HYPERTREE
A MULTIPROCESSOR INTERCONNECTION TOPOLOGY

by

James R. Goodman and Carlo H. Sequin

Computer Sciences Technical Report #427

April 1981

HYPERTREE,
A MULTIPROCESSOR INTERCONNECTION TOPOLOGY

James R. Goodman and Carlo H. Séquin

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California, 94720

ABSTRACT

A new interconnection topology for incrementally expansible
multiprocessor systems is described which combines the easy
expansibility of tree structures with the compactness of an n-
dimensional hypercube. The addition of n-cube links to the binary
tree structure provides direct paths between nodes which have fre-
quent data exchange in algorithms such as sorting and Fast
Fourier Transforms. The derivation of a family of such Hypertree
structures is outlined, and the basic properties such as average
path length, uniformity of the distribution of message traffic and
routing algorithms are analyzed.

KEYWORDS: Multiprocessors, Communication networks, Message
traffic, Routing algorithms, Tree structure, Hypercube.

1. INTRODUCTION

One of the problems that is still impeding the emergence of general pur-
pose multiprocessors is interprocessor communication. For effective coopera-

tion of several processors on the same task, or for fast access to distributed

data, high communications bandwidth is typically required. If all processors are
simply connected onto one and the same bus, this shared resource becomes a
bottleneck preventing simultaneous communication hetween different pairs of
processors, and the effective throughput of the system may actually go down as
the number of processors is increased. A suitable interconnection network is
thus needed which provides as much bandwidth as possible between any pair of
processors. The classical crossbar switch between separate banks of processors
and banks of memories, requires a high pin-to-logic ratio, and is therefore not
very amenable to VL3I exploitation. One possible approach is to combine one
processor and its memory with one node of the switching network, thus creating

a regular network of computers.

1.1. Classical Switching Networks

Many people have addressed the problem of switching networks. Much work
has been done in particular to allow multiple, simultaneous connections between
processor banks and memory banks to permit sharing of data or concurrent
cooperation on the same tasks. Among the better known networks are lattice
structures [Bouknight 72], the flip net [Batcher 76], the Omega net [Lawrie 75],
the indirect n-cube [Pease 77] [Benes 65], the perfect shuffle [Golomb 81]
[Stone 71)], the augmented data manipulator [Feng 74], the de Bruijn net
[Schlumberger 74] [de Bruijn 48], the generalized connection network [Thomp-
son 78], the Banyan partitioner [Goke 73], and the n-cube network [Batcher 76}

[Siegel 77).

-2.

1t is understood that one of the chief properties of many of these networks
is the efficient interconnection of nodes in the n-dimensional hypercube, or p-
cube, configuration. The n-cube is particularly compact. The worst case dis-

tance between any two nodes is only n, the dimension of the structure, and

nodes which differ in their node addresses by only one bit are direct neighbors.
In addition, this logical structure is extremely useful because of the wide range
of algorithms that fit it particularly well. For many problems such as Fast
Fourier Transforms or sorting, it is possible to map the logical structure of the
problem directly onto the physical structure, and large quantities of data are

exchanged between nearest neighbor pairs.

For the more general switching network, where many arbitrary pairs of ele-
ments may wish to communicate simultaneously, the n-cube topology is also
suitable. The routing algorithm to reach a particular node is trivial: For every
bit in the target node address which differs from the current node address, a

corresponding link that complements that bit has to be traversed.

1.2. Tree-Structured Networks

The emergence of a technology for very large scale integration (VLSI),
which within five years will allow the fabrication of a single silicq’n chip contain-
ing approximately one million active devices, also changes the constraints on a
multiprocessor interconnection network. With the advances of this technology,
the active devices themselves get smaller, faster and consume less power.
Unfortunately, at the same time the disparity increases between the speeds of
signals completely internal to the chip and signals which have to pass through
the package pins. Proper systems partitioning onto several chips becomes aver
more important, and high bandwidth signal paths should be kept completsly
internal to the silicon chips as far as possible. Thus a proper VL3I building block

meay be a self-contained computer on a single integrated circuit [Sequin 78]

-3 -

Once a complete computer fits on a chip, such computers can be placed at all
interconnection points of a switching network. This makes particular sense with
VLSI technology since the switch by itself tends fo have a low logie-to-pin ratio,
making it unatiractive to VL3l The switching network then is no longer the link
- between a discrete bank with p processors and a separate bank with m memory
modules, and we no longer need to consider only switching networks with p con-
nection points on one side and m ports on the other. A whole set of networks
such as lattices or trees can now also be considered. Since we believe that
future computing systems should be easily expansible these latter structures
look even more attractive. It is therefore not surprising that recently a lot of
interest has been generated in tree-structured networks. [Swan 77] [Despain

78] [Mago 79] [Browning 78].

1.3. Requirements for a new structure

The disadvantage of the previously mentioned n-cube network, from this
point of view, is the fact that it is not truly expansible. Whenever the numbsr of
nodes grows beyond a power of fwo, all nodes have to be changed since they
have to be provided with an additmnél pcrt.i" Thus the "moduyle” of this network
is not & constant, predefinable building block. M@i‘éo:?em. a ué@ml evx@a.mior;“@f
this structure has to occur by doubling the nuriﬂier of nodes. An incumpié’teiy
populated n-cube lacks some of the above mentioned properties which make the
n-cube attractive in the first place. Tree structures are expansible in a natural
way, and even unbalanced trees still retain most of the properiies that make

trees attractive.

The number of package pins dees not grow al the same rate as the number
of active devices within. The package periphery thus represents another physi-
cal hottleneck, and we should look at interconnection topologies which nesd

relatively few ports per node. If the number of ports per node has to be limited,

i3

Figure 1. Binary tree with full-ring connections. When the dashed
branches are omitted, a half-ring tree is obtained. The chosen
numbering scheme gives all nodes on the same level addresses of
the same length. The root of the tree has node address "1", and

the children of node x have node adresses 2x and Rx+1 respec-
tively.

