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ABSTRACT

A storage-limited (SL-type) exponential gueueing system
is a generalization of an M/M-type aueueing system in that
each customer has a storage reguirement as well as a service
time. There 1s a fixed amount of storage associated with
the server. The system is <called storage-limited because
only those customers who can jointly fit into the server's
storage are eligible for service. Such gueueing systems can
form the basis of analytic computer-system models that
explicitly depict the size of main memory and the
memorv-request size distribution.

This pever aives a numerical method “for solvinag
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limited-arrival-process SL-M/M/~type cueueing systems (i. e.
systems with \(n) = 06 for n > ND)' The method requires a
number of states proportional to N%; the number of states 1is
essentially independent of the size of the server's storage.
This is a considerable improvement over straightforward
solution technigues, where the number of states increases
exponentially with storage size.

This exact solution is compared with a solution to a
finite memory size model described by R. Brown, J. Browne
and K. M. Chandyi. The ‘latter is shown to be an approximate
solution based on a certain independence assumption. ’'For
the 'finite population cases, the accuracy of this
approximate method is good with relative errors being less
than 5%. For the infinite population, limited waiting room
cases, the error is somewhat higher. The maximum error
observed in these cases is on the order of 1#%. Considering
the small cost of the approximate solution technique, it is

to be highly recommended.

Keywords and Phrases: multiple-resource gqueueing systems,

computer system modeling, multiorogramming level
distribution, finite population models, equilibrium

eguations.



AN EXACT SOLUTICN TO A CLASS OF STORAGE-LIMITEL

EXPONENTIAL QUEUEING SYSTEMS

1 . INTRODUCTION

This paper describes a numerical technique that
provides an exact solution to a class of dual-resource
queuelng models. We refer to this class of models as
storage limited (SL-type) exponential ¢ueueing systems
because they are immeaiate generalizations of M/M~-type
gueueing systems. The difference is that in an SL-M/M-type
queueing system, each customer's resource requirement is
specified by a pair of random variables representing the
customer's storage and service regquirements, respectively.
The system 1is called "storage limited" because there is a
finite amount of storage associated with the server and only
those customers who can jointly fit into the storage are
eligible for service. The class of SL-M/M/-type queueing
systems is important because they provide a method of
creating analytic computer system models that explicitly
include the size of memory and the memory-regquest size
aistribution.

It is possible to represent an SL-M/M~-type queueing
system as a Markov <chain with a very large state space.
Unfortunately, the size of the state space grows too rapidly

with the size of the storage to use this method of solution
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for realistic storage sizes. For example, for a system with
1@ blocks of memory, there are more than 196,006,06066 states
[6]. The primary result of this paper is a method for
finding an exact solution to limited-arrival-process
SL-M/M~-type gueueing systems (i. e. systems with xn=w for
all n>NP). This method reguires G(Nﬁ) states, and the
number of states is essentially independent of the storage
size. The storage size and the memory-regquest size
distribution enter the solution through a peripheral
calculation used to determine transition probabilities among
the O(Ng) states. This peripheral calculation needs to be
done only once per storage size and is independent of the
system arrival and service rates. With this technique
SL-M/M/~-type processor-sharing gueueing systems with
hundreds of units of main storage and up to 30 customers

have been solved exactly in a few minutes of computer time.

Kelated Work. 7This paper follows the approach of Bard

| 2] in calculating the distribution of the MPL; a more
efficient variation of Bard's algorithm for calculating
P{Lk=i | Lk_l=j} is derived here and 1is crucial to the
solution of the problem. A similar analysis has been
performea by Buzen and Rubin [8], but their primary result
deals with the distribution of unused memory (when all
possible jobs have been loaded from a never empty gueue)
instead of the distribution of the MPL. Betteridge [3] used
a Markov chain approach with each state containing not only

the memory sizes of all Jjobs in system but the starting
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block address of each loaded job. He then proposea using
numerical methods to study the behavior of the chain, with
the goal being to compare such memory allocation methods as
first-fit and best-fit. However, the state space of the
Markov chain grows so rapidly with increasing memory size
that no realistic comparisons appear to be possible.

k. Brown et al [4] appear to be the first researchers
to incorporate the memory size distribution of user tasks in
an analytic computer-system model. Their solution depends
on the assumption that the MFPL, when observed at Job
departure instants, may be modeled as an independent and
identically distributed seguence of random variables,
subject to the restriction that the maximum number of jobs
that can be loaded at any instant 1s the total number of
reaay jobs. The examples of Section 5 in this paper provide
a numerical estimate of the error this independence
assumption introduces in the solution of some typical
SL-M/M-type queueing systems. Brown et al's solution can be
used to incorporate memory size constraints in product form
queueing network in a very straightforward way. This has
apparently been done 1in at least one general network of
queues solution package [16].

Konheim and Reiser [12; 13] solve a slightly different
type of finite memory-size model where the MPL is assumea to
have a fixed upper bound. Hence the memory-request size
distribution enters only indirectly into their moudel. In

[153] they also explore the accuracy of the decomposition
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argument used in [4; 13] to reduce the solution of a network
of queues model of an entire computer system to the solution
of a simple finite-capacity gueueing system. Exactly the
same techniques could be used to incorporate an SL-M/M-type
gueueing system as part of a computer system model. For
further details the reader is directed to [4; 13].

Umahen and Marathe |[15; 14], discuss the problems of
calculating maximum service rates of general multiresource
gqueueing systems. This author {[7] has developed effective
computational algorithms for finding maximum service rates
of dual resource systems consisting of CPU's and main
memory.

Recently, Green |9; 16] has published an analysis of
queueing systems where each customer requires service from a
random number of servers. If one identifies servers with
units of main memory ana the server redquest aistribution
with the memory request size distribution, then it is clear
that Green's model is very similar to the one considered
here. However, the solution of |9] assumes that serversg are
freeda one by one, even though they must be acquired
together. In |[1l8] she considers a model 1in which servers
are held throughout a customer's service, but no solution to
this model 1s derived. Instead qualitative results are
shown that compare performance measures of the models of |5]
and |lb]. This author [5; 6] has discussed approximate
solutions to similar models, based on the assumption that

the numbers of servers in use at each job departure and
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arrival instant are 1independent random variables. These
models have been found to be less accurate [5] than those of
14].

