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Abstract

This paper examines the computing demands that must be met
by a system capable of scene description and perception of real-
world moving objects. Then a particular architecture that ap-
pears to combine a number of attractive features is suggested as
appropriate for at least a certain «c¢lass of scene description
systems. A brief survey is made of the major different kinds of
computer systems that have been built, or designed, and of the
different sources of potential speed-up of processing that have
been exploited. Finally, a number of alternative possible
hardware architectures that might be capable of handling real-
time perception of moving objects are suggested, and examined.
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Summary Outline

I. The requirements and specifications for computer systems
- capable of perceiving moving objects in real time:
A) The size of a real-world scene
B) The size of the living eye's retina and visual system
C) Estimates of the amount of processing needed:
1. times needed by today's computer programs
2. estimates from these times
3. times needed by human beings
D) Estimates of the additional time needed for moving
pictures' frames subsequent to the first frame

Il. The proposed architecture:
A) Large array
B) Smaller scanning array
C) Network of MIMD processors {might combine with B)
D) One powerful processor to:
1. control (though might use a smaller one)
2. store image and transforms (though might eventually
disperse this, storing where appropriate)
3. simulate processors not yet physically present

III. Types of parallel systems:

A) Networks like c.mmp, cm¥*, X-trees, pyramids and n-cubes

l. speed-ups that can reasonably be expected from
plausibly realizable networks

2. future, and ideal, possibilities

B) Fast scanners

C) Pipelines

D) True parallel arrays

IV. Sources of parallel speed- up:
"A) Pipeline (e.g., Cytocomputer)
B) Parallel fetches of near-neighbors
C) Parallel fetches of more bits for grey-scale, weight, number
D) Parallel application of several operations (e.g., PICAP)

E) Parallel processors (e.g., CLIP, DAP, MPP)

V. Interesting possible architectures:
A) Very . large array
B) Fairly large array of (slow and cheap) scanners
C) Relatively smaller array of (faster, more expensive) scanners
D) Very fast and well architectured pipe-line scanner
E) A small number of very powerful pipe-lined scanners
F) Sets of arrays, in series
G) Mixtures of SIMD and MIMD architectures




Introduction

This paper examines the computing demands that must be met
by a system capable of scene description and perception of real-
world moving objects. Then a particular architecture that ap-
pears to combine a number of attractive features is suggested as
appropriate for at least a certain class of scene description
systems. A brief survey is made of the major different kinds of
computer systems that have been built, or designed, and of the
different sources of potential speed-up of processing that have
been exploited. Finally, a number of alternative possible
hardware architectures that might be capable of handling real-

time perception of moving objects are suggested, and examined.

The Demands on a System for Real-Time Perception of Moving Objects

Real-world objects can move at any speed (up to the speed of
light). And arbitrarily large numbers of objects might be mov-
ing, in the same scene, in arbitrarily different directions and
manners. We might pose the "general problem of the perception of
motion" as one of recognizing any number of objects moving in any
number of trajectories at any constant or changing speeds. Or we
might restrict the problem to only a manageable few objects mov-
ing at some speed less than some arbitrary amount (e.g., 1,500

miles per hour, viewed at some standard distance).

But it seems most reasonable to ask that the system handle
those objects, moving at those speeds, that a human being can
perceive; for example, a galloping horse but not a bullet. This
is not to insist upon modelling human perception, but rather to

point out that the "general" problem is potentially infinite in
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its size, speed, and complexity, and that we must cut it down to

reasonable proportions.

The Enormous Computing Burden to Perceive Objects in Motion

Most researchers developing "vision systems" today pose
thelr ultimate problem as one of handling a scene on the order of
250 by 256, 5¢@ by 560, 1,000 by 1,000 or 3,000 by 3,000 "pixels"
(picture elements), as resolved by a television camera. For sim-
plicity, let's assume the scene is resolved in a 1,000 by 1,000
array, giving 1,000,000 pixels, each containing a 10-bit value
(representing color or grey-scale intensity). This is an ex-
tremely 1large amount of information. But I should note that a
human retina contains roughly 10,006,000 cones (for shape and
color wvision) and 100,060,008 rods (for change, motion, and

grey—-scale vision).