-4 -

a binary tree structure, requiring only 3 ports per node, looks particularly
attractive. Additional links, however, are required to provide redundant paths
which are the basis for a system with some fault tolerance in message routing.
At the same time these links can be used to reduce the average distance
between nodes and to provide a more uniform message density in all links. An
extensive search for the optimal placement of these additional links has shown
the half-ring and full-ring binary trees (see Fig 1) to be attractive contenders,

primarily because of their simple routing algorithms [Sequin 78].

For tasks in which remote leaves have to communicate extensively with one
another, however, the ringed tree structures have their disadvantages. There is
a lack of direct long distance connections at the lower levels of the tree. This
forces messages between remote leaves to travel rather high up in the tree in
order to reach their target along the shortest paths, which in turn can lead to
serious congestions of some of the links below the third level of the tree. It is
conjectured that a more optimal placement of the additional links could allevi-
ate those problems. Hypertree is the result of the search for such a structure,
It combines the best features of the binary tree and of the n-dimensional hyper-

cube.

2. THE HYPERTREE STRUCTURE

The basic skeleton of Hypertree is a binary tree structure. In the following
we will assume that the nodes are numbered as shown in Fig. 1. The root has
node address 1. Addresses of left and right children are formed by appending a
"Q" and "1" respectively to the address of the parent node; i.e. the children of
node z are numbered 2z and 2z+1. As in the half-ring or full-ring structures,
additional links in Hypertree are horizontal, and connect nedes which lie in the
gsame level of the tree. In particular, they are chosen to be a set of n-cube con-

nections, connecting nodes which differ by only one bit in their addresses. We

-5

will discuss the cases of nodes with four and five ports, permitting connections
of one and two additional horizontal links at each node, respectively. Thus each
level of the tree can accommodate either one or two sets of n-cube connections,
and the resulting structures will be called Hypertree I and II. It should be cbvi-
ous from the following description how the concept can be expanded to more

than two sets of n-cube connections per level.

2 1. Selection of n-cube Interconnections

With only one or two ports per node available for the n-cube connections, a
choice has to be made as to which set should be chosen at each level. In a
heuristic manner we start at the root of the binary tree and progress in a top
down manner. We select at each level the set(s) of connections from which the
most benefit can be derived: For each pair of nodes for which the addresses
differ in exactly one bit, the path length, expressed in number of links, is calcuy-
lated in the Hypertree structure existing above this level. Figures 2 and 3 show
these distances for a binary tree. The longest connection(s) on each level are
circled, and in these places a direct n-cube interconnection is introduced. Any
such connection will effectively reduce the number directly below it to the value
3 , because the corresponding connections in this lower level can now be made
by traveling up one level, accross the n-cube connection and down again.
Correspondingly the number two levels belew an n-cube connection can be no
larger than 5, and so on. This has to be taken into account in determining the
longest path between n-cube pairs on each level. This path is then bypassed by
the addition of the corresponding set of n-cube connections. While it is clear
that this selection procedure will resuit in a local optimization, it will be shown
later, that the selected n-cube interconneclions also optimize the overall tree

structure in a global sense.

TREE

IN

LEVEL

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01t

10000

10001

{0010

10011

10100

Figure 2. Select
are the distances between nodes on the sa
their addresses for Lhe ordinary binary trec.
t of n-cube connections, chosen in such
belween a pair of nodes with

only by one bit in
Fach circle represents a se
a manner that the longest distance

NON-~-EQUIVALENT

MSB

NODE

ADDRESS

BIT
LSB

i \
lZ@@OM@() 04 02
.
lag 12 1006 04 02

\ !
16514412 10\\5)8 06 04 02
i

3 12@08 06 04
8@ 14 12\10 08 06
0 1§m 6 14@10 08

16 14412

\
@20\18 10
1 %)
1 o
26 24 22 20 18 16 (12) 12
T 4
[B %
28, 26, 24@20 18 16414
1

s e

30
4
i

04 02

06 04

08 06

10 08

12 10

g -
2826 24 22 20 18@14 12

1ot
30%28 26124 22 20 18416 14
[T \ 3

])
3432 30 28 26 24 22 20 (%) 16
B

3

36

1)
[ee]

!
i §
6%34 32 .30@26 24 22
4
[}
o b
i

I

RAY 3 RAY 2

A
20818
%

\

i
40 %38@34 32%%30 28 26 24 22320
1 1

04

06

08

1
3230 28 26 24 22@18

\

RAY

02
04
06

08

l

04

06

08

10

14

Hamming distance 1 at that level gets reduced to one.

02

04 02

06 04 02

ion of n-cube connections in Hypertree 1. Shown
me level which differ

o
&

TREE

IN

LEVEL

NON-EQUIVALENT NODE ADDRESS BIT

LSB
00001
00010
00011
00100 02
00101 04) 02

00110

Y
06 \\04 02

00111

01000
t ! <
N
01001 (14) 12110 08406 04 02
01010 spt6 (14)'12 10 (08) 06 04
W 0@
01011 '
01100 (1) 12 10508 06 04 02
x \
‘ B
01101 6y 14 12(10) 08 06 04 02
01110 18 16 14 12(10) 08 V6 04 02
: \
01111 1) 1614 12010 08 06 04 02
10000 20(18) 16 14(12) 10 08 06 04 02
)]
10001 2220 18 16 14(12) 10 08 06 03 02
10010 24 22420 18 04 02

i

b
10011 32130 28% 2624 22 20

|] \
| l :
10100 | 40 38136 34132 30128 26. 22 .
o ez o 0@

06 04 02

08 06 04 02

F_zgure 3. Selection of n-cube connections in Hypertree 1. Each
circle represents a set of n-cube connections as in Fig. 2.

-6 -

In Hypertree Il there are occasionally levels where a choice exists for the
placement of the horizontal link, when two longest paths are of equal length.
However, even from the links which are placed with no free choice, a regular

pattern of these interconnects appears, and the choice is always made in order

to follow this pattern. For Hypertree I all n-cube connections fall on slanted
lines or "rays", starting at the location of the most significant bit on levels which
are a power of two (Fig.). The slope of subsequent rays doubles and is equal to
twice the level number on which it starts. For Hypertree 1l the pattern is more
complicated. All n-cube connections appear in diagonal pairs, which themselves
fall again on slanted lines (see Fig 3). The resulting interconnection pattern for

a small Hypertree [is shown in Fig. 4.

