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MULTIVARIATE REGRESSION ANALYSIS

John H. Halton
ABSTRACT

This paper gives an exposition of the statistical method for finding
an optimal estimate of the regression E[n| x] = f(*) in the form f(x) =
Zi=1 oy ¢h@x), where n is a random variable whose distribution is normal
about the regression surface (or line) y = f(x). Emphasis is placed on
the assumptions and choices underlying the results used, and these results

are derived rigorously. The validity of these assumptions and choices is

discussed.
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MULTIVARIATE REGRESSION ANALYSIS

John H. Halton

RANDOM VARIABLES'

’

Let S be a set, the global set, and let S be a o-algebra of subsets
of § [containing the empty set @ and the global set S, and closed under

complementation (if E € §, then B° e $) and countable union (if E., E

12 72
E€ € §)]; and let p be a probability on § [that is,

E . €S, then u?

3 =1

a non-negative, totally finite measure: such that p(f) = 0, p(S) =1,

and if El’ EZ’ ES’ ... €8 and these sets are all disjoint, then
p(V Ei) = ) p(Ei); (1)
=1 =1

whence, if the sets Ei are not required to be disjoint, then

<
p(U E)

P(Ei), (2)
=1 7

He~18

1
a property referred to as sub-additivity] Then the global set S is also
valled the sample space, and the complete structure (S, S, p) is called
a probability space.

EXAMPLE: 1f § = {1, 2, ..., n}, a finite set, we may take § to be

the collection of all subsets of 5, and then p(E) = % , where p; =

ieg P1
p({Z}) is the probability of the singleton set {<}, by (1).



If R denotes the set of real numbers and R the o-algebra of Borel
sets [which contains, in particular, all the open intervals {x € R:
a <z < p} of R, and hence all the open sets (i.e., the topology) of R},
then a function £: S = R is measurable if and only if [iff] gul(B) e s
whenever B € R, where

£1B) = (s € 5: £(s) € B) (3)

is the inverse image of B under £: the set of all s in S, such that
£(s) is in B. A random variable [r.v.] is simply a measurable function,
when the measure p is a probability. Since, for any r.v. &, the inverse
image of any Borel set B is in the domain S of p, as the definition is
intended to guarantee, it follows that the probability pE“I(B) is well
defined [in the sense of p(E—l(B))], and so (R, R, pE-l) is itself a
probability space, called the distribution of £, Further, it is known
that the distribution of a r.v. is determined uniquely if we are given
the probability of all values less than any given value x:

Fg(x) = pE—l({r €ER: r<x}) =p(s € 3: £(8) <z} (4)
and this function is referred to as the cumulative distribution function
[c.d.f.] of &.

EXAMPLE: A r.v. which takes on only a finite number of values, say
o, < o, < ... < a is called simple. If pE—l(ui) =p; for each ¢, then

k(x)

F_(x) = zi=1 Psos where o <z <o ; and we see that F_(x) takes

£ k() k(x)+1? g
the form of a step function.
For any distribution, it is clear that the c.d.f. is continuous to

the left. 1If the c.d.f. is differentiable, its derivative p.(x) is called
g



the probability density of the r.v. £, at =x.
The Lebesgue theory of integration® defines the integral of a measu-

rable function by extension from that of a simple function, given by

D (5)

m
Jsgdp - . OL’L 1

7=1
and we define the mathematical expectation (or mean value) of a r.v. & as
00 400

xng(x) = J xpg(x)dx, (6)

- 00

E[E] = Jsidp = I

the last form only if a probability densiiy exists. Similarly, the
variance of &£ is defined as
2 2 2
var[€] = E[(§ - E[E])"] = E[E7] - (E[E])", (7)

and if £ and n are both r.v.,, then the covariance of £ and n is

cov[g, n] = E[(§ - E[E])(n - E[n])]
= E[&n] - E[E]E[n], (8)
so that var[E] = cov[E, E]. (9)

If £ is an m-dimensional vector of r.v. El’ Ez, oo Em, then we

may define the expectation vector and the variance-covariance matrix of

£ as
E[£] = (E[£}]], VIE] = [var[E] cov[g,, £)] ... covE , E 1), (10)
E[E,] cov[g,, £] var[g,] ... cov[E,, £ ]
E[E,] cov[g,, &1 cov[E , £,] ... var[g ]

or, equivalently, by

(E[S])Z = E[gi]’ (V[S])LJ = COV[EZ:’ Ej]- (1)



Ifx = (xl, Loy wees xm), we may define a joint e.d.f. for the r.v.

¢ by
Fp () = p{s € 8: (vi € {1, 2, ..., m}) £;(8) < xi}). (12)

Similarly, if E%(x) is appropriately differentiable, we define a joint

probability density by

) 3" .
pECx) - Bxlaxz...axm E%(X), (13)
whence
+00 400 +00
E[Ei] = J““?xl"'J_mdmi'.'J_aﬁxm z, Dg(x)- (14)

If the set E € S, we often refer to it as an event; and we may de-
fine the conditional expectation of the r.v. &, given that the event F oc-

curs, by

E[E| E] = J Edp/p(E). (15)
E

The events of greatest interest are those which are defined in terms of
the values of random variables, For example, suppose that we define a
r.v. n and a vector £ of r,v. Then the conditional expectation of n,
given that & = x, is

+00 +00
E[n| £ = x] = J ye, E(y, XJd%/J o E(y, x)dy, . (16)

where we denote the joint probability density for n and & by pn’g(y, x)
and assume that it exists in the given case.
If it is the case that, for all choices of X,
E[n| £ =x] = E[n], (17)
so that the conditional expectation of n is the same for all values of

x and equals the unconditional expectation of n, then we say that n is



independent of the r.v., £; and then we have that

Fn’g(y, xX) = Fn(y)FE (*) and pmg(y, x) = pn(y)pg ) (18)
the latter if the densities exist. Thus independence allows us to sepa-
rate the variables in integration. We note, in particular, that, if
(17) holds, then cov|n, Ei] = 0 for all Z. This is expressed by saying
that independent r.v. are uncorrelated. [The converse, that uncorrelated

r.v. are independent is not always true.]

INDEPENDENT TRIALS, UNBIASED ESTIMATORS

Given a probability space (S, S, p), it is thought of as represen-
ting a statistical experiment in which a member s of the sample space S
is randomly sampled according to the probability distribution specified
by p, and appropriate r.v. are then evaluated. It is usually the case
that we expand the experiment by repeated independent trials, in which
the r.v. are sampled without regard to previous results: it is then
assumed that the r.v. evaluated in each trial are independent of all r.v.
evaluated in other trials. This corresponds to a product space’, denoted
by (57, 8", pn) if there are n trials.

Let £ be a r.v. on (5, §, p) and let n independent trials be made,

with 81> 8 cees 8 as outcomes. The corresponding results of the evalu-

2,
ations of £ are E(sl), E(sz), vees E(sn)y and we may define a new r.v., on

the product space

1 %
lpn(sl’ Sps woes %T) - ﬁ' z

&£(s;). (19)

=1



We now verify that

E[wn] = E[&] and var[wn] = var{[g]/n. (20)
Kolmogorov' has shown (in a result known as the Strong Law of Large Num-
bers) that, if E[E] is finite (even if var[£] is not) then

wn +~ E[E] (a.s.) as n > o (21

that is, if the trials are repeated infinitely often, the sequence of
corresponding values of’wl, wz, ws, ... will converge to E[&] with pro-
bability one® (or almost surely: a.s.) It is this result which justifies
the use of repeated independent trials and averaged r.v. such as wn to
estimate the value of E[E]; or conversely, it is because such averages as
wn converge (a.s.) to the limit E[£] that E[E] is a significant parameter

of the distribution of §. Related results are Chebyshev's inequalityi

which asserts that, for any € > 0, however small,

1
- > var[E]|” < e
Prob{[wn E[E]| [ — £; (22)
and the Central Limit Theoremz which states that
5 L (@ .2
Prob{[wn - E[E]] > [Yﬁilél} } > 4E j e” % anx, (23)
, ne T 1//e

as » + o, These results indicate that var[g]/n is a natural measure of
‘the scale of the dispersion of the values of the r.,v. wn, and point to

. . , . . 8 .
the major importance of the normal distribution, whose c.d.f. is

N(x) =

x 2
J e ay. (24)

T
(2m)* 7~
Here, "Prob'" denotes the probability in the product space (also denoted

by ”pn”) and both results hold for any r.v. which has finite mean and

variance.



If £ is a r.v. and E[E] = 6, then £ is often referred to as an
unbiased estimator for (or of) the parameter 6 of the distribution of £.
We have seen that both & and wm are unbiased estimators of E[E]. It is
slightly less immediate that, if & and n are r.v. (possibly the same},
then an unbiased estimator for cov[E, n] (possibly var[&]) is

1 (7 1 °

T (815 Sy ves sn) = En:—i{izli(si)n(si) - E-izli(si) jzln(sj)}o (25)

[Proof: Write Xi = E(Si) and Yi = n(si). Then

Z LT, I L3 1% h
E[- X Y - X. Y } B E[X.Y.] - = E[X Y. ]}
o= 1 iy i=1 7 j=1 J no-1 721 T 1 nos2y i=1

n n
= ;’%”T{ ). (E[EIE[n] + cov[E, n]) - %’ ) Z (E[E]E[n] + 6 ; cov[E,
’ =1 1=1 j=1

n])} - 1—;;————/—’1 B[E]E[N] + 2247 cov[g, n] = cov[E, nl. ]

In order to compute the estimator wn efficiently, one must accumulate

_n ‘ .
the sum Sgn = Zi=1E(si), by the recurrence relation

SEO = 0, Sgn = Sg(n~1) + E(sn), (26)
and, for the similar estimator of E[n], we use Snn = Z ln(s .y, by
SnO = 0, Snn = Sﬂ(n-l) + n(sn)° (27)

It is tempting to assume that Tr is similarly computed by accumulating the
A

sum Zzzlg(si)n(si); but this is not efficient: we must obtain the rela-

tively small difference of two large sums to compute Tn’ which leads to

large round-off errors., Instead, we accumulate the sum



r =7 ey - L § e )}{n(s y oL § e )} (28)
S A = @ qiz I

by the recurrence relation

1 .
Temr =% Tenn = Tengu-1y {E(s ) - i”}{n(sn) ) E'Sh”}’ 9

so that

B[S, = EIE], B[S, ] = EM], and E[z=—7, ] = cov[E, nl. (30)

nEn nonn

[Proof: The first two results are immediate from (20). For the last, by (29),

n

1.n-1 1.1
Terwe " Ten-1) = 7o 1 —~———£( )T tr8(sg )}{———~—ﬂ(s ) - -J 1n(s )}

=22 le(s Ins) - (s VIEn(e;) - (s, ) T4l E(s,) +

1 n-1 n 1
77,(77, - 1‘)27/ l J lg(s )ﬂ(s ), (31)

while, by (25),

l~n 7
n 1= 1 J=

i

(n- DT, - - 2DT 4 li(s In(s,) - 1608 )n(s )

1 -1 n 1

- TIL1EGIN(s,) + il TiE(en(e ) = E(s,In(s,)

(s,)n(s ) - 2E(s JII1n(s,) - wnle VII1E(s,)

!
‘b—-‘ 's\rjwr—-‘

§-—11v-—-\ §

n—l 1 n-1.7n-1
RIStACHUICR IS DRI ACHLICIHP (32)

ZVL
7

and clearly (31) and (32) are identical, and further, T1 = (; so that

_ 1
L= 7= T Tewe (33

and (30) follows, | The gain in accuracy is well worth the additional

arithmetic requirved by (29).



The Central Limit Theorem’ tells us that, if £ is amy r.v. and wn is
the average of a sample of »n independent values of &, then the standard-

tzed variable
Ww -E[ww] b, - E[E]
PO = = — = (34)
/var[wn] Yvar[E]/n

has a distribution approaching the normal distribution as n > = [see (23)
and (24)]; or, in other words, the average wn itself has a distribution

whose c.d.f. is asymptotic to

) 1 E[E]+x/ﬁar[€]/m'_; 2
N(E[E] + x/var[E]/n) = j e gy
2T 7 -
o1 Jx o3 (a-E[E]) Pn/var[E] g,
v2mvar[g]/n ¢ -

, (35)
where we have put 2z = E[£] + y/var[£]/n. The normal distribution is
therefore often assumed to hold, where the r.v., observed can reasonably
be assumed to be the result of many independent, identically distributed
r.v., whose effects are summed. This applies to such phenomena as round-
off errors and experimental perturbations of measurements.