To date only a few attempts have been made to have a comput-
er program try to recognize and describe the objects in a full
television picture (usually on the order of 500 by 500). These
programs have taken from 5 or 10 minutes to 1@ or 2@ hours of CPU
time on rather large computers (e.g., Univac 111¢; DEC pdp—-10) .
From these times (for programs that are just barely beginning to
handle & single static scene) we might extrapolate that several
hundreds, or even thousands, of hours of CPU time might be needed
to perceive the 30 television frames that a human being 1is able
to perceive in a single second. Reddy has suggested that for
segmentation alone 1,000 processes might be needed per pixel, and
therefore from 1 to 1¢ billion instructions per second (BIPS) are

needed to segment a single scene in one second.



Some Possibilities of Speed-Ups Using Parallel Programs

We can use the more parallel(-serial) programs that have
been developed with parallel computers specifically in mind, such
as the "pyramid" and "cone" systems that I, and a number of other
researchers, have been developing (Hanson and Riseman, 1974,
1978; Klinger and Dyer 1974, Levine and Leemet, 1976, Levine
1978; Tanimoto, 1976, 1978; Uhr, 1972, 1974, 1976, 1978; Uhr and
Douglass, 1979; Douglass, 1977, 1978; see Tanimoto and Klinger,
1%808) to give alternate estimates of the time needed. I would
estimate that from 5 to 50 transforms of the sort that a suitably
designed multi-computer network of parallel processors could exe-
cute in a single machine instruction might be needed in each of
from 16 to 50 layers. This would need a sequence of from 50 to
2500 instructions. Thus, for example, if each processor took 1¢
microseconds per instruction such a system would need only .50 to
25 milliseconds for an entire (static) scene. {(But large amounts
of time can easily be eaten up by the serial processes used by

most other kinds of vision systems.)

Empirical Evidence that Human Perception is Highly Parallel

The human perceptual system throws some extraordinarily in-
teresting 1light on this problem. The "basic meaningful instruc-
tion time" for the brain appears to be from 1 to 2 milliseconds,
if you will accept the following simple and to my mind rather

compelling argument:

The retina is excited by light energy, sending trains of im-
pulses through the neurons of the visual system and the cerebral

cortex. The synaptic junctions between neurons compute functions
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of the impulses firing into them, and fire out their results.
That is the underlieing microstructure with which the brain "per-
ceives" and "thinks." Therefore the time needed for a synaptic
firing, plus the time needed for a neuron to carry the resulting
information to the next synapse, can be thought of as the "basic

meaningful instruction time" of the brain.

Now a synapse takes about 1.5 milliseconds to do its Jjob,
and an impulse moves along a neuron in a time appreciably smaller
than that. So 1.5, or, to be conservative, 1 to 2 milliseconds,
is a quite reasonable estimate. Note how slow this is compared

to a computer.

Psychologists have also collected extensive data on the time
a human being needs to recognize and perceive objects in a wide
variety of different scenes. Without bothering to pin this fig-
ure down precisely, it 1lies somewhere between 50 or 160 mil-
liseconds and 1 second. This gives us a quite amazing result:

The human brain perceives with a serial sequence of processes

from 25 (or fewer) to at most 1,000 deep!

NS EPn

A television camera typically takes a new picture every 30
milliseconds. This is necessary to give a smooth flowing picture
of moving objects, because of the "critical fusion frequency" of
the human visual system which (depending upon illumination, reso-
lution, type of object, and a variety of other factors), lies in

the range of from 10 to 30 static images per second.

This suggests that each new static picture might have to be
processed in 30 milliseconds, which would force us to lower the

lower extreme given above to only 15 to 30 serial processes when
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scenes of moving objects must be perceived. It seems more like-

ly, however, that a well-designed visual system (including living
visual systems) would not need to process each new scene in its
entirety, but rather would use what it had gathered from the mov-
ing scene of the most recent past to direct, and drastically cut

down on, its processing.

