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ABSTRACT

This paper discusses from a practical standpoint the techniques to
be used in finding a predictive model of the regression type, and inves-
tigates the various difficulties which may arise. Particular attention
is given to models intended to simplify known deterministic procedures

for predicting the value taken by a dependent variable y, given a vector

x of independent variables.
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INTRODUCTION

It is often important to find a relationship between a variable y

and a set of variables x = (x,, ., ), in the form
1 m

2’
F&) = flzg, @y vees %), (1)

Y

from a set of n observed values of these variables. The occurrence of
errors of measurement, together with imprecisions in the formula (1) and
possible effects of hidden variables mot included in x but affecting y,
lead us to think of y (and often of x also) as random variables [r.v.],
rather than deterministic ones. These r.v., defined as measurable func-
tions on an appropriate probability space, are then denoted by Greek let-
ters, n and £; and, instead of (1), we seek a relationship of the form
E[n] & =x] = fix), (2)
where E[n[ £ =x] is the conditional expectation of n, given that the
r.v. £ takes the value X, The statistical technique used to determine
an approximation to f from the observed values of n and £ is called multi-
variate regression analysis and involves the procedures referred to as the
Analysis of Variance [AV]: the possible functions f are restricted to a

family of functions ¢(x; a), where @ = (ul, o e ag) is a vector of

2’
parameters; and this is usually, in turn, limited to linear families of



the f
e form g

ox; a) = : *x]. (3)
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The parameters @ are then determined so as to minimize the sum of squares

7 g 2

m-®a)"Wm-2ay, (4)

where 7 is the column vector (nl, nz,

.s nn) and nj = n(sj), = is the

(n x m) matrix with rows El, £ voos £ and Ej = E(sj), Wis the (n x n)

2° n

diagonal matrix with components (Vﬁi

il

; 6ij W(Ej), and 815 84

the n outcomes, in our probability space, of repeated independent sampling.

LA A ] 8 are
n

The minimum of Sn(a) occurs uniquely when a satisfies the normal equations

g n n
kgl jzld)]?(éj)q)k(éj)W(gj) o = j__z_l¢h($j)njmsj), (5)
which may be written
Aa = )\’ (6)
where A=®WE and A = dWn, (7

and ® is the (g x ») matrix with components (¢Dhj = ¢h(2j); uniqueness of
solution being guaranteed if and only if [iff] the matrix A = A(n, E; a)
is invertible (i.e., non-singular.)

If one further assumes that the deviations from a true regression
g

£ ) {n ) shqsh(x)}/w‘(x' ) (8)
h=1

v

are distributed with a standard normal distribution [mean 0, variance 1]



independent of X, with all observed deviations mutually statistically

independent, then it follows that

_ -1
E[amhj =f3 and V[anj = A7, (9
where amhlis the solution of (5) - (7) for a given set of n observations

and V[...] denotes the variance-covariance matrix, What is more, if we

choose to partition the parameter set a into a and a,, with e and (g-e)
components, respectively, and if we form corresponding submatrices @l

and ¢é, these yield a restricted normal equation

. _ T _
/\1(11 = 7\1, with A1 = <I>1W<I>l and 7\1 = CPIWn, (10)
and a full normal equation
. T T
Aa = A, with A = <I>1W<I>1 <I>1W<I>2 and A = @l]Wn . (11)
T T J
<I>2W<I>1 <I>2Wl1>2 <1>2

If the respective solutions are Qfsg and %fi}, then, on the null-hypothesis

that 62 =0, it follows that Sn(%gi?) ——— the residual sum of squares after

allowing for the full sample-regression —— and A12 = Sn(qjig) - 3 (a(g))

Y1~ min

— the extra sum of squares accounted for by the full sample-regression,
over the restricted sample-regression — are independently distributed
with the standard chi-squared distribution, with (n-g) and (g-e) degrees

of freédom [d.f.], respectively. Thus we may compute the variance-ratio

5,@9y/(n - g)

F = (12)
Alz/(g - e) -

and test the significance of the contribution of the full sample-regression



over the restricted sample-regression by reference to the known distribution
of 7, This is the gist of the application of analysis of variance to the step-
by-step development of an effective regression formula.

For a mathematical derivation of these results, with emphasis on the
assumptions and choices required along the way, see the earlier paper on
“Multivariate Regression Analysis” by the present author.

The purpose of this further paper is to discuss procedures for the
successful development of an effective predictive regression model of the

form embodied in (1) -~ (3), using these techniques.