2.2. Formal Description of Hypertree I

If we number the levels downward, starting with the root as 0, we notice
that the level number, n, for each node is the number of binary digits after the
most significant one in its address. An inspection of Fig. 2 shows that the
number of consecutive trailing zeros, z, in the level number, expressed in
binary, defines the ray number,

r=z+1, (1)
on which the set of n-cube connections on this particular level lies, e.g. on level
10100 the n-cube connections belong to ray 3. The specific bit & which is
affected by the n-cube connections at level, m, can then be determined by the

intersection of the proper ray with this level. For rayr,

1
bz';n—;*'i‘“‘z“ (2)

where b is the bit number, counting from the left with the redundant, most

significant "1" in the node address counted as bit O.

Several observations can be made which follow an inspection of Fig. 2. "Ray

Figure 4. Interconnections in Hypertree 1.

Hypertree | Hypertree 1

level above whole | above whole
1 | 1 1 1
10 2 2 1 I
11 3 3 2 2
100 4 3 3 3
101 5 4 3 3
110 6 5 4 3
111 7 5 5 3
1000 8 6 5 4
1001 9 7 6 5
1010 10 7 7 5
1011 11 8 7 5
1100 12 9 8 5
1101 13 9 9 6
1110 14 10 9 7
1111 15 11 10 7
10000 16 11 11 7
10001 17 12 11 7
10010 18 13 12 8
10011 19 13 13 9
10100 20 14 13 9

Table I. Worst case distances between nodes with Hamming dis-
tance 1 for Hypertree I and IIl. Two cases are considered: "above',
where messages only travel above the two nodes, as is appropriate
for leaf-to-leaf traffic, and "whole", where messages can find the
best path above or below, assuming an infinitely large tree.

-7 -

1" goes through the middle bit of the significant part of the node address on
every level with an odd number of significant bits (excluding the redundant lead-
ing one). This means that the n-cube connections always complement a bit in
the more significant half of the node address, while the structure relies upon the
skeleton of the binary tree for changes in the less significant half. In addition it
turns out that for a tree of any size, exactly one representative of each such an
n-cube connection is found in the lower half of the tree. Since the lower half of
the tree also contains all the necessary connections to make any change in the
least significant half of the address, it follows that messages originated at a leaf
node need never travel higher than half the height of the tree in order to reach

any other leaf.

3. PROPERTIES OF HYPERTREE

In this section some of the relevant properties of Hypertree as an intercon-
nection network will be discussed and compared to other previously described

multiprocessor topologies.

3.1. Worst Case Distances

One important measure of the power of an interconnection network is the
distance messages must travel in the network. It is advantageous to make this
parameter as low as possible, since it will not only reduce travelling time for
messages, but also minimize message density in the links. Absoclute worst case
distances between any two nodes in Hypertree I can be based on the observation
made in section 2.2: it is equal to m, the number of levels above the lower of the
two nodes. Worst case distances between n-cube pairs can be determined by
inspection of Fig. 2 and 3 and are summarized in Table I. For Hypertree | and 1l
worst case distances are listed for a) the case where only connections higher in

the tree can be used, as is the case for leaf-to-leaf communication, and b) the

-8

case where we assume to be in the middle of a large tree, so that messages can
find suitable n-cube connections above as well as below the current level. For
Hypertree I the longest distance is 1/2 and 1/3 of the distance in a simple

binary tree, and for Hypertree Il they are reduced to 1/3 and 1/5, respectively.

3.2. Average Distances

Of even more importance may be the average path length travelled by all
messages. In order to obtain a meaningful comparison between different net-
works, some normalization has to be made, in particular if networks between
processors with different numbers of ports per node are considered. With no
limits on the number of ports, a fully interconnected network could be designed,
which would lead to an average distance of one. In order to take into account
realistically the limitations in the number of pins and in the amount of power
available to drive communication lines, Despain [Despain 79] has proposed that,
in the context of single-chip computers, a constant communications bandwidth
per node should be assumed. Under this assumption, the bandwidth available
through each port is then B /p, where p is the numer of ports and B is the total
bandwidth available from that processor. Using the same idea, we propose that
the average message path length, L, be normalized by multiplying it with the
number of ports, p, in order to permit a meaningful comparison of graphs of
different degrees. Thus the normalized average message path length, 1’, then
becomes

L'=Lxp. (3)

Another factor influencing the average message path length is the distribu-
tion of pairs of communicating nodes. In the absence of any specific information
about the communication patterns required by particular task, one might
assume a uniform distribution in which all nodes send messages with equal pro-

bability to all other nodes. More appropriately, for tree-structured networks

Structure L L’
Bi T 2n -2+ 2 Bn -6+ 5
inary Tree 1) N N
. s 139 31 139 . 31
P — Pivediui — + Pucntl
Half-Ring an " + AN 8n 8 I
8 40
ingt - — o254+ 40
Full Ring _n — 5+ I 10 —- 256+ I
2
n n
n-Cube) >
5n 4 4 nmod 2 16 16 nmod 2
t|on_4 - 5y — 2 4 16 mmod 2
Hypertree | " 3 + 3N 1 5n 3 3N 3

Table II. Average distance between nodes for various networks as
a function of the number of leaf nodes N=2". , is the average dis-
tance between every pair of nodes (including each node with
itself). L’ is the normalized distance obtained by multiplying the
average distance by the maximum number of poris per node.
traffic.

® for n>2.

tfor n>1

-9-

where all I/0 points and all secondary memory are connected to the leaves of
the tree [Despain 78], a set of messages running between all pairs of leaf nodes

will be studied.