There are at least two additional factors that are almost

entirely conjectural:

1) How complex is each individual process in the brain? We
know that hundreds, or often many thousands, of neurons synapse
on a single neuron. 8o, conceivably, the functions a neuron com-
putes could be very complex indeed. But somehow it seem intui-
tively more plausible (at least to me) to assume that much of
this is a matter of redundancy and stabilization, and that the
functions aren't all that complex - that the degree of parallel-
ness in the function computed by the individual neuron is on the
order of 5 or 1¥, or a few hundred at most. Indeed there is ex-
perimental evidence that cortical neurons onto which, typically,
18,6006 or so neurons synapse, will fire when only two or three of

those neurons fire into them.

2) How much can previous knowledge cut down on the process-
ing needed for each new input frame, and how great a speed-up in
processing can this effect? Here I think we know so little that
we have virtually no grounds for estimating. Estimates must wait
until we have developed computer systems that exhibit some of
this speed-up, while performing reasonably well. But somehow it
seems quite unlikely that significantly more than one order of

magnitude speed-up could be attained, and it does not seem un-
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likely that there might be little or no speed-up at all, since

this is hard to achieve in parallel systems.

A Network-Array Architecture for Perception, Cognition

and Intelligent Systems

We will now examine an architecture for a network-array of
processors that appears to be an appropriate system on which to
run programs for perception and cognition, along with preliminary
specifications of the actual first-approximation to this longer-
term goal that we have been considering. We will then examine
the different possible sources of increased power and speed, and

alternative types of networks and arrays that might exploit them.

A) Information is input from the sensing device into a large
buffer memory, and then processed by a sequence of instructions
that are executed by a very large hardware-parallel array of re-
latively simple processors specially designed with the near-
neighbor operations most people feel are appropriate for the
first stages of 1image processing, image enhancement, and scene

analysis.

This suggests a cellular array like CLIP4 (Duff, 1976,
1978), DAP (Flanders et al., 1977; Reddaway, 1978, 198#) or the

MPP (Batcher, 198@).

B) Next follows a sequence of instructions executed by an
appreciably smaller array of processors, each of which is appre-
ciably more powerful and has access to an appreciably larger
neighborhood of pixels. Since today it would be premature to
contemplate an array larger than 96 by 96 (CLIP4) or 128 by 128

(the projected MPP), it seems preferable to think in terms of a
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second-level array built from the very powerful bit-slice proces-
sors, rather than from the far cheaper micro-computers on a chip
- for the following reasons: The 96 by 96 array of information
will have been appreciably reduced by the sequence of instruc-
tions effected by the CLIP array, and can now most appropriately
be stored in a 48 by 48 or 32 by 32 array. This means that a 12
by 12 or 16 by 16 array of bit-slice processors (see C) below)
could quite adequately handle things, with each processor scan-

ning a sub-array of 2 by 2 to 4 by 4 (or even more) cells.

This is a small enough number to make the bit-slice proces-
sors economically feasible. Here we are estimating that reason-
ably powerful processors of type C) below would cost about $2,000
each to build, if each is able to execute a different set of in-
structions, and is a full-blown processor—-plus-controller. But
we have designed a system (Uhr, Thompson and Lackey, 1988) that
has a 4 by 4 array of 16 such processors, with 16 slave proces-
sors tied to each, giving a 16 by 16 array in toto. This will
give a 16 processor MIMD system, where each processor is a 16
processor SIMD system. It should further mean (if we can over-
come a number of hardware design problems without too many
compromises) that this resource will also serve as a relatively

general-purpose 16 processor network.

(Compare this with alternative F) below, with a sequence of
successively smaller CLIP arrays. The CLIP array that we propose
for the "low-level" processes will serve to replace the first 2
or 4 of these layers. Then the network-array will handle the

intermediate-~level layers).