Model Assumptions and Notation. A storage-limitea

gueueing system is a simple model of a computer system with
a processor and M independently allocatable wunits (blocks)
of main storage. Since M is in general quite large, we will
assume throughout that NP << M. In this moael we assume
that no external storage fragmentation takes place. This is
equivalent to assuming that memory 1is compacted at each job
departure time [8] or that paging hardware 1is used to
eliminate external storage fragmentation |Z]. We require,
however, that the entire storage reguirement of a job must
fit into main memory beifore the job can be loaded. Finally,
we assume that jobs are loaded strictly in the order of
their arrival (first-come first-loaded or FCFL). 1If when a
job arrives there are no jobs waiting to be loaded ana there
are enough free blocks of memory the job 1is loaded.
Gtherwise the job enters the memory gueue. On the other
hand, if the memory queue is non-empty when the job arrives,
the job always joins the memory gqueue. When a job's service
reguirement has been satisfied, its memory space 1is freed
and as many Jjobs as possible are loaded from the memory
gueue. In all cases we assume that the loading process 1is
instantaneous.

Jobs arrive at the system according to a Poisson

process of rate Xn when there are n jobs in system. We
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restrict our attention to arrival processes with xn=ﬁ for
all n > NP' Two 1important gqueueing systems that can be
studied in this framework are SL—M/M/K//NP and SL—M/M/R/NP.

The resource requirements of each job are represented

by the pair of independent random variables (Xi,si). X
th

denotes the storage requirement (in blocks) of the i job;
the seguence {Xi} is assumed to be i. i. d. with
distribution F(x) and density f(x). The Xi's are required

to be integer valued with lixigm where m<M. X; can be

th

interpreted as either the program size of the the i job 1in

a swapping system or as the working set size of the ith job
in a paging system. Si represents the service time

requirement of the ith

job. The sequence {Si} is i. i. 4.
with an exponential distribution of parameter p.

Let L(t) denote the number of loaded 7jobs (the
multiprogramming level or MPL) at time t ana let K(t) denote
the number of jobs in system at time t. By a solution to an
SL-M/M~type gueueing system we mean a method of evaluating
the stationary distribution W(j,k) of the process
(L(t) ,N(t)).

Let rn(k) be the system service rate given N(t)=n and
L(t)=k. We assume, without loss o©of generality, that
rl(l)=1.®. It follows from our exponential service time
assumption that the average job interdeparture time given
N(t)=n and L(t)=k is ( m r (k) )—l. This quantity does not
depend on the service discipline among the loaded jobs so

long as the overall service rate 1is rn(k). To simplify
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notation we will put ”n,k = n rn(k).
We aefine t@=@ and for k>1 we let ty denote the
departure time of the kth job to leave the system; we note

that jobs need not depart 1in the same order that they

arrive. Similarly, define e, as the time of the kth change
of state of the process (L{t),N(t)). We let T(ek) be the
type of event that occurred at time e - Then T(ek) is

either an arrival (which we shall denote by T(ek)=A) or a
departure (T(ek)=L). Finally, we put Nk = N(ek);
Lk = L(ek).

Throughout this paper, we will use subscripts ¢to
indicate particular members of a sequence, e. g. Xk'
Capital letters are (usually) usea to indicate random
variables, 1lower case letters indicate values for the
associated random variables. Underbars are used to indicate
vector quantities and superscripts are used to indicate
elements of a vector. Thus Zg is the jth element of Zk’ the
latter being a random vector. Sguare brackets are used to
indicate events (such as [X=x]). The probability of this
event 1is denoted by Pri{x=x}; the expected value of the
random variable X is denoted by E{X} or X. A box ( L ) is
used to indicate the end of a proof or the end of a theorem

with no formal proof.

Summary of paper. We begin by studying the process

(L(t),N(t)). While this process is non-Markovian, it can be
expressed as a function of an underlying Markov chain

(Z(t),N(t)). In Section 2, we defined and discuss the
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process (Z(t),N(t)) ana derive a set of equations for
W(j,n). Then in Section 3, we discuss calculation of the
coefficients in these equations. Next, in Section 4, we
discuss the approximate solution of Kk .Brown et al [4]. 1In
Section 5 we present some example solutions to an SL-M/M/c

gueueing system and compare the exact and approximate

methods of solution.

2 . ThE PKOCLSSES (L(t),N(t)) AND (Z(t),N(t))

Cur goal is to determine steady state occupancy
probabilities for the process (L(t),N(t)). Hhowever, this
process is non-Markovian because L(t) depends on the memory
sizes of all the jobs in system and this information is not
part of the state description. (L{t),N(t)) can be expressed
as a function of an underlying Markov chain as follows.

Let the vector z(t) =  (27(t),2°(t), - . . ,2%(t))
represent the memory sizes of the N(t) jobs currently in
system and of the next M-N(t) jobs to arrive 1in system at
time t. Here Zl(t) is the memory reguirement of the oldest
job in system at time t, Zz(t) is the memory requirement of
the second oldest job, anda so forth. We define Ek = k)'

Given Z(t), we can calculate L(t) as min(R(z(t)),N(t))

Ina

(e

where R(z) is defined as:
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r — Ul
M oif > z:L = M
—— i=1
R(z)=¢%
T n v n+l
n if > z° < M and > z' > M
“ — i=1 b— i=1

where g=(zl,z2, « . . ,zM).

Thus R(Z(t)) gives the number of jobs that could be loaded
if the memory gueue were never allowed to become empty
(i. e. 1if the worklocad was “infinite"); the relation
L(t) = min(R(Z(t)),N(t)) merely says that the number of
loaded jobs can at most be the number of jobs in system.

In [7] we studied the process Z(t) at job departure
instances subject to the constraint that the memory queue
was never empty. Let {gﬁo} denote this modified sequence.

We summarize the following results about {ZEO} from |7]:

Lemma 2.1: {EED} is a positive recurrent HMarkov chain

with a unigue stationary distribution. Ll

Theorem 2.2: The stationary distribution W of the

Markov chain {gﬁo} is given by
m(z) = : { - f(z7). (2.1)

Furthermore, this distribution is the same regardless of how

the next departing job is chosen from the set of 1loaded
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jobs, provided only that this choice is made independently

of memory size. L]

It follows that equation 2.1 also gives the steady state
aistribution for {Zgo}_

we recall that {g(tk)} is the sequence generated by
observing Z(t) at job departure times. The only aifference
between {g(tk)} and {gﬁo} is that for {g(tk)} the choice of
departing Jjob is made from the memory sizes of the first

while for {2} the

k) “k

choice 1is made from the first R(gﬁo) entries. 1In either

L(tk) entries in the vector Z(t

case, the choice is made independently of memory size. 1t
follows that {g(tk)} has the same stationary distribution as

does {gﬁo}.