We note also that the sums SEn and Snn are respectively distributed
with c¢.d.f. asymptotic to N(ME[E] + wx/x var|&]) and N(nE[n] + av% var[n]).
It is now reasonable to ask what the distributions of Tn and the sum Tgnn
look like, as n + =,

First, we observe that there is an extension’ of the Central Limit
Theorem to a vector & of r.v. on a probability space (S5, §, p). If, by
and

repeated independent trials, we obtain outcomes 81> § -

20 - AR
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compute the values of the r.v. S(Si) = (El(si), gZ(Si)’ eees im(si)) for

2 =1, 2, vovy %, ..., we may define new vectors wl, wZ’ ivey DY

i

Ho~—3

1
l/j?’.’,(sl’ 52, DR SH) 7-’1—

E(si) (36)
1

7
[compare (19)]; and then, if the r.v. £ have the expectation vector E[£]
and the variance-covariance matrix V[§] defined in (10) and (11), then

the averages ¢% have a distribution whose joint c.d.f. (12) is asymptotic

as 1 - o to that of the multivariate normal distribution

v (x; E[£], V[E]/n) = = ’ le dy rcz dy
" (2n/n)"detV[E] - ble 72

[oe]

r’m g O-EEDVIEIT 0-EED (o

m

[e¢]

with the same expectation and variance-covariance parameters. [Here, X
and y are m-dimensional column vectors, T is the transposing operator,

in this case converting a column to a row vector, and detV[{] and V[é‘j]_1
are respectively the determinant (assumed non-zero) and reciprocal of the
variance-covariance matrix V[§].] In particular, two r.v. £ and n with

given means, variances, and covariance will yield averages win (hitherto

written wn) and wnn whose distribution approaches a bivariate normal dis-
tribution with the same means and with variances and covariance 1/n of

those for £ and n. Assuming this asymptotic normal distribution, we write

E[E] =a, V[§] = |4 Pen AB|, »r = e for brevity, )
E[n] = b, re /AB B A = detV[E] = 4B(L - »?),
and V{E]—l = | B/A -rV/AB/N), with X =2 - a, Y =1y - b. (o (38)

~r/AB/h  AJD
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Then, by (37), the asymptotic joint c.d.f. of ¥ and wnn is

En
-n X2 Xy y?
1 x Y ST L~ et gl
]Vz(x, y; a, b, ViEl/n) = mj_mdx wady e (1-r2)+ 4 VAB B
(39)

and the parameter r = r,_is called the correlation of £ and n: we thus

&n

have, by (38), covlg, n]

en VVar[g]var[n].

r

(40)

A further statistical concept is useful here: it is that of the
characteristic function of a r.v. If a r.v. & has a c.d,f. Fg, its cha-

racteristic function is defined to be

+00

Y1) = J eixtng(x). (41)

OO

[This is connected with the moments of the distribution of £: by formal

expansion, we see that

+00 . pH® 1 p40 2.2 i p+o0 3.3
Y (8) = [T it -5 TEtar, - [T edE -
= 1 + itE[&] - %ﬁZE[EZ] - %ﬁSE[ES] o, (42)

and the parameters E[Ek] are the k-th moments of £. (We have already en-

countered the first moment, the expectation, and the second moment, which

is var[g] + E[E]Z.ﬂ Note that the characteristic function necessarily

exists for any r.v., and uniquely determines the distribution of the r.v.Y

Indeed, we get that

it

+Ke~iat -ixt

F_(z) = F(a) + lim —-J W (L)dt, (43)
£ g Koo 2T ) g 3

if FE is continuous in the closed interval [a, «]; and if £ has a proba-

bility density pg, then
400

L [Tt

pg(m) = 5 j_me qg(t) dt. (44)



-12 -

We may now use (39) to compute the characteristic functions of

_ o 2 - o 2 — o o
o = n(wgn) s B n(wnn) » Y ; nwg Wn . 2 2 (45)
Thus: r o0 +00 1 ifigzj{%r~2pjg;+%§]+-in%ft
wa(t) B wdx f_mdy(ZW/n) AC VAR
rx.2 Xx°

pHoo

-7 Y .
] | +ood ) em[(?@'m) +—A—(1-p2)(1~21t)]
| A D

(oo X2 .
_ dar 1 e-(n/Z)jr{l—th) - _~_ﬂl~*~_’ (46)
J—oo V2mA/n V1 - 21t

where we have used the facts that (by (38)) A = 4B(1 - pz) and

+00 2
J du e 2K (47)

—~00

By the symmetry of (46), we obtain similarly that

1
WB(t) = (48)
vl - 2it¢
and this common characteristic function inverts to yield the well-known
density
-kr L
0, (@) = pgl) = —= & 77, (49)
vam

called the XZ (or chisquared) distribution. [Note that we could have
obtained (49) by simply considering the distribution of 52 when £ is
distributed with the standard normal distribution (24); i.e., by replacing
yz by x and so dy by d(vx) = %x—%dm, in (24), and then noting that the
same element dx corresponds to two elements dy (with zy), so that the

density must be doubled.] Similarly, we get that
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oo +oo __;ﬂzw,{7;--;;;(it+r~itp2)]2
¥ (@) = I & J dy : Q2 (o) e A
S —o (2/n)VAB(1-p? < X2 . . 2
e x 62(1%§3) 7l Gter-itrT]

_ /Cr/mB( - v2) J2r/m)A/[1 - Zirt + (1 - r2)t?]
(2n/n)VAB(L - 77)

= : . (50)

V1 - 2irt + (1 - r2)t2

In this case, there also exists a probability density function, DY’ but

it is not well known or easily expressed in closed form. [It is related

to certain Bessel functions.] The r.v. o, B, and y are seen to be rela-
ted to the second term in (25); but the first term is, again by the Central
Limit Theorem, asymptotically distributed like N(%—¥~T{E[En] + xv/var[en]/n})
and the distribution of Tn and TEnn is not at all easily obtained, in gene-
ral. This is why statisticians resort to assumptions of normality of dis-
tribution in circumstances in which justification is only intuitive or
tenuous, at best. Even in these restricted circumstances, the derivation
of the sampling distributions are complicated and the results are sometimes
incomplete.

It must be emphasized that one possible source of error is indeed an

unwarranted assumption of normality in the underlying distribution,

THE NORMALITY ASSUMPTION

Henceforth, we shall assume that the underlying distribution is indeed

normal, and that repeated independent trials are made. The joint c.d.f. of
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n independent trials of a r.v. § is then [see (18) and (37)]

n (% a,
.HlN(xi; E[E], var[E]) = (2mvar[&]) o j dy, J dyy e
7= - OO -0

= -t (y.—E[E])Z/var[E]
j ? dyn (5] 7/_1 v ; (51)

[o0]

whence we see that [by (4117 the characteristic function of win is

(y -E[E)Y 54\
var[£] n }

N

¥ () = {(2ﬂvar[g])”% E dy e~
]
En -

Ay -ELE] /var[g] 2, tz E[g]
T £]-2it 1
{(Zﬂvar[i])"z J ay e [(/Var[g] -it—r )+ | var[g]-21 ]i

H

%( [E,] thE[g])
=€ ) (52)

by (47); and so the probability density of wg is [by (44)]

(z-E[£1)y2, (x-E[E])
{(—/Var[£]+1—§;ar[€]) a;ar[g] ]

i

400 - —
1
() iE.J,méf e

s
by,

1(93“13!2;”2

-% emévar[i]/n’

(2mvar[E]/n)

H

(53)
the density of N(x; E[E], var[E]/n), as we would expect [see (35).] The

characteristic function of Z (i(s )y - E[ED) /var[i] = xg is similarly

L o 1_E.E[€]) (1-2it))"
{(Zﬂvar[g])"z j dy e arle]

ii

Y 2 ()
gn

- 00

(1 - 218y 7", (54)

i

which yields the density

0, () =—p——= = (55)
G M P
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of the chisquared distribution with n degrees of freedom [d.f.] (compare

(49), the density with one d.f.)® [The gamma function T(z) is defined by

T'(2) = Jme'ttz’ldt; (56)
0
so that (by integration by parts)
I'z) = (2 -1) T{z - 1), (57)
whence, for integer #, I'n) = (n -~ 1)!
and T(n+ 3) = n-3)(n-3)... (3) (), (58)

since I'(1) = 1 and F(%) = /7. Because of the obvious relation between
(55) and (56), we see that the chi-squared distribution is related to the
so-called gamma distribution. ]

A more complicated derivation™ shows that the sum ngn/var[g] is

itself distributed as Xé(n-l , the chi-squared r.v. with n-1 d.f, Of

)
course, corresponding r.v. derived from another r.v. n are distributed
exactly analogously; and if £ and n are distributed according to a bivariate
normal distribution of the form (39) with » = 1, it can be shown that the
averages wgn and wnn have the exact distribution (39), with the same means
as £ and n and variances and covariance less by a factor 1/m, so that the
correlation is also the same; while the quadratic estimators have a joint
density (independent of the distribution of the averages!) whose exact form

1

is known®, but need not concern us here.

A final distribution will be of interest in what follows. We shall be

concerned with testing whether the variance estimators Vl with ny d.f. and

V2 with n, d.f. are obtained from samples of distributions with the same

variance. The test is applied by computing Vl/VZ’ the variance-ratio , and
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looking up the tabulated values, under n and s of the c.d.f. of this

ratio when both estimates are obtained from samples of normal distribu-

tions with the same (unspecified) variance. The corresponding probability

. LI m+n ;2'”1 Yy Hmp-1
density is I'( 5 n n x
DV/V(DC) T T 2n S % (m+ng) (59)
12 TGITE (ux +mp) =02

Tests of significance are to be interpreted as follows: Suppose that
a certain statistic is observed (as the value of a r.v.) in a given sample,
We wish to decide between two alternative hypotheses, HO and Hl’ the first
being a situation commonly occurring (such as: both variance estimates
are drawn from normal distributions with the same variance) and the second
indicating an event we wish to take note of (such as: the variances of the
two populations differ.) On the basis of HO, we compute the probability
that the statistic Vl/T/'2 should be as extreme as it is (i.e., as far from
the expected value, in our example, 1,) This is the probability of an
error of Type I (the hypothesis is true and we reject it.) An error of

Type II (the hypothesis HO is false and we accept 1it) is also to be avoided,

of course, but is usually harder to compute.

REGRESSION ANALYSIS

Suppose that we observe r.v. n, El, 52, vees im (the last forming an
m-vector £) and that the conditional expectation of 1, given that § = x,
is [compare (15) and (16)]

Eln|] & =x] = f(x). (60)
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Since we cannot hope to determine the completely unspecified function f,
we seek instead to approximate f by a suitable choice from a family of

functions o(X; q) with parameter-vector a = (al, o ey uq), selected

<

2?
a priori on the basis of physical intuition and convenience. Note that
the choice of the family ¢ is crucial to the efficacy of the method and to
the accuracy of the estimates obtained,

The theoretical criterion for optimizing the estimate of f is the
minimization of the variance of n from the regression surface [or re-
gression Line, when m = 1 and the vector x¥ reduces to a single variable
xz.] Since, again, this variance is unknown, we seek instead to minimize

the sum of squares

7 2
- _ . a)]
s @) = jzl {n(sj) oft(s;); a)p WlE(s ), (61)

arising from n repeated independent trials, where W(x) is a weight function
indicating the importance we attach to the value of n when ¢ =x. This
may reflect both the accuracy of n at X (in terms of an estimate, at X,
of the variance of n) and the cost to us of an error at x.
If we assume that ¢ is differentiable with respect to the oy , We can

use a Taylor expansion to show that, in the vicinity of a (at a + 6, with

6] <€), as e » 0

-

5 (a+8) = jzl { [nj - cp(éj; a))z [ . - w(E Jél@h(éj; a) &
g g
- {nj - m(éj; a Jhgl 2 hk(g s a) 6h ék
g
+ th kleh(é b a)oy (E25 @) 8y &) 0(83)} UGhE (62)
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where we have written n; for n(sj) and Ei for E(Si)’ for brevity, 6 =

(61, 62, v Sg), @h(éj; a) is a@/auh at Ej and a, and @hk(éj; a) is
Bzw/auhaak at Ej and a; and 0(83) is, as usual, a function of 81> Sos eces

5, @ 8, which is bounded by a multiple of e3 in the neighborhood |8] < e. To

minimize Sn(a), we must have that, for some € > 0 and all & such that |6 |

< e,
Sn(a +8) 2 Sn(a); (63)

and this necessitates that the terms in 6% in (62) should vanish:
n

.- .3 a .oa) WE.) = 0; 64

5 [0 - ot s @] 0,C5 @) v (64)

and further, if we define the (g x g) matrix M(y, x; a) as having components

My, x; a)),, = {wh(x; a)o, (x5 @) - [y - ox; a)]cohk(X; a)}mx), (65)

then the matrix Z?leKnj, Ej; a) must be non-negative definite [i.e., the sum
of all terms of order 82 in (62) should be non-negative: guaranteed iff no
eigenvalue of the matrix is negative.] Indeed, if we are to be able to

avoid consideration of terms in 6h6kéz, and so on, we must ask that the
matrix be positive-definite [i.e., all eigenvalues of the matrix should be
strictly positive.] Further, to avoid dependence of this condition on the
specific observed values nj and Ej’ we are effectively coﬁpelled to ask

<

that, for all y and X in some broad range encompassing all likely values

of nj and Ej’ the matrix M(y, x; @) itself should be positive-definite.

