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ABSTRACT

This paper presents a discussion of the application of
data-flow machine concepts to the design and implementation of
database machines that execute relational algebra queries. We
begin with a description of the types of problems that are
encountered in designing machines to efficiently process very
large amounts of data. Next, the concept of data-flow query pro-
cessing is introduced and we present results on the application
of these techniques to query processing in relational database
machines. Finally a preliminary design for a data-flow database
machine which utilizes page-level granularity and supports dis-
tributed control of instruction execution is presented.






l. Introduction

For the past few years a number of investigations of data-
flow 1languages and architectures have been undertaken [ACKE79a,
ACKE79b, ARVI77, ARVI78, DAVI78, DENN75a, DENN75b, DENNS8G,
PLAS76]. Most, if not all of these, can be characterized as
dealing with pure data-flow. That is, the ultimate goal of these
projects is to produce a general purpose data-flow machine. 1In
this paper we describe a different line of research: the applica-
tion of data-flow machine principles as a solution to a specific
problem.

For the past several years our research efforts have concen-
trated on the problems associated with providing efficient access
to relational databases that are too large to be handled by a
single conventional processor [BORA8BOa, BORA8BOb, BORAS8la,
DEWI7%a, DEWI79b, DEWI8l]. In [DEWI7%9al the design of DIRECT, a
multi-processor multiple instruction stream multiple data stream
(MIMD) relational database machine, is presented. A prototype of
this machine which supports the relational database system INGRES
[STON76] became operational in June 1980 using a PDP 11/40 and
eight PDP 11/23s.

Until DIRECT was proposed, all previously proposed database
were single instruction stream multiple data stream (SIMD)
machines and thus could only execution one database operation at
a time. One consequence of an SIMD design database machine is
that there is no need to schedule the activities of the proces-
sors. With an MIMD design such as DIRECT it is possible to have

groups of processors working on different instructions from the



same query, from different queries, or both. Therefore, after the
design of DIRECT was completed we began to explore alternative
processor allocation strategies for MIMD database machines. The
goal of this research was to determine what strategy would maxim-
ize overall system performance in terms of the number of queries
executed per second.

The results of this research on processor allocation stra-
tegies are presented in [BORA8la]. 1In this paper we will summar-
ize the results presented in [BORA8lal and will describe our
current efforts to design a new database machine that employs
data-flow principles.

We begin in Section 2, with a discussion of relational data-
base systems and the types of operations database machines for
relational systems must support. In Section 3, we introduce the
concept of dataflow query processing. We also present some of
our early results on the application of these techniques for
guery processing in database machines for relational database
management systems (DBMS). We outline the hardware organization
and mode of operation of the proposed architecture in Section 4.
In Section 5 we present some conclusions and future research

plans.

2. Relational Database Systems

In this section we provide background information about the
type and complexity of the operations that a multi-processor

architecture for a relational DBMS must support.



2.1, Basic Concepts of Relational DBMS

A relational database [CODD70] consists of a number of nor-
malized relations. Each relation is characterized by a fixed
number of attributes and contains an arbitrary number of unigue
tuples. Thus, a relation can be viewed as a two dimensional
table in which the attributes are the columns and the tuples are
the rows. In a relational DBMS, relations are used to describe
both entities and relationships between entities. For example, a
simple database that describes information about suppliers and
parts might contain three relations: S, P, and SP. The attri-
butes of S would be those characteristics that are necessary to
represent a supplier. Possible attributes might be supplier_#,
supplier name, and address. Each tuple in S would describe one
supplier. The attributes of the P relation might be part_ #,
part_name, and part_weight. Thus S and P both describe entities.
The SP relation would be used to associate suppliers with the
parts they supply. Its attributes would be supplier_ # and part_#
(assuming each of these characteristics is capable of identifying

a unique supplier in relation S and a unique part in relation P).

