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Abstract

Default reasoning has become an important topic of research
in Artificial Intelligence. It has been claimed that this pro-
cess is not understandable in terms of conventional inference.
We study three theories of default reasoning agreeing with this
claim.

A characterization of the default reasoning process as an
alternating sequence of executions of proof procedures for a con-
ventional metatheory and a related set of object theories is
presented in the form of a formal machine definition. We then
prove some results showing the relation of systems stemming from
the three theories considered teo our characterization of default
reasoning. These results are used as evidence to justify the hy-
pothesis that our machine definition represents a generalizatien
of those systems defined by the theories which can actually be
mechanized.

We also show that the property of nonmonotonicity is, in a
certain sense, not required for default reasoning as it is
characterized by these theories. Some results are given which
state conditions for the mechanizability of some of the systems

studied.
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1. Introduction

The attempt to develop a suitable theory of default reason-
ing and to build mechanical reasoning systems capable of doing
default reasoning has become an important area of research in Ar-
tificial 1Intelligence. The fact that default reasoning is con-
cerned with introducing new assumptions during the reasoning pro-
cess while the assumptions of a formal theory are fixed by the
definition of the particular theory, suggests that default rea-
soning cannot be explained by the notion of inference in a formal
theory. Several investigators have concluded that default rea-
soning is not explicable in terms of the conventional concepts of
logic. In particular, it has been claimed (see [8] or [3] for
example) that a system for default reasoning will have a property
called nonmonotonicity which ordinary formal theories do not
have.

The purpose of this paper is to present a formal definition
of a reasoning system based on conventional inference and argue
that the system thus defined subsumes several approaches to de-
fault reasoning all of which appear to involve nonmonotonicity.
We begin in section 2 with a discussion of default reasoning. In
section 3 we give the motivation for our definition and the de-
finition itself which characterizes a class of systems that we
call two-level systems. In section 4 we describe several ap-
proaches to default reasoning, specifically, those of McDermott
and Doyle [5], Reiter [6], and Winograd [8] while in section 5 we
analyze these approaches in terms of the notion of a two—level
system.

The approaches of [5] and [6] involve formally defined sys-




tems. We show that two-level systems can be defined that are
equivalent in a reasonable sense to these systems. Winograd’s
characterization yields several principles each of which is the
basis of a form of heuristic default reasoning rule. For each of
these principles we consider a heuristic rule exemplifying the
principle. We present a two-level system and show that it has
the properties to be expected of a model of a reasoning system
based on the given rule.

In section 6 we consider the problem of nonmonotonicity. We
argue that the systems of [5], [6], and [8] are not in fact non-
monotonic. To support our claim we analyze the behavior of the
two most important two-level systems defined in section 5, show-
ing the precise sense in which they are monotonic. We also show
that there are mechanizable two-level systems that are equivalent
to certain examples of the systems defined in [6]. Conditions
for mechanizability are not given in [6]. Finally, we show that
there are among these mecﬁanizable systems examples for which no

efficient algorithm is known.

2. The Process of Default Reasoning

In the study of logic, a formal system or formal theory is
defined as a set of inference rules and a set of axioms specified
in a formal language. A statement in the Jlanguage is then a
theorem of the formal theory if it can be proved by the inference
rules from the axioms of the theory. Although human reasoning

may not proceed by constructing proofs, the statements which a



human would consider to be the logical consequences of a set of
assumptions seem to be well modelled by the theorems of a formal
system using those assumptions as axioms. However, humans seem
to frequently introduce new assumptions during the reasoning pro-
cess, a procedure which is not allowed for in the definition of a
formal theory. A statement, determined by some process to be
plausible or reasonable, is assumed true and treated as such un-
til and unless discovered to be false. Such a statement may then
be used either as the basis for making further reasonable assump-
tions or as the basis for making logical inferences. Yet the
statements generated by such means are not necessarily true and
sometimes must be discarded when additional facts are learned.
For example, if our car ran properly when we used it yester-
day, we expect that it will run properly today. Our information
about the car does not allow us to infer this statement.
Nevertheless, we do expect the car to run today. The fact that
the car ran yesterday is only part of the reason for our expecta-
tion. It 1is also based on the fact that we don”t know anything
which contradicts it. There are many reasons why the car might
not run today even though it ran yesterday, but we don”“t know
anything implying that any of these are true. Thus, we are say-
ing, in effect, that since the car ran yvesterday and since we do
not know any information to the contrary, it is reasonable to as-
sume that the car will run today. The information on which we
base the introduction of this assumption may be incomplete. Some
condition which makes the car inoperable may actually be true and

simply unknown to us.