Even this condition is by no means easy to verify, in general.
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Because of the mathematical difficulties outlined above, regression
analysis (and indeed, theoretical physics in general) is limited in prac-
tice to rather simple models of possible relationships. Usually, we are
restricted to selecting a set of g functions of X, say ¢1Gx), ¢2G¥), cees
¢QQX), which are believed, on the basis of an understanding of the physical
realities underlying the observations, together with a great deal of pro-
fessional intuition (i.e., guesswork!), to affect the values of n Ilinearly;

and defining the simple linear family of functions
g
ofx; a) = hgl o, G ) = 00 () + anb () ¢ L.+ o b (). (66)

For example, in the simplest case, when m = 1 and ¥ is a single variable x,

we may wish to set ¢h(x) = xh—l and seek a polynomial relationship,

o 2 g-1
E[n| =] ~ R 2 A agm . (67)
Of course, this can be extended to polynomials in several variables; e.g.,

Eln| ¢, €, 2] ® 0, + 0,0, + 0%, + 0,L, + 0. 2, oz’ + o 2
17 722 73 1 271 372 473 7571 62 773

+ QXL (68)

3 T OgTg%y O

+ OL8.’XIZJ,‘

10%1%2°
when only quadratic terms are considered: the number of terms grows rapidly
with the degree and m.

Nevertheless, the model (66) can be very natural, as when mn 1is the
time required to complete a process and the ¢h are approximate formulae
for the time required to complete distinct and consecutive parts of this
process. However, in this case, if the parts may proceed concurrently, in

parallel, then the model (66) is clearly a poor one; as it would be if the

formulae ¢h were to be inappropriately chosen.
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We shall limit ourselves henceforth to families of the linear form

(66); so that

(Ph(x§ a) = d)h(x) and (th(x; ay = 0. (69)
Thus, for the matrix M of (65) and the derived matrix Z?leﬁnj, Ej; ay,
we get
My, x5 @)) 5 = 4, @), XIF(X) (70)
and n
(A, =5 @), = le (M(,nj, £ 25 @), = Ay
" | i
- j§1¢h(5j)¢k(éj>W(sj) = (PWE), ., (71)

where we write 1 for the column vector (nl, Moy wees nn), E for the (n x m)
matrix with rows El’ EZ, cees En’ W for the (n x n) diagonal matrix with
components (Hﬁij = Sij W(Ej), and ® for the (g x n) matrix with components
(¢0hj = ¢h(2j); so that (71) may be written
A= oWs (72)
Now, the conditions (64) become the normal equations,

g n n

kzl j§1¢h(éj)¢k(éj)w(éj) oy = jzlnj¢h(£j)W(zj), (73)
which, with the aid of our matrix notation, we may write as

Aa =\, (74)

dWn. (75)

I

where A
It is notable that the normal equations are obtained by multiplying the
idealized equation ®'a = n on the left by ®W. This idealized equation
asserts that a combines the columns of QF to yield n; i.e., that each nj

- . . .
= Zh=1uh¢h(£j)’ so that the fit of n by (66) is exact at every Ej.
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If the matrix A is regular (i.e. invertible), then it has a reci-
procal At and we may solve (74) for the unknown vector @ in terms of the
computable matrix Afl and vector A, in the form

a = A, (76)
Of course, in practice, we would not compute the reciprocal, but rather
solve the equations by Gaussian elimination, successive over-relaxation,
or some other efficient computational technique. [The reader is referred
to a treatise on numerical methods for further details on this point.]

If the functions ¢hQX) are linearly independent, in the sense that

the only solution of the equation
@1¢10x) + &2¢2(X) toie. T @g¢gﬁx) =0 (77)
for almost all x is O, = 0n = eeo =0 =0 (78)

[in the sense that, if 4 is the set of values of x for which (77) has a

solution a # 0, then p({s € 5: £(s) € A}) = 0], and if the diagonal ele-
1

ments of Ware all strictly positive [so that the matrix W=* with compo-

nents Gij VW(EJ) is real and has all its diagonal elements positive, and
L

W = IV%M’?], and if the number n of data is not less than the number g
of parameters in a; then, for any g-dimensional column vector 7 # 0, we
have VTA“)/ = 7T<I>W<I>T7 = (W%CI)TW)TW%QF’)/ = IIW%QF')/[IZ 2 0, Now, the vector
IV%QFV has, for its j-th component, /ﬁ7§37~times the j-th component of the
vector ¢F7 (and Vﬁ7§;7'> 0); so the former vector is non-null if the latter
vector is non-null; and since ¥ is non-null, it follows that ¢F7 is also

non-null with probability one. Therefore A is positive definite with pro-

bability one.
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We note in the argument above that it is necessary for it to be pos-
sible for the vectors (¢h(él), ¢h(52), coes ¢h(5n)) —— the rows of the
matrix & —— to be linearly independent, and the condition for this is that
n2g. Also, if { is an eigenvector of the matrix A, so that A{ = A{;
then clearly ¢TAL = T8 = A”§H2> 0; so that A > 0 (i.e., all eigenvalues
of A are strictly positive) and A is invertible. We conclude that the
equation (74) is almost surely uniquely soluble for a if the above condi-
tions hold.

We return to (61): the sum of squares for the family (66) takes the
form n g 2 - o

S @ = ) in.- JodENHE) =@ -Pa)yWm - Pa); (79

n 2y Ud 2 R J
J=1 h=1
and the minimal value obtained from the normal equations is (by (75}, (76))

M - FA oW Wm - FA oWy

it

S (a )

Y min

"Wy - TwE A lewn, (80)

il

since nTWE A loWS A oWy - n"WEFA IOWn, by (72). By subtraction, we
obtain that

5 (@) = ["Wn - WA oWn + @ - Alown)Towd @ - A 'ewny,
(81)
which exhibits the minimality of (80) explicitly, since A = PWD is posi-

tive definite,

What we have obtained above is the set of parameters of the family
(66) for which the sample sum of squares of deviations from the regression
function (61) is minimized. This is sometimes referred to as least-squares
approximation, and we note that the statistical properties of n and § do
not play a role in the formulation: it is simply a method of optimal

approximation.
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Now suppose that n ¢s distributed with a normal distribution about

. . g . . ,

a regression function Zh=18h¢h(x) as mean, with variance 1/W{x), It is
extremely important to realize that this is a very strong assumption which

may simply not be valid in a given case. We observe that this hypothesis

fixes the weight function ¥, which has hitherto been unspecified, and
which may be governed by considerations of cost, as well as variance, if

it is to be realistic. It follows from our assumption that

g
L) = {n - hZ Bhd)h(X)} e (82)
=1

is distributed (without regard to the value of x) with a standard normal
distribution (24) [with mean 0 and variance 1]; so that the sum of squares
Sn(ﬁ) will be distributed with a chi-square distribution with »n d.f. [see
(55).1 With our previous notation, we may put

¢ = W@ - ) (83)
for the column vector (cl, Cys wees cn) = (c(sl), C(SZ), oo c(sn)),
where it is understood that the random sampling of s entails the correspon-
ding value of x = £ (8), as well as of n(s). More particularly, since the
distribution of ¢ is mathematically independent of x [i.e., the conditional
distribution of r, given x, does not depend on the value of x], it follows
that the absolute distribution of z is the same as the conditional, and
that ¢ is independent of &, if we replace the variable x by the r.v. £ in
(82).

1

From (83), we get n=W73%+&B; (84)

whence a =A

1 14 %
OWn = A " OW={ + . (85)
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Noting that, by (10) and (11), we can write in general that

VIE] = E[¢ - EEDE - B[EDTT, (86)

]

so that, for ¢,

E[f] =0 and V[£] = E[§¢7] =1; (87)

it

we see that, since { is independent of X,
- A lpws -
Ela ] = ATOWIEE] + B = B (88)

and Via Ell@ - B)@ -] = E[A Wi WAL

e
it

E[A oW i A Y - gAY, (89)

1

when we assume the E to be given fixed values; i.e., we are looking at
the distribution of @  for given =,
Returning once again to the sums of squares, we see from (81) that

T
S)’L(ﬁ) - Si’l(amin) * (6 - amin) A(ﬁ - CLmin\)’ (90)
and since, by (85), amhlis a linear combination of normal r.v. and there-

fore itself normal; we conclude that the second term on the right of (90)

is distributed as chi-squared with g d.f. We note, further, that

E[s (¢ ] = B[ - ®'a_)Y'Wn - Fa_ ]

S B[W % - FAlowHTww R - & A lew)
= E[s‘TW'%WW"%f] - E[i‘TW"%WCIJTA_1<I>IV1/2§]
- ET¢] - EETWES A oW

n
J=1

NG g N -1 YT TR
" B Ther T T O D (g (B WEIWE JELz2 ]

=n -39 9 " -1 =n -
n Zh=lzk=lzj=l(A )Z’Zk(q))hj(q})kj(lv),ﬁ] n gs (91)

=2 E[Cjz]

where we use (87) and (72). Consider further the matrix
56T A~ 1 ws
T=1 - WP A OW~? (92)

for which Sn(amhg = e (93)
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Since Sn(amh) 2 0, the matrix T is non-negative definite [with eigenvalues
all non-negative real numbers]; and we can easily verify that (by (72))

T -, (94)
Since the eigenvalues of TQ are the squares of those of T, it follows
that the eigenvalues of T can only be 0 or 1. It now follows from the
theorem on diagonalizing symmetric matrices and quadratic forms by ortho-

gonal transformations®

that (since T is clearly symmetric: T = T) there
is an orthogonal matrix J [such that JU =1 = JJT] such that J TJ is dia-
genal with diagonal entries 0 and 1 only. We note that the corresponding

. . . i o X T
transformation applied to the unit matrix I leaves it invariant [J IJ =1.]

We now see that the characteristic function of Sn(qnhg will be

-5 e +00 -%(yTy - 2ir™Ty)
WS @ ')(t) = (2) J dyl...J dyne
71 min -00 -0
e vo -tz . 2142 Iz
. 2 2
= (2m) J dzl...J dzne ,

. T .
where we have substituted z = J 'y and note that the Jacobian of the trans-

formation is 1. Now, z'z = I 2.2, while z J'TJz =" U.z.z, where the vu.
J=1"7 J=17"7 J

L
are the 0 or 1 eigenvalues of T. For Dj = 0, the integral reduces to (2m)?,

€

fl

while for Uj

Thus, if there are r unit eigenvalues, the characteristic function is

1
y = _ 95y 2
%S @ .)(t) (1 2it) (95)
n min
[compare (41), (51), (54), (55), and (87)]; so that Sn(amhg is distributed
as chi-squared with » d.f. It remains only to determine r. The rank of a
matrix is unchanged by an orthogonal transformation; so the rank of T will

equal that of(/TTJ} which clearly equals r; and this will be n minus the

1
1, the corresponding integral gives a factor of [2m/(1 - 2i%)]°.
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rank of the matrix K = JSW* &AW [Since J™TJ =1 - K, K has n - »
unit diagonal elements.] Finally, we note that, since rank is not affec-
ted by multiplication by a non-singular matrix, the rank of K equals that
of ¢F®, which equals that of ®, which our assumptions make equal to g.

Thus, finally,
r=n-4g. (96)

[For the theoretical basis of the rank argument, see, e.g., D3, ch. 5 (in
particular, pp. 137 - 139.)] We have thus demonstrated that Sn(%nhg 18
distributed with the chi-squared distribution with n-g d.f.

Again, we see that [by (79) and (80)]

Sn(O) =n"Wn = Sn(amm) + n"”“W(PTA'l(I)Wn = Sn(amin) + aminTAamm, (97)
and we may interpret SH(O) as the '"total sum of squares', Sn(gnhg as the
"sum of squares of residuals [after allowing for the regression]', and
a,mi:/\amin as the "sum of squares due to the regression." We know that
the first term is distributed as chi-squared with n d.f., the second as
chi-squared with n-g d.f. (as we have just proved); and if we postulate
that B = 0, the third term becomes (th;B)T/\(amk;B) , which we have already
shown to be distributed as chi-squared with g d.f.

At this point, we require that the two terms on the right of (97) be

statistically independent, whereupon we may form the variance-ratio

S?’l (‘amin) / (7’1 b g)

(98)
a Aa /g

[see (59)], and test the hypothesis that two such different variance esti-
mates derive from independent samples of the same population; i.e., that

indeed B = 0, so that n is not dependent on the ¢h(E(sj)).
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The independence of the components of a decomposition of a chi-squared
variable into a sum of chi-squared variables as in (90) or (97) is the re-
sult of a thorem due to W. G. Cochran [see Proceedings of the Cambridge
Philosophical Society, vol. 30 (1934) p. 178; also C3, §6(1)15.16~19, and
C6, ch.4], which states that, if the unit matrix I is decomposed into k
symmetric matrices, k
I = ) ., (99)
such that the rank of S% 18 r(f%) =r., and ¢ denotes (as previously) a
vector of independent standard normal variates; and if we write

9, = §9%; (100)
then each of the following conditions implies the other two:
(a) the sum of the ranks r. of the 5% equals the order n of the
vector § and matrices & and I;
(b) each of the r.v. 9, is distributed as chi-squared with r.
d.f.; and
(¢) all the r.v. @, are independent.