2.2. Operations on Relational DBMS

Access to a relational database 1is generally through a
high-level non-procedural language that is based on either rela-
tional algebra or relational calculus [CODD70]. One example is
the relational algebra language QUEL that is supported by INGRES
[STON76] .

The operations supported by QUEL and most relational DBMSs



can be divided into three classes according to the time complex-
ity of the algorithms used on a uni-processor system. The first
class includes those operations that reference a single relation
and that require linear time (i.e. they can be processed in a
single pass over the relation). The most familiar example is the
selection operation which selects those tuples from a relation
that satisfy a certain qualification (e.g. suppliers in N.Y.).
This class also includes the scalar aggregates operations.
Scalar aggregates are operations, such as average and sum, which
are applied to one attribute of a relation.

The second class of operations are those that also operate
on a single relation but require non-linear time O(nlogn).
Included in this class of operations are projection and aggregate
functions. Projecting a relation involves first eliminating one
or more attributes (columns) of the relation and then eliminating
any duplicate tuples that may have been introduced by the first
step. Sorting (which requires O(nlogn) time) is the generally
accepted way of eliminating the duplicate tuples. Aggregate
functions are scalar aggregates applied to non-overlapping parti-
tions of a single relation.

The final class of algorithms that must be supported are
those involving two (or more) relations. Algorithms in this
class also require non-linear time. The most frequently used
operation from this class is the join. A join would be used by a
user to find the name and address of all suppliers who supply
part number 3. To perform this query, the user would first

select those tuples from the SP relation with part # = 3. Next,



the selected SP tuples would be joined with the tuples in the S
relation on the supplier # attribute of both relations. Finally,
the supplier name and address attribute values from the "joined"
relation would be extracted. In effect, the join operation is a
restricted cross-product. Another member in this class is the
division operation.

Update operations are also supported by QUEL. They are not
included in the above classification because QUEL allows the user
to identify the tuples to be updated using a qualification clause
of arbitrary complexity. Thus, the complexity of an update
operation depends on the complexity of the qualification clause
which is made up of the above described operations.

Because the size of a typical relation referenced in a query
may be 10 million bytes (100,000 tuples each 100 bytes long) all

algorithms for relational DBMS must be external algorithms. One

very important consequence of this fact is that in any architec-

ture executing operations on relations the number of I/0 and

inter-processor data exchanges must be minimized.

2.3. Parallel Algorithms for Relational Operations

In order to exploit the parallelism present in a multi-
processor database machine, parallel algorithms must be developed
for each of the relational algebra operations that are supported.
In this section, we present two parallel algorithms for the join

operation. Several parallel algorithms for each of the remain-



ing[1l] operations may be found in [BORAS80Ob].

2.3.1. Parallel Nested-Loops Join Algorithm

The nested-loops join algorithm works by comparing each unit
in one (the outer) relation with each unit in the other (the
inner) relation. On a single processor a unit will generally
correspond to a single tuple. We have identified two versions of
this algorithm for multi-processor systems.

If the outer relation is N units long, the inner relation is
M units long (M<N), and there are N processors available, then
each processor can join one unit of the outer relation with the
entire inner relation. N unit movements are required to distri-
bute the units of the outer relation. After the outer relation
has been distributed, the units of the inner relation can be
read, one at a time, from mass storage and broadcast to all par-
ticipating processors. Because the inner relation units are dis-
tributed to the processors via a broadcast mechanism, only O (N+M)
unit I/O and intra-machine transfers are required to execute it.
We therefore designate this algorithm the "N+M" algorithm.

In the second parallel nested-loops algorithm, which we term
the "N*M" algorithm, pairs of units, one from each relation, are
distributed to the processors. One can identify two possible

advantages of this algorithm. First, by always distributing a

[1] Previous research [HAWT80, DEWI81] has shown that those
operations requiring 1linear time on a single processor (e.g.
selection) are most efficiently processed by a computer architec-
ture which processes the operations "on the fly" as the data is
read off the disk [SLOT70]. Therefore, only operations in the
latter two classes are of interest in this paper.



unit from both relations in each packet there is no need to keep
the processors synchronized as in the N+M algorithm. A second
possible advantage is that the potential parallelism can be
increased beyond N (the limit of the first algorithm). It should
be noted that in order to achieve the high degree of parallel
asynchronous activity O(N*M) intra-machine unit transfers are

required.