Another example of the idea of introducing new assumptions
concerns the characteristics of birds. We know that most birds
fly but that there are exceptions such as penguins. If we are
told that a tern is a kind of bird but know nothing else about
it, we would probably conclude that it is reasonable to suppose
that a tern can fly. This assumption is justified in the same way
as the previous one. Since most birds fly and since we don’t
know anything to the contrary, it is reasonable to assume that a
tern can fly.

In both of these examples an assumption is introduced on the
strength of information which supports the assumption without en-
tailing it and which is such that it does not contradict the as-
sumption. Thus, although the newly introduced assertion is
indeed an assumption since it does not follow logically from the
assertions held prior to its introduction, the new assertion is
in some way justified by the assertions already believed. The
assumption that our car will run is justified both by the ex-
istence of certain statements among those we currently believe
and by the absence of others. The process of introducing new as-
sumptions in this way is called default reasoning because of the
observation that the assumption is dependent on the absence of
certain information. The assumptions thus introduced are called
default assumptions.

It appears that in general, humans combine default reasoning
and conventional reasoning. Given a set of statements represent-
ing what one currently knows, one might generate default assump-

tions directly on the basis of these statements, or one might



generate them on the basis of statements which are not among
those currently known but which can be inferred. One might also
infer statements from those currently known or from default as-
sumptions.

The theories of default reasoning which have previously been
proposed treat this process as one which begins with a set of ax-
ioms and from these generates assertions whose justification may
involve any combination of default assumptions and statements in-
ferred by conventional inference rules. The reasoning systems
defined by these theories all share a property which is not true
of conventional formal theories. 1In general, if we modify an ex-
ample of one of these systems by adding an axiom to the original-
ly specified set, we may find that a statement which could be
justified on the basis of the original axiom set cannot be justi-
fied from the extended axiom set. For a formal theory, the
statements which can be justified on the basis of the axioms are,
of course, the theorems of the theory. 1In contrast to the sys-
tems for default reasoning, if a statement is provable from the
axiom set of a formal theory, that statement is also provable
from any extension of the axiom set.

A reasoning system which is such that a statement justifi-
able from a given set of axioms may not be justifiable from an
extension of that set is said to be nonmonotonic. The term is
meant to contrast the behavior of such systems with the behavior
of a formal theory which can be said to be monotonic in the sense
that the set of theorems never decreases as the axiom set is ex-

tended. Nonmonotonicity is an important and unfortunate property




of the reasoning systems introduced so far as models of default
reasoning. Intuitively, adding new beliefs to those which one
has previously held should not have the effect of making it im-
possible to justify an assertion which previously could be justi-
fied. Tn a later section we will argue that nonmontonicity is a

fictitious property for the systems of [5], [6], and [871.

3. Motivation and Definition of Two-Level Systems

In this section we will introduce the notion of a two-level
system. To motivate the definition we begin by considering the
problem we face in attempting to account for default reasoning in

terms of conventional inference.

3.1 Motivation

Default reasoning can be viewed in terms of the set of as-
sumptions held by the reasoner at any point during the process.
Before any default assumptions are introduced, the reasoner holds
some assumptions which he 1is certain are true. At any time
thereafter, the assumptions held by the reasoner include these
initial assumptions as well as any default assumptions generated
up to that point.

We clearly cannot view default reasoning as an inference
process within a single formal theory because the process intro-
duces new assumptions whereas the assumptions of a formal theory,
the axioms, are fixed by definition. Our problem then, is that

default assumptions must be viewed as axioms if we wish to ac-—



count for them within the framework provided by the notion of a
formal theory, but default assumptions are introduced during the
reasoning process while the axioms of a formal theory are speci-
fied before any reasoning is done within the formal theory.

If we add an axiom to a formal theory, we have defined a new
formal theory, an extension of the original one. Thus, i1f we
consider the assumptions with which the default reasoning process
begins as the axioms of a formal theory, then the first time a
new assumption is introduced, a new formal theory has been creat-
ed. Furthermore, if the process goes on to generate statements
by conventional inference using the new assumption as well as the
orignal ones, the statements thus generated are theorems of the
second theory but possibly not of the first.

