P £

Table 4. Speedup in Parallel Alpha-Beta Search

The speedups for mwf depend on d, the degree of the looka-
head tree, and £, the fanout of the processor tree. It is

instructive to substitute actual values for d and £. For

example, the average number of moves from a position in the

game of chess is about 38. For a best-first lookahead tree

of degree 38 and processor tree of fanout 2, Corollary 4.2

predicts that speedup for mwf will satisfy

p0.78 g . p0-82
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which is significantly better than Palphabeta. For a
worst-first lookahead tree of degree 38 and processor tree

of fanout 2, Corollary 4.3 predicts that speedup for mwf

will satisfy

p0-93 | S <p

= b 14

which is almost as good as Palphabeta.

4.10. TIPS FOR PROCESSOR-TREE ARCHITECTS

Anyone designing hardware to play a game like chess
faces a number of decisions along the way. Our discussion
raises the following questions:

1. Should parallel processing be used?

2. If so, how powerful should the leaf processors be?

3. How many leaf processors should be used?
Since our algorithms all reduce to the serial algorithm
when g=0, the third question is really a generalization of
the first. To help answer these questions, we make the
following simplifying assumptions:

1. A certain fixed amount of money may be spent.

2. The parallel algorithm gives p® speedup with P pro-~-

cessors for some fixed 0 < e < 1

3. Several different serial processors are available.
Associated with each of these processors is a dollar

cost and a processing speed in units of positions ex~-



79

amined per second. These data are described by a
"serial power function", W(8), that tells how much
power W we can obtain in a serial processor by spend-
ing S dollars. We will assume that W(S) is continu-

ously differentiable.

4.10.1. Serial versus Parallel

We will start with a concrete example. Suppose that
for $40,000 we can buy a processor that searches 250 nodes
per second, and for $10,000 we can buy a processor that
searches 100 nodes per second. Suppose that we have
$40,000 to spend and a parallel algorithm that gives mo.w
speedup with P processors. We can spend our money to buy
one $40,000 processor or four $10,000 processors. We know

0.5 speedup, or 200 nodes per

that our algorithm will give 4
second with the four processors. Hence we would be wise to
buy the $40,000 processor and use the serial algorithm to
evaluate 250 instead of 200 nodes per second. 1In general,
when we multiply the amount of money available to us by any
constant k, we do better to use serial processing if we
gain more than x® speedup with the more expensive serial
processor.

We define the critical point, if it exists, to be that
number of dollars S such that optimal systems less expen-

sive than S are serial machines, and optimal systems more
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expensive than S are parallel machines. If W(S) follows
the classic economic pattern of diminishing returns on in-
vestment for large S (Figure 4.4), then the critical point

occurs when

dlogW _ e
dlogS *

The following theorem helps to formalize this result.

Theorem 4.9. Suppose that W is a positive, differentiable

function defined on the positive real numbers. Suppose
that e > 0, and that there exists a positive number mo such

that for S 2 mo~

dlogW
dlogs

Then for k > 1,

in

e.

€
k Zﬁmov > Sﬁxmov.

Proof. The proof is by contradiction. Suppose that

memo, < W(kSg) .

Taking the log of both sides, we can rewrite this as
log zﬁxmcv - log W(S4)
jog xmo - log mo
By the Mean Value Theorem, the right hand side of 4.7 is

(4.7) e <

equal to the derivative

dlogW
dlog$s

evaluated at some point mH such that mo < mH < xmo. Hence

e < dlogW
dlogS”®

at mw~ which contradicts our original assumption.

Q.E.D.
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Fig. 4.4. Serial vs. Parallel Machines.
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Theorem 4.9 says that if the marginal return on in-
vestment in serial machines after mo dollars is less than
e% improvement in speed for every one percent increase in
cost, then more speed can be obtained from k processors at
)

0 dollars apiece than from a single machine at wmo dol-

lars.

4.10.2. Maximal Processor Trees

Our analyses all assume that each message to a leaf

processor invokes a substantial amount of work. For the

moment, let us assume that a "substantial amount of work"
consists of a search of a subtree of height one or more.
As we have pointed out, when move selection must be com-
pleted with a certain time limit, we cannot gain unlimited
speedup by adding more and more layers to the processor
tree. Each additional layer in the processor tree buys
less than one additional layer in the lookahead tree that
can be searched within the time limit. Hence the subtrees
assigned to terminal processors grow shorter and shorter,
and eventually we violate our assumption about giving them
substantial amounts of work per message. In this section
we estimate how many processors are required before the as-
sumption becomes false.

Suppose that a serial processor can search a lookahead

tree I, of depth D within the required time limit. Assume
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that the branching factor (the ratio of the sizes of looka-
head trees of successive depths when searched by the serial
algorithm) is B, and that the fanout of the processor tree
is f. Assume that the parallel algorithm we are using
mw<mw.xm speedup with k leaf processors, for some fixed
0 < e £ 1. A processor tree of height q gives £9 speedup.
Within the time limit it can therefore search a pruned
lookahead tree that is £°9 times as big as L, or Homwmma
ply deeper. Hence Palphabeta assigns subtrees of depth one
to leaf processors when

D + Ho@wmmn =q+ 1,
or when
(4.8) q= ﬂ%WWIm.
When the processor tree is shorter than the g given by
Equation 4.8, our advertised speedups can be met within the
time limit. Hence for P < f9 leaf processors, we obtain
speedup p®. Mwe assigns subtrees of height one to leaf
processors when the height of the processor tree is one
less than half the height of the lookahead tree. Hence for

mwf, the equation corresponding to (4.8) is .

= Dzl
q-= mlmwomwm.
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Chapter 5 - Piecewise~Serial Iterative Methods

Beyond the Cray 2, a yet faster computer
is taking shape in Mr. Cray”s mind. "I
do tend to look forward in my thinking
and I don”t like to rest on my laurels,”
he says. How fast could such a computer
be? Perhaps, he says, a trillion calcu-
lations a second.

That prospect is an intriguing one for
scientists. Says Sidney Fernbach, a
scientific administrator at Livermore,
"There”s no machine that Seymour Cray
can conceive that would be too fast for
us.”

- Wall Street Journal
{12 April 1979)

5.1. INTRODUCTION

Many numerical computations are locally defined and

iterative: A rectangular array of numbers A is given; Ay

VN, ... are iteratively defined by a locally defined rule.

That is, the value of an element in >: is some function of

the values of its immediate neighbors in A__,.

This chapter investigates locally-defined iterative
computations on Arachne-like architectures. As a focus for
our investigation we will consider the numerical solution
of an important problem in engineering and physics, the

Dirichlet problem.
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In Section 2 we discuss the numerical solution of the
Dirichlet problem. Section 3 discusses previous work in
parallel iterative methods. Section 4 proposes a family of
distributed algorithms for the iterative solution of the

Dirichlet problem.

5.2. THE DIRICHLET PROBLEM

Let R be the interior and S the boundary of the unit
square 0 < x <1, 0 <y < 1. Let g(x,y) be a continuous
function defined on S. 1In the Dirichlet problem we seek a
function u(x,y) defined on R + S that is twice continuocusly

differentiable on R and satisfies Laplace”s equation

(5.1} v, :<< =0

on R, and equals g{x,y) on S. To approximate u(x,y) we su-
perimpose over R + S a uniform mesh of N+1 horizontal and
N+l vertical lines with spacing h = 1/N, for some positive
integer N. We call the ‘z+wvm intersections of these lines

mesh points. To approximate u at a given internal mesh

point (x,y), we use the approximations

"

u

xx = [ulx+h,y) + u(x-h,y) - 2u(x,y)1/h?

n

Yyy

to rewrite (5.1) as

[u(x,y+h) + u(x,y-h) - 2u(x,y)]/h?

(5.2) 4u({x,y)-u(x+h,y)~u(x-h,y)-u(x,y+h)-u(x,y-h) = 0.

This equation applied at interior points together with the

boundary condition
u(x,y) = g(x,y)

forms a discrete version of the Dirichlet problem.
5.2.1. Jacobi Method

Equation (5.2) specifies a set of AZIPVN linear equa-
tions in AZIHVN unknowns. This set of equations could be
solved directly, but the sparsity of the matrix often makes
iterative methods more efficient. We first solve equation
(5.2) for u(x,y), giving

ulx,y) = [u(x+h,y) + u(x-h,y) + u({x,y+h) + ui{x,y-h)}/4.
Given "old" values ::Ax-wv at mesh points, we use the fol~

lowing equation to generate "new" values s:+wﬂx.%vu

(5.3) LI
[u, (x+h,y) + u {x-h,y} + up (x,y+h) + caﬂx.wnsvu\».
Equation (5.3) is applied iteratively until further itera-
tions do not change u very much. This method is the Jacobi
(J) method.

The Jacobi method is very slow for large N. Indeed,
it is well known [43] that the number of iterations re-
quired for the Jacobi method to converge is proportional to
ZN. The total work needed is proportional to z»~ since
each iteration treats OAZNV internal mesh points.

Although slow, the Jacobi method is useful for two

reasons. First, for many problems its intermediate



87

iterates correspond to the transient behavior of the physi-
cal process being modeled. Many other methods converge
more quickly to the steady state, but do so by mathematical
shortcuts not taken by the physical process being modeled.
When we are interested in transient behavior for problems
of heat flow, we must use methods similar to the Jacobi
method. Second, some optimizations of J such as SOR (de~
fined below) are unstable for some problems other than the

Dirichlet problem.

5.2.2. Gauss-Seidel Method

The Gauss-Seidel (GS) amnsmm differs from the Jacobi
method by using new neighbor values whenever available.
For example, if the outer loop of each iteration visits
rows from y=0 to y=1, and the inner loop visits mesh points
in a row from x=0 to x=1, then GS calculates new values ac-

cording to the formula

Unsl

~c=~x+r~<v + c:+-x|:~<v + csﬁx~w+sv + c:+wa~<|rvu\».
The GS method needs only half as many iterations to con-
verge as the J method. This speedup, though significant,
is independent of N. Hence GS also needs OAZNV iterations

to achieve convergence.
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5.2.3. Successive Over-Relaxation

GS optimizes J by using new values whenever available.

Successive Over-Relaxation (SOR) optimizes GS by "over-

correcting" from one iteration to the next. If GS computes

-

the value u by adding the increment cm+H - u, tou.,

n+l n
then SOR computes u .4 by adding an even greater increment:
Uyt = Yy + zﬁc:+w - ::v.

The relaxation parameter w is usually between 1 and 2; if

1, then SOR reduces to GS. Much work has been done to
determine optimum values of w. For the Dirichlet Problem
on the unit square with mesh spacing h, it can be shown
that the optimum value of w is 2/(1 + sin(hw)) {[43]. For
example, if h is 1/20 then the optimal value for w is
1.72945.