Proof: For any 7, I = f% + (I - f%). There is an orthogonal trans-
formation which diagonalizes f%, and this leaves I invariant. Since I
and JTS%J'are both diagonal, so is JTa - S%)Jj and since the rank of
S% is v, just (n—pi) diagonal elements of JTS%f/ vanish, so that the

corresponding elements of J'(I - Q) J are 1. On the other hand,
7

r(Td - €

L)1) = (@ - Q) = x( ] ) < Z.r(ﬁ%); (101)

gl G

so that, if condition (a) holds, JT(I - S%)J' will have at most Cn—ri)
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non-zero diagonal elements; whence this matrix will have exactly r. Zero
diagonal elements (the others are 1), and therefore JTS%J' will have 1 in
the corresponding positions. Consequently, Qi will be a chi-squared va-
riable with just r, d.f. [see the argument leading to (95).] Thus, (a)
implies (b) [(a) = (b).] Further, we note that we have shown that

0.2 - ggta. Nyt =t = 9, (102)
(2 7 7 T

since the diagonalized matrix has all 0 and 1 elements. Thus, by (99),

k 5 k k k-1
1-() @) =171 @+2) ] %2 (103)
i=1 * is1 b g=2 g1 Y
Therefore
k k-1
z z S%SL =0, (104)
i=2 j=1 “Y
Now, the trace of a matrix A is defined as
n
tr(d) = ) A (105)
u=1
so that
wne b4 T o -
tr(J AH = ) J A J = § A = tr(d), (106)
£21 =1 v=1 ut uw vt 2y 21 uv uv
. T _ N _ - .
since JJ )uv = Zt=1JutJut (I)uv éuv’ (107)
n n
and also tr(A B) = uzl UzlA“UBU“ = tr(B A); (108)
whence, in particular,
non
cr(dTA) = tr(Ad) = ] 1A 2> 0. (109)
Louv
u=1 p=1

Therefore, since the matrices S% are symretric (i.e. f%T = 5%) and Zdem-
potent (i.e. ﬁ%z = f%), it follows that
24 2 2 T
er (2.2 = tr(§.°82.7) = Q0.7 = ... 00)) =
r( 'y J) tr( s ) = tr( Y J) tr((ﬁg J) (SQSZ)) >0, (110)

since @4<B)T = B*A" . Consequently, since (104) implies that the trace of
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the sum, which equals the sum of the corresponding traces, is zero; we
see from (110) that every tr(f%s%) = 0, and again that, by (109),
S%{% =0, (111)

When two r.v. are independent, their joint c.d.f., probability density,
and characteristic function are respectively the products cf their indivi-
dual c.d.f., probability densities, and characteristic functions; and the
condition is both necessary and sufficient. The joint characteristic func-

tion of two quadratic forms §TAj'and §TB§'is clearly

-5 e oo _%(yTy - 2ip" (uA + B )
WfTAingﬂﬁiu’ v) = (2m) J‘mdyl...[_wdyne
= {det(I - 2i(ud + UB))}_%, (112)

where we have used an argument analogous to that leading to (95), and noted
that the determinant of any matrix equals the product of its eigenvalues,
The individual characteristic functions of the two quadratic forms are
clearly obtained from (112) by putting v = 0 and u = 0, respectively; so
thet the condition for independence becomes (for all u and v)

det(I - 2i(uA + vB)) = det(d - 2iud)( - 2ivB)),  (113)
since the product of two determinants is the determinant of the product of
the corresponding matrices. We conclude that, if AB=0, then (113) holds
and therefore the two quadratic forms are independent. Conversely, if the
forms are independent, we can show that AB = 0 [e.g., see G, Thm. C7, p.
182.] This result is due to A. T. Craig [see Annals of Mathematical Sta-
tistics, vol. 14 (1943) p. 195; also (3, §15.13.] Thus, (111) implies that
all the @ are independent. Since (as we showed in proving (95)) (b) 1is

equivalent to asserting the idempotence of the matrices S%, and this is the
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property used in proving the independence (c) of the Qi’ we see that
(b) = (c).

Conversely, assuming (e¢), we have, by Craig's theorem, that (111)
holds for every unequal pair ¢, j; and hence, from (99), for all succes-

sive positive powers,

k
1= 7 {&8, (114)
7=1
whence
k
n=tr(l) = § tr(ﬁ%s). (115)
=1

and this can only be [since the trace of a matrix is the sum of its
eigenvalues, and the eigenvalues of the s-th power of a matrix are the
s-th powers of the eigenvalues of the matrix] if the eigenvalues of each
E% are only 0 or 1. Since, for each 7, there will be an orthogonal trans-
formation which diagonalizes f% with zeros and ones in the diagonal, it
follows that the S% are idempotent, which is equivalent to (b). Thus,
(¢) = (b). Finally, if we assume (b), all the S% are idempotent, with
eigenvalues 0 and 1 only. Let r(ﬂ%) =7 then tr(S%) = 7. Therefore,
from the trace of (99),

(116)

which establishes that (b) = (a), and completes the proof of Cochran's
theorem. /// [It is pointed out by Kendall § Stuart in G, (1) p. 361,
that, if two chi-squared r.v. are such that their sum is also a chi-squared
r.v., with the d.f. also adding-up correctly, they may nevertheless not be

independent: it is necessary that the r.v. be quadratic forms in standard
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normal variates. A simple counter-example is provided by G. S. James
(see Proceedings of the Cambridge Philosophical Society, vol. 48 (1952)
p. 443; or €3, Ex. 7.6, (1) p. 190.)]

A further special case should be mentioned here. It is very common
to add a '"zeroth" function to the set of g functions ¢h(x) in (66). This
is the constant function

o) = 1. (117)
Of course, all the results obtained above remain essentially the same,
with the adjunction of a zero index and therefore a zeroth component in
the direction indexed 1, 2, ..., g, which becomes indexed by 0, 1, 2,
g. We may now consider the modified null-hypothesis in which we suppose

that 8 = (BO, 0, 0, ..., 0) =8 say:

0?
5,8 = - B Wm - B 1) =5 (@ )+ @ -B6)Aa@, -6, (118)

where 1 denotes a column of ones. Of course, by (88), E[(thgo] = BO;

and, just as before, all three terms in (118) are chi-squared variates

with n, (n-g), and g d.f., and (by Cochran's theorem) the last two are

independent. The modified null-hypothesis gives us, by (82), that

E[n] =B (119)

0°

so that the hypothesis of normal distribution about the regression yields,

by (84) and (117), that

L .
IV%n =¢ + FVZQ?BO = + BOM/QI, (120)
— T T lT 2
Thus, S =M - l;EQZI)TW(n - }TWM?I) = nTth - £~q?QlL_
n 1"w1 1"w1 1"w1
- HTW%§+-BJTMH)2

& + s W + g W) -
0 0 1Tw1

= §T§ -
1"w1

(121)
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independently of BO [compare (25), noting that 1"w1 = Z?zlw(%j).] This
sum of squares measures the deviations, not from the actual mean BO, which
is unknown, but from the sample mean, (ITMM7)/(1TWW), which is computable.

Since (120) holds,

T T 1{,2 T .
wﬂnnl’ml)=§4.%w%..1wf'*&1W1w%
1"w1 1"w1
w51 W* w1 W
=§ - 4“*;"*~—-§ = (I - —“—;w——~0§; (122)
1Tw1 1"W1

]/2 —

so that the matrix I - (ITIVI)—llV%llTM/ is idempotent, whence 5 is a
chi-squared variable, and since the term on the right is an idempotent
matrix of rank 1, it follows as before that Eh has (n-1) d.f. [The argu-
ment is again essentially that leading to (95) and (96); based on the
result that, if § Ze a vector of independent standard normal variates and
YT is an idempotent symmetric matrix of rank r, then ¢TT¢ is a chi-squared
p.v. with r d.f.; and also that I - T is idempotent and symmetric, and has
rank n-r. ]

In the same spirit as the modified null hypothesis above, we may con-

sider the question, whether some of the parameters Bh are zero: let us say,

that

Bh =0 for h>e. (123)

Write ®1 and @2 for the first e and the next (g-e) rows of @, and 61 and
52 for the corresponding parameters; soO that our hypothesis becomes

{32 =0, (124)

Then the transformation of parameters from (al, a2) to (w,, Qb) given by

I v 1
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yielding the equation [compare (72), (74), and (75)]

[_;T(I) [<I>]W(q>1‘ ) ]1 A [Zj - [_LT ﬂ El} Wi, (126)

1 1 2
0 I
2
which reduces immediately to

o
{“’1} :{ (P] an. (127)
o
Qb @2w4 1

2
In order to remove the off-diagonal blocks in the matrix on the left of

{ ¢ wq>1"’ ® W (<1>2T -(IJlTA )
T. T T T T
(@,-AD WD (,-AP W (@) - 'A)

(127), we must choose

A = (cplwf)‘l@lw(p;a (128)
The equations then become
L L % 5
<1>1wq>1““w1 = ® Wn and c1>2w20w2c1>;w2 = © W GWn, (129)
where L o o -1 L
G=1 - Wzd)l (<I>1W<I>l) <I>1W2, (130)

as is easily verified.
The question is to compare the sums of squares due to the two re-
gression models, under the hypothesis that the more elaborate model is

null; i.e., (123) or (124). By (90), we have that

i

min

5.8 =8 @Dy v B, - SN Towel g - o)

i

(9) (g)T 9]y .
S}’L(o})nin) B - Woin ) AB - W ) (131)
where Sn(Bl) refers to Sn(ﬁ) when the hypothesis applies: this is the
total residual sum of squares from the true regression, and therefore is
the same for both sampling models. In the simpler model, in which only

e functions appear in the regression formula (66), we write uﬂ?) for the

min

minimizing set of parameters: by (129), this is simply @ . In the more

complex model with g functions, we write w9 for the full set of parame-

min

ters, W, W3 and A denotes the full matrix (72).
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The sums of squares due to the regressions are the second terms on
the right in each line of (131); so that their difference, the "extra
sum of squares' (as Draper § Smith [E1, §2.7] call it) equals

- (g)\T (9) (e) T T (e)
By = B-w 7 APB-w¥’) - (Bl—wmm ) ‘1’1W‘1>1 (Bl—wmm)

i

s @&y -5 @9y = gTer - Mg
1~ min 7 min
L L L - X
= W@ - @fA)(qbu/%;wz@;) 1(¢2.-AF®1nv2§, (132)

where T denotes the matrix (92) derived from the equations (129), for
oii] with the full set of parameters ) and ub,and the full matrix A;
and we note that Al may be partitioned into the reciprocals of its two
diagonal blocks [the coefficient matrices in the two equations of (129).]
It follows from (127) - (130) that the matrix &G - T in (132) is both sym-
metric and idempotent., [We have that

o _ AT T 5T _ By T

(12 A <I>1)W(<I>Z <I>1A) (I)ZW GW <I>2 , (133)
which establishes the idempotence.] As we have seen, the rank of an idem-
potent matrix equals its trace; SO r(G-"T) = tr(G-T), which equals the

number of rows in the matrix in (133), which is g-e. It follows that

A12 is distributed as chi-squared with g-e d.f. Since, by (90), (93), (131),

i

(Bl“%sil)) o, We (ﬁl"‘*%gien)) * Sn(‘*’(-g)) + by

min

¢Td - G o+ TTE+ TG - D, (134)

T
s, B = ¢ ¢

we may apply Cochran's theorem to prove that Alz is independent of the other
quadratic forms on the right of (134). We may thus apply a variance-ratio
test to determine the significance of the added sum of squares due to the
use of the more complex model. Indeed, we may introduce the functions ¢h(x)

one by one, testing for significance of improvement at each step.
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Summary of crucial assumptions and choices:

(a) The actual regression function (60) is well-approximated
by a member of a linear family of the form (66).

(b) In particular, the functions ¢hcx) are of suitable form
for the regression analysis, in terms of the physical realities of the
problem.

(¢) The functions are independent, in the sense of (77) and (78).

(d) The weight function J/(x) properly attaches importance to
different points of the space of independent variables, both in terms of
accuracy and cost of errors, and satisfies (e) below, also.

(e) The deviations from the underlying regression function
are indeed distributed independently of one-another, about zero mean,
with variance 1/W(x), with a normal distribution.

None of these assumptions is obviously true, nor are the choices easy
to make. In particular, it is predominantly the case that the weight func-
tion is chosen to be constant. Some justification is to be found in that
the residuals presumably represent effects of variables other than the £,
which may be independent of the £. [This may work for assumption (e), but
is less obviously valid for assumption (d).] It is the intention of the
mathematical derivations given above, to show that, without these assump-
tions, the conclusions and tests of regression analysis become incorrect.
Another point where the assumptions may not be reasonable is in the normality
of the residuals: this assumption is justified, when the observations are

averages of many readings, or are individually the result of many additive
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effects [the Central Limit Theorem ensures it]; but when there are only
a few observations, themselves otherwise distributed, the resulting dis-
tribution may be far from normal.