1f we put I§O= R(gﬁo), we have the following result
[7]:

Theorem 2.3: The marginal distribution of Lﬁo is given
by

Pr{Lfin}—F‘”)(M)—F(“+l)(M)
where F(n) denotes the n-fola convolution of F with itself.
[l

Since Lk = min(R(gk),Nk) it follows that:

Corollary 2.4: The marginal distribution of Lk given
N, = n is

k
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FO) (my -5 ) j <n

rr{LK-j | Nk n}=4%

Since u(t) contains the memory sizes of all Jobs in
system at time t, since Z(t) and HN(t) dgetermine L(t), anda
since tne state resicency times of (Z(t),h(t)) dcepend only
on L(t) anda N(t), it follows that (Z(t),N(t)) 1is a
continuous time Markov chain. ‘'ihe infinitesimal parameters

e

of (Z(t),n(t)) are determinea by the distribution of e, . -€,

and the transition probabilities of the embedded (ulscrete

time) Markov chain (gk,m It is convenient to sgpecity the

k>'
latter conditionea on T(ek+l).

From our exponential distribution assumptions for

gservice and interarrival times it follows that:

E{ek+l—ek§s | (ﬁk’Nk)z (z,n)} = l-exp(—[xn+pn,j]s) (z.2)
e : xn . -
P{T(e  )=B | (2,8 )=(z,n)} = N (2.3)
n pn,j
" . . pn i
PAT (e 4)=D | (ﬁk,wk)—(ﬁ,n)} = ;~:—1- (2.4)
n" *Hn,j
where j=min(k(z),n).
Consiaer tirst the case l(ek+l)=A. Clearly Nk+l=NK+l'

when an arrival occurs Zl does not change, since 7, already
Ly K

k
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contains the memory size for the newly arriving job.

(Recall that by assumption N_ << M.) Therefore

P
(2.5)
When T(ek+l)=D, clearly Nk+l=Nk—l. Now put

j=min(R(gl),n) ana let ND(El,Ez,j) be the number of ways

that z. can be changed to the lM-1 vector

1
1 2 3 V=1
(z2, Zor Zoe - . - 424 )

by deleting one of the first j elements of the vector 2z

Then:

PU(Z) /N )=(2,n-1) | (Z /N )=(2zy,n), T(e, 4)=D}

N .(z2.,2,,7) .
D ~i’=2 £(zy, n>l (2.6)
j 2

From equations (2.2) through (Z.6) it follows that the

infinitesimal parameters of the process (Z(t),N(t)) are

given by
q(El,n)=xn+un,j
q(gl,n),(g_l,n-l»l):)\n
Q(z n),(z.,n-1)" un’jND(%l’EZ’j) f(zg)
S A= 3

where j=min(R(31),n) ana all other g are zero.

(i,3),(k,1)

From these infinitesimal parameters it is theoretically
possible to determine the steady state distribution of
(z(t),L(t)) (and hence (L(t),n(t)) ). However, there are

far too many states for this to be done for all but the
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smallest values of M. To reduce the state space to a
manageable size, we use the following aggregation Lemma [6]:
Lemma 2.5: Let A(t) be a continuous time Markov chain
with state space s, time homogeneous transition
probabilities
P, . (s)=P{A(t+s)=jlA(t)=1i},

i,]

infinitesimal parameters defined by

. 1-p5 ()
g;=Lim
h-->0 h
P. . (h)
q; =Lim  —td—0 i#3,
') h==>p n

and a unique steady state distribution WA.

Let Sl" . .,Sk,. . . be a partition of S5 such that

each Sk has finitely many members and 944 j=@ whenever 1 and
r

j are in the same S Suppose that

.
T(ilk)=E{A(t)=ilA(t) € S}

is constant in t and known a priori.

Lefine B(t)=k iff A(t) € Sk’ and
\
. (k)= . (s).
B {— ses, °
Let
) \ .
) = Lo i k
N _ .
Q.= g mw(sli),
1/ ges, 'S
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: . \ o .
and g, .= q T(sli), 1 # k.
Lk [ ges. "S5
i
Then WB satisfies the equation
To(k) Q= ) T(1) 0 - (2.7)
Proof: The equilibrium equations for W, are of the
form

Summing these eguations over all s € S, and using the facts

k

that T(slk)=WA(s)/WB(k) for s €& Sk and qt,s=@ whenever

t,s € Sk gives the desired result. L

Note that EBE(t) in the Lemma need not be a Markov chain.
However we may define a new Markov chain g(t) with the same

State space as B(t) anada with infinitesimal parameters Qk’

Qi K Then in general B(t) 1s not the same as ﬁ(t).
’

Suppose, however, that g(t) possesses a unique steady state
distribution %B' Then WB=ﬁB since there 1s only one

solution to the set of equations. Thus if the guantities Qk

and J.
Ql’KI

Markov chain, define a Markov chain with a unique steaay

when taken as the infinitesimal parameters of a

state distribution, then the limiting distribution of B(t)
can be found from equation (2.7), even if B (t) is

non-markovian. This idea allows us to derive "equilibrium"
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equations for the process (L(t),N(t)) and from them to
determine the steady state distribution for this process.

We apply Lemma 2.5 to the process (Z2(t),N(t)) by
partitioning its state space S into the sets

S(j,n)={(z,n) lj=min(k(z),n)}.
Thus members of the set S5(j,n) are those states (z,n) that
correspond to a MPL of j and (L(t),N(t))=(j,n) iff
(Z(t),N(t)) € S(j,n).

Not all oraered pairs (j,n) are feasible states of the
process (L(t),N(t)). Let L _

0] G
is the minimum number of jobs that must be loaded before a

be the integer part of M/m. L

memory queue can form. If n<L states of the form (j,n)

Q'
with j<n cannot occur with non-zero probability. ihe

feasible states of the process (L(t),N(t)) are therefore:

(b,0) (1,1) (2,2) . v e (LQ,LQ)
(LQ,LQ+1) (LQ,LQ+2) ... (LyriNp)
(Lg+1,Lo+1) (Ly+1,L+2) ... (L +1,0p)
(LQ+2,LQ+2) .. ...
(NP,NP)

Because of the two dimensional state space of the
process (L{t),N(t)) we redefine the quantities TW{(ilk),
qi,S P Qi’ and Qi 3 of Lemma Zz.5 in the following way:

j 14

W((z,n)l(j,n))=P{(Z2(t),N(t))=(z,n)](2,n)€S(j,n)}

9z,n),s(3 k)"'—>ﬂ 9(z,n), (v, k)
2o l0X) Ly, k)es(3,k) (B UL

(z,n) € S(j,k)
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— (y.k)es(g,n) (X

(VI . \
(p,t),(x,8) / (y,t) €S (p,t)

10 apply thne Lemma to the process (L(t),N(t)), we must
be able to evaluate TW((z,n)l(j,n)). Now since the state
resiuency times of all states in S(j,n) are exponentially

distributed with parameter (N(n) + pq j), T((z.,n)l(j,n))
{%(

dgoes not depgend on \(n) or un .. Since
f .

tk)} has the same
marginal distribution as {gﬁo} we can use Corollary z.4 to

show that:

: - ‘ f(z™) j<n
PO - O L Loy
W((z,n)l(j,n))=4%
1 T—'T I i
. t(z™) J=n
v o p @ gy Lo
ihe parameters Q(j,K) ana Q(j k), (m,n) take several

aifferent forms waepending on the values of j, k, m, and n.
10 give the flavor of this analysis, we consiaer one case
here (Appendix A discusses the other cases.):

Case 1v: ¢

(j,n), (k,n-1) with Jj<n. Clearly it

(z,n) € Q(j,n)’ j<n, then kK(z)<n. “Thus:

“(5.n), (k n_l)zj““ %(z,n),5(k,n-1) 7 ((Z/m) 1 (G,mn))
Jr ’ ’ (;_,n)GS(j,n) Zy Pxe) v

— — B LN (2,Y,7) .