3.2.1. Leaf-to-leaf traffic

Table II shows the average distances between leaves for the binary tree, the
half-ring tree, the full-ring tree, Hypertree I, and the average distance between
all nodes for the n-cube. The n-cube is assumed to have N =2" processors, and
all tree structures have N=2" leaves and thus a total of 2N -1 processors. The
derivation of the average path length is trivial for the binary tree and the n-
cube, but for Hypertree it is rather tedious and thus deferred to appendix A.
Average distances for the half-ring and full-ring trees have been determined
through an exhaustive count on the computer. Table Il includes the normalized
average distances, I, for the same structures, which are also plotted in Fig. 5 as
a function of n. Note that the normalized average path length in Hypertree is
always shorter than in the binary tree, and eventually becomes even less than

that of the n-cube.

3.2.2. N-cube nearest neighbors

The n-cube interconnection, i. e. the paths between nodes that have a Ham-
ming distance of 1, can play an important role in problems such as Fast Fourier
Transforms and sorting. These connections are the basis for many interconnec-
tion networks in SIMD architectures [Batcher 73] [Siegel 76]. It is therefore
worthwhile to study these special interconnection paths in the above structures.
For balanced binary trees we use the node numbering scheme of Fig. 1, so that
the leaf nodes are numbered from 2" to 2"*!~1, We then define n-cube nearest
neighbors to be those pairs of leaf nodes which have a Hamming distance of one,

and assume uniform traflic among them. The average distance between those

LEAF-TQ-LEAF DISTANCE

AVERAGE

NORMALIZED

140

w
h
=
1 120
=
I
— 100
&
=
Ll
|
- 80
(-
<T
Q.
* 60
w
}_.m
o
O
- 40
L
o
a-
ul
m
=
D
= 0
Figure 5.

20

BINARY TREE
FULL-RING TREE

HALF -RING TREE
HYPERTREE I

N-CUBE

x J O D>

| I I I I I i | I { I I T | -

ZK) ZQ ZM

NETWORK SIZE (NUMBER OF LEAF NODES)

Average path length in various structures as a function

of the number of processors. It is assumed that every leaf sends
with equal likelihood to every leaf.

-10 -

n-cube nearest neighbor nodes for the binary tree turns out to be n. For Hyper-
tree 1, this value is n/2, while for the n-cube, of course, it is 1. Normalizing

these numbers as before with the number of ports per node gives:

binary tree: 3n

Hypertree I. 2n

n-cube: n

Thus the Hypertree I structure is only a factor of two worse than the n-cube,
which, in this particular case, is the ideal structure. For the binary tree the
above numbers are valid also for n-cube nearest neighbors within the tree, while
for Hypertree the number given is only an upper bound; paths through the lower

parts of the tree may provide a more direct connection.

3.2.3. Consideration of locality in traffic

It seems reasonable to assume that an efficient and practical multiproces-
sor system will exhibit much greater traffic over short distances than over long
communication paths, since interaction among small clusters of processors may
cause a large portion of the total traflic. This may result from the fact that
tasks that can be broken up into smaller subtasks would normally be assigned to
neighboring processors. Furthermore, the way that multiple processors are
interconnected often reflects the need of the communication patterns in the
first place and takes into consideration the fact that communication costs
increase with distance. Under such conditions, the effective average message

path length may be much shorter than the numbers given in Table II.

Without such locality in the message traffic, the amounl of message com-

munication handled per processor will drop off in most multiprocessor networks

-11 -

as the number of nodes increases. This becomes clear from the following
analysis: We assume a system with N nodes with a uniform message density close
to the limit defined by the bandwidth of the links so that throughput is limited
by communication bandwidth. Given the constant bandwidth assumption, if the

number of nodes in such a system doubles, and we assume that all nudes com-

municate equally with all others, then the number of messages sent among the
processors quadruples, while the number of links in the system has only dou-
bled. Since the number of nodes that a processor can address has also doubled,
the message rate between any specific pair of processors can be at best half the
rate in the original system. This rate however can only be achieved if the aver-
age path length remains the same. Any increase in the path length will result in
a further reduction in the message rate, so that each processor is actually send-
ing and receiving fewer messages. With sufficient locality the longer paths
obtain a much lower weight, and thus the increase in average distance can

become insignificant.

We have been unable to derive a locality function for any of the enhanced
tree structures for which a closed form expression of the average path length
could be determined. To get some qualitative understanding of how locality
affects the increase of path length with increasing tree size, we will take a look

at some crude and extremely simplistic models.

As one extreme, we can assume that communication between pairs of
nearest neighbors is most important. In order to provide highest bandwidth for
this case, within the constraints of constant total bandwidth per node, the
degree of the graph of the interconnection networl should be chosen as low as
possible. In the extreme this would lead to a set of isolated pairs of nodes, and

the average path length then remains constant at the value 1.

In order to get some approximation for a more practical situation, we will

- 12 -

assume an arbitrary network in which each node sends one half of its maximum
possible message traffic to nodes which are one link away. Half that many mes-
sages are sent to nodes at a distance of two links, and in general an amount of
trafiic T(d)szQXZ‘d is going to nodes at distance d away from the sender. For
a graph of infinite extension, the average message path length then becomes &,
while for graphs with a finite diameter k, the average path length will be 2- Rk,
Thus, with the above assumtions on locality in the message trafiic, the average
path length is almost independent on the size of the network. Thus a primary
goal must be to try to map a problem onto the topology of the network, so that
the direct connections are used as often as possible, or alternatively, to provide
a network with a structure of the local interconnections for which this is easily

possible for many important problems.

3.3. Routing Algorithms

One of the desirable requirements for a large network of processors is that
messages can be routed by each intermediate processor without tolal
knowledge of all the details of the network, since the storage of that information
within each node can use up an exorbitant amount of memory space. Both, the
n-cube and the binary tree have simple routing algorithms which involve only
the addresses of the current location of the message and of the target proces-
sor. In the n-cube, links are selected which reduce the Hamming distance by
one, until the target is reached. In the binary tree a message is routed upwards
in the tree (towards the root) until the target node is a descendent of the
current node; from there it is routed down. Both the half-ring and full-ring tree
structures also have simple routing algorithms which are optimal in the sense
that they always find the shortest path [Sequin 78). Both follow basically the
binary tree algorithm, but use the horizontal links whenever the path lenglh can

be reduced.