INITIALL. APPROACH TO THE PROBLEM

Suppose that we are given a set of »n observations

(nj; glj’ Ezj’ cees Emj) for J =1, 2, ..., 1 (13)
where the nj are agverages of many readings of a particular variable Uj
and Ej denotes a set of corresponding independent variables [e.g., U
may be the weight of an inventory item specified by the parameters £.]
If, as seems plausible in many instances, we assume that the individual
readings of U are mutually independent, and that the actual readings are
random variables [r.v.] identically distributed with a distribution of
a somewhat normal form [e.g., binomial, Poisson, chi-squared], so that
the Central Limit Theorem takes effect after a moderate number of repe-

titions; then we may conclude that the averages n are normally distri-
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buted with mean ux) = E[UI ¢ = x] and variance 02(X) = var[u[ ¢ =x]/N,
when N is the number of observations of v for § = x, used to arrive at
the average value n associated with the independent variables x.

It is possible, of course, to attempt to verify that the nj are
normally distributed and to estimate the means U(Ef) and the variances
Oz(éj) by standard statistical techniques (such as the estimation of
the moments of the distribution.) As always, we can never finally
verify the hypothesis; but only decide not to reject it on the evidence
obtained. In many cases, such distributional studies are difficult to
carry out, because of lack of detailed data. In the absence of such data,
there is no way to estimate Ozﬂx) [which corresponds in our model to the
function 1/W(x)] and it is often, without any particular foundation, apart
from invincible ignorance (!), assumed to be constant.

It will be relevant at several points in our discussion, to observe
that the particular variable m obtained is arbitrary, since we have a
choice of recording instead any function n = ®(n, £) we wish [for example,
we could record the logarithm or the cube of n.] The validity of the as-
sumption of constant variance is thus extremely precarious. One way to
investigate this question would be to plot the (nj, Eij) data for J = 1,
2, ..., n and various choices of 7, to see if the spread of values of n
seems indeed to be uniform over values of Ei: if not, it is possible
that a preliminary transformation of the variable n may improve the situ-

ation,



Turning to the mean u(x), we observe from (2) that u(x) = f(x), the
regression function which we seek to determine. This leads us to consi-
deration of the family of functions ¢(x; a) from which we are to select
an approximation to f(x). In practice, we are compelled to limit our-
selves to consideration of linear families of functions (3); and here
again, it is sometimes possible to improve the effectiveness of such a
model by suitably transforming the function n. For instance, if we sus-
pect that the function f(x) takes the form [with m = 3]

f(xl, Ly» xg) = a0x1a1x2a2x3a3, (14)
then we may be able to approximate the regression for logn more closely
by a linear regression formula

f'(xl, Los xS) = ocllogac1 + azlogmz + 0 logo:3 * 0y, (15)

3
than we could ever hope to do for n itself. However, we must note that,
in general, E[logn] # logE[n]; so that a bias will probably be introduced
into our model: this is least if the variance GZ(X) is small.

Note that the requirements of transforming n to linearize the para-
metric dependence of the regression family, and to make the variance of
the deviations from regression constant, may well conflict; and then we
must adjust our model accordingly, perhaps by introducing a weight-func-
tion W(x) after all.

It must be made clear that not all dependences can possibly be lin-
Oy

. . x
earized [e.g., consider m = 1 and f(x) = Oy + 0,0 ¥ Q" + Qg , OT even
e -~

so simple a function as f(x) = alx + azx.] Such cases must be handled by



very specialized techniques, if they are amenable at all. Note, too,
that, even if we can linearize, the solution we obtain is '"least-squares"
only for the transformed variable, not for the original one.

The reader is referred, e.g., to E1, chs. 3 and 5 [the references are
to the bibliography of the earlier paper, Multivariate Regression Analysis
(MRA, henceforth)] for further discussion of transformations of the depen-
dent variable n, analysis of residuals, and linearization of regression

families.