2.3.2. Other Parallel Join Algorithms

Recent research has shown how sorting [BORA80b] and hashing
[GOOD80] algorithms can be extended for use in a multi-processor
environment. Both sorting and hashing form the basis of some
efficient uni-processor join algorithms [BLAG77]. 1In [BORA80Oa],
we demonstrate that a parallel version of the N+M nested-loops
algorithm performs better than a join algorithm that uses paral-
lel sorting.[2] Furthermore, controlling the execution of a
parallel algorithm that employs either of the two nested-loops
algorithms appears to be much simpler than controlling a multi-

processor sort.

3. Data-Flow Query Processing

3.1. Relational Algebra Q éry Trees

Each relational algebra query is generally comprised of one

or more operators and is organized in the form of a tree. Nodes

[2] Except for the case that the number of processor available
for execution is much smaller than the number of units (fixed
size pages were used) in either relation.



in such a query tree correspond to the relational algebra opera-
tors such as select, join, project or delete. Each node in the
tree operates on one or more input relations and produces a sin-
gle output relation. WNodes higher up in a query tree operate on
relations produced by nodes immediately below them while the leaf
nodes operate on permanent relations of the database. The output
of any node is a temporary relation which is deleted at the end
of the query execution. If the user wishes, he can make the
result of a query a permanent relation in the database. An exam-
ple of a relational algebra query in the form of a query tree is

shown in Figure 1.
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A Sample Query Tree
Figure 1

3.2. Operand Granularity for Query Execution

There are three possible operand granularities that can be

used by a processor executing a relational algebra operation: an



entire relation, a page from a relation, or a tuple from a rela-
tion. For a conventional DBMS on a single processor, relation-
level granularity is the obvious choice since little or no paral-
lelism can be obtained. On the other hand, this level of granu-

larity would obviously be a poor choice for a multi-processor

system since it would severely constrain the potential parallel-

ism.3

Tuple-level granularity also seems to be an unreasonable
choice. First, a tuple will almost never be large enough to con-
stitute an efficient unit of transfér between mass storage and a
processor. Second, the amount of time required by a processor to
process a single tuple will be shorter (possibly an order of mag-
nitude less) than the time it would take to transfer that tuple
between two points. Therefore, the processors in a machine using
this granularity will most likely be under-utilized and the com-
munication device overloaded.

Consequently, a page-level granularity that uses fixed-size
pages seems to be the most attractive choice. The page size
should be chosen such that: the page constitutes an efficient

unit of transfer and the "average" relation would consist of a

large enough number of pages to allow a high degree of parallel
processing. It should be noted that transferring a page consist-
ing of n tuples between two points will require less than n times
the time to transfer a tuple since the overhead cost (which can

be significant) will be amortized over the n tuples. Therefore,

3 Unless, perhaps, if the processors are used in a pipelined
fashion as suggested by [YAO79].
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we expect that the time to process a page will be approximately
the same as the time to transfer it between two points. This
would lead to a balanced load on the processors and communication

device resulting in better resource utilization.

3.3. Operand Granularity for t e Scheduler

If page-level granularity is chosen as the unit of execution
by the processors, there are two possible granularities that can
be used by a scheduler to enable an instruction for execution: a
relation and a page. When a relation-level granularity is used
for task scheduling, then an operation is enabled for execution
only after all of its input relations have been completely com-
puted. If a page-level granularity is employeed for scheduling
decisions, then an operation is enabled for execution as soon as
one page of each input relation exists.