-13 -

3.3.1. A simple routing algorithm

Similar algorithms exist for the Hypertree structures. They are optimal for
messages between leaf nodes in a balanced tree. A simple routing algorithm

works as follows:

As in the basic binary tree, messages are routed upwards in the tree until the
targel is a direct descendent of the current position. In addition, whenever the
n- cube connections at a particular level reduce the Hamming distance between

the current position and the target, the corresponding link is traversed.

This algorithm will result in a path in which all useful n-cube connections have
been traversed before the message has reached the highest point of its path,
even though any particular n-cube connection could also have been utilized dur-

ing the downward phase of the message routing.

3.3.2. Optimal routing algorithm

There are circumstances under which the simple routing algorithm will not

lead to the shortest path.

1) For messages between non-leaf nodes, the use of n-cube connections below
either source or target node may lead to a shorter path. The simple algorithm
will not find these paths since it makes no assumplions about n-cube links below

the current node.

2) A similar observation can be made even for traffic between leaf nodes, if the
tree is unbalanced. If the target lies below the source, an n-cube link below the
target could be used for the shortest possible connection. The simple algorithm

may search much higher in the tree for a corresponding interconnection.

3) If the the Hypertree struclure is incomplete, and a particular n-cube link is
missing, the corresponding bit could be complemented by taking another n-cube

link of the same scl on the way down. The above algorithm in its simplest form

- 14 -

is not aware of this possibility.

Under the assumptions of a balanced, complete Hyperiree, we were able to
derive a routing algorithm which always selects a path of minimum distance. It
is too complex, to be described here, but the point should be made that an
optimum algorithm exists which uses only local information and knowledge of

the size of the tree.

An algorithm able to find the optimal path in an unbalanced tree must have
knowledge about the extension of the frontier, i.e. the position of the leaves, of
the tree. For the same reason, in order to find the shortest path, it would also
need global knowledge of any missing links, be it because the tree is incomplete
by design or because certain links have failed arbitrarily. Simulation studies
have demonstrated that in balanced trees with up to eleven levels (4095 nodes),
the simple routing algorithm yields an average path length for all pairs of nodes
which is never more than 0.42% greater than the optimal path length. The slight
potential improvement must be weighed against a much more complicated algo-
rithm, requiring more detailed global information about the network, and a

more complicated routing controller.

3.4. Message Density

Another major goal in the design of an efficient network topology is to dis-
tribute traffic as evenly as possible over all existing links. The basic binary tree
and the fullring tree both have serious deficiencies in that respect. The binary
tree suffers intolerable congestion near the root, since roughly half of all traffic
must pass through the highest links in the tree if no locality exists. A similar
bottleneck exists in the horizontal links on the third level of the full-ring tree if
the simplest routing algorithm is used. Some of the same kind of bottlenecks
exist even in the Hypertree, but to a much lesser degree, since, as has been

shown in Section 2.2, leaf-to-leal messages never go more than half way up the

- 15 -

tree. The fact that messages are kept in the lower, wider parts of the tree,

reduces congestion considerably.

Fig. 8 shows the maximum number of messages routed through the busiest
link for the n-cube, the binary tree, half-ring and full-ring tree, and Hypertree as
a function of tree size. The data has been normalized by multiplying the derived
values with the number of ports per node. For the binary tree, the busiest links

are the two top ones, while for the n-cube, all links carry an equal amount of

trafiic. For Hypertree I with 2" leaf nodes the horizontal links 1%;1_ levels below

the root are the busiest, if n is odd. If n is even, the load is equally heavy on

horzontal links at level 127'—+1 and on the vertical links immediately above that

level. The full-ring tree has a seroius bottleneck at the horizontal links on level
3, and the half-ring has almost as much congestion on the vertical links above
level 3. Of all the described tree structures, the Hypertree stucture is clearly
the best in that respect. While in the other tree structures the maximumnm traffic
density grows roughly as the square of the number of nodes in the lree, in

Hypertree I the growth rate is only N 15,

It should be pointed out, that even for n-cube, communication density
grows beyond any fixed bound, making large systems inefTicient without the reli-
ance on locality in the message traffic. Similar trends as demonstrated for
average path length exist, making the maximum message density rather
independent of the size of the network with certain models of locality. Since it is
not obvious what a proper model for locality is unless the mapping of a particu-
lar application onto the network has been worked out in detail, specific calcula-
tions of maximum traffic densities other than with uniform message traffic have

not been pursued at this point.

DENSITY
MESSAGES / LINK)

TRAFFIC

MAXIMUM
(NUMBER OF PORTS

NORMAL!ZED

X

] A BINARY TREE
,16] O FULL-RING TREE
| o HALF-RING TREE
4 X HYPERTREE I
g 0 N-CUBE
|2
2 e
ZIO“
8
2 .
06
4
2 2 13 [4] T T]
2 > . 09 o6 o »8

NETWORK SIZE (NUMBER OF LEAF NODES)

Figure 6. Maximum number of messages routed through a single
link as a function of network size for uniform leaf-lo-leaf traffic.
Numbers have been normalized by multiplying them with the
number of ports per node required.

- 18 -

4. PRACTICAL CONSIDERATIONS

4.1. Expansibility

Among the important parameter of a multiprocessor system are its modu-
larity, expansibility, and specifically the smallest increment by which the 8ys-
tem can be expanded in a useful way. It is generally unreasonable to demand
that a system must remain balanced in all stages of expansion, since this may
imply that its size must be increased in large steps, i.e. powers of two. The
shortcomings of n-cube with respect to modularity and incremental expansibil-

ity have been discussed in Section 1.3.

Binary trees also require a doubling of size in order to remain balanced.
However, tree structures do not lose too much of their attractiveness if they are
not perfectly balanced. The routing algorithms discussed still reach their target
in an eflicient way even if the tree is somewhat unbalanced, as long as the skele-
ton of the binary tree is still present. Although routing in such a system may
not be optimal for all circumstances, such a structure still has its usefulness if it
reflects the nature of the problems that it is handling, and provides the links as

required by the nature of the communication patterns in that context.