THE CHOICE OF THE MODEL

The discussion of linearization of the regression family (or model)
for our analysis already introduces the general, and fundamental, question
of choosing an appropriate family of functions (3). We must now consider
this further. First of all, it must be emphasized that a firm grasp of the
physical situation must be retained at all times. There is an uncountably
infinite number of possible choices for the functions ¢h(x), even after we
have limited ourselves to a linear family [the linearity here has to do
with the parameters oy s not with the functional dependence on X], so that
it is simply impossible to cover all possible functional dependences, or
even a large proportion of them., Even quite a modest attempt at a "try
to cover the waterfront" approach will exhaust the resources of the largest

computer; and even if this were not the case, the inclusion of a large num-



ber of unsuitable functions may well lead to spurious fit of the data,
which does not then stand up to use as a predictor for further data. It
should be remembered that the number g of parameters in our model may not
exceed the number n of observations; and, in practice, g should be several
times smaller than », to avoid spurious fits. In this connection, note
the remarks on pp. 39 and 40 of MRA [under "(v)",] Draper § Smith [El,
p. 415] say: "The important point to remember is that the screening of
variables should never be left to the sole discretion of any statistical
procedure, including the [automatic] multiple regression procedures [of
statistical computer packages]' and (p. 419) "In our experience, the 'let's
try everything' approach to transformations on original input variables
[corresponding to our choices of functions ¢hgx)] rarely works well. Un-
less the underlying mechanics of the problem imply the usefulness of a
transformed X-variable, applying one is likely to be a waste of time" and
(p. 422) "Finally, no scientist should be persuaded to abandon his scien-
tific insight and principles in favor of some computerized statistical
screening procedure. The use of multiple regression techniques is a
powerful tool only if it is applied with intelligence and caution."

In some situations, there is no clear understanding of the mechanisms
involved, and one is then reduced to the kind of blind casting about for

predictor variables which is discouraged by all experienced practitioners.



But if there is some suggestion of the kind of relationship which holds, it
is strongly recommended that the first stage of model-building should con-

sist of a careful study of the situation, leading to a listing of all the

functions ¢h6x) which are likely to represent factors having an additive
linear effect on 7. Several questions now arise:
(i) Are there any variables (so-called "hidden variables') in addi-

tion to those listed in X = (ml, x ees xm), which will affect the value

99
of n? This question is addressed by G. E. P. Box in Technometrics, vol. 8,
1966, pp. 625-629 (see also E1, p, 295), who points out that systematic
changes in hidden variables may cause all sorts of biases and spurious
fits to distort the predictive capability of our model. Often, such vari-
ables are unsuspected and unmeasured; so that there is no remedy for the
lack of success of the model; but sometimes, some careful thought will re-
veal the source of the problem. One variable which often causes trouble
is time, through seasonal fluctuations, as well as historical trends and
changes (such as the adoption of new manufacturing techniques, or the un-
predictable vagaries of public opinion and fashion.)

Another source of erroneous conclusions in the use of "unplanned
data", such as are obtained as a by-product of a continuing practical oper-
ation, rather than from a carefully designed experiment, is the effect of

controls intended to keep the operation practically useful and efficient,

which keep certain variables or functions of variables deliberately nearly
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constant, thereby veiling their effect on the dependent variable. [This

may not matter, if indeed we are only interested in predicting the behavior

of n for values of x satisfying these control criteria; but will lead
to errors if we stray into other regions of the predictor-variable space,]

(i1) W11l any of the putative predictors ¢h(x3 have so slight an
influence on the values of n that they will be better left out of con-
stderation, at lest initially, lest they introduce spurious fits and lead
to poor predictive performance of our model? This is a matter of the
physical realities of the problem, which must always remain at the fore-
front of our considerations. It is not good to proliferate predictors,
especially since this may easily lead to dependence or near-dependence
between predictors, which is reflected in numerical ill-conditioning in
the normal equations (5) - (7) whose solution is essential to the regres-
sion analysis,

(iii) Is the situation such that the value of n is affected by the
variables X in a different way, according to certain qualitative circum-
stances [e.g. the cost of a process may depend on which of a set of alter-
native machines is used; or on the level of priority accorded to it]? If
so, it is useful to introduce so-called '"dummy variables'", usually with
possible values 0 or 1, to indicate which alternative choice occurs. Note
that it is best to reduce all choices to dichotomies: if there are five
ways of doing something, we avoid using a single 5-way variable (with the

implication of effect proportional to the variable-value) and include five
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{0, 1}-variables instead (noting that it is only possible for one of these
to take the value 1, in any given instance.)

(1v) Are all the influences of the independent variables X on the
dé?endent vartable n truly representable by a linear form? This question
has already been touched on on page 6 above. Another kind of non-linearity
arises, for example, if n is the time required for a process, whose speci-
fication is dependent on x., If the dependence consists of formulae for
the time taken by successive sub-processes, all is well; but if certain
of the sub-processes may be carried out simultaneously (and, in a mass-
production situation, this may be a matter of carrying out one sub-process
on one item, while another sub-process is performed on another, identical
item), the total time becomes the time required by a so~called "critical
path" through the process schedule, while other sub-processes do not add
to the time required, and may even be idle for part of the time., Such a
situation requires additional preliminary analysis to determine (perhaps
with a number of iterations) which of the functions ¢h(X) actually will
contribute to the value of n.