=) ) feik £ Wz ()



STORAGE~-LIMITED QUEUEING SYSTLEMS 17

Here j=min(R(z),n). (Recall that yM refers to the mth

element of the vector y.) 1To simplify this further, we need
to consider the cases k<n-1 and k=n-1 separately. 1In the

case k<n-1 we have

99,0, (k,n-1)"

N N N (__Z_I_ZIR(_Z_)) A
o > > L £y W((z,n)l(3,n)).
'3 L 7 YR(z)=it— y HR(y)=k K(z)
But the term
N.(z2,y,R(2Z)) y
C f(yll)

R(z)

in this equation is merely the probability of changing from
memory state y to 2z given that N(t) > R(z). But this is
equivalent to assuming that N(t) = o so that the above can
be rewritten in terms of transition probabilities for the

Neo
sequence {% " }:

Q

AN
(jln)l(kln"l) nrj _/~__,_

Examining the limits of summation, the above can be reduced

to:

in the case k=n-1 we have, by similar arguments:

Q(j,n),(n-—l,n~l)=

£ (™) T ((z,n) 1 (3,0))
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- “w — o = 3 i l
un,j P{L2 >n-1 | Ly jt. Ll

The resulting equilibrium equations for the process
(L(t),N(t)) are summarized in equation (2.8). 8Since there
is one eqgquation for each feasible state, a total of
LQ+(NP—LQ)(NP-LQ+1)/2 = O(Ng) equations must be solved. We
will discuss methods of solving this set of equations in
Section 5

Because state (0,6) is reachable from all states in the
process (L(t),N(t)), it follows that the infinitesimal
and Q define an irreducible

i,3) (Prq),(r,s)
Markov process on a finite state space. Therefore there is

parameters Q(
a unique probability measure W(j,k) that satisfies
equation (z.8). Thus we can use the equilibrium

equations (z.8) to solve for W(j,k) even though (L(t),N(t))

is not a Markov Chain.

3 . CALCULATION OF THE COEFFICIENTS IN EQUATION (2.8)

We now show how to calculate the probabilities

P{LSO=VILf)=u} and P{LSOZle§D=u}. These quantities appear
as coefficients in equation (z.8). Cur analysis tfollows
that of [2] who develops a similar but much less efficient

@
1 b

To simplify our discussion, we only consider the case

formula for P{LSDIL

u>l, v>u. The rest of the cases are analyzed in Appendix B.

As a notational convenience, let
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T-"N >

N> C

N> C

(N (3)7)

(8°2) (s)uotae

103 suot3lenby wuntaqitinbag

nbn

d

5 M Aaumz.ﬁvhH:mZA LR T
Aanmz~ﬁlmzvhﬁﬂ|szowq_ﬂ-mzuowqme:mZA L TN A gy
h e .
(T+C (3= L1 1-0= ZrpaTHE Mn 1|N+Aalﬂ.ﬁlﬁvhﬁﬁuﬁMomq_H-ﬁuOMAVmﬁ-ﬁA

J

7+ 1 0

'1-C > 1 5 '

(T+C %) (Y

v
A%
Y
Vi
—

L —

f21-C

R (L AT

D
Drroy
T AN E / T-C 't C
=1l T=gTtd r HI-C'DL 7N = (7 T ) (CfDn
o) 0o 4T N
d d d.-1 a T .1=In, NN, g ,a
(T="N'T="N)L{T-"N< JTIT- N< ST)d \= (T Ty
/

Aﬁ+ﬁ.ﬂ+hvbﬂ

+01+C

’ - T T ,1-C
ot \VH-ET-Dafr-0e g1 t-Ce gmra N

M (T-C/T-0)ul™ Y

B ety

O b oy

T'T,

(T’'D4u = aAAs.avh



28 R. M. BRYANT

3.\ ‘
si=) Xy -

;|
k=i
Since the value of P{Lf3=u} is known, it is sufficient to

determine P{L§O=u,L§O=v}.

Case VI: wu>l, v>u. Here the event E=[L =u,Lg)

@ _ .
1 =v] is
equivalent to

u Ju+l v+l v+2
(<M, 81TTOM, 857K, S,

This can be rewritten in terms of independent random

[S >M] .

variables as

u u v+l u v+1l, .,

) . , LU , s 3% = V

[Xl+52§M, Xl+bz+xu+l>M, 52+Xu+l+5u+2im' 82+Au+l+ou+2+Av+2>M].
- u , Uy~ . .
If Xl+52+xu+l>M, then SZZM 2m+1. Similarly if

U VL S

S X 4115 4o SH then 5o<M (v-u+l) . But we Kknow that

m(u—l)zngu—l. Combining these conditions gives us
max(M—2m+1,u—l)ﬁsg§min(M—(v—u+l),m(u—l)). (3.1)

u~

Conditioning on the event [52

s] gives us

P{E}=) £ () pii)
L 1
s
where
— - - _ < VL , oVtl .
Eq [Xlgm S, X +X,  °M-s, Au+l+°u+2ﬁM S, xu+l+su+2+xv+2>m s]

and the limits on s are given by equation (3.1).
s ‘ . _ . i i . .
Now if X1+Xu+l>M s, then Xu+l>“ {(s+m) . Similarly if
V+1

v + _ _ —u) . . ;
X1 bu+25M S, then Xu+1§M (s+v-u) Since igxu+l§m we

therefore have

max(l,M-—(s+m))§_Xu+ <min (m,M=- (s+v-u)) . (3.2)

1
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Conditioning on the event [X =x] gives us

u+1l

|

P o ™\ (u-1) \ )
k{Ll ~u,L2 =v}= /) . £ (s) P . f(x) P{EZ} P{E3}
(3.3)
where
E2=[Xl§M—s, X1>M—(s+x)],
_ i oVHL v+l .
E3—[Su+2§M (s+x), su+2+xv+2>m (s+x)],

and the limits on s and x are given by eguations (3.1) ana
(3.2) respectively. However P{E3} is merely the probability
that the MPL is wv-u in a main memory of size M- (s+x).
Therefore

P{E2}=F(M—s)—F(M—(s+x)) and

(v-u) M- (s+x)). L

P{E,}=F —p (TTuEL

(M= (s+x))
W @ - . P .
P{L2 ZviLl =u} can be calculated in a similar way. For

details see Appendix B.