Two basic approaches could readily be imagined by which Hypertree is
expanded in a "natural” way. If the particular installation is a single, cohesive
system, additional nodes should be placed on the last incomplete level, before a
new level is started. The imbalance will then never exceed one level, an amount
which causes no problems for the routing algorithm. On the other hand, if the
system needs to grow organically with the needs of a widespread and diverse
user community, many individual subtrees may develop which are connected
through a shared main tree containing the root of the system. In both cases, n-
cube interconnects could be added as soon as both the nodes, differing only in

the corresponding bit that is to be complemented at that particular level, are

- 17 -

present. However, the sequence of n-cube interconnects on subsequent levels,
as derived in section 2.1, is really designed for a single cohesive system. If the
systern contains many disjoint subtrees, connected in only a few points to a
main tree, it may be better to start a new sequence of n-cube interconnects
within each subtree, thereby optimizing local communications. This would be
worth the price of storing the list of these sets as a function of the level in each
routing controller. Since the lack of interconnection between individual sub-
trees is a consequence of the way the system has been expanded, it can be
assumed that it reflects an absence of the need to communicate between nodes
belonging to different subtrees. Thus the lack of those horizontal links should
have no adverse effect on the overall performance of the system or on the

effective average pathlength.

4.2. Fault Tolerance

The requirements for fault tolerance have greatly increased in recent years
as systems have become increasingly complex. Certainly an important feature
of structures such as those considered here is that it must continue to work
correctly, though perhaps with reduced performance, when one or more com-
ponents have failed. Specifically we expect such a system to continue to operate
properly in the presence of failures of a single link or even a single node with all
its attached links, as long as that particular node is not involved in the computa-

tion, i.e. is neither the source nor the destination for any messages.

The addition of the n-cube links to the binary tree creates multiple disjoint
paths between every pair of nodes. The simple algorithm described in the previ-
ous section already has some fault tolerance. It can readily cope with missing
links during its upward move through the tree, by using the following alternate

choices for missing links:

DESIRED___ ~— ALTERNATE
PATH PATH
/ &
/,°
MISSING /e

LINK %7
#’

MISSING LINK

Figure 7. Detours around missing or defective links, a) around a
vertical link in the downward direction, b) around missing n-cube
link

- 18 -

a) If an n-cube link cannot be passed, go upwards instead.

b) If an upward link cannot be passed, go across n-cube link instead, followed

by an upward move.

Difficulties occur on the downward branch if a missing link is encountered.
Because of the lack of redundant paths over short distances, a deviation from
the proper descending path can not be corrected by traversing links of the
binary tree skeleton only. A detour into another plane of the hypercube has to
be made (Fig. 7a). Instead of the missing vertical link, the downward link to the
sibling node is taken. After traversing the n-cube link at that level, the message
is routed to the sibling node in that part of the tree, and subsequently back to
the original path across another n-cube link at the same level. During this whole
detour the message has to remember that it is being rerouted and can not sim-
ply follow the standard routing algorithm. This extra information has to be car-
ried along in the message header. The decoding and proper treatment of this

information will increase the complexity of the routing algorithm.

Additional features can be built into the simple routing algorithm in order
to enhance its efficiency in the case of single element failures in balanced
hypertrees. The unsuccessful attempt to use an n-cube interconnect during the
upward branch could be remembered in the message header, and the
corresponding bit could be complemented in the downward branch of the mes-
sage path. Alternalively a local detour similar to the one described above could
be built into the path (Fig. 7b). Through the common parent node the message
is shipped to the brother of the node with the unavailable n-cube link, from
where the the n-cube traversal is now executed. At the other end, the desired
path can be reached again in one or two steps by going through the parent node.
The trade-offs between the efficiency of these fault tolerant routing algorithms

and the complexity of the necesseray hardware Lo implement them will have Lo

-19 -
be evaluated individually for each realization of such a system.

In summary, this algorithm will successfully route messages in the pres-
ence of no more than one failed link or node, provided that the failed node is not
itself the source or target. This is true even in somewhat unbalanced trees, pro-
vided that the expansion has been performed in a 'natural” manner. This
implies that a complete binary tree skeleton exists above the two nodes, that
each node has a brother node, and that brother nodes are connected to another
pair of sibling nodes through two n-cube links. Thus, at least two disjoint paths

should have existed before the failure.

While the addition of the long-distance n-cube interconnections is useful for
certain algorithms, the lack of redundant paths to nearby nodes, such as the
extra links in a full-ring or half-ring tree, may be disadvantageous if there is a
lot of locality in the message traffic and also for generating a simple fault-
tolerant routing algorithm. If five ports per node can be afforded, it may there-
fore be advisable to use only one set of hypercube connections per level and

reserve the other extra port for a half-ring connection.

5. RELATION TO OTHER NETWORKS

Other people have studied various structures in the context of the questions
addressed in this paper. Schlumberger[74] analyses the de Bruijn network,
which may be introduced as the state diagram for an n-bit, k-ary shift register,
where k is the number of unidirectional links leading in and out of each node.
He has shown that the worst case path length for N =2" nodes is n and that the
average path length, when all nodes communicate equally with one another, is
slightly less than that. The structure has an elegant routing scheme, requiring
only local information. and also has reasonable fault tolerance. By considering
Lhe special case of a binary shift register (k=2) and making all links bidirec-

tional paths, we obtain graphs for processor with four ports which have many

-20 -

similarities to the networks discussed here. The de Bruijn network can also be
drawn as a binary tree with one additional node and with feedback paths from

leave nodes to the higher parts of tree (Fig. 8).