The above considerations suggest that we formulate our de-
finition 1in terms of multiple formal theories. Each set of as-
sumptions which may be held by the reasoner could be represented
as the axioms of a formal theory (we would assume the same rules
of inference for all theories and that all assumptions and any
statements generated from them could be expressed in a formal
language). The introduction of a default assumption would then
be equivalent to introducing a new formal theory. Thus, we would
account for the introduction of default assumptions by postulat-
ing that the reasoner reasons in more than one formal theory.
Reasoning would begin in a theory whose axioms consist of the
reasoner”’s 1initial assumptions. Each time a default assumption
was introduced, the reasoner would, in effect, cease to reason in

the theory in which he had been operating and begin reasoning in




the extension of that theory determined by adding to its axioms
the newly introduced default assumption. However, such a formu-
lation would not account for the process of justifying the intro-
duction of default assumptions. To do this, we will take the
idea of reasoning in more than one theory a step further.

Let us return to our example of default reasoning about a
car. Consider the statement, "Since the car ran yesterday and
since we do not know any information to the contrary, it is rea-
sonable to assume the car will run today". This statement is our
justification for assuming the car will run today. We do not use
it to deduce the sentence, "The car will run today", but we do
use it to deduce an assertion about this sentence. We are, in
effect, asserting that among the statements we accept as true is
the sentence, "The car ran yesterday". We are also asserting
that we are unable to conclude from the statements we accept as
true that the car will not start today. From these two asser-
tions about our current beliefs and the statement giving condi-
tions under which it is reasonable to assume the car will run we
deduce the assertion, ""The car will run today", is a reasonable
assumption”, and therefore, we assume the car will run today.
Thus, it is reasonable to hypothesize that we justify the intro-
duction of a default assumption by deducing an assertion about
it. Such an assertion would have to be in a metalanguage for the
language in which the default assumption was stated. Therefore,
our definition of a default reasoning system based on convention-
al inference will be formulated in terms of multiple formal

theories in two formal languages.



Our view of default reasoning is that the reasoner maintains
two sets of assumptions during the reasoning process. One set,
which we call the set of current assumptions may be replaced at
any time during the process by a new set consisting of the union
of the old set and one new assumption. This set of assumptions
represents those beliefs about which the reasoner can reflect at
any time for the purpose of introducing new beliefs. The other
set of assumptions does not change during the process and
represents the reasoner”s rules for introducing new beliefs.

The definition of a two-level system reflects our notion of
default reasoning. An instance of two-level system will be a
collection of theories in two languages. All but one of these
theories will be defined in one language and will represent the
various sets of assumptions which the reasoner could hold as
current at different stages of the reasoning process including a
set representing the initial beliefs about which he can reason.
One theory will be defined in the second language. This theory
is intended to allow us to reason about sets of assumptions in
the other languade. Tt should allow us to assert that a given
assumptién set A and a default assumption o which could be intro-
duced if the current assumptions were those of A form a new
current assumption set A U {«}.

The theories representing the various possible current as-
sumption sets can be any formal theories, but the theory in which
we are to reason about assumptions must behave in the way we in-
tend and allow us to reason correctly about those objects which

we wish to reason about, i.e., sets of assumptions and individual
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assumptions. In other words, it is necessary that the theory can
actually be given an interpretation which accords with our intui-
tive interpretation. We insure this by requiring that an in-
terpretation always be given for this theory and that the in-

terpretation given meets certain conditions.

3.2 Definition of a Two-Level System

Let us now turn to our definition. We first give a defini-
tion of a concept which we will employ in defining the notion of
a two-level system. The idea of a structure for or model of the
formulas of a formal language is well known (see for example,
[1]). A structure for the language L consists of a domain of ob-
jects and a collection of mappings assiging suitable interpreta-
tions over the domain to the constant, predicate, and function
symbols of L.

As usual, given a term t from L and a structure for L we
think of each function s from the variables of L to a subset of
the domain of discourse as assigning a meaning to the variables,
each such function being called an assignment. Also as usual, we
can define for each term t of L a function E which maps assign-
ments to elements of the domain. For a given t, E is defined as

follows (see [1l]):

"N

1. If t is a constant symbol ¢, then t(s) = c for all s
where c is the element of the domain which c is
interpreted as;

2. If t is a variable v, then t(s) = s(v) for all s;
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3. If £ is the term f(tl,...,tn) then, for all s, define

t(s) = E(tq(S)s-nnrt (8))

"~

where f is the interpretation of f.

The following lemma is obvious from the definition of the mapping

A

t.

Lemma 3.1

If t is a closed term of L, then the mapping t has constant

value for all assignments.

For any closed term t of L the element of the domain which
is the wvalue of the mapping E is the same no matter what the
value of s. Let us also call this element t. We will then say
that t denotes the element %.