(V) Are there any strong correlations among the dependent and pre-
dictor variables? When we have answered questions (i) - (iv) and if no
insurmountable problems have arisen, we must compute the sample variance-
covariance matrixz of the r.v. n, ¢1(§), ¢2(§), cees ¢g($), whose row-#/col-

umn-k component (taking index 0 for n) is given by
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Vnk = Thte (0 7 105 (16)
where n 5 . f g
0on lenj B E'izlni {=1nj’ (17)
1 ¢ ¢
n .
= L % ¢ % b (£); (19)
Thien = j§l¢h($j)¢k(gj) i o h(Ei) o 2 j)’

and these are computed by the recurrence relations [see MRA, pp. 7 - 8]

SOO = 0, Soj = SO(j-l) + nj, (20)
ShO =0, SI’ZJ = Sh(j—l) * d}h(éj)’ (21)
i (1.
Toor = © Toos = Toos-ny T 7T T E'SOJ) ’ (22)
U S N B Pa” D - n; R (23)
hol > Thoj ho(j-1)  J - 1"k hg J 707’

T

- - J 1
w1 = O Tnag T Taeggon T 7 ¢h(5 i hJ][¢k(zj) - E'Skj}'
(24)

From this, we obtain the sample correlation matrix with (h, k)-component

V.. T
Rop = - ﬁkn . (25)
AR

Two considerations now arise, First, if there are large values of

.th [i.e., since, as a consequence of the Cauchy-Schwarz inequality, all

correlations satisfy

N

~1 th < +1, (26)
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if.th ~ +1], when % and k are both non-zero, then we need to orthogon-
alize the functions ¢h@x) and ¢k6x); that is we must use a Gram-Schmidt
procedure [see, e.g., D2, p. 67, or D3, pp. 314 (810.2), 488] to reduce
the ill-conditioning of the matrix A. This amounts to defining a new

function

: Thien
' hhn
Secondly, if ROh = RhO ~ +]1 [note that th = 1 exactly, for all #]

with % non-zero, then the function ¢h(X) is strongly correlated with n,

and therefore is a prime candidate for inclusion in a regression formula.

DEVELOPING AND TESTING THE REGRESSION MODEL

The questions (i) - (v) above having been resolved satisfactorily,
we may now proceed with the regression analysis. If (as one is strongly
tempted to do; through impulses arising from overwork, impatience, lazi-
ness, and ignorance ... the desire is almost universal, but must be re-
sisted!) one disregards the preliminaries and puts more-or-less raw data
into an automatic statistical regression analysis via computer, the result
18 generally either spurious or inconclusive. Even disregard of question
(v) alone can lead (a) to numerically inaccurate results due to ill-con-
ditioning, and (b) to spurious fits due to the multiplicity of available

functions and parameters (i.e., too many degrees of freedom), leading to
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a divergence between apparent (i.e;, tabulated) and actual levels of sig-

nificance of statistical criteria [see MRA, page 39, at (v).]

Since it is generally impractical to consider all possible regres-
sions [for g predictor variables ¢h(x), there would be 29 possible re-
gression formulae], there are many ways of selecting which will be con-
sidered, even after the preliminary pruning has been carried out. One
procedure (often used in automatic statistical computer packages) is
to seek, first, the single predictor yielding the largest sum of squares
due to regression (or equivalently, the smallest residual sum of squares):
this is equivalent to selecting the predictor most highly correlated with
the dependent variable n. If this yields a statistically significant les-
sening of the sum of squares, we seek, next, the single predictor in the
remaining set which yields the smallest residual sum of squares (after a
bivariate regression on the first-selected predictor together with this
new one.) This stepwise procedure is now continued, until either all the
proposed predictors have been incorporated with sufficient significance,
or {(more likely) no additional predictor yields significant improvement,
[In this matter, there is much room for individual opinion, based (it is
to be hoped) on experience and a close monitoring of the process: see,
e.g., MRA, page 48, C3, §27.,27, or E1, chs, 2 - 4, 6, and 8.]