With an optimal value of w, SOR requires O(N) itera-

tions to converge.

5.3. PREVIOUS WORK

In this section we review parallel algorithms that
have been developed for locally defined iterative methods.

Stone [28] notes that many serial techniques are not
directly applicable in parallel algorithms. For example,
the serial Gauss—Seidel technique uses newly-computed

values for neighboring points wherever possible. If new
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values for all points are calculated simultaneously, then
Gauss-Seidel cannot be used.

Rosenfeld [44] simulates the operation of a C.mmp~like
machine (that is, all processors have equal access to all
memories) in the computation of the distribution of current
in an electrical network. He shows that with proper pro-
gramming aimed at reducing storage interference, N proces-
sors can give nearly N-fold speedup when N is less than
about 10.

Weiman [45] proposes an L by M grid of microprocessors
to perform iterative calculations on an L by M by N-point
mesh arising from the Navier~Stokes equation. Processors
are connected in the four compass directions. For a cer-
tain range of problem size, each cell needs approximately
2K words of storage, a small number of registers, and a
small processor.: Cell (i,j) holds all data points with
spatial coordinates (i,j,x); after each time step it com-
municates all newly-computed values to all four neighbors.

Flanders [6] has built a 32-by-32 SIMD array of one-
bit microprocessors called the Distributed Array Processor
{DAP). Communications lines connect each processor to its
neighbors in the four cardinal directions. Finite~
difference calculations are performed by mapping the pro-
cessors one-to-one onto the points of the problem grid. If

the problem grid is larger than the processor grid, then
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the calculation for each time step must successively load
the processor array with "patches" from the problem grid.
Flanders estimates that a 64-by-64 DAP array would perform
finite~difference calculations at a rate 20 times that of
an IBM 360/195.

Welch [46] reports measurements of calculations used
in atmospheric simulation models on the Pepe Parallel Pro-
cessor, which is an SIMD machine with data transfers on a
shared bus. Measurements were taken on Pepe hardware with
11 processing elements (PEs). Extrapolation of these meas-
urements indicates that a 161-PE Pepe would execute the
Geophysical Fluid Dynamics Laboratory benchmark about 7
times faster than an IBM 360/195.

Parallel iterative methods usually perform exactly the
same computation as some well-known serial method. An in-

teresting exception is the chaotic relaxation technique of

Chazan and Mirankar [47] and Baudet [48]. Chaotic relaxa-
tion is an attempt to avoid time-consuming synchronization
among multiprocessors performing iterative methods. For
example, suppose several Processors access a COMmMON MemoOry
to perform Jacobi’s method. If we insist that exactly the
same computation be performed as in the serial case, then
when processor x is computing the value of a point whose
neighbor p is computed by processor y, the two processors

must synchronize their actions so that processor y”s compu-
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tation of p for the nth iteration is stored before proces-
sor x accesses p. The overhead of synchronization can sig~-
nificantly slow down the computation. Chaotic relaxation
doesn”t bother with synchronization; x gets either the old
or the new value for p. Theoretical analyses indicate that
as long as one processor does not lag too far behind its
neighbors, convergence is still assured, if slowed.
Baudet”s measurements on C.mmp show that the method pays
off: The extra iterations needed for convergence are more

than offset by the time saved by not synchronizing.

5.4. PIECEWISE~SERIAL ITERATIVE METHODS

This section analyzes several parallel algorithms for
implementing the Jacobi method on a distributed system. As
usual, we define speedup to be time for the serial algo-
rithm divided by time for the parallel algorithm. The ef~
ficiency of a parallel algorithm is its speedup divided by

the number of processors used.

5.4.1. Uniform Regions With Grid Topology

One natural way to solve the Dirichlet problem on a
multicomputer architecture is the following: Arrange the
processors in a q by q grid, with each processor connected

to its nearest neighbors in the four compass directions.
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We assume that the problem grid consists of pg by pg

2

points. This grid is broken into g“ square regions of size

MN (Figure 5.1). If we index both the processor grid and
problem grid by Cartesian coordinates, then processor

(i,J), for 0 < i,j < g, contains those problem points (x,¥y)

such that ig < x < {i+l)g and jg < y < {(j+l)g. Hence re-
gions sharing a common border are assigned to neighboring
processors.

We will call the following algorithm the grid algo-
rithm. 1In order to compute values for the next time step
according to the Jacobi method, each processor needs to
know the current value of points bordering on its region.
Prior to the computation of each time step, each processor
communicates to each of its nearest neighbors values of its
border points adjacent to that neighbor. We assume that a
processor can send n numbers to a neighbor in time W + né
AW is the per-message overhead, and & is the time to send
one number} and can compute one mesh point value in one
unit of time. Each processor must send and receive p
numbers to/from each of its four neighbors, so the communi-
cation phase of the grid algorithm takes

mﬂ + 8pb
units of time. The computation phase takes mm units of

time to compute @m points on each processor. We have

proved the following result:
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Partition of problem grid for grid topology.

93

94

Theorem 5.1. The grid algorithm computes one iteration of

the Jacobi method in

(5.4) 8p + 8p6 + p2

units of time.

The first two terms of (5.4) represent message-passing

time; the last term represents computation time. Speedup

18

2 2
—__pa

ww + 8p6 + wm
and efficiency is

2
-

mﬂ + 8p8 + ﬁm.

5.4.2, Uniform Regions With Tree Topology

A more flexible way to implement the Jacobi method on

a multicomputer architecture is the Synchronous Tree Algo-

rithm: Suppose that the problem grid is w:a by pn9, con-

taining wm:wn points in all. Arrange the processors into a

tree of height g and fanout :m. (The height of a tree with
one node is zero.) Any non-terminal processor is called a
master and its children are called slaves.

The root processor is responsible for the entire prob-

2 slaves, it divides the grid into :w

square sub-regions of size msatw by v:mnw

lem grid. Having n

and assigns each

2

sub-region to a slave. Each of these n” slaves likewise

2

divides its region into n“ regions, assigning each to one
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of its slaves, and so on. Terminal slaves receive a square

region with m»

mesh points (Figure 5.2).

Before each time step, any slave (terminal or other-
wise) needs to know point values from the previous time
step that border on its region. 1Its master provides these
values. At the end of each time step, each slave sends to
its master all of its border point values. The master will
relay appropriate sets of values to its slaves before the
next time step.

We now calculate the finishing time for one time step
(Figure 5.3). Define ay to be the time for a processor at
distance k from the leaves of the processor tree to com-
plete a time step. We start timing after the processor has
gotten its border values from its master. We stop timing
when the processor is ready to send border values to its

. 2
master. Since a slave processor must calculate p” values,

= vm. A processor at distance k+1 from the leaves must

k 2

ap

first supply 4pn~ border values to each of its n™ slaves.

Bach slave then takes time a, and sends approximately »v:x

border values A»m:x - 4, to be exact) back to the master.

At time t=0, we start timing. At time t = wam + a@@:wv the

wn: slave, for i =1, ..., :w~ finishes receiving border

points and starts computing values for the next iteration.
wnnwamnn wAm + »m@sxv +mwnrm ith slave finishes its

computation phase and starts to send border points to its

fbui

pn¢

pnd

Fig. 5.2.

Partition of

probiem grid for tree topology.
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master. (The master may still be busy sending points to
the latter slaves when the first slave wants to send points
back to it. For the time being, we assume that if neces-
sary a master can simultaneously send and receive without
being slowed down in either activity. Later we will find
conditions under which no overlap occurs.) At time t =
smﬂw + »mw:wv +oa w + »mm:x. the last slave finishes
sending border points to its master. We therefore have the
recurrence relation

{5.5) = (n%+1) P+ 46pn*) + ay s

A+l

which is the finishing time in the synchronous algorithm
for a master at height k+1, in terms of the finishing time
of one of its slaves. The solution to this recurrence re-
lation for k = g is

ag = A=~+MVAaw + 46p(n9-1) /(n-1)) + mN.

We have proved

Theorem 5.2. The finishing time a_ for the synchronous

q
tree algorithm is
(5.6) ag = (n3+1) (gp + s6p(nI-1)/(n-1)) + p’.
Hence speedup is
wmsm@

A:~+wVAn1 + »va:a|~v\~snwvv + mm
and efficiency is

vw

2 q 27
(n®+1) (gp + 46p(n=-1)/(n-1)) + p
which is less than the efficiency of the grid algorithm.
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Optimal Fan-out

We have assumed that the fanout of the processor tree
is some perfect square :w. We now show that the optimal
value of n is two. Suppose we have a fixed number of leaf

processors Ow. There may be several different pairs of in-

2

tegers (n,q) such that a tree of height g and £fanout n” has

ct = :ma terminal processors. As (5.6) shows, for a given

problem the computation time for these several trees is
identical ~@mv~ but the message-passing time may vary. We
wish to find the optimal fanout :mn i,e. we want to know
which value 2 < n < C minimizes the message-passing time
(n?+1) (gp + 46p(n%-1)/(n=1)).
Theorem 5.3. Let p and C be arbitrary positive integers,
and let w and 6 be positive real numbers. If we let n
range over the integers greater than one, and require that
n? = C, then
(n2+1) (ap + 46p(n9-1) /(n-1)) .
achieves its minimum value at n = 2.
Proof. We show that both
(n®+1)q  and (n%+1) (n%-1) /(n-1}
achieve their minimum value at n = 2.
First, n? = ¢ and g = (ln C)/1n n. To minimize
A:m+wva = ~:~+HVAH: C)/in n,

A=w+wv\ws n, since 1n C

it would suffice to minimize g{(n)

> 0. Since the derivative
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g*(m = 2nUnn) - EN+5\=.
1n“n

is always positive for n > 2, g(n) achieves its minimum at
n = 2.

To minimize

(n+1) (n9-1)

n-1 ’

we first note that n%-1 = c-1 > 0, so it would suffice to
minimize
n“+1
n-1 °

Again, the derivative h”{n) is positive for n

h(n) =
> 3, and h{2)

= h(3) = 5, so h achieves its minimum at n = 2,

Q.E.D.

We have shown that mm is the optimal perfect square
fanout of the processor tree. This fact might suggest to
us that a fanout of 2 might yield even greater efficiency.
We now show that this conjecture is not true. Suppose, for
example, that we have a tree of height 2q and fanout 2,
yielding the same number of leaf processors, mwa. as a tree
of height g and fanout 4. The master M at height 2k+2
divides the mwx+p by mmx+w problem grid into two rectangu-
lar sub-regions, each of shape wmx+w by wwx~ and assigns
each to one of its two slaves, sy and Sqe. Slave Sh divides
the rectangular region into two square regions of side wwx.

and assigns each to one of its slaves, Sh1 and Sn2° Define

Ux to be the time for a processor at height 2k to finish
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one time step. We define m@ according to equation (5.5)

with n=2.