The average distance in this network is about 15 to 25% shortur (for trees
with up to eleven levels) than in Hypertree 1. The reason for this is that this net-
work uses all of its links for communication and none for input, output or con-
nection to secondary memory. In the tree structures discussed, all leaf nodes
have two free ports, while the de Bruijn network has no ports available. For a
fair comparison, a fifth port should be added to each node in the de Bruijn net-
work, and this network should then be compared to Hypertree II, not Hypertree
I. It turns out that the average path length of Hypertree Il is indeed slightly
shorter than that of the de Bruijn graph. Alternatively, if we use the two ports at
the leaves of Hypertree 1 for additional connections, and place a perfect shufile
network [Stone 71] at the bottom of the tree, the average path length drops to 5

to 10% below that of the de Bruijn graph.

However, the additional paths in the de Bruijn network break the nice sym-
metric properties which are inherent in the other tree structures. It is not
apparent that algorithms can be derived to take advantage of this unusual net-

work, and it therefore appears to show less promise than Hypertree.

Pease[Pease 77] has proposed an "Indirect Binary n-Cube" array, a struc-
ture which has been suggested numerous times in various contexts [Beizer 62]
[Benes 65] [Lawrie 75] [Goke 73], for use with microprocessors. In this struc-
ture, each stage implements one dimension of the n-cube interconnection, i. e.,
each level provides the exchange corresponding to one bit in the node address.
If each level of edges in the simple binary tree is thought of as one "stage" of a
switching network, it will be seen that the binary tree has the same characteris-

tic. The bottom level provides the exchange corresponding to the least

Figure 8. De Bruijn network represented as a binary tree with an
extra node and additional feedback links.

- 21 -

significant bit, the next level the next least significant bit, ete. The horizontal
connections in Hypertree at each level also provide the exchange corresponding
to one bit in the node address. Although Pease did not propose it this way, it
would seem possible to implement a network of single-chip computers with
switching circuitry in the form of an indirect n-cube. The two ends of the net-
work could be tied together, forming a cylinder, and the links could all be
bidirectional. Such a network has some very interesting properties and is being

analyzed for its possibilities.

Both of the above mentioned structures contain one property that made
them unacceptable in our application: lack of incremental expansibility. A
minimum increment in the case of the de Bruijn network requires a doubling of
the number of processors, and even worse, a total reconfiguration of the nodes.
A minimum increase in the size of the indirect n-cube requires doubling the cir-
cumference of the cylinder and increasing its height by one extra stage. Nei-

ther structure appears to maintain its nice properties if it is not complete.

6. CONCLUSIONS

A new network topology for multiprocessor systems has been derived in an
attempt to combine the best features of easily expansible tree structures and
the rather compact n-dimensional hypercube. The two underlying structures
permit two distinct logical views of the system. Thus problems which map par-
ticularly nicely onto a tree structure can take advantage of the binary tree,
while those that can use the symmetry of the n-cube can be assigned to proces-

sors in a way that efficiently uses the n-cube links.

The regular structure allows the implementation of simple routing algo-
rithms, which require no detailed knowledge of the network interconnections.

With a relatively small additional overhead, a routing algorithm can be con-

-2 .

structed that is robust enough, so that messages will arrive at the proper node
even for grossly unbalanced trees or in the presence of failing nodes or links.
This is a requirement for easy expansibility of the system and for graceful

degradation in the presence of communication hardware failures.

The network is readily expansible in an incremental way. All nodes have a
fixed number of ports regardless of the size of the network. These two proper-
ties make this topology particularly attractive for implementations of multi-
microprocessor networks of the future, where a complete computer with a sub-

stantial amount of memory can fit on a single VLSI chip.

ACKNOWLEDGMENTS

We would like to thank Al Despain and Dave Patterson for many stimulating
and enlightening discussions on multiprocessor network topologies, and Bill
Goldberg for producing some results on his simulator, which we could not derive

analytically.

This study was sponsored in parl by the Joint Services Electronics Program,

Contract F44620-76C-0100.

APPENDIX 1: AVERAGE PATH LENGTH IN HYPERTREE

In this section we will derive the expected path length in Hypertree 1 for a
message between arbitrary leaf nodes. This is equivalent to deriving the average
path length when all leaf nodes send messages to all leaf nodes. We shall include
the useless case of a node sending a message to itself since it results in simpler

formulas if it is left in. If desirable it can easily be removed.

For a graph consisting of a balanced, binary tree plus the additional links
defined in this paper as Hypertree I, we number the nodes in the natural way:
top to bottom, left to right, starting with the root as "node 1" on "level 0". These
node addresses, expressed as binary numbers with coefficients z;, will then take
the form

X =xpgz1Tg ' Ty
where m is the level number of the node, and where zo = 1 and z; = 0 or 1, for
j = 12,3, - m. In particular, for leaf nodes mm = n, where n is the number of

levels below the root.

and o = m mod 2, so that

We now define a "half-way" level [= [—T’l

m+ta

I = >

. One can convince one-self, e.g. by looking at Fig. 2 in the paper, that

any bit in a leaf node address can be complemented by following a path which
stays in the lower half of the tree. Some bits get complemented by using the
skeleton of the binary tree only, while others make use of one of the horizontal
n-cube links. Now consider the path between two leaf nodes X, and X, and
define the address difference as

Yiag=0y1Ya2ys "' Yn,

where yy, is the modulo-2 sum between z;; and z;..

We now rename the bits in this address difference so that b; are bits which

can be complemented by staying on the binary tree links in the lower half of the

-2.

tree, and h; are bits for which the shortest path leads across a n-cube link:

Yy2=0 [ho by hz-1] bi-g by—g-1 " b2 by
The indices of the bits denote how many levels above the leaf the path has to
climb in order to make the complementation of that bit possible. Thus if the bit
position to be complemented is among bits b4, i.e. b; = 1, the the shortest path
between the two nodes uses only links of the simple binary tree, going up j lev-
els, then back down, and the minimum distance d is 25. If the differing bit is
among bits h;, then the shortest path between the two nodes goes up the binary
tree j levels, across the horizontal link, then down through the binary tree, and
d = 2j+1. While the indices of the bits b; appear in decending order in Yz, the
bits h; are an unordered set. It is important to note, however, that every term
from hg to h;_, appears exactly once for a tree with n = 21— levels below the

root.