4 . AN APPROXIMATE SOLUTION TECHNIGUE

In this section we present the approximate solution of Brown
et al [4] as it applies to solving a SL-M/M-type queueing
system.

BErown et al consider two types of memory schedules:
first-fit with skip and first-fit without skip. Since the
two schedules are handled much the same way and since the

second corresponds to the FCFL policy that we have been
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using in this paper, we will skip aiscussion oOf

policy.

the

The basic result of trown et al is a recursive

first

method

ot evaluating the probability P{ilj} of having exactly i

jobs loaded given J Jobs in system:

Let g(n,ylk) be the conaitional probability that n
jobs are assigned y units of memcry given that

jobs have been examined. There are tihnree ca

(1) n =k, 1. e. all ready Jjobs examinea
loadea:
N Y
g(k,ylk) = b g(k-1,x|k=1) £(y-x)
L x=()
(ii) n = k-1, i. e. the last jopb examinea dia

tit:

g(k-1,ylk) = g(k-1,ylk=1) (1 - F(k-y))

Sess

K

are

not

(iii1) n < k=1, i. e. the scheduler has ceased
examine 7jobs pecause some previously examined job

aid not fit into avaliable memory:

g(n,ylk) = g(n,ylk-1)

Given g(n,ylk), P{ilj} can be evaluated from

S \ I
P{iljt = p . g(i,yli).
~—-———y=

It can be shown that the apove reduces to the

Corollary z.4.

Given P{ilj} brown et al solve the SL-M/M-type

assuming that it can be modeled as an /G/1-PS

formula

(pr

to

of

gueue by

oCessor

sharing) gqueueing system where the service aistripution
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given j Jjobs in system is:
B.(t) = / . (1—exp(pi’j t)y) EBiiljt

Bj(t) is seen to be the inter-departure time distribution
given J Jjobs in system. From the well-known relationship
between i1/G/1l1-PS ana k/M/1 gueueing systems, it follows tnat
one may find an approximate solution to an SL-k/M-type
queuelng system by solving the M/N/1 gueueing system with
load aependent service rate ﬁj where
Ho= ) my g et

we wish to carefully point out the approximation
assumption that has been made in this solution. Note that
g(n,ylk) (ana hence P{ilj}) are calculated unaer the
assumption that memory 1is 1initially empty. Thus the kPL
given ;j jobs in system is aistributed accoraing to p{ilj}

and 1is assumed to be independent oi the MPL before the last

jo0 departure. Gne way to think of the model 1s that at

each job departure instant, all loaded jobs are removed from
memory, given new memory sizes, and returned to the memory
gueue. fTiney are then reloaded into memory 1in order until
either memocry becomes full or all jopns in system are loaded.
This inuependence assumption simplifies considgerably the
task of solving an SL-i/M~type gueuelng system.

This author has also considered models where the MPL at
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each arrival instant is also assumed to be independent of
the MPL just before the arrival. While this model can be
solved exactly without the artifact of the PS assumption
introduced here, experience shows that the moael is less

accurate than the one of Brown et al [5].

5 . SOME EXAMPLEL SCLUTIONS

Equation (z.8) can be written in compact form as the
eigenvector problem ¢ W=0 where Q 1is a matrix of order

(NP—LQ)Z/Z. 1f (NP—LQ) is not too large, one may determine

{=

by the inverse power method (see, for example,
{17 ,p. 3437). Since the storage requirement of this
approach increases as (NP—LQ)4, some other technigque must be
used when (NP—LQ) is large.

By exploiting the structure of the matrix ¢, we can
reduce the problem of solving Q W=06 to the problem of
solving K y=0 where the order of R is (NP-LQ) and a simple
relation exists between the vectors y and W. To do this, we
use the “recursive” techniqgue of [11]. The details of this
approach are given in Appendix C.

In the rest of this section we discuss two examples
solved by these methodas and compare the exact solution
values to those obtained by the approximate method of [4].
We restrict our attention to the SL-M/M/0 queue. Because

the system service rate 1is pn = k u for the S8SL-M/M/®

n,k
system, this system exhibits the strongest dependence of
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1 on k among all SL-M/M-type gqueueing systems likely to

n,k
be encountered in practice. Hence this should be a worst
case comparison for the approximate solution method.

In these examples we have used two distinct memory size
aistributions. One memory size distribution is the
Univac 1166/8%2 program size distribution shown in
Figure 5.1. This distribution is taken from data observed
at the Madison Academic Computing Center during the summer
of 1988. As is typical of such observed distributions, this
distribution has a large tail (mean = 29 Dblocks, min = 4,
max = 15#, standard deviation £25, squarea coefficient of
variation #.7). The other memory size distribution we will
use 1is the discrete uniform distribution on the integers
1,. . .,156. While this is admittedly an artificial choice,
it provides a contrast to the other memory size distribution
gince the coefficient of variation for uniform (CV2 £ §.3)
is smaller than for that of the Univac 1166/82 memory size

distribution given above.

Example 5.1: The SL—M/M/OO//NP queue. We first
consider the case where the customer population is finite.

The arrival rate given n customers in system is therefore

xn=(NP—n)x; xn=® for nZNP. To fix the rest of the
parameters we have chosen p=1.6, rn(k) = k, NP=2®, m=150,
and M=300.

We first consider the uniform memory size distribution
case. Graphs of the L and N values versus )\ from both the

exact and approximate solutions are given in Figures 5.1.1
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FIGURE 5.1
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and 5.1.z. Figure 5.1.3 gives a plot of the relative error
in the approximate solution. The "exact solution®" values
were calculated using the recursive methoa of Herzog et al

{11] and the boundary set B, (see Appendix C).

1

Figures 5.1.4, 5.1.5, and 5.1.6 proviae the same
information for the Univac 11l06/82 distribution case.

Wwe see that the accuracy of the approximate method of
Erown et al is good. The maximum difference in L values is
2.4%; the maximum difference in N values is 4.0%. The
average relative error in the approximate solution case is
less than 6.5% for the uniform memory size distribution and
approximately one per cent for the Univac 1106/82 memory
size distribution. ‘The L values from the approximate moael
are not exactly correct, but the differences are so small
that they would probably be undetectable in a computer
system model.