Theorem 5.4. For a given number of leaf processors, the
synchronous tree algorithm finishes sooner on a processor
tree of fanout four than on a processor tree of fanout two.
Proof. We develop a recurrence relation for Ux and compare
it to the recurrence for a,. We start our timing when M

starts sending border points to Sq- We have the following

k+1

sequence of events: At t=0, M starts sending 3p2 points

; Sk :
to s,. At num+umwmw+w~ M starts sending uwnx 1 points to

w+w~ has received all points and starts

2
Sk+1
points to S,;+ At nuuw+mmwnx + S, starts

k+1
'

s At nuwﬁ+mmwm s

k+1

e
sending 2p2

~k+1

sending 2p2 points to Sy5- At nubw+womwm S,, fin-

ishes receiving points and starts its computation. At

wu»w+womva+H+UW~ S5, finishes its computation and starts
k+1

sending 2p2 {minus 4, which we ignore) points back to

s At wumw+wwmme+H+vx. S, finishes receiving points from

k+1

5
§,, and starts sending 3p2
k+1

(minus 4) points back to M.
At nnmw+wmmwm +Uw, M finishes receiving points from S,

and is thus finished with its computation. Hence

_ k
Ux+H = mAW + 56p27) + Ux~
whereas
- k
a4 = maw + 46p2™) + ay
Since ag = by = w- we have U@ > agr for g > 0.

Q.E.D.
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Among processor trees, we may now restrict our atten-
tion to those whose fanout is four. Equation (5.6), the
finishing time for the tree architecture, simplifies to
(5.7) ag = 5ap + 206p(2%-1) + 02,
which is the finishing time for a processor tree of height

g and fanout four executing the synchronous algorithm.-

Non-overlap of Send and Receive

We now return to the possibility that a slave might
wish to send border points to its master before that master
has finished giving border points to all the other slaves.
Suppose that the master is at height g from the leaves of
the processor tree. After the first slave has finished re-
ceiving its border points, two activities proceed in paral-
lel (Figure 5.4). First, the first slave performs its com-
putation. This activity takes time
(5.8) Stap + 46p(29 - 1)) + p2,
according to Equation (5.7). Meanwhile, the master is
sending border points to the other three slaves. This ac-
tivity takes time
(5.9) 3p + 46p29) .

If the computation (5.8) takes longer than the communica-
tion (5.9), we can be sure that the master will not need to
receive results while it is sending values. We therefore

require the condition
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Fig. 5.4. Non-overlap of send and receive.
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5(qp + 46p (29 - 1)) +p2

- 3p + 46p2%) > 0.
We can rewrite this inequality as
p(5a-3) + 6p(29%3 - 20) + p? > 0.
The left-hand side increases monotonically with g; hence we
have the greatest difficulty in satisfying the inequality
when g=0. It therefore suffices to show that
mw - 126p - uw > 0.
By the quadratic formula, we have proved
Theorem 5.5. 1In a tree of arbitrary depth and fanout 4 ex—
ecuting the synchronous algorithm, if the condition
(5.10) p > 66 +,\ummm+ww
is met then no slave will ever be ready to send voMrnm to

its master before that master is finished sending points to

the other slaves.

M-Dimensional Problem Space

The tree architecture can easily be adapted to
locally-defined iterative methods in M dimensions. We as-

sume that the fanout of the processor tree is some perfect

Mth power, :3. The height of the processor tree is g. We

assume that the original problem grid is v:m points on a

side, with Av:@vz points in all. Each master divides its

M

region into n" regions. Thus each terminal processor is

assigned a region with wz points. Using methods similar to
those in the two-dimensional case, we can calculate a ., the

q
finishing time for one step, as
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_ (M-1)q_
a_ = A:Z+vaaw+w3m@ 1 MIl!llllwv + mz.

(=1 A 1_ 1

As in the two-dimensional case, we can prove that for a
NZ

given number of terminal processors, is the optimal

fanout among perfect Mth powers.

Semi~-Synchronous Method

We have seen that for a given number of leaf proces-
sors, the tree architecture is less efficient than the grid
architecture. The cause of this inefficiency is that the
leaf processors sit idle while masters higher in the tree
exchange border points. This section investigates a tech-
nigue for decreasing this inefficiency. The technique,

called the Semi~Synchronous algorithm, is based on the ob-

servation that a slave need not perform all of the computa-
tion for one time step before sending border points to its
master. After receiving border points, the slave can com-
pute its border points first, then immediately send them to
its master. Thus the communication of border points up and
then down the processor tree has a head start and proceeds
in parallel with the remaining computation on leaf proces-
sors. We want to give conditions under which the batch of
border points for the next time step are ready for the
slave when that slave is done with the current time step.
From the slave”s point of view, a time step starts

when border points start arriving from its master. At time
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nuﬁw+»mwv. the slave finishes receiving its neighbors”
border points and starts computing its own border points.
After computing its border points, the slave requests to
send them, and goes back to computing the rest of the
points. When the master is ready to receive, the slave in-
terrupts its computation and takes W+umw units of time to
send its 4p border points. After these points are sent,
the slave resumes computing interior points. Hence the

slave can complete its cycle for the semi-synchronous algo-

{5.11) Emt&mv + p?
units of time,

In the semi-synchronous method, we require that leaf
slaves rush to send freshly computed border points to their
master. The masters, by contrast, will execute the same
algorithm as in the synchronous algorithm. We therefore
assume that the fanout of the processor tree is four, since
we have already seen that this fanout minimizes total ex-
change time. From the point of view of the master of a
terminal slave, a time step starts when it has finished re-
ceiving border points from its master and attempts to send
border points to its first slave. Since that slave may
still be busy with computation from the previous time step,
the master must wait a certain amount of time x. At time

X, the master starts sending points to the first slave
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(Figure 5.5). At time x + haﬁ+hmmv~ the master starts re-
ceiving points from the first slave, and at time x +
mAw+»mvv finishes receiving points from all the slaves. We
assume that the first slave is ready to start sending
points when the master is ready to start receiving them.
This assumption is true when the computation time for the
border points, 4p, is less than or equal to the time to
pass point values to the other three slaves, uAT + 46p) .
The necessary condition is

uw + 4p(36-1) > 0.

Let Uw~ for k > 1, be the time for a master at height
k from the leaves to complete one time step. We have just
shown that UH = + mﬁw+»mmv. Masters above level one see
the same behavior in their neighbors as in the synchronous
algorithm. Hence

Pesr = by
The solution to this recurrence relation for k=q is

+ m~m+»mmmxv.

Am.wmv aaux+ﬁma+wvw+ mmm~»+mﬁmn-H-va.
which is the finishing time of a processor tree of height g
and fanout four that is executing the semi-synchronous al-
gorithm, when masters of terminal slaves must wait time x
to send points to their slaves.

When x > 0, the cycle time of the terminal slaves is

greater than the cycle time of the rest of the processor

tree, and so Ua also equals (5.11), the cycle time for a
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slave:
(5.13) x + (5qt3)p + 86p(4+5(2971-1)) = 2(p+asp) + p2.
With equation (5.13), the condition x > 0 becomes

p? - 86p(3+5(29-1)) - p(5(g-1)+6) > 0.

Hence when

(5.14) p >

46(3+5(2%-1)) +/\~mﬁmﬁu+mﬁwa»~vvvw * p5(a-11+6),
the slave processors are never idle, and the slave cycle
time (5.11) represents the finishing time of the algorithm.
When x > 0 we say that the tree is compute-bound. When
(5.14) is not satisfied, (5.12) with x=0 gives the finish-
ing time, and the tree is exchange-bound.

When the semi-synchronous method is compute bound, its
finishina time, NW + 86p + @m~ is less than the finishing
time of the grid topology, mw + 86p + mw. In the semi-
synchronous method a slave can accomplish all of its send-
ing and receiving in 2 messages, but the grid-topology al-
gorithm requires B8 messages. leading to the mw time differ-
ence. Since the semi-synchronous method gives the exchange
of border points a head start, it always finishes sooner
than the synchronous tree method. The grid algorithm, the
synchronous tree algorithm and the semi-synchronous method
all give nearly n-fold speedup on large problems: The
speedup in all three algorithms approaches the number of

slave processors as the problem size goes to infinity.
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5.4.3. Efficiency

Theorem 5.1 shows that the efficiency e of the grid

algorithm is

m"'l‘lp||M'
ww + 8p6 + p
Theorem 5.2 shows that the efficiency e of the synchronous

tree algorithm is

2
P

S(ap + 46p(29-1)) + p
The efficiency e of the semi-synchronous tree algorithm is

2
o= —p°

2p *+ 806 + p?

e = P

if it is compute-bound. Solving each these three equations

for p, and representing e/(l-e) by W, we get

(5.15) p = 46W + 2 \/46%W2 + 2pW

for the grid architecture,

(5.16) p = 10ws(29-1) + \f10w6(29-1))2 + sWap

for the synchronous tree architecture, and

(5.17) p = 46W + \f166%W? + 201

for the compute-bound semi-synchronous tree architecture.
For given & ~1 and g, these equations describe the minimum
value of p for which the various algorithms will yield a
given efficiency e. As the desired efficiency increases to
one we must put a larger and larger subproblem on each

leaf or grid processor.
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5.4.4. Measurement of Communication Time

We have defined & to be the ratio of per-point commun-
ication time to per-point computation time. In this sec-
tion we present measurements taken on a VAX-11/780 and a
PDP-11/70 that can be used to estimate 8 for those
machines. The following C subroutine was compiled on each
machine:

#define SIDE 50

double buffer [SIDE]} [SIDE];

Gs(k) int ki {
register double *py
register int j,i;
double quart = 1/4.0;

for (i=0; i<SIDE; i++) {
buffer[0]{i)] = buffer [SIDE-11[i}
= buffer[i}[0] = buffer{i] [SIDE-1] = 9.9;

}

mmmﬁnxvo“wnnv*
p = sbuffer[1][1l];
for (i=1;i<SIDE-1;i++) {
mmmAuuH“uAmHumsw"u++vm
*p=(* (p-SIDE) + *(p+SIDE}
+ *(p-1) + *(p+l))
* (quart);
pt+:
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This subroutine implements the Gauss-Seidel method. We
have gone to some effort to produce efficient code in this
example. For example, we rejected array access by sub-
script because repeated address calculations produce a pro-
gram about four times slower than the above. The C com-
piler on the VAX produced the following assembler code for

the nested "i" and "3" loops at the end of the nocnwsm“
movl $1,r9 /initialize i loop

L5: movl $1,rl0 /initialize j loop

L3: addd3 400(rll),-400(rll),r0 /south + north
addd2 -8{rll),r0 /add west neighbor
addd2 8{(rll),r0 /add east neighbor
muld3 =12(fp),r0,(rll) /multiply by 1/4.0
addi2 §$8,rll /move pointer 1 step east
aoblss $49,r10,L3 /3 loop control
addl2 $16,rll /move pointer to next row
aoblss $49,r9,L5 /i loop control

The C compiler on the PDP-11/70 produced the following as-

sembler code for the same C code segment:

mov $1,r3 /initialize i loop

L5: mov $i,r2 /initialize J loop
L3: movf -620(rd),r0 /add north neighbor
addf -10{r4),r0 /add west neighbor
addf 620(r4),r0 /add south neighbor
addf 10(r4),r0 /add east neighbor
mulf -20{r5),r0 /multiply by 1/4.0

movf rl,(r4) /store result

add $10,r4 /move pointer 1 step east
inc r2 /3 loop control

cmp $61,r2

jgt L3

add $20,r4 /move pointer to next row
inc r3 /i loop control

cmp $61,r3

jgt LS

on both the VAX and PDP-11, the routine was executed

with an argument of 500, so that the body of the "k" loop
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was executed 500 times. Since "SIDE" was defined to be 50,
the body of the "j" loop was executed 48*%48*500 times.
Elapsed time on the VAX was 20.3 seconds, on the PDP-1l was

34.0 seconds. Time per point on the VAX is therefore

1l

20.3/48*%48*500 16.24 microseconds, and on the PDP-11l is
34.0/48*%48*500 = 27.2 microseconds.