The relation-level scheduler must wait for all the opera-
tions producing the input relations to terminate before it can
enable their parent operation to execute. Therefore, at the time
that it enables an instruction the scheduler has complete infor-

mation about the instruction: the number of pages in all

operands, the average "fullness" of the pages in each relation,
and their physical placement (in processors” memories, a cache,
or mass storage). This information can be used by the scheduler
in deciding how many processors to allocate for the execution of
the operation, whether one of the relations should be compressed
[DEWI79*], and whether the operation should be enabled immedi-

ately or later. The disadvantage of this approach is that pages
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that are generated by one operation may have to be stored (tem-
porarily) in a cache or on a mass storage device until the parent
(consuming) operation is enabled. This may pose severe problems
because the high level of I/0 traffic may slow down the execution
of the consuming operation.

The page-level scheduler seems appealing precisely because
it would not suffer from this problem. After an initial start-up
time, processors would be distributed across most, if not all, of
the nodes in the query tree. Pages would be pipelined from pro-
cessors executing a child node to processors executing its parent
soon after they were produced. Therefore, the number of I/0
operations would be minimized because storage for temporary rela-
tion pages would not be required.

Our intuitive feelings were that page-level scheduling com-
bined with the N*M version of the nested loops algorithms would
yield the best performance. The N*M algorithm, since it
corresponds to unfolding the two nested loops of the serial join
algorithm, is similar to many of the algorithms suggested for use
in data-flow machines such as matrix multiplication. These algo-
rithms employ the maximal loop unfolding as a means for attaining
a high level of execution concurrency. We believed that the high
degree of parallelism, when coupled with the pipelining behavior
of the scheduler, would 1lead to the most efficient use of the
machine resources and yield the optimal performance level. In
the following section we will discuss an experiment we conducted

to evaluate the alternatives.
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3.4. Comparison of the Schedulers

In this section we describe the results of a comparison of
the two schedulers. These results were obtained from a detailed
simulation model of DIRECT. We begin this section with an over-
view of the architecture of DIRECT in an attempt to place the
problem of implementing the schedulers in a specific context. We
then outline the results of our simulations without providing the
numerical data. 1Including the numerical data in this paper would
entail a more detailed understanding of the architecture of
DIRECT and the experiments conducted than this paper could pro-
vide. The interested reader is referred to [BORA8la] for a more
complete description of both the architecture and the experi-
ments.

DIRECT is a centrally controlled MIMD multi-processor data-

base machine. A DIRECT configuration consists of six component

types:
(1) A number of processors termed query processors
(2) A number of CCD memory modules that serve as a disk cache

(3) A number of mass storage devices on which the database
resides

(4) A cross point switch between the query processors and the
modules (page frames) of the disk cache

(5) A controlling processor termed back-end controller intercon-
nected to the query processors via a bus

(6) A general purpose computer through which the users communi-
cate with the database machine.

All query processor intercommunication is through the shared
cache. Management of the cache is a function of the back-end
controller. Therefore, all reading and writing of the cache must

be coordinated by the back-end controller through the use of
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explicit message exchanges with the query processors. In order
for a processor to write a page of a temporary relation it must
first request a cache memory module address from the back-end
controller. In the event that the cache is full the back-end
will have to page some of its contents out to disk. Later, when
a page that was written out to disk is needed it will first have
to be brought back into the cache before the processor could read
it.

We compared three different cases: the relation-level
scheduler wusing the N+M nested loops algorithms which we term
scheduler A, the page-level scheduler using the same algorithm
which we term scheduler B, and the page-level scheduler using the
N*M algorithms which we term scheduler C. Our simulation yielded
a number of interesting results. First, the performance of
scheduler B was approximately 35% better than schedulers A or C
both of which demonstrated approximately the same level of per-
formance. The performance of scheduler A, as anticipated, suf-
fered because of excess thrashing between the cache and the mass
storage device. Examination of the simulation results indicated
that time after time, because a parent operation could not be