One final matter needs to be considered. So far, all that we have
said assumes, in effect, that the values Zj = E(sj) of the independent
variables X are constant: the matrices ® and W occurring in the analysis
are assumed to be constant in our calculations of expected values. This
may be interpreted in two ways:

(I) The values Ej are not randomly selected, but are either all of the
values occurring in reality, or a carefully preselected experimental design ,
set up to optimize the collection of information.

(II) Our results are all conditional on the observed random values Ej
and will only give us predictive powers when we take expectations over the
distribution of the r.v. &: this will necessitate some further assumptions
about the distribution of the &, and leads to considerable additional com-
plications. Some analysis is carried out by Kendall § Stuart [C3] and by
Draper & Smith [E1]: the net verdict is that the conditional estimators
are biased and that the direct application of the standard (type I) analysis
may be very misleading... Caveat empior! When,disregarding these warnings
of bias, we may wish to perform an experiment in which the Ej values are
known to be some kind of random selection; we must still realize that, in
practical situations in which we take either all available data or some
sort of "random sample', the distribution of the %ivalues may be far from
representative, and the theory may be far from the type I theory presented

in this paper.
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ANALYSIS OF VARIANCE?®

We have already considered, under regression analysis, the parti-
tion of a sum of squares into separate sums of squares attributed to
distinct statistical and structural effects [see (81), (90), (97), (118),
(121), (131), (134), and the general form (99) of Cochran's theoren, ]
Analysis of Variance [AV or "ANOVA"] and its generalization, Analysis of
Covariance, are based on ideas of R. A. Fisher, and essentially embody the
application of Cochran's theorem to analyze the significance of models of
the regressional type for statistical situations. The principal kind of
problem to which the analysis was applied was that in which the "predic-
tor" variables took on discrete values, most usually, just two, say 0 and
1, denoting the absence or presence of a given factor or treatment. In
this most simple case, we call the variables '"dummy'" or "label'" variables.
The analysis of such situations under a variety of circumstances is far
from easy, as is indicated by Kendall § Stuart's devotion of ten chapters
(entitled "Analysis of Variance in the Linear Model: Classified Data,
"Other Models for the Analysis of Variance'", "The Assumptions of the Ana-
lysis of Variance'", "The Design of Experiments'", "Sample Survey Theory:
Designs', "Sample Survey Theory: Supplementary Information', "Multivariate
Distribution Theory', "Tests of Hypotheses in Multivariate Analysis',
"Canonical Variables", and "Discrimination and Classification”; and compri-
sing some 341 tightly-packed pages) to related matters. It should be noted
that many of the results and techniques of AV refer to specialized situa-
tions arising in specific experimental designs, and may not without peril

be blythely applied to more general regression problems.
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Returning to the more general considerations of AV applied to the
regression model discussed here, we find once again that things are by
no means simple., In addition to the general considerations (a) - (e)
described on page 35, we must ask such questions as:

(1) Are there any hidden variables , correlated in unknown ways with
the known variables X, and affecting the observed values M in a regressive
way? This can seriously distort the results of our analysis.

(ii) Generally, even if it is reasonable to assume that the r.v. n
is linearly related to the variables x, in the sense that the regression
function takes the form (66), the dependence will be momn-linear , through
the functions ¢hcx); and part of our problem will be to determine a suf-
ficiently large family of functions ¢h(x) to include the functional depen-
dence of n on X. For even amodest number m of components of X, and a rela-
tively limited family of functions (say all products of non-negative integer
powers of the components totalling less than gq), we find ourselves laden
with a large number g of functions and parameters (e.g., g = (m+g—1); so,
ifm=10 and g = 4, g = (18) = 286.) Since the complete set of functions
18 not practical to use, what functions are to be chosen? In practice, this
will depend strongly on physical intuition,

Several techniques for determining which of a very large family of
functions should be used are discussed in the literature [see, e.g., the
extensive discussion by Draper & Smith, in E1, chs. 2, 3, and 6.] There
is no single "best'" method, and certainly no deductive argument leading to

a unique technique.

(iii) Even though we guarantee that the functions chosen are linearly
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independent [in the sense of (77) and (78)], they may form a very ill-
conditioned matrix ®, which will lead to great instability in the values
of the parameters a . when these are determined numerically. Can we
choose the functions so that the rows of W are mutually orthogonal (the
best situation)? Approximate orthogonality between all rows of ¢FV%

leads to good computational behavior; exact orthogonality means that

A = (®VV%)(®IV%)T is a diagonal matrix, whose reciprocal is trivial to
compute,

(iv) What can we infer from the residuals, given a partially com-
pleted regression model? Of course, this is really the same question as
the initial one: How do we get the "best" regression? But it is to be
hoped that, after a first pass at obtaining a model, we are looking at
a '"small correction" type of situation. [See chapter 3 of E1,] It is
also possible to get information from residual-plots when what tests-out
to be a good model on paper does not stand up to predictive testing.

(v) In deciding what predictor functions to incorporate in a regres-
ston model, and when to quit, what constitutes significance? The usual
answer is to look at the '"significance level" of a table of test-criteria,
such as variance-ratios, and accept anything below 5% (or 1%, or whatever
the user considers a risk he or she is willing accept.) Of course, this
only refers to Type I error (the null hypothesis is true and we reject it:
see page 16): the analysis of Type II errors (related to the power of the
test) is much more complicated and full elucidation is not available,

However, other considerations also cloud this issue., Draper § Smith

refer to a thesis by J. Wetz, which suggests that the variance-ratio must
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be at least four times the tabulated minimum for the chosen level of
significance (of course, this multiple has a degree of arbitrariness)

[see E1, Appendix 2C, pp. 129-133.] They also point out that, if we choose
among, say, m predictor functions to be introduced into a regression for-
mula on the basis of a variance-ratio test applied to each of their 'extra
sums of squares" as explained on pages 32 - 34 above, and if the tabulated
significance-level is, say, Y; then the probability of getting a ratio no
smaller than that in the table (with the null-hypothesis in force) in one
test is Y. Consequently, the probability of getting a ratio mno smaller
than that in the table, among m test values, is [1 - (1 - y)m], which may
be quite large: e.g., if v = 0.0l and m = 40, then the significance-level
becomes 33% (if we begin with y = 0.05, we arrive at 87%.) Thus, the
selection of significant predictor-functions may well be done too hastily.
[This formula applies if the possible functions are totally uncorrelated:
if not, the significance-level improves, but the difference between the
functions decreases!]

(vi) How are we to test the stability of the parameters over the
sample space? In other words, how do we test whether the parameters ob-
tained by the regression analysis are representative and unbiased for
further observations: what is the predictive ability of the model? Again,
various techniques have been proposed, for dividing the given observations
between the set to be used to obtain a model and that to be used to test it,
No "best' technique emerges; but it is clear that the selection (if not ex-

haustive) must be random, if grave errors are to be avoided.
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(viil) Is there a time-dependence <in the observations? This is a
common source of inexplicable non-predictiveness, as well as of general
variability, and may be detected by a plot of residuals against time., A
similar approach may be used for seeking the effect of other collateral

or hidden variables [see also (i) above.]
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FOOD FOR THOUGHT

In conclusion, we reproduce a number of reflections, explanations,
and warnings, culled from the pages of two of the best references in this

important field: Kendall & Stuart [C3] and Draper & Smith [E1],

QuoTeEs FrRoM KENDALL & STUART

CHAPTER 17
ESTIMATION

The problem

17.1 On several occasions in previous chapters we have encountered the problem
of estimating from a sample the values of the parameters of the parent population.
We have hitherto dealt on somewhat intuitive lines with such questions as arose—for
example, in the theory of large samples we have taken the means and moments of the
sample to be satisfactory estimates of the corresponding means and moments in the
parent.

We now proceed to study this branch of the subject in more detail. In the present
chapter, we shall examine the sort of criteria which we require a “ good » estimate
to satisfy, and discuss the question whether there exist *“ best ”’ estimates in an accept-
able sense of the term.  In the next few chapters, we shall consider methods of obtaining
estimates with the required properties.

17.2 It will be evident that if a sample is not random and nothing precise is known
about the nature of the bias operating when it was chosen, very little can be inferred
from it about the parent population. Certain conclusions of a trivial kind are some-
times possible—for instance, if we take ten turnips from a pile of 100 and find that
they weigh ten pounds altogether, the mean weight of turnips in the pile must be greater
than one-tenth of a pound ; but such information is rarely of value, and estimation
based on biassed samples remains very much a matter of individual opinion and cannot
be reduced to exact and objective terms. We shall therefore confine our attention to
random samples only. Our general problem, in its simplest terms, is then to estimate
the value of a parameter in the parent from the information given by the sample. In
the first instance we consider the case when only one parameter is to be estimated.
The case of several parameters will be discussed later.
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17.3 Let us in the first place consider what we mean by estimation.” We know,
or assume as a working hypothesis, that the parent population is distributed in a form
which is completely determinate but for the value of some parameter 6. We are given
a sample of observations xy, ..., %, We require to determine, with the aid of observa-
tions, a number which can be taken to be the value of 6, or a range of numbers which
can be taken to include that value.

Now the observations are random variables, and any function of the observations
will also be a random variable. A function of the observations alone is called a statistic.
If we use a statistic to estimate 6, it may on occasion differ considerably from the true
value of 6. It appears, therefore, that we cannot expect to find any method of estima-
tion which can be guaranteed to give us a close estimate of 6 on every occasion and
for every sample. We must content ourselves with formulating a rule which will give

good results *“in the long run” or *on the average, » or which has ““ a high prob-
ability of success ”—phrases which express the fundamental fact that we have to regard

our method of estimation as generating a distribution of estimates and to assess its
merits according to the properties of this distribution.

17.4 Tt will clarify our ideas if we draw a distinction between the method or rule
of estimation, which we shall call an estimator, and the value to which it gives rise
in particular cases, the estimate. The distinction is the same as that between a func-
tion f(x), regarded as defined for a range of the variable x, and the particular value
which the function assumes, say f(a), for a specified value of x equal to @. Our problem
is not to find estimates, but to find estimators. We do not reject an estimator because
it gives a bad result in a particular case (in the sense that the estimate differs materially
from the true value). We should only reject it if it gave bad results in the long run,
that is to say, if the distribution of possible values of the estimator were seriously
discrepant with the true value of 6. The merit of the estimator is judged by the distribu-
tion of estimates to which it gives rise, i.e. by the properties of its sampling distribution.

’

CHAPTER 22
TESTS OF HYPOTHESES : SIMPLE HYPOTHESES

22.1 We now pass from the problems of estimating parameters to those of testing
hypotheses concerning parameters. Instead of seeking the best (unique or interval)
estimator of an unknown parameter, we shall now be concerned with deciding whether
some pre-designated value is acceptable in the light of the observations.

In a sense, the testing problem is logically prior to that of estimation. If, for
example, we are examining the difference between the means of two normal popula-
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tions, our first question is whether the observations indicate that there is any true
difference between the means. In other words, we have to compare the observed
differences between the two samples with what might be expected on the hypothesis
that there is no true difference at all, but only random sampling variation. If this
hypothesis is not sustained, we proceed to the second step of estimating the magnitude
of the difference between the population means.

Quite obviously, the problems of testing hypotheses and of estimation are closely
related, but it is nevertheless useful to preserve a distinction between them, if only
for expository purposes. Many of the ideas expounded in this and the following
chapters are due to Neyman and E. S. Pearson, whose remarkable series of papers
(1928, 1933a,b, 1936a,b, 1938) is fundamental.

22.2 The kind of hypothesis which we test in statistics is more restricted than the
general scientific hypothesis. It is a scientific hypothesis that every particle of matter
in the universe attracts every other particle, or that life exists on Mars ; but these are
not hypotheses such as arise for testing from the statistical viewpoint. Statistical
hypotheses concern the behaviour of observable random variables. More precisely,
suppose that we have a set of random variables x,,...,'%,. As before, we may
represent them as the co-ordinates of a point (x, say) in the #-dimensional sample space,
one of whose axes corresponds to each variable. Since x is a random variable, it has
a probability distribution, and if we select any region, say w, in the sample space W,
we may (at least in principle) calculate the probability that the sample point x falls
inw, say P(x € w). We shall say that any hypothesis concerning P (x € w) is a statistical
hypothesis. In other words, any hypothesis concerning the behaviour of observable
random variables is a statistical hypothesis.