The DAll-B DMA Unibus link can transfer 500,000 1l6-bit
words per second between two Unibuses. At this rate, the
communication time for one 64-bit floating point word is 8
microseconds. If we use this hardware for connecting
machines, a<vx = 0.49 and mwuwlww\qo = 0.29.

We have defined T as the ratio of per-message overhead
time to per-point computation time. Estimating T is harder
than estimating & because w depends on the operating system
as well as the hardware. One distributed operating system
for which we can estimate W is Arachne. Assuming 32-bit
floating point numbers, computation time per point on an
LSI-11 is approximately 500 microseconds. Per-message
overhead on Arachne is approximately 12 milliseconds.

Hence W»nmn::m = 24. Since time to send one floating~point
word, ignoring per-message overhead, is about 0.4 mil-
liseconds, mbnmnrsm = 0.8. These sample figures for W and

6 are not necessarily representative of real distributed

systems.
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The values of T and & strongly influence the efficien~
cy of distributed systems in solving the Dirichlet problem.
We can use these estimates to gain information about vari-
ous topologies of LSI-lls running the Arachne distributed
operating system. For example, these figures along with
Theorem 5.5 require p > 15 in order to guarantee that sends
and receives not overlap in the synchronous algorithm. For
the semi-synchronous algorithm, relation (5.14) tells us
that for trees of heights one and two, the relations p > 54
and p > 118 respectively must hold in order that the slave
cycle time (5.11) would represent the finishing time. Oth-
erwise the finishing time is represented by equation (5.12)
with x set to zero. Relation (5.15) tells us that for the
grid architecture to achieve an efficiency of 50%, p > 18
must hold. For the grid architecture to achieve an effi-
ciency of 75%, p must be greater than or equal to 36. Re-
lation (5.16) requires p > 22 and 53 for the synchronous
algorithm running on trees of height one and two, respec-

tively, to achieve an efficiency of 50%.

5.4.5. Scheduling Tree Machines

An entire tree machine need not be devoted to a single
problem. For example, a tree of height 3 and fanout 4 can
also be considered as 4 trees of height 2, 16 trees of

height 1, or 64 trees of height 0 (serial processors).
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Since we can never achieve n-fold speedup from n leaf pro-
cessors, the efficiency of a tree machine is less than the
efficiency of its workers, the leaf processors. Hence, if
we have a large queue of problems, throughput is maximized
by using the 49 jeaf processors as individual servers.

But throughput is not likely to be the primary concern
of builders and users of parallel architectures. A paral-
lel machine sacrifices low cost and efficiency to gain
speed in the execution of lengthy tasks. As hardware be~
comes less expensive, this tradeoff becomes more profit-
able. Speed may be desired for various reasons. We may
want to meet a time constraint-{as in weather prediction or
real-time applications), or we might simply want to minim~
ize time spent by a human waiting for a computation. For
such a machine to accomplish its purpose, the average
inter-arrival time for tasks must be significantly greater
than the average execution time. Otherwise a queue would
form, defeating the original purpose, which is speed.

Hence the scheduling of a tree machine is not likely to be
a complicated issue. To achieve the primary goal of speed,
a scheduling algorithm that devotes the entire tree to each
task until completion would likely be satisfactory. During
those periods when no lengthy tasks are requesting service,
the tree-machine may be partitioned into individual proces-—

sors for other tasks.
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5.4.6. Static Non-Uniform Regions

As long as the problem grid is uniform and sguare, the
grid architecture is sufficient and the tree architecture
unnecessary. Unfortunately, many problems cannot be
modeled in such a regular way. First, models of moving
fluids often require extra grid points in places where
values are fluctuating rapidly. Second, computation is
often conditional. For example, a weather model may skip
the calculation of some radiation terms at a point if
clouds are present. Additional radiation terms may be om-
itted if it is night at a point. Third, the geometry of
the problem space may be irregular. All of these situa-
tions create problems for a rectangular grid architecture,
whether MIMD as discussed here, or SIMD as in the DAP [6].

The tree topology provides a solution to these prob-

lems by allowing load leveling through region encroachment.

When load is evenly distributed throughout a square region,
each master divides its region into 4 uniform smaller re~
gions and assigns one region to each slave. When load is
unevenly distributed, a master can divide its region into 4

equal-load smaller regions in the following way: First,

divide the region along one dimension into two strips of
equal load. Second, divide each of these strips along
their long dimension into two regions of egual load. The 4

regions, called skewed quadrants, receive equal load (Fig-
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Skewed quadrants.
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ure 5.6). If each master follows this procedure, terminal
slaves receive regions of equal load. Figures 5.7 through
5.10 illustrate this procedure carried out for a tree ar-
chitecture of fanout four and height two, and for problem
regions in the form of a disc, half-disc, annulus, and thin
strip. Figure 5.11 illustrates the procedure carried out
for a tree architecture of fanout four and height three
when the load in the unit square is distributed according

ki
to x~ + ww.

5.4.7. Dynamic Region Encroachment

At the cost of 1/3 more processors for communications,
the tree topology gains the advantage of flexibility over
the grid topology. As we have seen, this flexibility al-
lows load-leveling by region encroachment among those pro-
cessors actually doing the calculation. If the load func-
tion varies with time, this load-leveling can occur dynami-
cally. For example, at each time step a master can decide
if the load in its region is evenly divided among its four
slaves by noting their computation times. Since a slave
may spend part of its time rebalancing its own slaves, its
master can discover the actual computation time only by be-
ing told by the slave. Thus each message bearing border
points from a slave to its master should include the compu-

tation time for that slave. If a slave is overloaded, the
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Fig.

5.10.

Thin

strip.
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master may decide to equalize load with a new set of skewed
quadrants. The master then sends messages to those slaves
that will lose points and receives in reply the points that

will be transferred. These points are then forwarded to

the appropriate slaves, after which the normal sequence of

events resumes. Since the load-leveling itself entails a

cost, a master must weigh that cost against the expected

speedup. Load-leveling between slaves would occur only

when imbalance exceeds a certain threshold.

Since a master can also be a slave, it must also be

prepared for messages from its master that give or take

away points. A master M follows the following algorithm:

1. Receive message from master.

2. If the message is a request for points, forward it to

the affected slaves and assemble their replies into a

reply to the master. If the message is a set of

points to be added to M"s domain, divide the points

into one package for each affected slave and relay

the packages to these slaves. Go to 1).

3. If the message is the usual update of border points,
relay these updates to slaves. Go to 1).

4. Decide whether load-leveling needs to be done among
the slaves. If load~leveling is needed, send mes-

3 3 sages to slaves that lose points and relay the points
Fig. 5.11. Load = x~ + y~ on unit square.

in their replies to the appropriate siblings. Go to
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1.

Even if the load does not vary with time, dynamic region
encroachment could be used to adapt automatically to an ar-
bitrary uneven load. The regions could initially be as for
an even load, and would converge toward a configuration
with equal loads,

Figure 5.12 illustrates dynamic region encroachment
for a region in which the load is a bivariate normal dis-
tribution on the square (-5,5)x(~5,5) with a time-varying

standard deviation.
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Fig. 5.12. Load = bivariate normal distribution with stan~
dard deviation a) 100; b) 4; c¢) 3; 4) 2.5.
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Chapter 6 - Quotient Networks

It is a profoundly erroneous truism, re-
peated by all copy-books and by eminent
people when they are making speeches,
that we should cultivate the habit of
thinking what we are doing. The precise
opposite is the case. Civilization ad-
vances by extending the number of impor-
tant operations which we can perform
without thinking about them.

Alfred North Whitehead
quoted in A Certain World
by W. H. Auden

6.1, INTRODUCTION

One barrier to the practical use of interconnection
networks is the lack of algorithms for processing large
problems on small machines. (By an interconnection network
we mean an SIMD parallel computer interconnected by some
interconnection strategy.) Often, it is assumed that N
processors are available to process N data [13,49]. If we
happen to have N+l or more data points, then we must choose
between the serial algorithm and a bigger machine. Exam-
ples of interesting exceptions can be found in work by Bau-
det and Stevenson {21}, and by Siegel, Mueller and
Siegel [50]1. This chapter investigates a method that con-

structs.algorithms for solving large problems on small net-
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works. We call these algorithms quotient-network algo-

rithms. In Section 2, we review some proposed interconnec-
tion networks. Section 3 reviews proposed algorithms for

those networks. We call these algorithms large~-network al-

gorithms, since each one assumes as many processors as
points in the problem to be solved. Section 4 presents a
general method for transforming a large-network algorithm
into a quotient-network algorithm. Section 5 applies this
method to each of the algorithm-machine combinations of
Section 3. Section 6 discusses some economic advantages of

quotient-network algorithms.

6.2. EXISTING NETWORKS

In this section we briefly review some proposed inter-
connection networks. For a more thorough overview,
see [51]. We assume that each network contains N proces-
sors. We denote the square root of N by n, and Homw N by
m. We will name the processors PE(0) through PE(N-1).
Sometimes we refer to a processor by the binary form of its

number, p = Pp-1Pp-2+ < +P1Pg-

6.2.1. Grid-Connected Network

In this network, the processors are arranged in a

two~dimensional n by n grid. The processor in the wns row



th column is named PE(i,j), for 0 < i,j < n. A pro-

and 3

cessor is connected to its north, south, east and west

neighbors:
I£f i> 0, PE(i,j) is connected to PE(i-1,j).
If i < n-1, PE(i,j) is connected to PE(i+l,j).
If 3> 0, PE(i,j) is connected to PE(i,j-1).
If 3 < n-1, PE{i,j) is connected to PE(i,j+l).