A two-level system consists of:

1. A set S of sets of wffs in a language L called the possi-

ble axiom sets. One possible axiom set is distinguished as

the initial axiom set. All other possible axiom sets must

be supersets of the initial possible axiom set. The set of
theories generated by by the possible axiom sets is called

the set of object theories.

2. A theory in a language L~ called the metatheory.

3. A structure for L” called the intended interpretation of

»

L™,
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We require that the domain of the intended interpretation be such
that it includes the wffs of L and the possible axiom sets. We
also require that L” and the intended interpretation be such

that:

1. For each wff o of L there is at least one closed term t

of L. such that t denotes d.

2. For each possible axiom set S € S there is at least one

closed term t of L such that t denotes S.

3. There is a binary predicate symbol of L”, say €, which is

interpreted as set membership.

4. There is a unary predicate symbol of L”, say Ap, such
that Ap is interpreted as the set S. That is, Ap(t) will

hold for some assignment s just if t(s) € S.

Finally, we require that the axioms of the metatheory be such

that:

1. For each possible axiom set S there is a closed term t

denoting 8 such that Ap(t) is provable.

2. For each closed term t of L” 1if Ap(t) is provable, t

denotes a possible axiom set.

3. If € S, then there are tl’ t2 denoting o and S such

that t; € t, and Ap(t) are provable.

4, If tl e t2 is provable for closed terms tl' t2, then t2
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denotes a set and tl denotes a member of that set.

The possible axiom sets are intended to represent the wvari-
ous sets of current beliefs that the reasoner might hold at some
point during the reasoning process given that he begins with the
initial axiom set. Thus, the object theories represent the sets
of formulas that the reasoner could infer. The requirements
given for the metatheory’s axioms are intended to insure that we
can prove in the metatheory that the possible axiom sets are the
possible axiom sets through the presence of the predicate Ap (for
"possible axiom set").

Intuitively, the introduction of a default assumption would
be represented in a two-level system by proving that the set con-
sisting of the possible axiom set representing the current as-
sumptions along with the given default assumption is also a pos-
sible axiom set. A formula would be inferred from the current
assumptions by constructing a proof of the formula using only
current assumptions (this would be a proof in one of the object
theories). It would also be necessary to prove in the metatheory
that the current assumptions constituted a possible axiom set and
that the members used in the proof of the formula belonged to
that set. Our definition of a two-level system includes systems
satisfying this intuitve picture as well as some which do not.
We choose the form of definition given both because it is simple
and for its generality.

The use of metatheories and their accompanying object

theories in computer reasoning systems has been investigated by
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Kowalski [4] and Weyhrauch [7]. Our definition of a two-level
system was developed independently of their work and makes use of
the notion of defining a set of (possibly contradictory) theories
in the object language whereas the work of both Kowalski and
Weyhrauch is based on the more usual idea of a metatheory-object
theory pair. Our definition also serves a somewhat different
purpose. Kowalski and Weyhrauch are concerned with constructing
actual computer systems while we are concerned with investigating
the relation to logic of certain concepts from artificial intel-

ligence.

4. Three Theories of Default Reasoning

Let us now turn to a description of the three theories of
default reasoning which we will analyze in terms of our model.
These three approaches are due to Winograd [8], Reiter [6], and

McDermott and Doyle [5].

4.1 Heuristically Based Default Reasoning Systems

Winograd”s paper gives a survey of what he terms extended
modes of inference. A number of computational systems are
described and an attempt is made to determine their common
characteristics. This results in a hypothesis by Winograd that
computer systems can be devised to perform certain types of
inference which he claims are not formalizable in standard logi-
cal terms. Four categories of procedures for performing such

inferences are given, each representing a principle that forms
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the basis of a type of default reasoning:

1. Procedures which infer a formula as the result of the
presence or absence of certain formulas in memory.
2. Procedures which infer a formula if a finite
deductive procedure fails to prove a certain formula.
3. Procedures which attempt inferences in a certain order.
4. Procedures which infer a formula if a resource-limited

inference procedure fails to prove a certain formula.

We will now examine the definitions of these categories to deter-
mine their relationship to the notion of default reasoning and to
isolate for each of them the reason behind the claim that it
represents a form of inference which cannot be accounted for in

terms of conventional inference.