For example, the hypothesis (a) that a normal distribution has a specified mean
and variance is statistical ; so is the hypothesis (b) that it has a given mean but un-
specified variance ; so is the hypothesis (c) that a distribution is of normal form, both
mean and variance remaining unspecified ; and so, finally, is the hypothesis (d) that
two unspecified continuous distributions are identical. Each of these four examples
implies certain properties of the sample space. Each of them is therefore translatable
Into statements concerning the sample space, which may be tested by comparison with
observation. :

Critical regions and alternative hypotheses

22.5 To test any hypothesis on the basis of a (random) sample of observations, we
must divide the sample space (i.e. all possible sets of observations) into two regions.
If the observed sample point x falls into one of these regions, say w, we shall reject
the hypothesis ; if x falls into the complementary region, W —w, we shall accept the
hypothesis. w is known as the critical region of the test, and W—w is called the
acceptance region.

It is necessary to make it clear at the outset that the rather peremptory terms
“reject ” and  accept,” used of a hypothesis under test in the last paragraph, are
now conventional usage, to which we shall adhere, and are not intended to imply that
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any hypothesis is ever finally accepted or rejected in science. If the reader cannot
overcome his philosophical dislike of these admittedly inapposite expressions, he will
perhaps agree to regard them as code words, “ reject ”’ standing for  decide that the
observations are unfavourable to ”’ and “ accept ”’ for the opposite. We are concerned
to investigate procedures which make such decisions with calculable probabilities of
error, in a sense to be explained.

22.6 Now if we know the probability distribution of the observations under the
hypothesis being tested, which we shall call H,, we can determine w so that, given
H,, the probability of rejecting H, (i.e. the probability that x falls in w) is equal to a
pre-assigned value «, i.e.

Prob x ew | Hy} = o (22.1)

If we are dealing with a discontinuous distribution, it may not be possible to satisfy
(22.1) for every « in the interval (0, 1). 'The value « is called the size of the test.(*)
For the moment, we shall regard « as determined in some way. We shall discuss the
choice of o later. .

Evidently, we can in general find many, and often even an infinity, of sub-regions
w of the sample space, all obeying (22.1). Which of them should we prefer to the
others ! 'This is the problem of the theory of testing hypotheses. To put it in every-
day terms, which sets of observations are we to regard as favouring, and which as
disfavouring, a given hypothesis ?

22.7 Once the question is put in this way, we are directed to the heart of the
problem. For it is of no use whatever to know merely what properties a critical region
will have when H, holds. What happens when some other hypothesis holds ? In
other words, we cannot say whether a given body of observations favours a given
hypothesis unless we know to what alternative(s) this hypothesis is being compared.

It is perfectly possible for a sample of observations to be a rather ¢ unlikely ”’ one if
the original hypothesis were true ; but it may be much more ¢ unlikely ”’ on another
hypothesis. If the situation is such that we are forced to choose one hypothesis or
the other, we shall obviously choose the first, notwithstanding the ¢ unlikeliness * of
the observations. The problem of testing a hypothesis is essentially one of choice
between it and some other or others. It follows immediately that whether or not we
accept the original hypothesis depends crucially upon the alternatives against which
it is being tested.

The power of a test
22.8 The discussion of 22.7 leads us to the recognition that a critical region (or,
synonymously, a test) must be judged by its properties both when the hypothesis tested
is true and when it is false.  Thus we may say that the errors made in testing a statistical
hypothesis are of two types:
(I) We may wrongly reject it, when it is true ;
(II) We may wrongly accept it, when it is false.



- 46 -

QuoTEs FrRoM KENDALL & STUART

These are known as Type I and Type II errors respectively. The probability of
a Type I error is equal to the size of the critical region used, «. The probability of a
Type II error is, of course, a function of the alternative hypothesis (say, H,) con-
sidered, and is usually denoted by . Thus
Prob{xeW-w|H,} = §
or
Prob {xew|H,} =1-4. (22.2)
This complementary probability, 1 8, is called the power of the test of the hypothesis
H, against the alternative hypothesis H,. The specification of H, in the last sentence
is essential, since power is a function of H,.

CHAPTER 26

STATISTICAL RELATIONSHIP:
LINEAR REGRESSION AND CORRELATION

26.1 For this and the next three chapters we shall be concerned with one or another
aspect of the relationships between two or more variables. We have already, at various
points in our exposition, discussed bivariate and multivariate distributions, their
moments and cumulants ; in particular, we have discussed the properties of bivariate
and multivariate normal distributions. However, a systematic discussion of the rela-
tionships between variables was deferred until the theory of estimation and testing
hypotheses had been explored. Even in this group of four chapters, we shall not be
able to address ourselves to the whole problem, the more complicated distributional
problems of three or more variables being deferred until we discuss Multivariate
Analysis in Volume 3.

26.2 Even so, the area which we are about to study is a very large one, and it will
be helpful if we begin by reviewing it in a general way.

Most of our work stems from an interest in the joint distribution of a pair of random
variables : we may describe this as the problem of statistical relationship. There is
a quite distinct field of interest concerning relationships of a strictly functional kind
between variables, such as those of classical physics ; this subject is of statistical interest
because the functionally related variables are subject to observational or instrumental
errors, We call this the problem of functional relationship, and discuss it in Chapter 29
below. Before we reach that chapter, we shall be concerned with the problem of
statistical relationship alone, where the variables are not (except in degenerate cases)
functionally related, although they may also be subject to observational or instrumental
errors ; we regard them simply as members of a distributional complex.
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26.3 Within the field of statistical relationship there is a further useful distinc-
tion to be made. 'We may be interested either in the interdependence between a number
(not necessarily all) of our variables or in the dependence of one or more variables upon
others. For example, we may be interested in whether there is a relationship between
length of arm and length of leg in men ; put this way, it is a problem of interdependence.
But if we are interested in using leg-length measurements to convey information about
arm-length, we are considering the dependence of the latter upon the former. This
is a case in which either interdependence or dependence may be of interest. On the
other hand, there are situations when only dependence if of interest. The relationship
of crop-yields and rainfall is an example in which non-statistical considerations make
it clear that there is an essential asymmetry in the situation: we say, loosely, that
rainfall “ causes " crop-yield to vary, and we are quite certain that crops do not affect
the rainfall, so we measure the dependence of yield upon rainfall.

There is no clear-cut distinction in statistical terminology for the techniques appro-
priate to these essentially different types of problem. For example, we shall see in
Chapter 27 that if we are interested in the interdependence of two variables with the
effects of other variables eliminated, we use the method called * partial correlation,”
while if we are interested in the dependence of a-single variable upon a group of others,
we use “ multiple correlation.”  Nevertheless, it is true in the main that the study
of interdependence leads to the theory of correlation dealt with in Chapters 26-27, while
the study of dependence leads to the theory of- regressmn discussed in these chapters
and in Chapter 28.

26.4 Before proceedmg to the exposition of the theory of correlation (largely
developed around the beginning of this century by Karl Pearson and by Yule), which
will occupy most of this chapter, we make one final general point. A statistical rela-
tionship, however strong and however suggestive, can never establish a causal connexion :
our ideas on causation must come from outside statistics, ultimately from some theory
or other. Even in the simple example of crop-yield and rainfall discussed in 26.3, we
had no statistical reason for dismissing the idea of dependence of rainfall upon crop-
yield : the dismissal is based on quite different considerations. Even if rainfall and
crop-yields were in perfect functional correspondence, we should not dream of reversing
the “ obvious ” causal connexion. We need not enter into the philosophical implica-
tions of this; for our purposes, we need only reiterate that statistical relationship, of
whatever kind, cannot logically imply causation.

G. B. Shaw made this point brilliantly in his Preface to The Docz‘or s Dilemma
(1906) : “ Even trained statisticians often fail to appreciate the extent to which statistics
are vitiated by the unrecorded assumptions of their interpreters . . . It is easy to
prove that the wearing of tall hats and the carrying of umbrellas enlarges the chest,
prolongs life, and confers comparative immunity from disease. . . . A university
degree, a daily bath, the owning of thirty pairs of trousers, a knowledge of Wagner’s
music, a pew in church, anything, in short, that implies more means and better nur-
ture . . . can be statistically palmed off as a magic-spell conferring all sorts of privi-
leges. . . . The mathematician whose correlations would fill a Newton with



-48 -

@QuoTEs FrRoM KENDALL & STUART

admiration, may, in collecting and accepting data and drawing conclusions from them,
fall into quite crude errors by just such popular oversights as I have been describing.”

Although Shaw was on this occasion supporting a characteristically doubtful cause,
his logic was valid. In the first flush of enthusiasm for correlation techniques, it was
easy for early followers of Karl Pearson and Yule to be incautious. It was not until
twenty years after Shaw wrote that Yule (1926) frightened statisticians by adducing
cases of very high correlations which were obviously not causal : e.g. the annual suicide
rate was highly correlated with the membership of the Church of England. Most of
these “ nonsense ” correlations operate through concomitant variation in time, and they
had the salutary effect of bringing home to the statistician that causation cannot be
deduced from any observed co-variation, however close. Now, more than thirty years
later, the reaction has perhaps gone too far : correlation analysis is very unfashionable
among statisticians. Yet there are large fields of application (the social sciences and
psychology, for example) where patterns of causation are not yet sufficiently well

understood for correlation analysis to be replaced by more specifically * structural ”
statistical methods, and also large areas of multivariate analysis where the computation of
what is in effect a matrix of correlation coefficients is a necessary prelude to the detailed
statistical analysis ; on both these accounts, some study of the subject is necessary.

The screening of variables in investigatory work

27.27 Innew fields of research, a preliminary investigation of the relations between
variables often begins with the calculation of the zero-order correlations between all
possible pairs of variables, giving the correlation matrix C. If we are only interested
in “ predicting ”’ the value of one variable, x,, from the others, it is tempting first to
calculate only the correlations of x, with the others, and to discard those variables with
which it has zero or very small correlations : this would perhaps be done as a means of
reducing the number of variables to a manageable figure. The next stage would be to
calculate the correlation matrix of the retained variables and the multiple correlations
of x; on combinations of the remaining variables.

Unfortunately, this procedure may be seriously misleading. Whilst it is perfectly
true that the whole set of zero-order correlations completely determine the whole com-
plex of partial correlations, it is not true that small zero-order coefficients of x, with
other variables guarantee small higher-order coefficients, and this is so even if we ignore
sampling considerations. Since by (27.62) the multiple correlation must be as great
as the largest correlation of any order, we may be throwing away valuable information
by the ‘“screening ” procedure described above.

Consider (27.5) again : ’

- P12 Pi3Pas . 27.67
Ps = (T (T— ) T (#7.67)
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If p;5 and pyg o1 pyy are zero, so is prag: if P1s = pag = 0, piog = p1p. But py, and
P13 can both be very small while pys 3 is very large. 1In fact, suppose that p;, = 0. Then
(27.67) becomes

pizs = pra/(1—=pk)t, p1s = 0. (27.68)

If pyp is very small and pj; is very large, (27.68) can be large, too. To consider a
specific example, let

P1s =0,

p1z = cos 6,

P23 = cos(§z— 0)=sin 6.
Then (27.68) becomes

przs = 1.
A similar result occurs if we put
Pas = cos(3z+0),
for then p3; is unchanged.

Now we may make cos 6 (or cos (4 +0)) as small as we like, say &. Thus we have

P1za = O’
‘Plz = 8, (27.69)
P23 = 1.

Since the multiple correlation Ry > |pia3]| by (27.62), we have in this case
R1(23) == 1. (27.70)

By (27.70), %, is a perfect linear function of x, and #x,, despite the values of the zero-
order coefficients in (27.69). 'We should clearly have been unwise to discard , and x,
as predictors of x, on the evidence of the zero-order correlations alone.

It is easy to see what has happened here in geometrical terms. The vector PQ,
is orthogonal to PQ; and almost orthogonal (making an angle 6 near i7) to PQ,, but
all three vectors lie in the same plane, in which PQ, and PQ, are either at an angle
(3 — 0) to each other (when cos (}z—0) is very near 1) or at an angle (37 +6) to each
other (when cos(}z+0) is very near —1).

. We have been considering a simple example, but the same argument applies a Sortiori
with more variables, where there is more room for relationships of this kind to appear.
The value of R depends on all the partial correlations. ‘

Fortunately for human impatience, life has a habit of being less complicated than
it need be, and we usually escape the worse possible consequences of simplifying
procedures for the selection of “ predictor ”” variables ; we usually have enough back-
ground knowledge, even in new fields, to help us to avoid the more egregious oversights,
but the logical difficulty remains.
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‘ CHAPTER 29
FUNCTIONAL AND STRUCTURAL RELATIONSHIP

Functional relations between mathematical variables

29.1 Itis common in the natural sciences, and to some extent in the social sciences,
to set up a model of a system in which certain mathematical (not random) variables
are functionally related. A well-known example is Boyle’s law, which states that, at
constant temperature, the pressure (P) and the volume (V) of a given quantity of gas
are related by the equation

PV = constant. (29.1)

(29.1) may not hold near the liquefaction point of the gas, or possibly in other parts
of the range of P and V. If we wish to discuss the pressure-volume relationship in
the so-called adiabatic expansion, when internal heat does not have time to adjust itself
to surrounding conditions, we may have to modify (29.1) to

PV” = constant, (29.2)

where v is an additional constant which may have to be estimated. Moreover, at some
stage we may wish to take temperature (T) into account and extend (29.1) to the form

PVT-! = constant.
In general, we have a set of variables X}, ..., X; related in p functional forms
filXy o s Xy agyonn)) =0,  j=1,2,...,p, (29.3)

depending on I parameters «,, r =1, 2,...,L Our object is usually to estimate
the a, from a set of observations, and possibly also to determine the actual functional
forms f;, especially in cases where neither theoretical considerations nor previous
experience provide a complete specification of these forms. If we were able to observe
values of X without error, there would be no statistical problem here at all : we should
simply have a set of values satisfying (29.3) and the problem would be merely the
mathematical one of solving the set of equations. However, experimental or observa-
tional error usually affects our measurements. What we then observe is not a * true ”’
value X, but X together with some random element. We thus have to estimate the
parameters o, (and possibly the forms f;) from data which are, to some extent at least,
composed of samples from frequency distributions of error. Our problem then
immediately becomes statistical.