The Illiac IV network adds additional connections among

edge processors [2}.

6.2.2. Perfect Shuffle

Shuffle-Exchange

In this network, mmﬁwaawma:w...wwmov is connected to
mmﬁmaxm...wwvomslwv by the "shuffle function" line and to

mmﬁvanw@anw...wwmov by the "exchange function" line.

4-Pin Shuffle

In this network, each processor has two input pins
IPINO and IPINl, and two output pins OPINO and OPINi. We
can number all input pins by assigning to IPINO on proces-
sor py_1Pp.ne-+P1Pg the number @Exwmanm...wwwco. IPINLl on
the same processor is assigned the number @axwwanw...@wMOH.
This numbering allows us to refer to input pins as IPIN(O)
through IPIN(2N-1}. Output pins are numbered in the same
way, OPIN(0) through OPIN(2N~1). The shuffle function is
used to transfer data from the output pins of

mmAwEthslw...ﬁHwov to the input pins of processors
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PE(p,_,-.-P1Pp0) and PE(p__,...P;Pyl}. (The name "4-pin

shuffle" is new.)

6.2.3. PM2I

In the Plus-Minus Nw network (PM2I), PE(Jj) is connect-
ed to processors

j+21 moa N
and

uluw mod N,

for 0 < i < m.

6.2.4, Cube

PE(p,_1+++P;41P;P;_1---Pg} in the cube network is con-
ted to- P
necte o- the m processors mmAmauw...@M+H®Mww|w...@ov~ for

0 <1i<m.

6.3. EXISTING ALGORITHMS

In this section we review some proposed large-network
algorithms. The number of such algorithms is iarge and
growing, so we do not attempt to be comprehensive. Our
goal is to illustrate the process of transforming large-

network algorithms into guotient-network algorithms.



131

6.3.1. Fast-Fourier Transform on the Shuffle

Let A{k), k=0, 1, ..., N~1, be a vector of N complex

numbers. The Discrete Fourier Transform (DFT) of A is de-

fined to be the vector

N-1 ik .
{6.1) X(j) = £ AKW §=0,1,...,N=1
k=0
where W = mmdw\z. The obvious algorithm for computing X

takes time OAZNW. An important advance in the theory of
algorithms was the discovery of an O(Nlog N) algorithm for

the DFT [24]. This algorithm is called the Fast Fourier

Transform (FFT). Pease [10] has discovered an algorithm

that computes the DFT on N/2 processors in time proportion-
al to log N, thus achieving optimal speedup. Pease”s algo-

rithm can be explained as follows: First, we represent

both k and 3 by their binary expansion.

k = x5|~xa[~...xc
and

i uarwwanm...uo.

Equation 6.1 then becomes

(6.2 X(9) 1. 2 ]
o ’ Jrgop 2T Sk p2" ko
=% & ... % Alky ko oe.ckg)W W celW
kg k1 Kpex
. m-1
ik k2 k12
=z w %z w e E W Ak ko _peek)
ko ky n-1 . o
Equation 6.2 consists of m nested summations. Since =1,
wmaum m-s

Jeiqda ...uo.m
WS 17s=-2
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so the innermost s summations depend only on the m binary

variables Jgr «+++ Jgq and xa'm|w~ +++s kg- Thus the in-
nermost s summations represent a function from 0, esey N-1
to the complex numbers; we represent this function as an

array mm of N complex numbers. mm satisfies

moﬂxauwwanm...xov = mﬁwalwwanm...xov~
(6.3) Bg(g++-dgo1kpogo1-+-Ko! =
. . . aM=S
. . Jg-1Jg-2+++Jp"2 .watm
xM wmnwﬁuo...umrmxalm...xcvz '
m-s
and

waﬁuo...uauwv = xmuauw...uov.

Equation 6.3 reveals how we can use the 4-pin shuffle to
compute the DFT: We iteratively compute wm for s = 1 to m,
Iteration s results in mm distributed on the output pins.
To perform iteration s, we form the weighted sum of ele-
ments from wmlw whose indices differ only in bit position
number m-s. The 4-pin shuffle with N/2 processors provides
exactly the data alignment we want, since shuffling an ar-
ray s times causes the indices of the two numbers in each
processor to differ only in bit position number m-s.

The following is a description of Pease”s parallel FFT
algorithm. The hardware is assumed to be a 4-pin shuffle
with N/2 PEs. The machine operates in SIMD mode, and PEs
differ only in that each processor PE(pp_p-.+Pg) knows its

own address Pp-n+++Pg-



Large-network Parallel FFT

Input: data items A(k) k=0, ..., N-1
with A(k) on OPIN(k)

Output: the Fourier transform X(j) of A(k)
with X{j _q...34) on omHzAwo...uaiHv

for s := 1 tom

begin
SHUFFLE; _
omo...vmaw.wa s
OPINO := IPINO + W Elm.HmHZH"
1pg-..pg "2
OPIN1l := IPINO + W *"IPIN1;

end

This algorithm can be proved correct by induction on the

following loop invariant:

Immediately after shuffle number s,

mmnwauo...umlmowalmxw...xov
and

Beo1Ug--+Jg-2tkp-g-1-+ Ko
are in processor PE(k
tions

HszﬁxasmnH...xouo...umnwov

IPIN(k 1),

and
mxw...wouo...umlw
respectively. This processor then places
and mmﬁwo...@m|moxa|m|w...xov

Wmﬁuo...umtwwxaxmiw...xov
onto output pin positions

OPIN(k  _ j+--Kgige-+Tg_p0)

L.,

and

OPIN(k . ;.+++kgigeeedg s

respectively.
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m-s-1---KgJg---Jg-p) at pin posi~

6.3.2. Sorting on the Shuffle

Batcher”s algorithm [11], as adapted by Stone [13], sorts N
numbers in Homm N passes through the N/2-processor 4-pin
shuffle. After each shuffle, a processor either
l. Copies the two inputs directly to the two outputs.
2. Compares the two inputs and puts the lower on OPINO
and the higher on OPINL.
3. Compares the two inputs and puts the higher on OPINO
and the lower on OPINL.

2

Hence Batcher”s algorithm requires log” N shuffle steps on

the 4-pin shuffle.

6.3.3. Polynomial Evaluation on the Shuffle

Consider the problem of evaluating the (N-2)nd-degree poly-

nomial

N~2 .

(6.4) b mwxp
i=0

for given numbers x and asy i=0, ..., N-2. Horner”s rule,

which evaluates a polynomial by the scheme
A...AAmsx+w:twvx+mnlmvx+...+mHvx+mo~

is an optimal serial algorithm that requires exactly N-2

multiplications and N-2 additions. Stone [13] presents an

algorithm for computing (6.4) with 2 log N passes through

the N/2-processor 4-pin shuffle.
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6.3.4. Finite-difference Methods

The literature is full of proposals for the parallel execu-
tion of finite~difference calculations {6,28,44,46,47,48].
Often, the rectilinear problem grid is mapped one-to-one
onto the rectilinear processor grid. At each time step,
each processor communicates its values to and receives
values from each of its nearest neighbors. This exchange
provides each processor with the necessary values to com-

pute the value of its point at the next time step.

6.4. NETWORK EMULATION -

Definition. Suppose that G = ﬁ<o~mov and H = m<m.mmv are
graphs. We say that a function m"<m —> <m is an emula-

tion of H by G if for every edge ﬁdw.rwv e mm

mﬁswv = maswv or amaswv.mﬁrmvv e E

q-

Every emulation E:Vy —==> Vg induces a mapping
£7:By ~-=> Vg [§ B in a natural way:

m\ﬂrp~:mv = (£(h;},f(h,)) if Am.:wv.maswvv € Eg
otherwise

m\asw.swv = £(hy) = £(h,).

We say that the node g € V, emulates the nodes m!pamu. and

G
that the edge Amw.mmv e mm emulates the edges mxnwﬁmw~mwv.

If _mxwh@v_ is the same for every g € <o~ then we say that

£ is computationally uniform, and ”mtpﬁmv is the computa-
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tion factor of £; if m\ﬁwﬁmv~ is the same for every e €

E »=1

ﬁmL

el then we say that f is exchange-uniform, and _m
is the exchange factor of f. If f is computationally uni-
form and exchange-uniform, and if the computation factor

equals the exchange factor, then we say that £ is totally

uniform, and _mlwﬁmvﬂ is the emulation factor of f.

If the graphs G and H are interconnection networks,
then the existence of an emulation of H by G provides a way
for the network G to emulate the actions of the network H.
By analogy with the notion of quotient groups in abstract

algebra, we call G a guotient network. The processor g €
1

<m is time-shared to emulate the group of processors f —(9)
in V., and the communications line Amw~mmw € mm is time-

multiplexed to emulate the communication lines m\|HAQH~mmv

If the emulation of H by G is computationally uniform,
then the processors in G can efficiently perform the ac-
tions of the processors of H: Since each processor in G
emulates the same number of processors of H, all of the
processors in G can proceed in unison and finish simultane-
ously. No processors sit idle while other overloaded pro-
cessors finish their work. Likewise, if the emulation of H
by G is exchange~uniform, then the communications lines in
G can efficiently perform the actions of the communications

lines of H: Since each communications line in G emulates



137

the same number of communications lines of H, all of the
data transfers in G can proceed in unison and finish simul-
taneously. No communications lines sit idle while other
overloaded communications lines finish their work.

We now present an emulation for each of the networks
reviewed in Section 2. 1In each case, a large network H is
emulated by a smaller network G of the same general inter-

connection scheme.

6.4.1, Perfect Shuffle

Suppose that H is a shuffle-exchange network with N =
2" processors. We will emulate this network with a 4-pin
shuffle network of size N/2, and then emulate the 4-pin
shuffle network with any 4-pin shuffle network of size a
smaller power of two.
Theorem 6.1. The function mﬁmanp...mmwwmcv = Pp-1--+P2P;
emulates the shuffle-exchange network of size N with the
4-pin shuffle of size N/2.

Proof. Suppose that e = Aww.:wv € B If e is an exchange

e
connection, then mﬁrwv = marwv. If e is a shuffle connec-

tion, then

(£(hy)  £(B,))

(£(Pg_q+++P1Pg) rE(Pp_ 5+« +P1PoPy 1))

Awanw...mw.walw...wwmov € mm.
Q.E.D.
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The emulation f is computationally uniform and exchange-
uniform, but not totally uniform. The computation factor
is two and the exchange factor is one.