4.1.1

Tn order to understand the definition of the first category
we will begin with an example discussed by Winograd. 1If we are
asked whether the Mekong River is longer than the Amazon, we
might conclude that it is not since the Mekong being longer than
the Amazon would be such a significant fact that we would know it
if it were true. Here the word "know" clearly means something
1ike "be aware of the truth of". Letting o be an arbitrary asser-
tion, we can generalize this example to a rule of the form: If we
are not aware of the truth of  and  is such that if it were

true we would be likely to be aware of it, then it is reasonable
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to assume that o is false. Such a rule represents an intuitively
valid justification for the assertion that an assumption is rea-
sonable and is, in fact, a form of default reasoning. For an
assertion which is such that we would be likely to be aware of
its truth if it were true, not being aware of the assertion”’s
truth represents absence of information contrary to the negation
of the assertion.

There are two problems in constructing a computer reasoning
system employing the above form of default reasoning. One prob-
lem is how one should define the set of assertions of whose truth
the system will be "aware" at any point in a computation. The
second problem is how the system is to decide for a given asser-
tion whether it would be likely to be aware of the assertion”s
truth if it were true.

Suppose we wish to construct a reasoning system which em-
ploys conventional inference along with the above rule. One way
to define the set of assertions of whose truth the system 1is
aware at any point during a computation would be to define it to
consist of those assertions occuring in the system”s memory at
that point. The set would therefore consist of those assertions
which had been assumed true initially or through the default rule
along with those assertions which had previously been inferred by
the system from its assumptions. The significant feature of this
definition for our purposes 1is that it makes a distinction
between assertions which are logical consequences of the system”s
assumptions and have already been inferred by the system and

those which are logical consequences but have not been inferred.
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There is no way to distinguish within a formal theory those
theorems for which a proof has been constructed from those for
which we have no proof. They are all equally theorems of the
formal theory. The definition of the first category is a gen-
eralization of the idea of defining the assertions which a rea-
soning system knows to be those which occur in memory. It does
not address the other problem mentioned above.

As we have just seen, the problem with including the notion
of the set of assertions known by a reasoning system in a system
which reasons in a formal theory is that the distinction between
already proven and unproven theorems cannot be made within the
theory. Therefore, any rule making use of this distinction can-
not be part of the theory, and we find here the basis for the
claim that a procedure belonging to the first category defines a
form of inference which cannot be explained in terms of inference
in a formal theory.

The notion of generating an assertion as the result of the
presence of certain formulas in memory need not concern us. The
formulas in memory at any time are those which the system has al-
ready accepted as true. The procedure generating an assertion
from these is effective since it is part of a computer system.
Thus, this case 1is just conventional inference though the pro-
cedure may represent some nonstandard inference rule. Our task,
therefore, will be to demonstrate the possibility of modelling by
a two-level system the behavior of a system which asserts formu-

las from the absence of assertions in memory.
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4,1.2

The definition of the second category is motivated by the
observation that after we have made a certain amount of effort to
infer an assertion and failed we often decide that the assertion
is 1likely to be false. If, having arrived in this way at the
conclusion that an assertion is likely to be false, we then as-
sume the negation of the assertion, we have actually introduced a
default assumption. A general rule would be: If an attempt has
been made to infer d and the attempt has failed, and if o is such
that if it were true the attempt would have been 1likely to
succeed, then it is reasonable to assume that  is false.

As in the case of the first category, there are two prob-
lems in constructing a computer reasoning system employing this
form of default reasoning, one of which is addressed by the de-
finition of the second category. The first problem is how to
handle the notion of an attempt to infer d. The second is how to
decide when d belongs to the class of assertions which may be as-
sumed false after the failure of an attempt to prové them.

In a computer reasoning system an attempt to prove or infer
an assertion would just be the execution of some procedure which
would take as its input the assertion to be proved along with the
assertions accepted as true by the system. Here, we are consid-
ering an inference attempt that ends at some point and so
corresponds to a total procedure, that is, one which halts for
every input. Thus, we have the notion of a computer reasoning

system which generates an assertion as the result of the failure
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of a (total recursive) subprocedure to infer the negation of the
assertion. The definition of the second category is a generali-
zation of this notion.

In general we cannot express within a formal theory a pro-
cedure for inferring theorems of that theory. Hence we cannot
include a rule of the type described above. Of course, such a
rule introduces new assumptions and so cannot be part of the
theory formed by introducing those assumptions in any case. In
the next section we will show how such a rule can be represented

in a two-level system.