Finally, a general-purpose computer will handle the deepest
layers of ©processing. Information will be transferred to this
computer at whatever layer the programmer feels 1is appropriate
(because the degree of potential speed-up from parallel process-
ing has become so small as to be relatively unimportant, whereas
the advantages of allowing a processor to make global assessments
of information no matter where it might be have become suffi-

ciently great).

In our particular embodiment of this type of system, (we
would wuse a VAX with several million bytes of memory) this
transfer may well occur relatively early (removing much of the
burden of programming a network efficiently). The VAX will also
serve several other crucial purposes: The raw image (along with
intermediate outputs from the array and from the network-array)
will all be stored in the VAX high speed memory, and accessed
over the UNIBUS or, possibly, its very fast (13.3 million bytes
per second) SBI bus. (It would be preferable to have direct in-
terconnections along with buffer memories between the separate
resources; but that would entail a good bit more hardware, and
expense. With this system delays will be relatively small, and
we will be able to estimate quite precisely how much a better-
designed system would increase speeds.) The VAX will be used to
handle whatever processing the programmer chooses not to assign
to the array or the network—-array. Thus only when we discover
how to program processes in parallel need we move them off the
VAX to the other resources. And we can simulate new kinds of
resources on the VAX, including ones we are contemplating acquir-

ing, or trying to design.



The Major Types of Parallel Systems Built or Proposed

Clearly, computers must handle scenes much faster than
presently possible, to hope to succeed at real-time real-world
vision. The alternatives that have been proposed include faster
processors, concurrent processors, networks, scanners, pipelines,

and arrays. Let's examine these briefly:

Speeding up Processors by Brute Speed of Faster Technologies

Today's technology has given us machines that execute mean-
ingful picture-processing instructions in from 100 nanoseconds to
16 microseconds. A serial computer must iterate such an instruc-

tion; a parallel array need execute it only once, at each and

every cell of the array. (I am ignoring extremely fast and ex-

pensive technologies, and assuming a wide range of rather unusual
- for ordinary computer users - ©parallel near-neighbor image-

processing instructions.)

It is conceivable that we will see cryogenic computers with
speed-ups on the order of two, or even three, orders of magnitude
during the next ten years. But that will be the end, since we
will have hit the limiting speed of light. And it seems likely
that these will depend upon expensive, bulky and limited (in
size) computers, since they will have to be kept within an en-
vironment that maintains their temperatures close to absolute

ZErO.

Speeding up Processing by Improving Architecture

We can, in theory, speed up processing to whatever degree we

desire, by building special architectures that compute arbitrari-
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ly more complex functions in parallel. That is, any serial pro-
gram (computer) can be converted into a parallel program (comput-
er) - if only by building a system with separate hardware modules
to sense each possible input state, and output the resulting ap-
propriate symbol-string. (I should note that this is what Rosen-
blatt appears to have been suggesting with his l-layer percep-
trons, or at least what Minsky and Papert took him to be suggest-

ing in their book on perceptrons.)

But this is an exponentially explosive procedure. Worse, it
quickly grows out of the bounds of reasonable economy and well-
balanced architecture. Today we see people building machines ca-
pable of parallel fetches of 9 (Duff, 1976), or even 25 (PICAP II
Kruse and Danielsson, 1980) nearest-neighbors (and of course for
arithmetic operations 32 or 64 bit numbers are often fetched in

parallel).

But it seems unlikely that anybody will ever want to build
systems that would fetch thousands, or even a few hundred, pieces
of information in parallel in order to compute complex structural
functions over them. Thus we can expect to get one order of mag-
nitude increases in speed from parallel input of the Separate
components of a picture processing function. But it seems un-

likely that we can get two, and certainly not more than two.