Theorem 6.2. The function

mﬁma+anwwa+aiw...mavaaw...vov
emulates the 4~pin shuffle of size NP=2

va+alww5+mlw...@ﬂ
™d yith the 4-pin
shuffle of size N=2",

Proof. Let

(hy,hy)

A@E+QIH@B+QIM...MQMQ|H...@c. U3+@|m...wawmlw...moxv
be an edge in H. Then

(£(h)) , £(h,))

A®E+ﬂlww5+@|~...@m- ma+n1~...@ ﬁnlwv € mo.
Q.E.D.

The emulation £ is totally uniform, with emulation factor
29, Figure 6.1 illustrates a 4-pin shuffle with four PEs

emulating a 4-pin shuffle with eight PEs.

6.4.2. Grid-connected Network

The emulation of a large grid-connected network with a
small one is fairly straightforward; we simply partition

the large network into sgquare regions.

Theorem 6.3. The function

£(Pryg-1+-+PrPro1-+-Por Apss-1+°99p-1- -+ 9!

(Prig-1+--Prs mn+m|w...nnv
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-

shuffle.
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is an emulation of a grid-connected network of size N~n+wm

by a grid-connected network of size Nmm.

Proof. Suppose that h = A5H~wmv = AAwP.OHV-AmN.ONVV e mm.
We assume that h is a "North" connection, so that ww = mm
and DH = OM - 1. A similar proof can be used when h is any
of the other three grid connections. We can represent ww.

ww~ ow~ and cm as follows:

MH = MM = p

r+s-1'**PrPr-1--Pp

Q=9 - 1= dpigay+9 319
I1f incrementing Q, results in a carry into the top s bits
in its binary representation, then

(£(hy},£(hy))

il

(£(Ppyg-1++PrPro1+++Por Irig-1-++I9p-1---9p)~

mﬁwn+miw...@nmnlw...vo~ Arig-1"*F9-1--+9 +1))

((Prigay=+Prr Gpyg-1e+9p)y
(Prygai--Ppr Gppguie++dy * 1))

€ Ej.

If not, then

£{h,)
= £(P1,0,)

= f{p g1+ +PPr_1++-Pgr Qpyg1--+99p 7+ -9g)

(Prig-1*+"Prr 9r4g-1°+9)

mA@n+mIH...wnMN|H...©o. Ar4g-1°"F9p-1++9 + 1
= £(P,,0,)

= mnrmv.
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Q.E.D.

The emulation f is computationally uniform and exchange-

uniform, but not totally uniform. The computation factor

2r . 4

and the exchange factor is 2°. Figure 6.2 illus-

is 2
trates part of a grid-connected network emulating a grid-
connected network that is four times larger.

In general, a k-dimensional grid may be emulated by a

smaller k-dimensional grid. For a given r, the exchange

. . . 1 L
factor is 2F and the computation factor is wwn. L.: _.__
L] &
It IRS
- ~, \\ ll
£90 L Y
rt1 e r*1orea
6.4.3. Cube A Fed A bedon
— rﬂ... rﬂL \ r— F—.L Lp /fllll
t 1 i 1
oy P —— mm—
Theorem 6.4. The function oty NER s
c 3 rnf._ r\u.._ r.an r\u.._
nms.*.nnwmva*,@lw...muamu@lu....m.ov = Pp+q-1Pm+q-2°**Fg N N r
: + . : 1 v
emulates the cube of size Np=2"9 yith the cube of size "" :
i
n=2". S Y
T ¢ N
rla pia rla ria
Proof. Suppose that (h,,h,}) € E,. Then h, and h, are of A ke R P L
s 1772 H 1 2 e, Lea Stepd bea S L
J— r v | T T N
the form SITn et b EIIITN i T
—Nrt1 ks AN e I ke IV
~ o w ~ - w
hy = Ppig-1+"Pi---Po R bt b
and . . N

SR I |
If i £ g, then m:ﬁ_.v = m?wv. If i > g, then

£(h

wv m5+a..u....mvw...mva

£ va =

and _
w5+axw...ww...ma.
Hence, Amng.mgm: € Eg.

Q.E.D. Fig. 6.2. Grid emulation with r=2.
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The emulation f is totally uniform, with emulation factor
29, Any function that discards g bits and permutes the
remaining bits is also an emulation. Figure 6.3 illus-

trates a cube of size four emulating a cube of size eight.

6.4.4. PM2I

Theorem 6.5. The function

m~w3+alwma+mrm...mmmaxw...va = Ppig-1Pmeg-2""Pq
emulates the PM2I network of size zmuwa+a with the PM2I

network of size N=2M.

Proof. Let A:H~:mv € B Hence wH and :m are of the form

b
h, = p 1P _meseD P _1+esP
and m+q-1"mt+g-2 q°g-1 0 .

hy = Pm+q-1Pmeg-2°**PgPg-1-""Po 2

for some 0 < i <m. If i < g and if the addition of mw to

:w does not cause a carry into the top m bits of its ad~-

dress, then f(h = mASwv. Otherwise, if i > g then

u..v
- i-q
£(hy) = £(hy) + 277,

and if i < g then

]

m~SNv marwv + 1.

In either case, mmﬁwwv~mawmvv <] mm.
Q.E.D.
The emulation f is computationally uniform, with computa-
tion factor 2%. But £ is not exchange-uniform, since each
"+1" link in G emulates NE+H|H links in H, while every oth-

er 1link in G emulates 2™ links. Figure 6.4 illustrates a

Fig.
cube.

6.3.
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teen.

6.4.

PM2I of size eight emulating PM2I of size six-
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PM2I of size eight emulating a PM2I of size sixteen.

6.5. SOME RESULTING ALGORITHMS

Tn this section we transform the large-network algo-
rithms of Section 3 into gquotient-network algorithms.
Since the transformation is a fairly mechanical one, we
present it in detail only for the FFT algorithm. For the

other algorithms we only summarize the result.

6.5.1. Fast~Fourier Transform on the Shuffle

The FFT algorithm presented in Section 3 consists of a
loop executed m times. The body of the loop consists of a
SHUFFLE followed by placing weighted sums of the input pins

onto the output pins. We assume, as in Section 3, that our

ma:H

network contains N/2 = machines. We wish to compute

the DFT of N*'P = ma+a data items A(i} for i=0, ..., N°*P-l.

We therefore emulate the actions of a 4-pin network of size

ME+QIH

N*P/2 = . Each processor represents the virtual pins

of the processors it is emulating by arrays: The virtual

PE(k xov has pins OPINO, OPINi, IPINO, and IPINL.

mig-2°°"

These pins are emulated on actual PE(k m...x at index

A3
mq- q’
xalw...wo of arrays EOPINO, EOPINl, EIPINO, and EIPINI,
respectively. Here is the quotient-network FFT algorithm:

Quotient-Network Parallel FFT
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Input: data items A(i), i=0, ..., N°P-1l such that
»~x5+auw...xm+wxa...xov is stored on machine

mmaxa+anw...xn+wv in momHZWOMxo...wH_

Output: The Discrete Fourier Transform X(i},
i=0, «.., N°P-1 such that
xmxo...x

H...w ,v is stored on machine

m+g-1
in momH2xo~xm...w

k
q g+
vmﬁx5+auw...wn+wv HH
for s := 1 to m do
begin

{ emulate SHUFFLE: }

for j := 0 to 29 -1 do
begin * macwwnm mmﬁm
if j is even th&n
begin
OPINO := EOPINO[j/2] -1,
OPIN1 := EOPINO[3j/2 2459 ;
end else
begin
OPINO := EOPIN1{| j/2
: w /2 ¢+~a-

m...moun 1+-3g) }

OPIN1 := EOPIN1{
end;
SHUFFLE;
EIPINO[j] := IPINO;
mHmszﬂuu := IPINIL;
end;

{ emulate computation: }

=0 to 29 -1 do

{ emulate PE(P_ ....P

mo u . L
in m-2 09g-1"-+J0’ o

®nig-2°"%0 = wanm...MOuaaw...uc"
EOPINO[3] :=
EIPINO[3] + W *EIPIN1{]]:

EOPINL{j] :=

EIPINO[3] + W "EIPIN1[]];
end;
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end;

The original large-network FFT algorithm is optimal in
the number of processors; that is, the speedup is propor-
tional to the number of processors used. In the above ex-
ample, the large-network FFT algorithm rests on top of an
emulation, which rests on the actual hardware. Apart from
the loop and indexing overhead needed to emulate the SHUF-

m-1

FLE step, the 2 -processor network is 29 times as slow as

the 2™ta-1

-processor network. The loop and indexing over-
head slows the algorithm down by only a constant factor,
and could be eliminated entirely by unrolling the loops.
Therefore the quotient-network algorithm is also optimal:
We gain approximately N speedup with N processors. While
the original large-network FFT algorithm performs log N

operate-shuffle steps, the quotient-network algorithm per-

forms NQHO@ N operate-~shuffle steps.

\

6.5.2. Sorting on the Shuffle

As we mentioned above, Batcher”s large-network algo-

rithm sorts N = M5+a numbers in ha+avm operate~shuffle

m+g-1

steps on a 4-pin shuffle with 2 processors. A

quotient-network version of this algorithm sorts the 2™+
numbers in maaa+avm operate-shuffle steps on a 4-pin shuf-

fle with 2™ processors.
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6.5.3. Polynomial Evaluation on the shuffle

A Ma+aannnoommm0n 4-pin shuffle network can evaluate a po-
lynomial of degree m5+arwlw in 2(m+q) operate-shuffle
steps. The quotient-network version of this algorithm
evaluates the same polynomial in wa+waa+av operate-shuffle

steps with Na|H Processors.

6.5.4. Finite-difference Methods

L 2r+2s s
A large-network algorithm that maps the 2 points

of a finite-difference grid one-to-one onto a mmn+mm grid-
connected network must communicate each point at each time
step to all four neighbors. The quotient-network version
of this algorithm reduces the communication/computation ra-
tio by communicating only the border points of a
processor’s region to that processor”s neighbors. The grid
algorithm of Chapter 5 can now be seen as a quotient-

network algorithm.

6.5.5. Alpha-beta Search

One optimization of the Tree-splitting Algorithm
mapped the top several layers of masters onto a single pro-
cessor. TFor example, the root master and its two slaves
can be processes on the root node of a processor tree. We
can view this processor tree as a quotient network: The

root node emulates the top three processors of a binary
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processor tree.

6.6. THE ECONOMICS OF EMULATION

We can give several economic arguments in favor of
solving large problems on small networks through emulation.