initiated early enough some of the pages from one or both of its

input relations had been paged out to disk.,4

We were, however, very surprised about the relatively poor
performance of scheduler C. When running scheduler C we found

that processors were indeed distributed across many of the nodes

Alternative page replacement algorithms for the cache were
tested and the best one was used in all experiments.
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of a query tree and that pages were being pipelined between them.
Only a minimal amount of pipelining activity was displayed by
scheduler B. Both schedulers B and C did significantly less disk
I/0 than did scheduler A. Closer examination of the results
revealed that the poor performance of scheduler C was a conse-
quence of the number of inter-processor communications required
to distribute pairs of pages to the processors. As pointed out
in Section 2.3.1, the number of interprocessor communications
required by the M*N join algorithm utilized by scheduler C is
quadratic in the size of the relations while for the other two

schedulers (which used the N+M algorithm) this number was linear.

3.5. Implications for Data-flow Database Machines

Another potential problem which our research exposed is that
the cost of controlling the activity of the query processors
(measured in terms of the number of control messages) may exceed

the cost of query execution. This effect was seen in all of the

scheduling strategies evaluated5

although both page-level
schedulers required more control messages than the relation level

scheduler. We believe that this is not a consequence of data-

flow query processing but rather of the DIRECT architecture with
its centralized controller. Thus, we feel that a properly
designed data-flow database machine with decentralized instruc-
tion control should be able to minimize the impact of control

messages on system through-put. We will present an overview of

5 OQur original study included other, non-data-flow, processor
allocation strategies not mentioned here.
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one possible design in the next section.

A second problem our research exposed was that the cost of
distributing operand packets in the M*N join algorithm offset any
gains in execution time due to the massive level of concurrency
employed. This result is interesting because it seems to confirm
similar results presented in [GOST80]. In this study the Irvine
data-flow architecture was simulated and the performance of
several algorithms of different types was evaluated. It was
shown that the cost of communication between processors dominated
the total execution time. We feel that these results imply that
data-flow machines that use massive parallelism without due
regard to the cost of communication among processors may not
attain the expected performance level.

It appears that if communications costs increase linearly in
the size of the data then execution time decreases as expected.
However, if communications costs increase quadratically in the
size of the data, then the expected level of performance will not
be achieved. Thus, for data-flow database machines which must

execute external algorithms due to the size of the relations

referenced, the N+M nested loops algorithms in particular, and
broadcast-based algorithms, in general, will be superior in per-
formance. While these algorithms achieve only minimal pipelin-
ing, they do minimize I/0 activity and inter-processor communica-

tion.
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4. A Preliminary Architecture for a Data-flow Database Machine

Based on the results of the research described in the previ-
ous section and our experiences with simulating and implementing
DIRECT, we established the following design objectives for our

data-flow database machine:

(1) MIMD organization - A data-flow database machine must have a
MIMD organization capable of supporting concurrent execution
of operations from any number of user queries. This is
necessary 1f the system 1is to provide good response as a
back-end to a multi-user DBMS.

(2) Distributed instruction control - A data-flow database
machine must support distributed control of instruction exe-
cution so that no one component will become a bottleneck.

(3) Broadcast algorithms - As presented in Section 3, our
results indicate that algorithms with a linear number of
data exchanges result in superior performance. In [BORAS8ODb]
broadcast-based algorithms for all the relational algebra
operators are described.

(4) Minimal custom hardware - Our experiences with fabricating
customized hardware (i.e. DIRECT s shared CCD cache) indi-
cate that at least for a university environment customized
hardware should be avoided as much as possible.

(5) Incrementally expansible - If our ideas are to ever become
commercially viable, the architecture must be incrementally
expansible so that a user can begin with a modest system and
add additional resources as his needs grow.

In the following sections we will sketch the organization and
operation of a data-flow database machine which we feel meets
this set of design criteria. 1In Section 5, we will comment on

its implementation.