29.2 In our view, it is particularly important in this subject, which has suffered
from confusion in the past, to use a clear terminology and notation. In this chapter,
we shall denote mathematical variables by capital Roman letters (actually italic). As
usual, we denote parameters by small Greek letters (here we shall particularly use «
and B) and random variables generally by a small Roman letter or, in the case of
Maximum Likelihood estimators, by the parameter covered by a circumflex, e.g. &.
Error random variables will be symbolized by other small Greek letters, particularly
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0 and ¢, and the observed random variables corresponding to unobservable variables
will be denoted by a * corresponding ”’ (*) Greek letter, e.g., £ for X. The only possible
source of confusion in this system of notation is that Greek letters are performing
three roles (parameters, error variables, observable variables) but distinct groups of
letters are used throughout, and there is a simple way of expressing our notation which
may serve as a rescuer : any Greek letter “ corresponding ” to a capital Roman letter
is the observable random variable emanating from that mathematical variable ; all other
Greek letters are unobservables, being either parameters or error variables.

29.3 We begin with the simplest case. Two mathematical variables X and Y
are known to be linearly related, so that we have

Y == 050+051X, (29.4)
and we wish to estimate the parameters «,, «;. We are not able to observe X and Y;
we observe only the values of two random variables £, % defined by

5"=’X*‘+‘3“} i=1,2...,n
N = Yite,

The suffixes in (29.5) are important. Observations about any * true > value are distri-
buted in a frequency distribution of an * error ”’ random variable, and the form of this
distribution may depend on 7. For example, errors may tend to be larger for large
values of X than for small X, and this might be expressed by an increase in the variance
of the error variable 4.

In this simplest case, however, we suppose the §; to be identically distributed, so
that J; has the same mean (taken to be zero without loss of generality) and variance
forall X, ; and thusalso foreand Y. We also suppose the errors 6, ¢ to be uncorrelated
amongst themselves and with each other. For the present, we do not assume that §
and ¢ are normally distributed. Our model is thus (29.4) and (29.5) with

E(@,) = E(e;) =0, var 6; = of, vare; = o3,  all g
cov (9, 8;) = cov(e; &) = 0, 77, (29.6)
cov (d;, &) = 0, all 4, j.

(29.5)

4

The restrictive assumption on the means of the §; is only that they are all equal, and
similarly for the ¢;—we may reduce their means y; and u, to zero by absorbing them
into o, since we clearly could not distinguish «, from these biases in any case.

In view of (29.6) we may on occasion unambiguously write the model as

&= X494,
n=Y+e.

29.4 At first sight, the estimation of the parameters in (29.4) looks like a problem
in regression analysis ; and indeed, this resemblance has given rise to much confusion.
In a regression situation, however, we are concerned with the dependence of the mean

*) It will be seen that the Roman-Greek “ correspondence ' is not so much strictly alpha-
betical as aural and visual. In any case, it would be more logical to use the ordinary lower-case
Romian letter, i.e. the observed x corresponding to the mathematical variable X, but there is
danger of confusion in suffixes, and besides, we need x for another purpose—cf. 29.6,

(29.7)
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value of 5 (which is Y) upon X, which is not subject to error; the error variable §
is identically zero in value, so that 6§ = 0. Thus the regression situation is essentially
a special case of our present model. In addition (though this is a difference of back-
ground, not of formal analysis), the variation of the dependent variable in a regression
analysis is not necessarily, or even usually, due to error alone. It may be wholly or
partly due to the inherent structure of the relationship between the variables. For
example, body weight varies with height in an intrinsic way, quite unconnected with
any errors of measurement.

We may easily convince ourselves that the existence of errors in both X and ¥V
poses a problem quite distinct from that of regression. If we substitute for X and ¥
from (29.7) into (29.4), we obtain

n = og+oy &+ (e—a,0). (29.8)

This is not a simple regression situation : & is a random variable, and it is correlated
with the error term (e—a,06). For, from (29.6) and (29.7),
cov(é e—~a,0) = E{f(e—0,0)} = E{(X+)(e—x,0)}
= —o,03 (29.9)
which is only zero if of = 0, which is the regression situation, or in the trivial case
a; = 0.
' The equation (29.8) is called a structural relation between the observable random

variables &, 5. This structural relation is a result of the functional relation between
the mathematical variables X, Y.

29.5 In regression analysis, the values of the regressor variable X may be selected
arbitrarily, e.g. at equal intervals along its effective range. But they may also emerge
as the result of some random selection, i.e. # pairs of observations may be randomly
chosen from a bivariate distribution and the regression of one variable upon the other
examined. (We have already discussed these alternative regression models in 26.24,
27.29.) In our present model also, the values of X might appear as a result of some
random process or as a result of deliberate measurement at particular points, but in
either case X remains unobserved due to the errors of observation. We now discuss
the situation where X, and hence Y, becomes a random variable, so that the functional
relation (29.4) itself becomes a structural relation between the unobservables.

Structural relations between random variables

29.6 Suppose that X, Y are themselves random variables (in accordance with our
conventions we shall therefore now write them as x, y) and that (29.4), (29.5) and
(29.6) hold as before. (29.8) will once more follow, but (29.9) will no longer hold
without further assumptions, for in it X was treated as a constant. The correct version
of (29.9) is now

cov(é, e—ay0) = E{(x+06)(e—a,0)} = E(xe)—oy E(x0)— o403, (29.10)
and we now make the further assumptions (two for x and two for y)
“cov(x,0) = cov(x,g) = cov(y, ) = cov(y, &) = 0. (29.11)
(29.11) reduces (29.10) to (29.9) as before.
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The present model is therefore

::f - ;i ﬁ} (29.12)
Pi = agtayx, (29.13)

subject to (29.6) and (29.11), leading to (29.8) as before. We have replaced the func-
tional relation (29.4) between mathematical variables by the structural relation (29.13)
expressing an exact linear relationship between two unobservable random variables
%, y. 'The present model is a generalization of our previous one, which is simply the
case where x; degenerates to a constant, X;. The relation (29.8) between the observ-
ables &, # is a structural one, as before, but we also have a structural relation at the
heart of the situation, so to speak.

The applications of structural relation models are principally to the social sciences,
especially econometrics. 'We shall revert to this subject in connexion with multivariate
analysis in Volume 3. Here, we may briefly mention by way of illustration that if
the quantity sold (y) of a commodity and its price (x) are each regarded as random
variables, the hypothesis that they are linearly related is expressed by (29.13). 1If both
price and quantity can only be observed with error, we have (29.12) and are therefore
in the structural relation situation. The essential point is that there is both inherent
variability in each fundamental quantity with which we are concerned and observational
error in determining each.

29.7 One consequence of the distinctions we have been making has frequently
puzzled scientists. The investigator who is looking for a unique linear relationship
between variables cannot accept two different lines, but he was liable in the early days
of the subject (and perhaps sometimes even today) to be presentéd with a pair of
regression lines. Our discussion should have made it clear that a regression line does
not purport to represent a functional relation between mathematical variables or a
structural relation between random variables : it either exhibits a property of a bivariate
distribution or, when the regressor variable is not subject to error, gives the relation
between the mean of the dependent variable and the value of the regressor variable.
The methods of this chapter, which our references will show to have been developed
largely within the last twenty years, permit the mathematical model to be more precisely
fitted to the needs of the scientific situation.

38.5 The second inadequacy of the classical discussions is even more radical,
and is again illustrated by the quotation from J. S, Mill in 38.4. It arises from the danger
of attributing to one or more of the experimental factors, effects upon the dependent
variable which are in reality due to variations in some causal factors not included in
the experiment. An unrecognized causal factor may (unknown to the experimenter)
vary during the course of the experiment in such a way as to favour a particular com-
bination of experimental factors; this combination will then appear to be highly effective,
when it is really the unrecognized factor which is producing the good results.
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The classical discussions had no solution to this problem, and it is essential to
realize how deep-seated and ever-present the problem is. We can never be quite
sure that all the important, or even the most important, causal factors have been in-
corporated in the structure of the experiment. Some may be quite unknown; others,
although known, may wrongly be considered to be of minor importance and deliberately
neglected. We always need to guard against the perversion of the inferences within
an experiment by adventitious outside effects.

QuoTeEs FrRomM DrRAPER & SMITH

CHAPTER 1

FITTING A STRAIGHT LINE
BY LEAST SQUARES

1.0. Introduction: The Need for Statistical Analysis

In today’s industry, there is no shortage of “information.” No matter
how small or how straightforward a process may be, measuring instruments
abound. They tell us such things as input temperature, concentration of
reactant, per cent catalyst, steam temperature, consumption rate, pressure,
and so on, depending on the characteristics of the process being studied.
Some of these readings are available at regular intervals, every five minutes
perhaps or every half hour; others are observed continuously. Still other
readings are available with a little extra time and effort. Samples of the end
product may be taken at intervals and, after analysis, may provide measure-
ments of such things as purity, per cent yield, glossiness, breaking strength,
color, or whatever other properties of the end product are important to the
manufacturer or user. In many plants we find huge accumulations of data
of these types, and many times the figures are simply collected without any
real purpose or reason in mind. Or else there may have been a purpose years
before, and although the purpose no longer exists, the figures are still
religiously compiled hour by hour, day by day, week by week.
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The purpose of this book is not, however, to explain what type of informa-
tion should or should not be collected for any given process. The purpose
is to explain in some detail something of the technique of extracting, from
masses of data of the type just mentioned, the main features of the relation-
ships hidden or implied in the tabulated figures. Nevertheless, the study of
regression analysis techniques will also provide certain insights into how to
plan the collection of data, when the opportunity arises. See, for example,
Section 1.8.

In any system in which variable quantities change, it is of interest to
examine the effects that some variables exert (or appear to exert) on others.
There may in fact be a simple functional relationship between variables: in

most physical processes this is the exception rather than the rule. Often
there exists a functional relationship which is too complicated to grasp or
to describe in simple terms. In this case we may wish to approximate to
this functional relationship by some simple mathematical function, such
as a polynomial, which contains the appropriate variables and which
graduates or approximates to the true function over some limited ranges of
the variables involved. By examining such a graduating function we may be
able to learn more about the underlying true relationship and to appreciate
the separate and joint effects produced by changes in certain important
variables.

Even where no sensible physical relationship exists between variables,
we may wish to relate them by some sort of mathematical equation. While
the equation might be physically meaningless, it may nevertheless be
extremely valuable for predicting the values of some variables from knowl-
edge of other variables, perhaps under certain stated restrictions. :

In this book we shall use one particular method of obtaining a mathemat-
ical relationship. This involves the initial assumption that a certain type of
relationship, linear in unknown parameters (except in Chapter 10, where
nonlinear models are considered), holds. The unknown parameters are
estimated under certain other assumptions with the help of available data,
and a fitted equation is obtained. The value of the fitted equation can be
gauged, and checks can be made on the underlying assumptions to see if
any of these assumptions appears to be erroneous.
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CHAPTER 6

SELECTING THE “BEST”
REGRESSION EQUATION

6.0. Introduction

We shall defer discussion of the general model building process to Chapter
8, and in this chapter deal only with the use of specific statistical procedures
for selecting variables in regression. Suppose we wish to establish a linear
regression equation for a particular response Y in terms of the basic “inde-
pendent” or predictor variables X, X,,..., X;. Suppose further that Z,,
Z,, ..., Z,, all functions of one or more of the X’s, represent the complete
set of variables from which the equation is to be chosen and that this set
includes any functions, such as squares, cross products, logarithms, inverses,
and powers thought to be desirable and necessary. Two opposed criteria of
selecting a resultant equation are usually involved:

1. To make the equation useful for predictive purposes we should want
our model to include as many Z’s as possible so that reliable fitted values can
be determined.

2. Because of the costs involved in obtaining information on a large
number of Z’s and subsequently monitoring them, we should like the equation
to include as few Z’s as possible.