The outcome of all this effort is a formula
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g
E[n| £ = x] =~ hZ oy 9, ), (28)
=1

with a carefully selected and pruned set of predictor functions ¢hcx)
and a significant reduction in the sum of squares (i.e., the sum of
squares due to this regression formula significantly exceeds that due
to the residuals.) A new question now arises: How good i1s this for-
mila for predicting the value to be observed for mn, given the indepen-
dent variables X7

(a) It is valuable to examine plots of the residuals,

R g
n; - fio=mn; - hzluh¢h(2j), (29)
in themselves, against the values of ﬁj, and against the predictors ¢h(5j).
It is necessary, of course, that the spread (i.e., more specifically, the
sample variance) of the residuals should be approximately constant (or, in
the general case, of the order of 1 /RMEJ).) [See E1, chs. 3, 6.]

(b) One should observe the reduction in the sum of squares due to
the regression, taking into account the questions of actual (rather than
tabulated) significance raised, e.g., in MRA, page 39 (at (v).)

(¢) 1If the problem is what we have called Type I [see MRA, pages 30,
40]; that is, if the values of the independent variables observed are the

only ones which will arise; then this suffices., However, if the problem

is Type II; that is, if the observed values of x are randomly sampled,
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from a distribution not yet specified, then yet another question arises:
How representative is our sample of X-values, and how stable is the for-
mula over the whole range of possible X for which predictions of n are
to be made? First, we observe that the theoretical treatment of this
situation, even when we make the (often grossly unwarranted) assumption
that the £ are normally distributed with the deviations from regression,
is very complicated and limited in its utility. To obtain a satisfactory
answer to the first part of our latest question, it is necessary to make
sure that as large and widespread a selection of possible values of X as
can be achieved should be obtained. On the other hand, in order to get
some sense of the stability of the regression (28), one should split the
sample into two or more sub-samples and compare the regressions obtained
in each. The selection of sub-samples as to both size and distribution
is important, but not really fully understood; so, once again, rules of
thumb and matters of opinion prevail.

One thing is clear: If the model igs to be useful in a Type II situ-
ation, it 18 necessary that it yield good predictions for x-values not
included in the sample used to comstruct the model. Thus it is essential
that this predictive capability be tested before a model, however inter-
nally consistent it may be, is accepted. Failure of the model to perform
satisfactorily in such a test is a clear indication that it is inadequate,
and probably that any internal consistency observed is due to spurious fit,

caused by an overabundance of degrees of freedom in the regression analysis.
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ON MODELS INTENDED TO SIMPLIFY KNOWN DETERMINISTIC PROCEDURES

If we are dealing with a general scientific problem, it is a serious
question, whether a regression model of any kind, involving only the given
variables X can possibly yield acceptable predictions, even for some of the
observed X-values: after all, there may be hidden variables at work, of
which we have no knowledge at all; or the variability of the deviations
from regression, even if there is a respectable regression relation, may
be so great as to minimize the predictive value of the regression formula.

In some situations, we have a known deterministic procedure (or pos-
sibly a statistical one, but of low variability and high complication) for
accurately predicting n, given X. This enormously simplifies our task,
which reduces to finding a simple formula,to do the job that we know that
we can do, with considerable labor. Since we have precise information on
a procedure which will give the required answers, there are no hidden
variables and no unknown relationships. It is simply a matter of looking
at the known formula and seeking to approximate it with a simpler one.

It may, indeed, be possible to arrive at a simplified formulation
of the predictive procedure in purely deterministic terms, by the use of
approximations with absolute ranges of variation of the values involved.

Even if it seems, after all, that a statistical approach is more
natural or straightforward; first, a close examination of the longer

procedure should indicate whether a linearized or linear regression can
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possibly be expected to yield sufficiently precise results. Of course,
by a well-tried process, we may find that the use of linear regressions
over restricted ranges of values of X may work, when an overall model
would not, This is worth exploring. But if there is no such way and the
answer is in the negative; then one may terminate the attempt at oncej
or,at least, resort to a search (necessarily with little hope of success)
for special ad hoc methods.

If it appears that a linear regression should describe the situation
adequately, then the analysis of the data should be relatively straight-
forward, since the functional relationships established in the known pro-
cedure are those which should appear in the initial set of predictor func-
tions from which a final set for analysis will be selected,

If the predictions are necessary in any case, and the problem is just
one of reducing cost (in terms of time and/or effort), then it seems sure
that a simpler predictive model must be available: the only question is

how much simpler it will be and what will be the resulting economy.