4.1. Organization and General Operation

In this section we sketch the design and operation of a

data-flow database machine. Our architecture consists of five

main components:
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(1) The master controller (MC).

(2) A set of instruction controllers (IC).
(3) A set of instruction processors (IP).
(4) A mass storage system

(5) A very high bandwidth communications medium with broadcast
capabilities connecting the components of the system
together.

The MC serves a number of functions. The first is to handle
communications with the host processor. When a user”s query (in
the form of a query tree) is received by the MC it is placed in a
queue of queries awaiting execution. When system resources (ICs
and IPs) become available, the MC removes the next query from the
queue, checks it for concurrency conflicts with other executing
queries, and then distributes a subset of the instructions £from
the gquery to a set of instruction controllers. The other func-

tion of the MC is to control IP allocation among the ICs.

Each IC is responsible for controlling one6 instruction.
Controlling an instruction involves first acquiring a set of IPs
from the MC and then distributing instruction packets (see Sec-
tion 4.4) to the allocated IPs. Thus the ICs compete with each

other for the processors in the IP pool. (See [BORA8la] for a

discussion of the number of IPs an IC should attempt to acquire
for an instruction). The MC is responsible for arbitration of
the requests in a manner which maximizes system performance by
insuring that processors are distributed across all nodes in a

query tree.

7

Each IC has a small’ mass storage device in addition to its

6 Possibly more than one.
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local memory. The IC uses this two 1level memory hierarchy to
store pages from the relations which are operands of the instruc-
tion it is controlling and which will be distributed in instruc-
tion packets. Each IC will attempt to keep the "most desirable"
pages in its local memory.

IPs are responsible for executing instruction packets
received from an IC on the communications network. When an IP
receives an instruction packet addressed to it, it performs the
operation specified in the packet and then produces an output
packet. The IP then places the output packet on the network and
sends it to the IC which is responsible for controlling the sub-
sequent operation in the query tree. Thus, the IPs and the net-
work form a distributed distribution network [DENN75a] for result
packets. We will discuss the interconnection network in more

detail in Section 4.3 below.

4.2. Distributed Control of Instruction Execution

Although the architecture of some of the previously proposed

data-flow machines might be usable as the basis of a data-flow

database machine, we feel that our proposed design 1is much
simpler and will be capable of achieving the same performance
level. For example, consider the arbitration and distribution
networks of the MIT machine [DENN75a]l. These networks are
responsible for instruction initiation and distribution of

results. The design of the data distribution network is rela-

7 40 Mbyte winchester disks can be purchased today, with a
controller, for approximately $6,000.
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tively straightforward. 1Its function is to take a result packet
produced by a processor and store it in those instruction cells
which are specified in the packet header. The arbitration net-
work, on the other hand, is very complex. It must continuously
monitor all instruction cells and provide a mechanism for ini-
tiating several enabled instructions simultaneously by routing
the contents of each enabled instruction to a free processor for
execution. We feel that for data-flow database machines these two
networks are too general-purpose and consequently excessively
expensive.,

In our approah we have replaced the instruction memory and
the arbitration and distribution networks with a small number of
relatively low-performance processors (the 1ICs). Each 1IC is
responsible for controlling the execution of a few (perhaps only
one) relational algebra operations. Thus, control of the execu-
tion of a query is distributed among a set of processors. If a
typical query contains five operations, then fifty ICs can main-
tain a multiprogramming level of at least ten in the database
machine.

Our approach appears to be viable for two reasons: program
size (number of instructions) and execution time of a typical
instruction. One frequently mentioned application for data-flow
machines 1is 1large scientific programs (e.g. weather programs).
These programs generally consist of thousands of instructions
each of which takes only a few microseconds (or less) to execute.
Even if the instruction operates on operands of type vector, mul-

tiple processors can be used to work on individual elements and
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hence instruction execution time will still be in the microsecond
range. For these applications a 1large instruction memory is
required to hold the entire program. Since each instruction cell
has one input to the arbitration network, the size of the arbi-
tration network is ©proportional to that of the instruction
memory. The arbitration and distribution networks must also be
extremely fast. For example, if 100 one microsecond (execution
time of a typical instruction) processing elements are to be kept
busy, the arbitration network must be capable of routing lO8
packets/second.