4.1.3

The third category is illustrated by the previously given
example of default reasoning about the properties of birds. 1In
that example we considered the operation of introducing a default
assumption asserting that a tern can fly given that the reasoner
already held an assumption that most birds can fly along with as-
sumptions stating that certain indiviual species of birds cannot
fly. In this example we have an assertion stating that a proper-—
ty is generally true of the members of a class as well as several
assertions stating that the property is false for certain specif-
ically named members of that class. A general rule expressing
the type of default reasoning done in the example would be: If
property P is true of most members of a class and nothing is
known contrary to the assumption that P is true of a specific

member of the «class, then it is reasonable to assume that P is
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true of that individual.

The problems in constructing a computer reasoning system for
the above form of default reasoning are making precise the notion
of a property holding for most members of a class and handling
the idea of not knowing anything contrary to the assumption that
that the property holds for some individual. As before, only the
first of these problems is involved in the definition of the
third category.

To avoid the difficulty of giving a precise definition to a
quantifier 1like "most" computer systems have been constructed in
which assertions of the form, "Most members of class C have pro-
perty P", have been replaced by, "All members of class C have
property P". These systems also include assertions of the form,
"I is a member of C and does not have property P". It is left to
the program performing inference to deal with the existence of
inconsistent assumptions in the system.

The method followed by the program in attempting to prove an
assertion 1is to choose a subset of the assumptions contained in
the system and attempt to prove the assertion from these. If the
attempt fails after finitely many steps, a new set of assumptions
is chosen. The program”s criteria for choosing sets of assump-
tions are such that no set including a universally quantified
assertion is employed until all those sets of assertions about
individuals which the program considers relevant have been tried.
Thus, the program chooses axioms from which to reason in a cer-
tain order. In doing so it behaves according to the above rule

with "nothing known to the contrary" interpreted as "no proof
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from a relevant set of assertions about individuals has been
found". The intention is that the program be defined in such a
way as to preclude any attempt to construct a proof from an in-
consistent set of axioms. It is not known whether such pro-
cedures exist for other than trivial cases.

In the next section we will consider a hypothetical computer
reasoning system of the sort just described and show how to de-
fine a two-level system in which certain of the possible axiom
sets represent the sets of assumptions which could be chosen by

the computer system.

4.1.4

The definitions of these categories exemplify Winograd”s
contention that mechanical reasoning systems, to be successful,
must use some knowledge about their own inference procedures and
must take into account the fact that a practical system cannot in
any reasonable sense be viewed as "knowing"™ all the statements
which follow from its assumptions. Such contentions are quite
reasonable. We wish to argue, however, that it is possible to
define reasoning systems based on conventional inference in for-

mal theories which display such properties.

4.2 Default Theories

The second approach to be considered is that of Reiter and
is based on the definition of what he calls a default theory. A

default theory is a pair of sets (D,W). W is a set of closed wffs
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(i.e., sentences) 1in some first order language L. D is a set of

expressions called defaults of the form:

d: Mil,...,Mdk/?

where d, dl,...,dk, and F are wffs of .. Both D and W are al-
lowed to be infinite but are countable.

1f each wff occurring in some member of D is a sentence, the
default theory 1is said to be closed. Since Reiter deals mainly
with closed default theories and treats nonclosed theories by re-
lating each one to a certain closed theory, we will consider only
those which are closed.

From the definition of default theory we make the definition
of the extensions of a default theory. Let (D,W) be a closed de-
fault theory. For any set of sentences S let *(S) be the smal-

lest set X satisfying:

1. W C X;

2. X contains the usual axioms for and is closed under the
usual inference rules of predicate calculus;

3. If (d: Mdl,...,dk/P)eD and o € X and "dl,...,”dk¢s then

? e X. (Here, "o is the negation of the wff d.)

A set E of sentences is defined to be an extension of (D,W) if E
= F(E). We will use Th(X) to stand for the closure of X as de-
fined in condition 2.

The formulas of W represent the initial assumptions of the
system while the members of D are intended to represent rules for

introducing new (default) assumptions. The intuitive interpreta-
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tion of d:Mdl,...,Mdk/F is that if d can be inferred from "what
is known" and dl,...,dk are consistent with "what is known" then
d can be assumed. However, the phrase "what is known" presents
an obvious difficulty in making this interpretation precise.
Reiter skirts this problem by introducing the definition of an
extension of a default theory.

An extension is any fixed point of the operator ™. Examin-
ing the definition of ", we see that an extension E is deductive~-
ly closed and includes W, the initial assumptions. In addition E
contains various default assumptions. If d:Mdl,_..,Mdk/F € D,
€ E, and dl,...,dk are consistent with E, then P € E also.