When arithmetic is appropriate (as in handling grey-scales,
intensities, and weights) we can get roughly 10, 3¢ or 60 fold
improvements. (This is already done in serial computers, which
fetch and transform up to 64 bits of numerical information in
parallel. But the large parallel arrays of today work with only

1, or at most 4 bits of information at a time; otherwise the cost
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of hardware would be excessive, since thousands of processors are

involved.,)

By building a special-purpose scanner we can increase speed
by 2 to 1§ times. Appropriate architectures for the whole sys-—
tem, encompassing the buffer memory that contains the tv image of
the scene, the large array (or scanner), and a general-purpose
computer, can also increase speed considerably. E.g., Kruse's
(1976, 1978) PICAP I may well gain one order of magnitude, or
more, in speed from a specially designed scanner, appropriate
hardware for picture-processing operations, and a capability to
scan over a sample of the large (raw or transformed) image as a

function of what the program has found out so far.

Still another very interesting and powerful system can, po-
tentially, gain 1@¥-fold in speed because of its pipeline of 118
processors (Sternberg's Cytocomputer, Sternberg, 1978, 1988@).
But it seems unlikely that such a long pipeline can be fully ex-
ploited unless it has very large and expensive temporary memories

assocliated with it to store intermediate results.

Networks of Concurrent Processors

Rather than on the one hand using one traditional single-CPU
serial computer, or on the other hand using what to many people
appear to be unacceptably specialized large arrays or scanners,
we can try to couple a number of individual computers (each with
one CPU and at least a little bit of its own memory) into a net-
work of processors, (Note that all three alternatives are actu-
ally "general-purpose"” in the sense that they all are equivalent

to  "universal Turing machines" and therefore, potentially, they
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all can compute exactly the same set of functions, given enough
time. But the «crucial problem is one of efficiency: Are they

fast enough? Are they as cheap as possible?)

Today people have designed or built networks of 5, 16 (e.g.,
Wittie and van Tilborg, 1980; Despain and Patterson, 1978) or at
the most 50 (Swan et al., 1977) processors of this kind. [See
wWittie, 1976, 1978; Sullivan et al., 1977, Goodman and Sequin,
1981; Uhr, 1981 for descriptions of networks that might have
thousands, or millions, of processors.] A large variety of dif-
ferent interconnection patterns have been proposed that might,
potentially, allow thousands, or even millions, of processors to
be connected together. But the problems of developing operating
systems, programming languages, and, worst of all, actual pro-
grams that make efficient use of very large numbers of processors
of this sort appear to be extremely difficult, and relatively
little progress is being made. Results with the small networks
already built (chiefly c.mmp, Fuller, 1976, and cm*, Swan et al.,
1977, Carnegie-Mellon) suggest that 5 or 15 processors will speed
up processing only 2 or 4 times, and then only on programs that
are highly parallel, where there is virtually no need to pass

messages between processors.

These first early results may merely reflect the difficulty
of the problems of designing, building and programming networks,
rather than revealing any inherent and fundamental limitations.
But for the moment there is little reason to count on large in-
creases in speed from large numbers of processors connected in a
typical network. One order of magnitude improvement seems possi-

ble, two orders of magnitude seems quite unlikely.
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The Most Promising Alternative Architectures for Computers

Capable of Real-Time Perception of Scenes of Moving Objects

Increases in brute speed of the hardware, increases in the
number of bits of information that the individual processor can
fetch in parallel, improvements in the architecture of the pro=
cessors so that they are designed as appropriately as possible
for picture processing operations, pipipelining, and improvements
in the design of the overall system can all effect significant
increases in speed. But the only way we can continue to increase
speed, with no potential absolute limits (other than the number
of particles in the universe) is by adding more processors; and
the best way to handle profligate increases in processors appears
to be with relatively simple, regular and well-structured archi-

tectures.

During the next few years judicious combinations of improve-
ments from this large set of sources of possible speed-up may
well prove to be sufficient. Kruse's PICAP is an unusually suc-
cessful, and instructive, example of how to gain enormous amounts
of power and efficiency at a relatively cheap price by careful
design not only of the scanning processor but also of the total
system. And networking together 10 or 20 much-faster-technology
general purpose computers (as Binford and Reddy have suggested
doing at Stanford and at Carnegie-Mellon) may give similar im-
provements of from 2 to 4 orders of magnitude in speed. This
suggests that combining all these sources of speed-up might, con-

ceivably, give 4 to 8 orders of magnitude improvements.