Relational algebra queries, on the other hand, are composed
of relatively few instructions (typically 1-10 operations) each
of which takes a relatively long time to execute (in the mil-
lisecond to second range). Also packets originating from one IC
are sent to a fixed subset of instruction processors, as, for
example, are the inner relation pages in the N+M nested loops
join algorithm. This permits us to replace the instruction
memory and the two networks with a set of processors without any

loss of performance or functionality.

o

.3. Interconnection Network

4.3.1. Technology

The communication hardware used to interconnect the MC, ICs,
IPs, and mass storage devices must be able to support MIMD
activity and communications of two types: point-to-point and
broadcast. One medium which appears viable is based on a broad-

band, coaxial cable that uses frequency-multiplexed, RF-modulated
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channels to allow for several simultaneous communications over a
single piece of coax [MAGLS80].

The transmission technology used is CATV which can support a
frequency spectrum of between 300 and 400 Mhz. If a transmission
bandwidth of between 2.5 and 3 Hz is required per bit, then one
piece of coax «can support a total communication bandwidth of
approximately 100 Mbits/second. The total number of separate
communications channels available is dependent on the bandwidth
of each channel. If 1 Mbit channels are adequate then the commun-
ications network can support 100 channels. If 10 Mbit channels
are required then only 10 channels can be supported and addi-
tional pieces of coax may be necessary. Our intuition (based
somewhat on typical load levels of 3 Mbit ETHERNETs) is that 1

Mbit per channel will be adequate.

4.3.2. Network Utilization

The multiple channel capability will be used in two dif-
ferent ways. A single, specially designated, channel, which we
term the control channel, would be used for coordinating activi-
ties on the machine. For example, processors that wish to estab-
lish a link among themselves (e.g. an IC and the IPs it is con-
trolling) will obtain a reserved channel through the use of the
control channel. Once a reserved channel has been assigned to
them they can switch frequency and proceed with their "session",
undisturbed, over their own reserved channel.

In our architecture the MC will be responsible for all

resource assignment. It will always monitor the control channel.
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In its idle state, any processor (IC or IP) will be listening to
the control channel. At the time that the MC decides to initiate
the execution of an instruction it picks an IC to control it and
allocates some IPs and a channel to the IC. The processors
switch frequencies to operate in the assigned channel (their
operation will be described in the following section). At the
time that a processor terminates its current task it switches
frequency back to the control channel, informs the controller
that it is ready for a new task and waits for a new assignment

message.

4.4. Instruction Control and Execution

In this section we illustrate the operation of the machine
in the execution of a single join operation. We call the
reader”s attention to the fact that in general a query tree will
include more than one operation. In executing a query tree with
more than one operation various other considerations must be
taken into account. These are, however, beyond the scope of this
paper.

When an instruction is assigned to an IC it can be in one of
two states. If the instruction”s operands exist (either they are
source relations in the database or they have been computed) then
the instruction is ready to be executed. In this case the MC will
also send to the IC a page table describing each operand. Other-

wise (the input relations have not been computed) the IC will

first create a page table for each operand of the instruction and

then wait for pages of the source operand(s) to arrive from IPs
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being controlled by other ICs. As pages (which may not be full)
arrive, they are compressed to form full pages [DEWI79b] and then
stored in the IC”s local memory or in its disk.

When an IC is ready to initiate the execution of an instruc-
tion (i.e. at 1least one page of each operand is present), it
first sends a control packet to the MC which requests an initial
allocation of 1IPs and disk cache page frames. If the requested
allocation cannot be fully satisfied, the MC will respond with a
list of the 1IPs and page frames which are currently available.
When another instruction has terminated, the MC will send the
remaining requested resources to the IC.