The compromise between these extremes is what is usually called selecting
the best regression equation. There is no unique statistical procedure for
doing this. If we knew the magnitude of o (the true random variance of the
observations) for any single well-defined problem, our choice of a best
regression equation would be much easier. Unfortunately, we are never in
this position, so a great deal of personal judgment will be a necessary part
of any of the methods discussed. In this chapter we shall describe several
procedures which have been proposed; all of these appear to be in current
use. To add to the confusion they do not all necessarily lead to the same
solution when applied to the same problem, although for many problems they
will achieve the same answer. We shall discuss: (1) all possible regressions
using three criteria; R2, s%, and Mallows’ C,, (2) best subset regressions



QUOTES

-57-

FRoM DrRAPER & SmIiTH

using R?, R* (adjusted), and C,, (3) backward elimination, (4) stepwise
regression, (5) some variations on previous methods, (6) ridge regression,
(7) PRESS, (8) principal components regression, (9) latent root regression,
and (10) stagewise regression. After each discussion, we state our personal
opinion.

Some Cautionary Remarks on the Use of Unplanned Data

When we do regression calculations on unplanned data (that is, data
arising from continuing operations and not from a designed experiment)
some potentially dangerous possibilities can arise, as discussed by G. E. P.
Box in “ Use and abuse of regression,” Technometrics, 8, 1966, 625-629. The
error in the model may well not be random but may result from the joint
effect of several variables not incorporated in the regression equation nor,
perhaps, even measured. (He calls these latent or lurking variables.) Due to
the possibilities of bias in the estimates, discussed in Section 2.12, an observed
false effect of a visible variable may, in fact, be caused by an unmeasured
latent variable. Provided the system continues to run in the same way as
when the data were recorded, this will not mislead. However, because the
latent variable is not measured, its changes will not be seen or recorded, and
such changes may well cause the predicted equation to become unreliable.
Another defect in unplanned data is that, often, the most effective predictor
variables are kept within quite a small range to keep the response(s) within
specification limits. These small ranges will then frequently cause the cor-
responding regression coefficients to be found “nonsignificant,” a conclusion
which practical workers will interpret as ridiculous because they “know” the
variable is effective. Both viewpoints are, of course, compatible; if an effective
predictor variable is not varied much, it will show little or no effect. A third
problem with unplanned data is that the operating policy (for example
“if X, goes high, reduce X, to compensate”) often causes large correlations
between the predictors. This makes it impossible to see if changes in Y are
associated with X, or X,, or both. A carefully designed experiment can
eliminate all the ambiguities described above. The effects of latent variables
can be “randomized out,” effective ranges of the predictor variables can be
chosen, and correlations between predictors can be avoided. Where designed
experiments are not feasible, happenstance data may still be analyzed via
regression methods. However, the additional possibilities of jumping to
erroneous conclusions must be kept in mind.
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CHAPTER 8

MULTIPLE REGRESSION AND
MATHEMATICAL MODEL BUILDING

8.0. Introduction

The multiple linear regression techniques we have discussed can be very
useful but also very dangerous if improperly used and interpreted. Before
tackling a large problem by multiple regression methods it makes sense to
preplan the project as far as possible, to specify the objectives of the work,
and to provide checkpoints as the work progresses. This planning will be the
subject of this chapter. First, however, we shall discuss three main types of
mathematical models often used by scientists:

1. The functional model.
2. The control model.
3. The predictive model.

The Functional Model

If the true functional relationship between a response and the predictor
variables in a problem is known, then the experimenter is in an excellent
position to be able to understand, control, and predict the response. However,
there are very few situations in practice in which such models can be de-
termined. Even in those situations, the functional equations are usually
very complicated, difficult to interpret and to use, and are usually of non-
linear form. For example, many chemical processes are represented by systems
of differential equations which lead to nonlinear models. In complicated
cases numerical integration of the equations may be necessary. Examples
of nonlinear models were mentioned in Chapter 5 and the fitting of nonlinear
models will be discussed in Chapter 10. In such situations the linear regression
procedures do not apply or else linear models can be used only as approxima-
tions to the correct models in iterative estimation procedures.
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The Control Model

Even if it is known completely, the functional model is not always suitable
for controlling a response variable. For example, in the problem of the amount
of steam used in a plant, one of the most important variables is the ambient
temperature, and this is not controllable in the sense that process tempera-
ture, process pressure, and other process variables are controllable. An
advertising man who wishes to understand the effect of a television com-
mercial on sales is quite aware that his competitor’s activities are very im-
portant and are a necessary element in any functional model for sales.
However, these activities constitute uncontrollable variables no matter
how clearly they are specified in the functional model. A model which con-
tains variables under the control of the experimenter is essential for control of
a response.

A useful control model can sometimes be constructed by multiple re-
gression techniques, if they are used carefully. If a designed experiment
using the controllable variables is feasible, then the effect of these variables
on the response can be obtained from a simple application of multiple
regression such as those discussed in Chapter 9. However, there are many
situations where designed experiments are not feasible: for example, an
experiment conducted in a manufacturing plant usually disrupts day-to-day
operations, and unless the potential return from a change in the response
indicated by this experiment is great enough, the experiment will not be
performed; as another example, an experiment conducted in the market
place could be well designed and handled, but the uncontrollable factors
(each identifiable) would make any calculated mathematical effect of the
controlled variable so confusing as to be useless. These situations lead the
practitioner to the use of predictive models.

Predictive Models

When the functional model is very complex and when the ability to
obtain independent estimates of the effects of the control variables is limited,
one can often obtain a linear predictive model which, though it may be in
some senses unrealistic, at least reproduces the main features of the behavior
of the response under study. These predictive models are very useful and under
certain conditions can lead to real insight into the process or problem. It is
in the construction of this type of predictive model that multiple regression
techniques have their greatest contribution to make. These problems are
usually referred to as “problems with messy data”—that is, data in which
much intercorrelation exists. The predictive model is not necessarily func-
tional and need not be useful for control purposes. This, of course, does not
make it useless, contrary to the opinion of some scientists. If nothing else,
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Figure 8.1 Summary of the mode! building procedure.

it can and does provide guidelines for further experimentation, it pinpoints
important variables, and it is a very useful variable screening device.

It is necessary, however, to be very careful in using multiple regression,
for it is easily misused and misunderstood. An organized plan for solving
problems amenable to a multiple regression approach is both appropriate
and necessary. This chapter is intended to be a proposal only, and anyone
using this proposed scheme will find it necessary to adjust it to suit his or her
particular situation.

While the plan below covers the development of a mathematical model
for prediction purposes, it is sufficiently general in scope for use in building
both functional and/or control models. The emphasis here will be on the
“messy data” type problem. The plan is divided into three stages—planning,
development, and maintenance. A schematic diagram of the plan is shown in
Figure 8.1 and will be discussed in detail.

The problem definition must
be to the point and both the response and predictor variables must be clearly
identified. At the beginning of this planning phase, there should be no re-
straint on the scientist, who should write down every conceivable variable
and response that he or she considers to have any possible effect on the
problem. This list will be large, but pursuant discussions will gradually
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reduce these to a reasonable number. The important point to remember is
that the screening of variables should never be left to the sole discretion of any
statistical procedure, including the multiple regression procedures covered
in Chapter 6. Finally one arrives at a specific problem statement with a
specified response or responses to be investigated in relation to a specific
set of potential predictor variables.

Next, the list of variables obtained from the problem specification dis-
cussion must be examined carefully. Many of these predictor variables
may turn out to be unmeasurable; for example, the temperature drop in the
process could be considered a fundamental variable but it is not measured
at the present time. Either a substitute variable which is measured and is
related to temperature drop would have to be used, or else new instrumenta-
tion is needed. This latter alternative will cost money, and the scientist will
have to determine which of these two alternatives is better. This scientific,
practical assessment of all variables must be done at this point in the planning,
before the main body of data is collected.

The next question that needs to be answered is “Can we get a complete
set. of real observations on all the specified X’s and Y’s at the same time?”
Will the data set be complete? There are many situations in which this is
not feasible, and more compromises must be made. A typical situation is one
in which samples can be taken all at the same time but the control measure-
ments need to be calculated later or read from a laboratory recording
instrument. Based on the current work load, there will be several weeks delay
before the data will come back from the laboratory. Should the analysis wait?
Should we abandon the idea of collecting those pieces of data? These sorts
of questions must be carefully considered before continuing and the time
schedule must be carefully preplanned. After a complete check on all the
variables has been made, a reassessment of the feasibility of the problem
solution is essential.

Summary

If the scientist desires to use multiple regression as a tool to help him solve
problems, it is imperative that he follow an outline similar to the one illus-
trated above. Much time and effort can be wasted by trying to make sense of
highly intercorrelated data; a series of planned, cost-oriented checkpoints
for using multiple regression techniques is a necessity. Finally, no scientist
should be persuaded to abandon his scientific insight and principles in favor
of some computerized statistical screening procedure. The use of multiple
regression techniques is a powerful tool only if it is applied with intelligence
and caution.
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NOTES

The modern theory of probability was founded by A. N. Kolmogorov [see
reference B8] and is deeply embedded in the theory of measure and
integration developed by H. Lebesgue, E. Borel, and others. For a
representative selection of texts on measure and Lebesgue integration,
see Al - A20; and for texts presenting probability theory, see Bl -B1,

Again, for a selection of texts, see references Al - AN,

Product spaces and statistical independence are closely linked. These
are discussed in Al, ch. 6; A2, §5.8; A6, ch. 7; A1, ch. 6; A8, §35;
A5 , ch. 7; A, §14; BL, 8§2.6, 2.7; B5, §8(1)v.4, (2)Iv.6; B?7, ch. 6;
B9, §(1)1.7; B , ch. 3; and B2 , §3.4.

Kolmogorov's Strong Law of Large Numbers for independent identically
distributed [i.i.d.] r.v. is discussed, e.g., in Bl, ch.7 (at pp. 275,
310; B2, p. 52; B5, chs. (1)8, 10, (2)7; B6, ch.6 (at p. 245); B7, p.
344; B12 , 84.4 (at p. 199); and BB , §5.3 (at p. 124.)

"With probability one" (or "almost surely” -- abbreviated "a.s.") is the
probabilistic equivalent of the measure-theoretic expression "almost
everywhere" -- abbreviated "a.e." The definition of one or the other

is given in most of the texts listed.

Chebyshev's inequality: see, e.g., B6, (1) p. 233; B6, p. 225; BT,
p. 288; B2 , p. 85; or BB , p. 40.

The Central Limit Theorem is a fundamental result of probability theory.
Tt is discussed in various forms in Bl, ch.8; B2, chs. 8-11; B5, ch. (1)
10 (at p. 244), §(2)VIII.4; B6, ch. 8; BT, §13.4; B2, 84.7; and BB ,

ch. 6 (at p. 205.)

The normal distribution (in part because of the Central Limit Theorem)
ig central to probability and statistics. Discussions will be found,
e.g., in B4, chs. VI, X; B5, §(2)III.6; B7, 8811.7, 14.6; Cl, ch. 24;
C¢3, (1) [numerous scattered references: see Index under "bivariate nor-
mal distribution" (p. 420), "multivariate normal distribution" and
"normal distribution" (pp. 427, 428); and especially ch. 15]; and C4,
§8§2,2-2.5.

The Multivariate Central Limit Theorem is discussed in B4, ch. 10 (at
p. 112); B5, (2) p. 260; C1, p. 316; and C3, (1) p. 194.
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Characteristic functions are discussed, e.g., in B4, ch. 4; B5, (2)
ch, Xv; BT, ch. 12; C1, ch. 10 and §815.9, 21.3, 22.4; C3, (1) ch.4;
and in €C5 and C6 .

The chi-squared distribution is another major topic, found, e.g., in
B5, (2) p. 48; C1, §18.1; C2, pp. 166, 216; C3, §(1)16.2-9; C4, p. 67
-72: and €8, §10.3.

The chi-squared distribution of the sample variance-covariance esti-
mator is exhibited in €3, ch. (1)11 (Ex. 11.3, 11.7); and C6, §3.2.

See also the discussions on pp. 25, 32 of the Present paper.

The distribution of the sample variance-covariance estimators of a
bivariate normal distribution is derived in €3, §(1)16.24 & seq.,
following the treatment by R. A. Fisher [Biometrika, vol. 10 (1915)
p. 507.]

The variance-ratio (or F) distribution may be found, e.g., in B5, (2)
p. 48; €2, §1l1.6; €3, 8§(1)16.5-22; C6,83.3; and C8, 810.5.

Diagonalization of quadratic forms: a quadratic form corresponds to

a symmetric matrix, and an orthogonal transformation is a change between
orthonormal bases. See, e.g., DI, ch. 8 (at p. 169; D2, ch. 10 (at p.
302), ch. 12 (at p. 362); and D8, ch. 10 (at p. 321), ch. 12 (at p. 388.)

Analysis of variance: see Cl, chs. 23, 37; €, (1)15.11, chs. (2) 26~
30 [note especially the remarks in §§26.2-4, 29.7], chs. (2)19, (3) 35-
37 [Kendall & Stuart give by far the most extensive and thorough treat-
ment of all aspects of the subject]; and C8, ch. 14. For a specific
monograph on this subject, see, e.g., Draper & Smith, El: also E2-E4 .
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