Each exact solution required about 1 secona of CPU time
on the Univac 1160/8z. This, of course, was after the the
probabilities P{LSO=VIL?)=u} and P{L;OZVIL§O=U} had been
calculated. This calculation took about 20f seconds; since
P{L§O=vlLf3=u} does not depend on \ this calculation only
had to be done once for each memory size «aistribution.
These times could have been reduced by taking advantage of
the fact that NP = 2. We would have then had to repeat
this calculation for the next example. We thus based the
calculations on N_ = 3p. The times required for the

P

approximate solution were negligible once Pr{Lk=j} was
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FIGURE 5.1.1
FINITE PBPULATIBN, UNIFGBRM MEMGRY SIZE CASE
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FIGURE 5.1.2
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FIGURE 5.1.3
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FIGURE 5.1.4
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| FIGURE 5.1.5
FINITE POGPULATIBN, 1100/82 MEMGRY SIZE CRSE
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FIGURE 5.1.6
FINITE PBPULATIBN, 1100/82 MEMBRY SIZE CASE
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known. Calculation of Pr{Lk=j} reguired less than one

minute of CPU time for all of the examples considered here.

Example 5.2: The SL-M/M/o0/N_. queue. We now consider

P
the case where the customer population is infinite (xn=X),

but the waiting room at the server 1is finite (xn=ﬂ for
nZNP). This system is a "loss" system in the sense that if
a customer arrives to fina NP other customers already 1in
system, then that customer departs without being served.
Our primary interest in this system is that it may be used
as an approximate model of the SL-M/M/c0 queue (where there
is sufficient waiting room) when the probability of loss is
small. The other parameters of this system are the same as
the last example except that we used NP=3w.

Figures 5.2.1 through 5.2.3 give plots of L and N
versus N\ for this system in the uniform distribution case.
Figures 5.2.4 through 5.2z.6 show the results in the
Univac 11bB/6z memory size distribution case. The "exact
solution" values were calculated using the recursive method

and the boundary set B. (See Appenaix C). However, double

2
precision arithmetic had to be wused throughout to keep
negative probabilities from appearing in the W vectors.
This 1s an example of the numerical problems often
associated with the recursive method of solution. (See

Appendix C for discussion of this problem.) Each of these

solutions required about 7 seconds of CPU time. As before,
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FIGURE 5.2.1
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FIGURE 5.2.2
INFINITE POPULATIOGN, UNIFORM MEMORY SIZE CARSE
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FIGURE 5 .2.3
INFINITE PBPULATIBN, UNIFGBRM MEMBRY SIZE CASE
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FIGURE 5.2.4 |
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FIGURE 5.2.5
INFINITE POPULARTIGBN, 1100/82 MEMORY SIZE CARSE
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FIGURE 5.2.6
INFINITE POGPULATION, 1100/82 MEMBRY SIZE CASE
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times for the approximate solutions were negligible.

Lxamining Figures 5.2.3 and 5.2z.6, we note that the
maximum caifierence Dpetween tne two solutions is nigher in
this case than it was in rLxample 5.1. ‘ihe difference in N
values reaches 12.2%; the difference in L values is always
less than 3%.

Graphs of tne loss probability ( rri{n(t) = NE )  versus
N are given in rFigures 5.2.7 and 5.2.8. fTlhese figures show
that even if tne loss probability is small, the aifference
between the exact and approximate solution values of w can
be large.

Thus, 1in general we would conclude that the approximate
solution ot |4] is more suitable to the finite than the
infinite ©population case. Since the former 1is the more
common case in computer-system modeling, the approximate

solution 1s to be nighly recommended.

¢ . COWCLULING hbbaRKS

We have derived an efficient numerical procedure £for
the exact solution of a class of storage limited exponential
gueuelng systems and used this solution to evaluate the
accuracy of a well-known approximate solution tor the same
problem t4]. while the approximate solution 1s more
accurate in the finite-population rather than the
infinite-population cases, the maximum relative error we

encountered was lz.Zz%. Since the approximate solution
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FIGURE 5.2.7
INFINITE PBPULRTIGN, UNIFGBRM MEMBRY SIZE CARSE
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FIGURE 5.2.8
INFINITE POPULATIGBN, 1100/82 MEMORY SIZE CASE
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requires trivial computational etfort, it is to be highly
recommended, especially in the finite-population case.
Since tnis case 1s the most common in computer—-systei
mouels, the approximate solution shoula be sufficient tor
most applications.
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APPEND1X A

DERIVATION OF INFINITESIMAL PARAMETERS FOR (L(t),N(t))

We know that that ¥ unless k=n+l or

Yz,n),s(3.k)7
k=n-1. Considering the former case first, suppose that an
arrival occurs while (Z(t) N(t))=(z,n). If R(z)<n, then
(z,n) represents a system state in which either memory is
full or the memory gueue is non-empty. In either case the
arriving job cannot be loaded and therefore the MPL does not

change. Thus, 1f K(z)<n, then =f unless

9(z,n),8(3,n+l)
j=k(z) . Similarly if R(z)>n then R(z)>n+l and hence

q(z n),s (3 n+1)=ﬁ unless Jj=min{(Kk(z),n+l). Combining these
‘L [4 !

conditions we have:

;
0 k(z)<n, J # R(z)
G K(z)>n, J # min(k(z),n+l)
Y(z,n),5(3,n+1)" \
N\, R(z)<n, j=k(z)
A R(z)>n, j=min(R(z),n+1l)
v D - -

To evaluate g let y€S5(j,n-1). Then 1if

(Ern)rs(jrn’l)’
k(z)>n and y is reachable in one transition from z, we know
that K(y)>n-1 since the multiprogramming level can decrease

by at most one when a job departs. On the other hand if

k(z)<n and y is reachable from z, then Kk(y) can take any
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value from k(z)-1 to M. Thus:

g
M4 R(z)>n, j=n-1
— N (VK
a o = £ N Mo g (20200 £(y')
(z,n),S(J,n-1) / (y,n-1)€s(j,n-1) k
% when k(z)<n (k=min(R(z),n))
o otherwise

Next we clearly have

: =N\_+ .
25,0 M 0,5
since g is constant for all states in the set S(j,n).

(z,n)

Because ¢ unless k=n+l or k=n-1 it

9(z,n),8(j, k)"

foliows that only parameters of the form ¢ and

(3,n), (k,n+l1)

S are non-zero. The values of these parameters
“(3,n), (k,n-1) P

take several different forms depending on j,n and K.

Case 1I: Q with Jj<n. 1f j<n then

(j,n), (k,n+l)

(z,n) € 5(j,n) implies R(z)<n. Therefore q(z n),s(j,n+l) =

xn for all (z,n) € 5(j,n), and hence Q(j,n),(j,n+l) = xn'

j<n. This equation merely reflects the fact that if a job
arrives to find a non-empty memory dgueue, then the Jjob
always joins the end of the memory gueue.