Initially the IC broadcasts a copy of the code to be exe-
cuted to the IPs. Also sent is the channel frequency to be used
by the subsequent instruction®s IC. After each IP receives a
copy of the code to be executed it sets up an "inner-relation
control" (IRC) vector with one entry for each page of the inner
relation. TInitially this vector will be empty. As the execution
of the instruction progresses it will grow.

Execution of the algorithm begins with the distribution of
the outer relation pages. Each IP receives one page. Next, the
IC begins broadcasting the inner relation pages. When an inner
relation page arrives, the IP marks it in its IRC and joins it
with its outer relation page. Tuples of the result relation are
placed in an internal buffer. Should the internal buffer fill,
the IP will switch frequency to the subsequent instruction”s
channel and relay the result page to that instruction”s IC.

After emptying its buffer the IP returns to the original channel
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where it continues execution.

After the last inner relation page has been broadcast the IC
broadcasts an "end_of_inner_relation" message which indicates the
number of inner relation pages actually broadcast. Each IP
checks its 1IRC to see if it missed any pages and informs the IC
of its state. After the IC has received rebroadcast requests
from all of its IPs (there may be none) it begins the rebroadcast
phase. When the IP finishes joining its current page of the
outer relation with all the pages of the inner relation it
informs the IC. 1In the event that additional outer relation
pages exist these will be distributed to the IPs., Each IP will
zero its IRC vector and the algorithm will be executed again.
Otherwise the IP flushes its remaining output buffer contents and

returns to the control channel informing the MC that it is idle.

5. Conclusions and Directions for Future Research

In this paper we have discussed the application of data-flow
machine concepts as a means for enhancing the performance of a
relational database machine. We used the results from a simula-
tion study of DIRECT to show that a processor allocation strategy
based on the data driven model of execution can indeed improve
performance. We have also exposed two serious problems.

The first problem is that the cost of controlling the vari-
ous processors in DIRECT dominated the execution time cost of the
various queries we benchmarked. Although, the cost of control-
ling the processors was higher for the data-flow strategies than

for the non-data-flow strategies we were able to conclude that
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the primary reason for this behavior was the centralized nature
of the architecture. We have therefore embarked on a new design
of a database machine, based to an extent on DIRECT, which uses
data-flow scheduling and decentralized control of instructions.

A preliminary design of this architecture was described in
[BORA8Oa] . In Section 4 of this paper we outlined a more recent
design. A more detailed description is in [BORA8lb, BORAS8lc].
One of the attractive features of this new architecture is that
it can be constructed using "off the shelf" components. The Com-
puter Sciences Department at the University of Wisconsin has
recently received a Coordinated Experimental Computer Research
Program grant from NSF. Included in this grant are funds to be
used for the purchase of 50 VAX processors to be interconnected
using a broadband, multiple-frequency interconnection device. We
intend to implement our architecture on this equipment during the
next 2-3 years.

The second problem we exposed has, we believe, far reaching
consequences. We showed that a data-flow scheduler that used a
nested loops algorithm with maximal loop unfolding did not per-
form as well as expected because of the high level of inter-
processor communication. The reason we believe this result to be
of some consequence 1is that it is not isolated. Gostelow and
Thomas [GOST80] arrived at a similar result under different
architectural assumptions for a different set of problems. Addi-
tional study is needed to expose the tradeoffs between massive
parallelism and the cost of communication between processors. A

first step in this direction has been taken by Arvind [ARVIS8O0].
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This problem is also under study at the University of Wisconsin
both for the relational database problem and for more general
purpose programs.

Studying the tradeoffs between parallelism and communication
costs may lead to a better understanding of both algorithms and
architectures. This may result in the design of new algorithms
(and consequently architectures) that possess properties that
enable their execution using massive parallelism without incur-

ring high penalties due to communications.
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