Intuitvely we think of the reasoner as beginning with the
initial assumptions and applying both conventional inference
rules and "default inference rules". The result would be a set
of wffs closed under both ordinary and default inference rules
just as the result of applying ordinary inference rules alone to
a set of axioms is a deductively closed set. Unfortunately, de-
faults cannot actually be used as the default inference rules
suggested by intuition.

An extension is intended to be the closed set of formulas
which would result if we could use defaults as default inference
rules. A default theory can have more than one extension because
the reasoner might have a choice between inconsistent default as-
sumptions. A default theory can also have no extensions. This
appears to be intended to handle situations such as would occur,
for example, with a default theory whose only rule 1is :M(A vV

~aA)/(A & "A). The wff A v "A is a tautology and consistent with
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any consistent set of wffs while A & ™A is of course incon-
sistent. We do not wish to have inconsistent extensions of con-
sistent sets of assumptions. In fact, if W is consistent, then
the default theory having only this default has no extensions.
If W is inconsistent, then the default theory having only this
default has the single extension consisting of the whole language
L.

According to Reiter an extension is to be viewed as "an ac-
ceptable set of beliefs that one may hold about the incompletely
specified world W". Reiter calls a sentence which is a member of
some extension believable. Thus, given a wff and a default
theory, one question we would like to be able to answer is wheth-
er the wff is a member of some extension of the default theory.
We will show in the next section that for any default theory a
two-level system can be defined such that a wff is a member of an
extension just if it is provable from some possible axiom set of

the two-level system.

4.3 Nonmonotonic Theories

Our last example of a theory for default reasoning is due to
McDermott and Doyle. 1In this case, we begin with a special for-
mal language, LM which 1is based on an ordinary first order
language. LM contains wffs built up in the usual way from quan-
tifiers, connectives, and atomic formulas consisting of predicate
symbols applied to suitable arguments. However, a special sym-

bol, M is included in the alphabet for Ly- If d is any wff of
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LM’ then Mo is also a wff of LM. The goal of McDermott and Doyle
is to develop a system in which a formula such as Md can be in-

terpreted to mean that it is consistent with "what is known" to

believe .

Along with L we assume a set of logical axioms and infer-

M
ence rules exactly analogous to those for the predicate calculus.
From these axioms and rules, provability is given the usual syn-
tactic definition. Thus, up to this stage, the symbol M is tran-
sparent to the definitions made.

The next step is to define the set of formulas which are
"nhonmonotonically provable" from a set, A, of wffs of LM’ thus

defining the notion of nonmonotonic provability. This requires

some intermediate definitions. For A and S sets of wffs, let

i

ASA(S)

{Mp : “B¢s} - Th(n);

Th (A || As, (S)) .

[}

NMA(S)

Here, we assume that A contains the usual axioms for the predi-
cate caclulus and define Th in the same way as before. We then

define the class of fixed points of A, FP(A) for any A by

FP(A) = 1S ¢ S t of wffs & NM
(A) { a set of wffs A(S) - S}.

Finally, we define the set of wffs TH(A) to be the intersection
of all sets in the class FP if FP is not empty and Ly, if FP is
empty. TH(A) represents the set of wffs nonmonotonically prov-
able from A and is called the nonmonotonic theory of A.

AsA(S) is called the set of assumptions from S. Intuitive-

ly, it can be thought of as the set of default assumptions gen-
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erated by the wffs of S and the given initial assumptions of A.
Here, the idea is to introduce Mg if d is a reasonable assumption
rather than introducing o itself. Note that the definition of
the class FP(A) is similar to the definition of the class of ex-
tensions of a default theory. However, the extensions of a de-
fault theory are treated as alternative sets of beliefs. The set
of formulas accepted as true by the reasoner, given the sets W
and D may be any one of the extensions of (D,W). Here, instead
of treating each member of FP as one possible set of beliefs for
the reasoner, the set of formulas defined to be accepted as true
given that the reasoner accepts the formulas of A is TH(A) which
is just the set of formulas common to every member of FP. We
will discuss this difference between default theories and non-
monotonic theories in the next section.

One purpose behind the introduction of the symbol M into the
language in which reasoning is to be done is to allow assertions
of the form: MMd. Such an assertion would mean intuitively that
it 1is reasonable to assert that it is reasonable to assert d.
Such statements cannot be made in default theories yet it seems
plausible that humans may do such default reasoning about default
reasoning.