1. The cost of a word of storage is much smaller than
the cost of a processor. This fact is independent of
further increases in scale of integration. By adding
extra storage at each processor in G, we increase the
potential computation factor of an emulation; that
is, we can emulate a larger H. We therefore increase
the largest problem that the network can handle, with
a much smaller increase in hardware cost than would
be incurred by expanding G to H.

2. Suppose that a solution must meet a time constraint
for a problem of size N. One processor cannot meet
this constraint, but N processors (the network H) are
much too expensive and much faster than needed. An
intermediate number of processors (the network G)
emulating H may be fast enough and affordable.

3. Given a large-network algorithm, an emulation au-
tomatically produces a quotient-network algorithm to
solve the same problem on a smaller machine. We

achieve economy of thought by solving once and for
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all the "emulation problem": doing on a small machine
what a large machine can do. Thereafter, we can deal
exclusively with the simpler class of problems: data

sets of size N on networks with N processors.

Chapter 7 - Conclusions and Future Directions

In literature, in art, in life, I think
that the only conclusions worth coming
to are one”s own conclusions. If they

march with the verdict of the con-
noisseurs, so much the better Ffor con-
noisseurs; if the do not so march, so
much the better for oneself.

- A.C. Benson
From a College Window

In this chapter we will briefly review the major con-
tributions of this thesis. Where appropriate, we will in-

dicate areas that need further research.

7.1. ALPHA-BETA SEARCH

We have presented two parallel algorithms for imple-~
menting alpha-beta search-on a tree of processors. The
first, Palphabeta, divides work recursively among slave

processors in a simple fashion. Under best-first ordering

of the lookahead tree, Palphabeta achieves ww\a

speedup
with k processors. The second distributed algorithm, mwf,
orders work to be done by slaves in a more sophisticated
manner. Under best~first ordering of a chess lookahead

tree, mwf achieves xc.m

speedup with k processors. Our
work with the parallel alpha-beta algorithms has led to the

discovery of an optimization of the serial algorithm. This
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optimization, called Lalphabeta, is discussed in the appen-
dix.

The question remains whether there exists an optimal
parallel algorithm for alpha-beta search. We moved toward
optimality in going from Palphabeta to mwf, but abandoned
deep cutoffs along the way to simplify the analysis. Any
optimal algorithm must achieve these cutoffs. Mwf should
also be made more practical by increasing the number of
processors that can be used to meet a time limit. Current-
ly, mwf must run on a processor tree that is less than half
the height of the lookahead tree being searched.

Both Palphabeta and Mwf assumed that the logical to-
pology of the multicomputer was a tree. This assumption
allowed us to write down recursive relations that, when
solved, gave the finishing time of the algorithms. Unfor-
tunately, this assumption increased slave idle time: Some
of processor X”s slaves are idle because X has more slaves
than work, while at the same time processor Y has more work
than slaves and could use those idle slaves. A distributed
algorithm might view the collection of computers as a uni-
form pool. With this organization, idle time might be re-
duced. Further research should be directed toward the
guestion of how to organize a pool of processors to perform

parallel alpha-beta search.
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7.2. PIECEWISE-SERIAL ITERATIVE METHODS

The Jacobi method is an iterative numerical technique
for solving certain partial differential equations. We
have shown how locally-defined iterative methods give rise
to natural multicomputer algorithms. In particular, the
grid and the tree algorithms map parts of the problem onto
individual processors. Each processor (or terminal proces-
sor in the case of a tree multicomputer} engages in serial
computation on its region and communicates border values to
its neighbors when those values become available.

Our analysis derives the running time of the grid and
the tree algorithms with respect to per-message overhead,
per-point communication time, and per-point computation
time. As long as each machine has a significant amount of
work to perform, message passing does not seriously degrade
performance. The grid method is more efficient than the
tree method, but the semi-synchronous optimization of the
tree algorithm is more efficient than the grid algorithm if
it is compute-bound. All three algorithms give nearly
N-fold speedup with N machines on large problems; the
speedup approaches the number of slave processors as the
problem size goes to infinity. The efficiency of the tree
algorithms depends on the tree fanout; we have shown that
the optimal fanout is four. When a tree algorithm is used

to solve probiems in M dimensions, the optimal fanout is
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We have shown how to apply the tree algorithms to
non-uniform regions both statically and dynamically. These
modified algorithms shed load in a natural way from one
slave to another when one has a larger area Oor more expen-
sive computation.

The research reported here can be extended in several
ways. We have assumed that the machines that compose the
multicomputer are reliable. Experience shows that large
assemblages of computers are very likely to have individual
malfunctioning elements fairly often. If a machine should
fail in such a way that it no longer receives or transmits
data, the overall calculation should be able to continue.

Consider the following grid of machines:

R

Zomw
omON
wrtin o

Let us suppose that J fails. In the case that each machine
only deals with one mesh point, a reasonable adaptation is
for machine K to use values from its neighbors, G, L, and
0, as before, but to average values from F and N to esti~
mate a value for J. Likewise, machine N will average
values from I and K to substitute for missing values from
J. However, if each machine is responsible for a sizable
patch of mesh points, the recovery strategy is not so

clear. Further research should investigate strategies for
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continuation when components fail. In the tree algorithm,
dynamic region encroachment provides a natural algorithm
for continuing when a single processor fails: All of a
failed processor”s load can be shifted to its siblings.

Dynamic region encroachment presents a method for
redistributing subregions as the computation progresses to
give each machine a similar amount of work. The guestion
remains how often this redistribution should be done, since
it requires a significant movement of data and an interrup-
tion of normal computation.

We expect that the advent of large-scale multicomput-
ers will encourage further investigation into parallel al-
gorithms for solving large numerical problems. For these
algorithms to be efficient, they must be able to perform
relatively large amounts of computation based on relatively
small amounts of communication. As we saw in the case of
the semi-synchronous tree algorithm, careful attention to
the order of computation and communication can reduce com-

munication cost.

7.3. QUOTIENT NETWORKS

By showing how to emulate a large interconnection net-
work with a smaller network of the same topological family,

we have presented a method for converting large-network al=-
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gorithms into more practical small-network algorithms. Tt
is important that the emulation does not in any way depend
on the intended computation. Hence we can produce small-

network versions of any large-network algorithm. The emu-
lation itself produces no loss of efficiency, but allows us

to perform the computation on a range of smaller machines.

7.4. PARALLEL PROGRAMMING PROVERBS

In this section we review some of the lessons learned

while designing and implementing distributed algorithms.

7.4.1. Large Computation per Message

Distributed systems, unlike serial systems, must spend
part of their time passing messages. Since message-passing
in distributed systems can be time consuming, we are in-
terested in algorithms that do as little communication as
possible. Each message should invoke, or be a summary of,
a large computation. Many of the algorithms presented in
this thesis illustrate this principle.

1. Palphabeta and mwf use messages only to invoke or
summarize the search of a large subtree. As the size
of the lookahead tree increases, the amount of compu-
tation increases, but total message-passing time

remains constant. 1Indeed, message-passing time does
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not even appear in the speedup formulas for our
parallel alpha-beta algorithms, since these formulas
represent limiting values as the lookahead tree be-
comes larger. If instead we had exploited parallel~
ism in move generation or static evaluation, then to-
tal message-passing time would have remained propor-
tional to computation time.

2. The grid and tree algorithms for locally~defined
iterative calculations were careful to partition the
problem grid into segments with maximum area/boundary
ratio., Since only boundary points need to be commun-
icated to neighbors at each timestep, communication
time is minimized. The area/boundary ratio increases
quadratically with the size of the problem grid.
Hence the communication time does not appear in

speedup figures for large problem grids.

7.4.2. Do Interesting Work First

The semi-synchronous algorithms for locally~defined
iterative calculations calculate new boundary points before
new interior points. As soon as the new boundary points
were available, they are sent to the master processor for
distribution to other slaves. Only then does the calcula-
tion of interior points begin. By giving a head start to

the dissemination of this "interesting information", the



computation is speeded up, since the processor that is in-

terested in the information is not kept waiting.

7.4.3. Do Mandatory Work First

The alpha-beta pruning technique prunes away some
parts of the lookahead tree on the basis of information
originating in other parts of the tree. Both of our paral-
lel alpha~beta algorithms, Palphabeta and Mwf, achieve
parallelism by dividing the lookahead tree into subtrees
and and assigning each subtree to a separate task. Hence
the results of some tasks can cause other tasks to be can-
celed. Suppose that task A cannot be canceled and that its
result might cancel task B. Palphabeta is likely to lose
the possible savings by executing A and B concurrently.

Mwf achieves the savings, if possible, by executing A con-
currently with some other non-cancelable task. Mwf”s smart
behavior results in an improvement in speedup for searching
best-first chess lookahead trees: With P processors Mwf

0.8 0.5

achieves P speedup, as compared with P speedup for

Palphabeta.

7.4.4. Do Something

Into the life of every processor must come some idle

time. If idleness is likely to happen often, we should ar-

range for something useful for the processor to do. For
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example, in the parallel alpha-beta algorithms, it can hap-
pen that

1. The gqueue of tasks is empty.

2. Some slaves are still busy with tasks.

3. Some slaves are idle.
We would like to give the idle slaves something useful to
do, but the queue is empty. Worse, we cannot refill the
queue until all the busy slaves finish. But with a little
imagination we can find work: For example, we can assign
the same subtrees that are still being worked on, but with
smaller windows. Hence the same subtree might be searched
concurrently by more than processor, but with different-
sized windows., If a processor with one of the smaller win-
dows finishes first, then our strategy has paid off; we can
send an alpha-beta update to the other processors working
on the same tree. These processors then speed up or even

terminate.
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Appendix A ~ Some Optimizations of d-B Search

In this appendix we propose three optimizations of the

serial d-p algorithm.

A.l. FALPHABETA

The first optimization, called Falphabeta for "fail-soft
alpha~beta search", is completely riskless in the sense
that it never searches more nodes than alphabeta. Although
it requires a slight constant overhead, it results in a
slight expected speedup whenever an initial window other
than (- oo,+ o) is used. Here is Falphabeta:

1 function Falphabeta{p: position; Q.vn integer): integer;

2 begin integer m,i,t,d;
3 determine the successor positions m- veey va“

if d = 0 then return{staticvalue(p));

® N U
o
]
e
it
ot
o
o]
=1
Qu
o

to:= |mmuﬁsmumnmAww-nv.namx*a.nvv"

9 if £t > m then m := ¢;

10 if m > v then return(m);
11 end;

12 return(m);

13 end;

~Falphabeta differs from alphabeta only in that m has
been initialized to - oo instead of . In order to keep

this change from affecting the third actual parameter to
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the recursive call to Falphabeta {line 8), "-m" is changed
to "-max(m,d)". The computational overhead of repeatedly
computing the maximum of m and d is the only added expense
of Falphabeta. As mentioned in Chapter 4, the value re-
turned by the call to the original d-B procedure,
mwm:mvmnmﬁw.n\wv~ obeys the following relation with respect
to the true negamax value of a search tree:

If alphabeta < d, then negamax(p) < d,

if alphabeta > B, then negamax(p) 2 Br

if d < alphabeta < B then negamax(p) = alphabeta.
Falphabeta obeys a stronger relation:
Theorem A. If p is the root node of a lookahead tree, and
if o and B are integers satisfying d < B, then the value
Falphabeta returned by Falphabeta (p,d,B) satisfies:

If Falphabeta < , then negamax(p) < Falphabeta,

if Falphabeta > B, then negamax(p) > Falphabeta,
if o < Falphabeta < P then negamax(p) = Falphabeta.