But the true parallel array (which will probably have to sa-
crifice some, but by no means all, of these different subsidiary
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types of improvements, because their increased costs would become
excessive when multiplied by the thousands or millions of proces-
sors now involved) appears to be the only way to continue to in-
crease speed at the same time that increasingly larger scenes are

processed.

The very large array can come in several models, and take
advantage of at least some of the other potential sources of

speed-up, as follows:

A) A pure array would have one processor assigned to each
pixel in the raw input scene, thus giving the most extreme form
of parallelism. If we want to contemplate numbers as high as
100,000,000 (to model the 100,000,000 rods in the human visual
system) each individual processor will have to be as simple and
as cheap as possible, and there would seem to be little opportun-
ity to take advantage of other sources of speed-up from more ex-
pensive technology, wider parallel input busses, or elaborately
designed architectures. But, as we see in the CLIP arrays (Duff,
1976, 1978), near-neighbor logical operations can be built into

the hardware.,

It seems unlikely that anybody would seriously contemplate
building 100,000,000 processors (unless a technology developed
that made this very simple and cheap, e.g., by growing crystals).
And since such a system would be very inefficient at the later
stages of perception it would almost certainly be combined with

other types of resources, as discussed above.

More plausible would be a smaller array of this sort that

itself was scanned over the larger retinal array. For example,
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we can today conceive of building a 1,000 by 1,600 CLIP-type ar-
ray (by 1985 this should be quite possible at a cost appreciably
less that $1,000,000). This would need only 108 iterations to
scan the larger 100,000,900 rod array. Similarly, even when we
want to process smaller pictures (as will usually be the case) it
will often be preferable to have a small array scan over the
larger picture array. Thus Duff (personal communication) contem-—
plates using a 190 by 100 or a 500 by 20 CLIP4-type array to scan

over a 5006 by 500 television image.

We can assume that this type of array will perform its basic
operation in one microsecond rather than the 1l microseconds
needed by CLIP4 (or even faster 1f faster and more expensive
technologies are used). The speed demanded by the particular
range of programs that the system will be expected to execute
will determine how many such ilterations can be tolerated. But
only after we have gained experience in writing such programs
will we have a clear idea of how deep their serial sequence of
processes might be. For now we have only the rough estimates
given above -~ that if we can find the right programs they should
have a serial depth of only a few thousand, or even a few hun-

dred, instructions.

Each CLIP processor today costs roughly $5 to $25. But ex-
trapolating into the future, we might use the basic cost of a
chip - about $20 or $160 for a new chip if produced in thousands,
but going down to $1 or less in quantities of millions - to
predict future prices. It may be possible with VLSI technologies
to put significantly more than 8 processors on each chip (though

not too many more, because the limited number of pins to each
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chip will not accommodate the continually increasing number of
connections that would be needed). But it seems more reasonable
to pack more memory and more processor power on the chip instead.
So let's assume that only 16 (appreciably faster and more power-
ful) processors are placed on each chip. The overall hardware
cost might then reach 1¥ cents a processor; and the cost of a
1,000,000 processor system approach $200,000 (assuming large

numbers could be sold, to drive the price down).

B) A large array might be built from conventional off-the-~-
shelf micro-computers, e.g., z80s, z8000s, or whatever z8...0s
are developed in the future. It seems reasonable to assume that
these will be of the same technologies, price and speed as the
specially-designed CLIP chip. The differences would be that the
CLIP chip would have 16 processors rather than only one, with the
CLIP processors more appropriately designed for picture process-
ing (e.g., with near-neighbor fetches in parallel and appropriate
logical operations built into the hardware), but with much less
memory and a much smaller total repertoire of hardware-embodied
instructions associated with each CLIP processor. We might
therefore expect a 16-fold decrease in costs from CLIP (which
would come if and only if the appreciable costs of designing and
fabricating the CLIP chip and building the total CLIP system were
amortized over large numbers of successfully sold CLIP systems).
In addition, the more appropriate design of the CLIP processors

should further increase speed and power.