Case 1I: @ with J=n. The set S{(n,n)

(j,n),(k,n+l)
consists of the two subsets:

1 - . -
S(n,n)~{(g,n)6b(n,n) | R(z)=n}
.2 _ )
b(n,n)—{(z,n)es(n,n) | R(z)>n}
If an arrival occurs while (g(t),N(t))eS%n n) then the

arrival does not get loaded, but instead joins the gueue.

On the other hand, if an arrival occurs while (z(t),N(t)) €
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]

L

S(m,n)

, then the arrival 1is loaded and no memory gueue

forms. Thus:

-\ _
Q(n,n),(n,n+1) xné_“ (z,0) €S m((z,n)l(n,n))
(n,n)
< +1,n+1) "N ;““ 5 W((z,n)l(n,n))
(n,n),(n 34 ) n/ (‘-,n)esz('n .

The sums represent the probability that R(Z)=n and R(Z)>n
respectively, given that R(%Z)>n, where Z is an M-vector of
i. i. d. random variables with distribution F(x). Kkecalling
that L§O= R(gﬁ? and using the known stationary distribution
of {gﬁ? we see that

®=

P{ L] n | L

1

P{ R(2)

]
jon
=

[
v

> n} > n}

P{ R(2) >n | k(&) >n} = P{ L®=n | 1> n}.

Theretfore:

— QO _ fee)
Qn.n), (n,n+1) Np Bl =0 | Lymond
y - @ ®
Q(n,n),(n+l,n+.1) kn P{Ll >n | Ll Zn}
From Theorem 2.3 we have
p(tP=n} ™ (-0 ()
@ _ o 1 -
P{L1 =n|L;">n} = = o
~ B{L,">n} F (M)
and similarly
- - F(n+l)(M)
P{Ll >nlLl >nil= ) .
F (M)

Case 111: Q(j,n),(k,n—l) with j=n. 1If (z,n) € S(n,n)

we have observed that R(z)>n.

Hence q(E,n),S(n-—l,n—l):”n,n
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for all (z,n) € S(n,n) anda
Q(n,n),(n—l,n—l)zpn,n'

Case 1IV: Q(j,n),(k,n-l) with j<n. This case

discussed in Section 2 of the paper.

The details of evaluating P{L§O=j | L?)=k}

0)_—_

1 k} are given in Appendix B.

P{L°>3 | L

was

and
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APPENDIX B

EVALUATION OF COERFFICIENTS FOK EQUATION 2.8

B.1 EVALUATION OF P{L§°=v|L§°=u}

Since we Kknow P{L§O= u} from Theorem 2.3 it is

sufficient to evaluate P{L§o= u, [§D= v}l. Recall that as a

notational convenience we have defined

3N 7
LA k=i

k

Case I: v<u-l. Because jobs depart the system one at

a time, the maximum decrease in the MPL from one loader
activation to the next is one. Theretfore P{L§)=u,L§O=v}=®
whenever v<u-l.

Case 11: v=u-l. This case is trivial when u=l so we

assume that u>Z. The event E={I§O=u,L§O=u—l] is equivalent
to
8y <m, S§+1>M, s§+l>M].

The latter may be rewritten using independent random
variables as

PR U

[Xl+u23M, Xl+S2 +1

The middle condition 1s redundant because Xl>ﬁ. Therefore

; . u, . .
+Xu >M, 82+Xu+l>M].

u u
2 2

+X_,1>M then SU>M-m+l. However 1<X,<m which implies

P{E}=P{X +S <M, S,+X _ >M}.
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that u—lisggm(u—l). Combining these conditions we get:

max (u=1,M-m+1) <S)<min (M-1,m (u-1)) (B.1)

Conaitioning on the value of Sg we obtain

i

GO w0
P{L1 -u,Lz

=u-1} l)M}

\ cu_ ,
/ P{5, =8} P{Xl+s§M,s+Xu+

s

=\ £071) oy F (M=s) (1-F (M=-s)),
VAR

where the limits on s are given by equation (B.1l).
Case 1II: wu=l,v=1l. In this case E=[I§O=l,I§O=l] is

eguivalent to

' y i g
[X. <M, X +X2>h, ngm, X2+X3>H].

1 1

Therefore

- = Q0 O )
= = = Vi
P{Ll l,L2 1} P{X1+X >M, X +X3>M}

2 2

-\—“—m
/ f(x) P{X1>M—x, X3>M~x}

N 2
=/ f(x) (1-F(M-x))".

x=1
Case 1IV: wu=l, wv>I. In this case the event
E=[L$O=l,lgo=v] is eguivalent to
1. . 2 v+l V+2
lsliM, sl>M, 52 <M, 52 >M] .

This can be rewritten using independent random variables as

) ‘ ) v+1 .. ~VHL X

[xlgm, X1+X2>M, X2+S3 <M, X2+b3 +AV+2>M].

Conditioning on the value of X2 we obtain
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12\ m _ v+l o v+l _
P{E} [ e £(x) P{X>M-x, 837 <M-x, By THX, o, M-x}.
. . v+l v+1 . . . -
But the event [53 <M-x, S3 +Xv+2>m X] 1s independent of Xl

and 1is equivalent to the event that the MPL is v-1 in a main

memory of size M-x. Therefore

P{L§°=1,L§°=v}=> £(x) (1-F (M-%)) (F ) (ex)-r V) (w-x)) .
b x=1
Case V: wu=v, v>l. The event E=[L§O=u,LSo=u] is
equivalent to
~u+l U+ . u+2
Is<m, )7 oM, sh Lem, 5,7 >ul,
or
A u .U u  eU,
[Xl+82§M, Xl+bz+Xu+l>M, 82+Xu+l§M, SZ+XU+1+Xu+2>M]'
u i u N . u, .
U ‘
If xl+s2+xu+l>m then 5,21 Z2m+l. Similarly if 82+xu+liM

then SggM—l. But we know that u—lgsggm(u—l). Combining
these conditions we get:

max (u-1,¥-2m+1) < SU < min(m(u-1),M4-1) (B.2)
Conditioning on the event [Sg=s] gives us

P{E}=§—“ g (u=1)

(s)P{E },
< 1

where

Ll= [XliM—s, X1+Xu+l>M—S, Xu+l§M-S, Xu+l

In order for this event to occur we must have

+Xu+2>M—s].

M—(s+m)+l§xu <M-s. Since 1§Xu <m it follows that

+1
max(l,M—(s+m)+l)§Xu

+1

+l_<_min(m,l‘~’1—-s) (B.3)

Therefore
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p{E}=ZW_ Sf(u—l)(s)z__ ) £ (X)P{M=(s4X) <X <M=5, X . >W=(s+x)]
=> f(u‘l)(s)> £(x) [F (M-8) ~F (M- (s+x)) ] [ 1-F (M~ (5+%)) |
—-—_S [ A—

X
where the limits on s and x are given by eguations (E.Z2) and
(B.3) respectively.