Proof. The relations clearly hold if p is a terminal node.
Assume for the induction step that the relations hold for
any tree of height k or less. Let p be the root of a tree
of height k + 1. Let Pyr «+sr Py be the successors of p.

Each Py is the root of a tree of height k or less.

1) If

Falphabeta (p,d,B) < d,
then for all 1 < i < d, we have

Falphabeta(p;,-B,~) 2 .

By the induction hypothesis, we have
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negamax (p;) 2 Falphabeta(p;,~B,~d).

Hence
max . lsm@mamxﬁmwv < max |mmwﬂwmumwmﬂww~lw~|nv.

"Hence negamax({p) < Falphabeta(p,d,p).

2) If mmwmwmcmwmﬁv.n~vv > w- then there exists i such that
:mmwm:wdmnmAmM~lv.tﬂ\v = Falphabeta(p,d,B} 2 B/

for some d” such that d < d°. By the induction hypothesis,

we may conclude that

:mmmamxﬁvww < mmw@wmcwnmhmw~|W-|ﬂxv.

Hence negamax(p) = Smxw I:mmmamxAWMV > wmwm:mdmnmAm~R~wv.

3) If a < Falphabeta(p,d,B) < B, then let i be the smallest
integer such that
|wmwvwmwmnmAmH.nw~nn\v = Falphabeta(p,d,B),
for some d” such that Falphabeta(p,d,B) > d” > d. Hence
-B < mmwmrmvmnmﬁww~nw-nnxv < -d”.
Therefore, by the induction hypothesis,

negamax(p.)
= mmwm:mvmﬂman»~nm~sn\v = -Falphabeta(p,d,B) .

Since negamax(p) = smmmamxﬁwwv~ we have
negamax (p) = Falphabeta(p,d,B):

Q.E.D.

Theorem A implies that Falphabeta can give a tighter
bound than alphabeta on the true value of the tree when it

fails high-or low. Falphabeta "fails softer" than alphabe-
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ta. The extra information that Falphabeta gives can be
used in two ways. First, this information is useful when-
ever the common wisdom "start with a tight window" is fol-
lowed. If the tight window An.vv causes the search to
fail, the penalty of doing the entire search over again
must be paid. With normal d-B search, this second search
must be done with the window (- oo,d) (if the original
search failed low) or Aw.+ o) (if the original search
failed high). Falphabeta reduces this penalty: A low fail

i1l sometimes return a number k < o, and the second search
can be started with the tighter window (- oo,k). We can ex-
pect a similar saving when a high fail occurs.

We need two definitions to explain the second use of

Falphabeta. Staged iteration evaluates a lookahead tree to

depth N by first searching to depths 2, 3, ..., N-1. After
each stage, the principal continuation (the path the game
would take if each player played optimally) is saved. The
next stage begins its depth-first search by descending to
the end of this path; whenever a node on the principal con-
tinuation is visited, its principal child is examined
first. Staged iteration provides very reliable best-first
move ordering at type-one nodes, so it actually decreases
the number of nodes searched in chess programs.

Forward pruning, as opposed to le pruning, which is a

form of backward pruning, cuts off a node of a tree before
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fully investigating any of its siblings. It is obvious
that forward pruning can provide enormous savings in tree
search. Unfortunately, forward pruning is very risky. No
one has yet discovered how to perform forward pruning
without occasionally pruning away the best move. (The very
best chess programs do not perform forward pruning.) One
of the reasons that forward pruning has not been success-
fully implemented is that when a poor move is evaluated
after a better move, alphabeta assigns both the same score
(except when the poor move is within two moves of the ter-
minal node that produces the poor score). Falphabeta some-
times gives the poor move a more appropriate value, so it
may provide a basis for reliably pruning the move during

the next stage of a staged iteration.

A,

N

. LALPHABETA

When alphabeta is recursively called on the last suc-
cessor ®a~ of the root of the entire tree, p, the current
value -B (-~ oo is passed as formal parameter d. Suppose
that -m~-1 is passed instead. 1If = is not the best move,
then :mmmamxﬁmmv > -m, and mwmvmamnmﬁwm~lslw.lav fails high
as before. 1If mm is the best move, then :mmmamxﬂwmv <
-m~1, and so mww:mUmwmAwm.xalw~cav fails low instead of

gsucceeding. Nevertheless, the algorithm can still conclude
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that P4 is the best move, since its negamax value has been
established to be lower than any other. The modified algo-
rithm does not discover the value of the best move when
that move is evaluated last. However, it still determines
which move is best. This slight reduction in information
can buy a time savings, since the evaluation of Pg has a
very narrow window.

A parallel version of this technique was discussed in
subsection 4.4.3. under the name "alpha-raising”. The new
algorithm will be called Lalphabeta, short for "last-move-

with-minimal-window alpha-beta search".

[

function Lalphabeta (p: position; d,B: integer}: integer;
begin integer m,i,t,d;

determine the successor positions Pyr eesr Pgi

if 4 = 0 then return{staticvalue(p)):

O o N U e W N
]
]
o
It
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o]
=
i
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t o= |mwmrmwmwmAmw-|m,lavn
if t > m then m := &;
10 ifm2>B then return(m);
11 end;
1z t := lmwwsmumnmAwm~|§1H.lav“

ot
w

if £ > m then m := t;

14 return(m) ;
15 end;

Lalphabeta provides an elegant solution to the
forced-move problem: Programmers writing their first

game-playing program often find to their amusement that al-
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phabeta conducts a full-scale search even though only one
move is available to the computer. Lalphabeta searches the
one available move with the window (o~ 1l,000. Besides
greatly speeding up the search, Lalphabeta actually per-
forms useful work in this case: It decides if it should

resignl!

A.3. CALPHABETA

The third optimization, called Calphabeta because it
is called only on nodes along the principal continuation,
is a generalization of Lalphabeta, and profits from Fal-
phabeta, but carries with it the risk that in certain cases
more nodes will be examined.

1 function Calphabeta(p: position): integer;
2 begin integer m,i,t,4;
generate the SuccesSOILS Py, «s«r Pg-

m
u WMmuonsms nmncnsamnmnwo<mwcmﬂvvv“
5 m = lnmwmrmvmnwﬁwww"

6 for i :=2 tod do

7 begin

8 t = xmmw@:mvmnwﬂmW.lauw.nav“

9 ift>m then m := |ﬁwwmsmdmnmAmw.l o, ~t)
10 end;

11 return(m);
12 end;

1f Calphabeta evaluates the best move first at type

one nodes, then all of the other subtrees are searched with
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a minimal window. On the other hand, every subtree that is
better than its older siblings must be searched twice,
resulting in more work. The first search, conducted with
the minimal window, discovers that the subtree is the new
best one, and really should not have been searched with the
minimal window after all. The second search discovers the
true value. It is important that the best move be evaluat~
ed first with high enough probability that the savings
outweigh the penalties. Staged iteration can generate the
best move first with high probability. If the principal
line established for the (N-1)th stage is a prefix of the
principal line for the Nth stage, then at the Nth stage
virtually the entire tree is searched with a minimal win-

dow.

A.4. MEASUREMENTS

To measure the improvement due to Lalphabeta and Cal-
phabeta, four checkers games were played, during which the
program made 46 moves. Each move selection was repeated
six times, one for each of the six algorithms: alphabeta,
Lalphabeta, Calphabeta, salphabeta, sLalphabeta, and sCal-~
phabeta. Alphabeta, Lalphabeta, and Calphabeta have al-
ready been defined, and were done without staging. Sal-

phabeta, sLalphabeta, and sCalphabeta are the staged ver-
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sions of these three algorithms. During each of the 46*6
move selections, the number of nodes visited was counted,
providing 46 values for alphabeta, Lalphabeta, Calphabeta,
salphabeta, sLalphabeta, and sCalphabeta, and hence 46
values for the five derived quantities
alphabeta/salphabeta, Lalphabeta/alphabeta,
Calphabeta/alphabeta, sLalphabeta/salphabeta, and sCalpha-
beta/salphabeta.

Table 1 shows statistics for alphabeta/salphabeta.
Checkers, unlike chess, does not profit from staging, pos-
sibly due to checker”s smaller branching factor. On the
average, alphabeta searched only 81% as many nodes as sal-
phabeta.

Table 1: alphabeta/salphabeta

Minimum 0.019
Max imum 2,768
Average 0.808
Standard

Deviation 0.462

Table 2 gives statistics for Lalphabeta/alphabeta,
Calphabeta/alphabeta, sLalphabeta/salphabeta, and sCalpha-
beta/salphabeta.

Table 2:

Lalphabeta/alphabeta Calphabeta/alphabeta

Minimum 0.881 0.666
Max imum 1.000 5.750
Average 0.987 i.163
Standard

Deviation 0.024 0.868
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sLalphabeta/salphabeta sCalphabeta/salphabeta

Minimum 0.899 0.696
Max imum 1.000 2.174
Average 0.988 0.960
Standard

Deviation 0.023 0.227

As expected, staged iteration was crucial to making
Calphabeta work at all; without staging, Calphabeta actual-
1y searched more nodes than alphabeta. However, the meas-
urements of sCalphabeta (Calphabeta with staging) are
disappointing. SCalphabeta searched only four percent
fewer nodes than salphabeta. Since savings from starting
with a narrow window (an optimization that could be used in
place of Calphabeta or sCalphabeta) are on the order of 20
percent [9], Calphabeta and sCalphabeta are probably not to
be recommended.

Lalphabeta and sLalphabeta, on the other hand, are un-
qualified (albeit small) successes. On the average, each
searches about one percent fewer nodes than the correspond-
ing standard algorithm. Although this improvement is not
great, the optimization is clearly a good bargain, since
its space overhead is insignificant and its time overhead
is zero. Lalphabeta is never slower than alphabeta and
sLalphabeta is never slower than salphabeta. Therefore,
every game-playing program that uses ¢~B search should use

some form of Lalphabeta.
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