In the general case where the source and the target addresses differ in
several bits, the minimum path length d is achieved by climbing the tree to the
highest level necessary, then going back down, traversing the horizontal links
for the necessary exchange of bits A; on the appropriate levels, either on the

way up or on the way down.

The highest level to which the path must climb is determined by {, the larg-
est value of j for which either h; or b; is 1. Then, if we define the number of hor-

izontal links to be traversed as

H=Yh,
3=0
the path length becomes
d = 2t+H.

For random messages among the leal nodes, we must now calculale the

expecled values ol ¢t and H.

[
3 -

Coaleuisiion of H and’

Tor the random message case, each bit in the addresy difference is egually
likely to be 0 or 1. Since there are I bits of the relative address that resull in a

traversal of a horizontal linlz, one can calculate

1 m+a
}y o T~¢(S .
2 4
Fach h; is equally likely to be 0 or 1, and similarly &,_, will be 1 with proba-
j) Y Yl k
bility ¥. Note that { can reach its maximum value [ondy if ¢ = 0, Le., m is even,

and b, = 1. Thus

-
i
L~
[
i
.
S

p(t=1
Thus if @ = 0, £ <1 with probability . Regardless of the value of o, however, if

£t <1, then t =1—-1with probability %, 4.e., when either h;_; or ;. is 1. Thus

w{t=1-1) = 4‘[17.7(!,——1)] = A5+l -é{..,,ﬂ)

and in general for § = 1,2,3, - -+ ,l—1,

L8l =, 8(14e)
plt=i=) = - Lpli=t=g)) = F 7

The expected verticeal distance £, is then

i i
t=iw(t=g) = 3 ipt=5)
j:O j:l

or rore explicitly,

Now, since it holds in general for g > 1

@fg' i o [1) .
2 il = ek~ 1) g
i (g—-1)2\

it follows that

-4 -

—3—(2%%1 Ara-14a -1 a1 1]40 ——é—‘i

Collecting terms, rearranging and noting that

2 =ag+1
we get
=__7p,___2_ 22’"‘ a
2 3 3 6

Thus the average leaf-to leaf path length in Hypertree 1 is

5m _ 4 4 o _ O
d =2t+H = —
H 4 3 32 12

This formula has been used to plot the curve in Fig. 5 in the paper.

REFERENCES

[Batcher73] K.E.Batcher, "STARAN/RADCAP hardware architecture,” Proc. 1973
Sagamore Computer Conf. Parallel Processing, pp.209-227.

[Batcher768] K.E.Batcher, "The Flip Network in STARAN," 1976 Int. Conf. on
Parallel Prcessing, Aug. 1976, pp.65-71.

[Benes65] V.E.Benes, Mathematical Theory of Connecting Networks and Tele-
phone Traffic. New York: Academic Press, 1965.

[Browning79] S.A. Browning: "Computations on a Tree of Processors", VLSI
Conference, CALTECH, Pasadena, CA, Jan. 22-24, 1979, Proceedings

[Bouknight72]W.J.Bouknight, S.A.Denenberg, D.E.Mclntyre, J.M.Randall,
A.H.Sameh, and D.L.Slotnick, "The ILLIAC IV System," Proceedings
of the IEEE, Vol.60,No.4, Apr. 1972, pp.369-388.

[de Bruijn468] N.G.de Bruijn, "A combinatorial prblem," Koninklijke Nederlands
Akademie van Wetenschappen, Proceedings, Vol49 (part 2),
pPp.758-764, 1948.

[Despain78] A.M.Despain and D.A.Patterson, "The computer as a component,”
submitted to CACM, 1978.

[Feng74] T.Feng, "Data Manipulating Functions in Parallel Processors and
Their Implementations,” IEEE Trans. Comput., Vol.C-23, No.3, Mar.
1974, pp.309-318.

[Goke73]

[GolombB1]

[Lawrie?5]

[Mago79]

[Pease?7]

-5-

L.Goke and G.lLipovski, "Banyan Networks for Partitioning Multipro-
cessor Systems," Proc. 1st Ann. Comput. Architecture Conf., 1973,
p.21-28.

S.W.Golomb, "Permutations by Cutting and Shuffling,” SIAM Review,
Vol.3, Oct.1961, pp.R93-297.

D.Lawrie, "Access and alignment in an array processor,” IEEE
Trans. Comput., Vol.C-24, Dec.1975, pp.1145-1155.

G.A. Mago: "A Cellular Language-directed Computer Architecture",
VLSI Conference, CALTECH, Pasadena, CA, Jan. 22-24, 1979,
Proceedings

M.C.Pease, "The Indirect Binary n-Cube Microprocessor Array,"
IEEE Trans. Comput., Vol.C-26,No.5, May 1977, pp.458-473.

[Schlumberger74]M.A.Schlumberger, "De Bruijn Communication Networks,"

[Sequin79]

[Siegel77]

[Stone71]

[Swan77]

Stanford Ph.D. Dissertation, Computer Science Department, Stan-
ford, California, June 1974.

C.H. Sequin: "Single-Chip Computers, the New VLSI Building
Blocks", VLSI Conference, CALTECH, Pasadena, CA, Jan. 22-24,
1979, Proceedings

H.J.Siegel, "Analysis Techniques for SIMD Machine Interconnection
Networks and the Effects of Processor Address Masks," IEEE Trans.
Comput, Vol. C286, No.2, Feb. 1977, pp.153-161.

H.S.8tone, "Parallel Processing with the Perfect Shufile,” IEEE
Trans. Comput., Vol.C-20,No.2, Feb.1971, pp.153-1861.

R.J.Swan, S.H.Fuller, and D.P.Siewiorek, "Cm* - A modular, multi-
microprocessor," 1977 NCC Proceedings, pp. 845-655, June 1877.

[ThompsonB5]C.Thompson, "Generalized Connection Networks for Parallel Pro-

cessor Intercommunication,” IEEE Trans. Comput., Vol C-27, No.12,
Dec. 1978, pp.1119-1125.