Case VI: u>l, v>u. This case is discussed in Section 3

in the paper.

B.2 EVALUATION OF P{LJ°>v|L"=u}

To calculate P{LEOZV|L§D=U} it 1is only necessary to
consider the case v>u since other values can easily be
obtained by adding the appropriate values of P{L§O=VIL€O=u}.
Ut course the former could be calculated from a complete set

of the latter values, but this approach would be enormously

expensive. As above it is sufficient to calculate
0 _ w0
P{Ll =u,L;">v}.
Case 1: u=l. E=[L§D=u,L§oZv] is equivalent to
1 2oy <VHL
[SliM, Sl>M, 52 <M]
or
. X v+l
+ +S
[Xlsm, Xl X2>M, X2 S3 <MJ.

Conditioning on the value of X2 we obtain

P{E}=) £(x)P{x. <M, x >M-x, sV lcu-x)
/ 1- 1 3002
— x-1
T m
=> £(x) (1-F (m-x)) F V1) (m-x) .
FAS— X::l
Case II: u>l. E=[Ld)=u,La)>v] is equivalent to

2 -
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1s<m, s hm, sVt au)
or
u u, v U v+l
[Xl+S2§M, xl+s2+xu+l>u, 62+Xu+1+8u+2§M].
Conditioning on the event | g=s] and then on the
[Xu+l=4] we obtain
p{E}=) £ =1 )N £ (x)P{E. }
/g /[ 1
where
E.=|X.<M=-35, X.>M=-(s+x) Sv+l<M—(s+x)]
1 1- 7 roTu42-

and the limits on s and x are given by eguations (3.1)
(3.2) respectively. Clearly

p{El}=[F(m—s)~F(m—(s+x))]F(V‘U)(m-(s+x)). L

53

event

and
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APPENLIX C

THE RECUKSIVE METHOD OF SOLVING EQUATION (2.8)

The "recursive" method of [11l] can be used to convert
the problem of solving O T=0 to the problem of solving R y=6

where R 1is of order (NP—L ) and a simple relation exists

Q
between y and W. In general terms this recursive method
proceeds as follows.

One begins by identifying a set of ‘"boundary" states
that has the property that all state occupancy probabilities
can be expressed in terms of the occupancy probabilities of
the boundary states. By substituting the expressions for
the non-boundary state occupancy probabilities into the
balance equations for the boundary states, one obtains a set
of simultaneous equations in the boundary-state
probabilities alone, which when taken together with the law
of total probability can then be solved for the
boundary-state ©probabilities. Once these probabilities are
known, all state occupancy probabilities can then be found.
(In a Dbirth-death process, for example, the occupancy
probabilities of all states can be expressed in terms of the
probability that the system is in state zero. This state is
the boundary state for a birth-death process. Once all

probabilities have been defined in terms of the residency

probability of this state, the law of total probability is
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invoked to evaluate the boundary state probability.) The
advantage of this technigue is that one only need solve a
small set of simultaneous eguations. The disadvantage 1is
that wunless a non-trivial portion of the total probability
is concentrated on the boundary states, then the overall
computation is numerically ill-posed (see below).

We now describe the recursive method for determining
the steady state probabilities for the process (L(t),N(t)).
To simplify the discussion let us assume that the states of

the process (L(t) ,N(t)) are numbered by a single index

-~

i=1l,2,. . . . Let B represent the set of boundary states;

we may assume without loss of generality that

B={1,2,. . .,nB}. We select B so that if Wl, i € B, are

known, then the rest of the T 's can be easily determined by
requiring all but ng of the eguations (2.8) to be satisfied.

Let Xi’ i € E, be any linearly independent set of vectors,

each of length nB. Then let Ej’ j € B, be the vectors

generated by setting u;=v%, i € B, and calculating the rest

J
of the vector Ej according the procedure outlined above.

Then each Ei satisfies an equation of the form
lli nB,l ‘I‘
9 Ei=(@,- - -abyrx e« o4 ) (C.1)

where not all of the r'’J's are zero. Because the ©process

(L(t),N(t)) 1s positive recurrent, the vector T is in the

subspace spannea by the Ei's. Let

-1
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1 n_ T
If @ w=v then y=(y ,. . .,y p) # b satisfies the equation

R y=0 where E={rtrJ} and the rtr are given by
equation (C.l). This gives a method of finding y and hence
. To simplify the calculation of T from y it is convenient

to take gi=(®,. « -4b,1,0.,. . .,0) with the one appearing

in the ith position. Then Wl=y1, ie B.

The choice of the "boundary states" B is influenced by

three factors. First, the smaller nB is the more efficient

the solution process will be. Second, the calculation of Ei
from v should be a simple task. Clearly 1if we have to
solve a large set of linear equations to determine L from

v, we might as well try to solve Q W=0 directly. Third, one

should choose B so that a non-trivial proportion of the

probability W is concentrated on B. 710 see why we note that

y 1is merely the projection of T down onto the subspace

spanned by Vit 1 € B. Because the process (L(t) , N(L)) is

positive recurrent, we know J cannot be orthogonal to this

&3 =

subspace. However if ieBF(i)EQ), then from a
computational standpoint W 1is indistinguishable from a

vector that is orthogonal to all of the Zi' Therefore, the

calculation of R from ¢ as well as the calculation of W from

y will be poorly posed. Thus B must be selected so that
z:iGBW(l) is not negligibly small.

Examination of equation (2.8) shows that there are

several choices for the set B. Cne choice is

Bl={(i,NP-l):L §i<NP}. A recursive method based on B was

Q 1

used to do the calculations in Example 5.1.
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Another choice for the boundary states 1is Bz =
} is very

{(L ~1,L -1), (L '):L\§i<NP}. Unless P{Lk = L

f1
Q G Q g Q
small, this choice of boundary values is suitable for all

levels of system utilization. A recursive method based on

B2 was used for the calculations of Example 5.2. 1t . was
necessary to use double precision arithmetic in the
calculation ot W in order to make |lg Wil as small as 167°.

A detailed error analysis of this recursive method is
beyond the scope of this paper. Empirical evidence, based
on solving ¢ W=k directly ana by the recursive method, shows
that N ana L values calculated by the recursive method are
accurate to between four and five significant digits,
provided that |Ig Wil was small. These comparisons have only
been done for (NP—LQ)§2®. However, as (NP—LQ) increases,
lQ Wil does not appreciably change. Therefore it seems

likely that the recursive method has about the same

precision for larger NP values.
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