On the other hand, the larger memory and wider range of in-
structions (especially including arithmetic instructions) with

the more conventional micro-processor would, when they were use-
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ful, lead to significant 1improvements on their side. And it
might well be that in 5 or 16 vyears "“"conventional" micro-
processors will be designed to do more and more parallel opera-
tions, or, possibly, come in an lincreasingly wider variety of
less—-conventional-from-the~perspective~0f-1981 architecture. So
let's Jjust give CLIP the 16-fold improvement from its processors,
and assume that the other factors cancel one another out. There-
fore, if CLIP-like systems can be bought easily they will prob-
ably be preferable. If they are exotic, or must be designed and
developed by the individual, the problems may easily be greater
than the expected benefits. This suggests that it is important
to make it as attractive as possible for companies to build and
to market such systems, by developing as large as possible a

group of potential users.

C) A somewhat (probably appreciably) smaller array might be
built from bit-slice processor chips. These are, today, often
used as building blocks for very fast and powerful large CPUs.
They are relatively easily configured and constructed into pro-
cessors, and, because they are micro-coded, they can be given a
wide variety of carefully tailored machine language instructions.
A typical processor might need roughly 20 chips (PICAP I has
about 45), and cost, roughly $200 to $1000 (for raw hardware).
If many processors were built the design costs per processor

would go down appreciably.

But nobody appears to have built a system of this sort with
more than 16 processors, or even contemplated one with more than
100V or so. (Siegel et al., 1979; Bogdanowicz, 1977; Briggs et

al., 1979) Probably $500 to $2000 per processor is a reasonable
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estimate for the cost in an array of from 580 to 2060 processors
built from off-the-shelf ICs. Such a system might well be 10
times faster than either of the above alternatives in its basic
speed. It might gain appreciably more when doing arithmetic and,
because of its microcode and potentially good ability to fetch
information in parallel, might gain up to one more order of mag-

nitude increase in speed.

This would appear to be a very interesting alternative when
the size of the image to be processed is reasonably small. For
example, a 16 by 16 array of bit-slice processors might scan a 96
by 96 array of pixels by having each processor scan a 6 by ©
sub-array. This might well be done at virtually the same speed
as a 96 by 96 CLIP array. It would probably cost appreciably
more. I1ts main advantage would appear to be its wider range of
possible instructions and its great (potential) flexibility (if
it can be microcoded and programmed appropriately) to effect a
wide variety of processes, including more traditional MIMD net-

work processes.

D) A very powerful and appropriately designed single
scanner would be far slower than the three alternatives described
above. Kruse's PICAP is an already built and tested example of
such a system. It needs one microsecond per pixel (using a much
faster technology than that of CLIP4, but that is quite reason-
able since only one processor is involved). It will inevitably
need increasing amounts of time as the size of the picture to be
processed grows. For a 100 by 100 it may well need only 160
times as much time, gaining 1@@-fold in speed because of the good

architecture and overall design features touched on above. But
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for a 1,000 by 1,000 it would need 10,0060 times as much time.

Such a system might be extended by making the single proces-
sor into a pipeline of processors (as Sternberg has done in the
Cytocomputer). But as the pipeline grows longer the need for
more memory for intermediate results grows greater. Sternberg's
118 processors already appear to be hard to use completely, in
every instruction. It seems possible that a hundred-fold in-
crease can be got in this way (though possibly only at a very

high cost in hardware), but probably little more.

E) An array of several specially designed processors, pos-
sibly including pipelining, appears to be an attractive alterna-
tive to the more conventional arrays envisioned in C), and espe-—
cially in B). Here we see obvious trade-offs in terms of the
power and cost of each particular processor. To give rough esti-
mates: the PICAP processor might cost $10,000; the Cytocomputer
processor might cost $50,000. A more conventional bit-slice pro-
cessor might cost from $200 to $2,000. There is a need for a
great deal of empirical examination of the costs and benefits of
different design trade-offs for such processors. Almost certain-
ly a great variety of different individual processors, and total
arrays and networks, should be built, and almost certainly there

will be no single "right answer."

F) A series of arrays of the sort described above might be
built, to serve as a gilant pipeline each of whose processor
stages was itself a very large array. This might take one of

several forms:

1) The entire system of arrays might be built by simply dupli-
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cating the single array. For example, 20 96 by 96 CLIP4s might

be put in series.

2) A single array might be programmed to simulate such a
series, by decomposing it into a number of sub-arrays of equal
size, and shifting information, when appropriate, from one sub-
array to the next. (This would be extremely wasteful of time in
a conventional CLIP4 array, though changes in the interconnection

architecture might overcome many of the problems.)

3) A single array might be wused, but one that was re-
configurable at the hardware 1level, under program control.
Siegel et al.'s, 1979, proposed 32 by 32 MIMD-SIMD system can be
reconfigured into different sub-systems whose sides are powers of
2, and Lipovski, 1977, is now building a l6-processor system that
is reconfigurable at the hardware level, in order to demonstrate
that its extra costs for switches and slower message passing can

be kept reasonably small.

4) Rather than have all arrays the same size, arrays of dif-
ferent sizes might be used, where appropriate. This appears to
me to be an attractive alternative for picture processing, since
the very large array of raw information initially input to the
system by the tv camera or other sensing device is successively
abstracted and reduced as processing progresses. That suggests
starting with a very large array but then transferring informa-
tion to successively smaller arrays as they become appopriate,

giving an overall pyramid structure.

5) Different kinds of processors, and different kinds of ar-

rays, might well be appropriate at different layers of such a
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system. 1t seems likely that the early "image processing" opera-
tions on near-neighbor cells (for which CLIP for example is espe-
cially well designed) can be handled by simpler processors that
can be built into larger arrays. "Higher-level" processing might
best be done by processors capable of adressing more global sets
of information. At the most global level, when information has
been greatly reduced, a single powerful processor might be most

appropriate.

G) Each of the above possibilities has its own range of uses
for which it 1s best suited, and its own set of limitations.
This strongly suggests that a judicious combination of several of
the above alternatives might produce a network of mixed resources
that could take advantage, if multi-programmed over a suitable

mix of user programs, of each of its sub-systems strengths.

Summary and Conclusion

The particular configuration we have been considering and
(tentatively) planning to build is only one of several possible
architectures for parallel arrays and networks that promise ord-
ers of magnitude increases in speed and power for picture pro-
cessing and other cognitive tasks. Our choices are dictated by a
variety of economic and practical issues, and it seems important

that a number of other, competing, architectures be implemented.

It seems compelling that a general system for the perception
of scenes of moving objects must be orders of magnitude faster
(and more powerful) than any conceivable single-CPU computer.
And it seems much more sensible to build a system that has many

processors working in parallel, rather than try to push as much
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power as possible out of one serial machine. Human perception
uses millions of processors arranged in a parallel-serial layered
network of arrays, and handles perception in a surprisingly small

serial depth of 25 or fewer processes to a few hundred at most.

A variety of different sources for speeding up processing
are available to us, and many of these can be combined. But the
only way in which we can continue to speed up our systems is to
add more physical processors. This paper examines some of these
sources of potential speed-ups, and some of the network and array
architectures that appear the most promising ways to exploit
them. 1t also describes and discusses the particular system that
we hope to build: a large array of simple processors, a smaller

network-array, and a powerful serial computer.

Probably the best way to view such a system is as a network
of diverse resources with which to learn how to explore and ex-
tend such networks - by simulating, designing, and building them,
then programming them to see how well they work. This raises
many major problems, in developing operating systems and
languages to expedite the smooth use of the total system, han-
dling different kinds of nodes in the total network, and develop-
ing appropriate algorithms and programs. But these are extremely
interesting, and important, problems in themselves. To the ex-
tent they are not solved, or handled well, such a system will
still be usable, in its separate components, and in the limited
combination of these components for which it has been expressly

designed.
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