Unfortunately, as Davis [2] points out, the definition of a
model theory for nonmonotonic theories given by McDermott and
Doyle does not actually explain how to give a meaning to formulas
of the form Md. Thus, though syntactically well defined, non-
monotonic theories have no clear interpretation. We consider

them in this paper because they represent the only attempt known
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to us to define a system which allows default reasoning about de-
fault reasoning. Furthermore, it may be possible to give a clear
interpretation either to the syntactic definition as it stands or
to a somewhat restricted form. The intended meaning of the
assertion Mg is that it is reasonable to assert  which 1is the
same as saying that it is reasonable to assume d. Thus, the in-
tended meaning of M is similar to our notion of a predicate in
the metatheory of a two-level system which is provable of a set
of object language formulas just if it is reasonable to assume
those formulas simultaneously. This similarity suggests that
one way to approach the problem of a formally interpretable ver-
sion of the notion of nonmonotonic theory would be by defining,
instead of a two-level system, say, an n-level system where each

pair of levels corresponds to a two-level system.

5. The Relation of Two-Level Systems to Other Theories

of Default Reasoning

We now turn to the relation between two-level systems and
the theories of default reasoning introduced in the previous sec-
tion. Each of these theories will be examined in turn. Our gen-
eral approach will be to define in each case a two-level system
whose object theories bear a certain relation to the sets of
"believable" formulas determined by an arbitrary example of the
systems defined by the the default reasoning theory under con-
sideration. The exact nature of this relation will depend on the

theory in question, but in each case we will be able to claim
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that the defined two-level system is equivalent to the given de-

fault reasoning system in a reasonable sense.

5.1 Default Theories

We begin with the default theories of Reiter. First, we
will define a trivial two-level system for an arbitrary closed
default theory to show that conventional logical concepts do ac-
count for such systems. We will then turn to a special form of
default theory called a normal default theory, discuss its impor-
tance and show how to define a more interesting two-level system

for closed normal default theories.

5.1.1 Arbitrary Closed Default Theories

Suppose that (D,W) is an arbitrary closed default theory in
the language L. Let E be an extension of (D,W) and let
D(E) = {B| B € E and d:Mdy,... M /P € D
for some d,dl,...,dk}.
It is shown in [6] that E = Th(W || D(E)). We will use this fact
to define our two-level system. First we define a metalanguage

L”. Let L~ consist of:

1. A constant symbol, say d” for each wff  in L;

2. A constant symbol, say S°, for each set 5 of wffs
of L;

3. One unary predicate symbol Ap and one binary

predicate symbol €.
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Let AP be the unary relation over the sets of wffs of L defined
by:
1. W|| D(E) € AP for each extension E of (D,W);

2. Nothing else is in AP.

We can now define a structure for L~ which will serve as the in-
tended interpretation of our two-level system”s metatheory. The

domain of the structure consists of:

1. The wffs of L;

2. The sets of wffs of L.

Each constant d” of L” is interpreted as the corresponding
wff o of L. Each constant S is interpeted as the corresponding
set S. The predicate symbol € is interpreted as set membership
while Ap(x) is interpreted to mean that x is in AP.

The possible axiom sets of the two-level system are the

members of AP. The axioms of the metatheory are:

1. d” € 8° for each g° and each S” such that o € S;

2. Ap(s‘) for each 8° such that S € AP.

We must show that these definitions of a metatheory, an in-
terpretation for the metatheory, and a set of possible axiom sets
satisfy the requirements for a two-level system. The domain of
the given structure certainly includes the wffs of the object
language and the possible axiom sets. We must also show that
Ap(t) is provable in the metatheory if and only if t denotes a

possible axiom set and that if ? is provable from a possible ax-
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ijom set S, then for each member of S, say d, occuring in the
proof o € t is provable in the metatheory for closed t such that
t denotes S and Ap(t) is provable. Let us call the system just

defined =.

Lemma 5.1
If t is a closed term in L” and Ap(t) is provable in the

metatheory of =, then t denotes a member of AP.

Proof:

Obviously, the axioms of =”s metatheory are satisfied by
s”’s structure. Therefore, if Ap(t) is provable, it must also
be statisfied by the structure. Since Ap is interpreted as AP,

this can only be the case if t denotes a member of AP.[]

Lemma 5.2

If S € AP then there is a closed term t of L” such that t

denotes S and AP(S) is provable in =”s metatheory.

Proof:

For every set S in AP the constant symbol S” denotes S and

AP(S’) is an axiom.][]

Lemma 5.3
Suppose t is a closed term of L. Then d© € t is provable

iff t denotes a set and d is a member of the set.

Proof:
I1f ° € t is provable, then d° € t must be satisfied by

the structure so t must denote a set of which d is a member.
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Since the there are no function symbols, the only terms
denoting sets are constant symbols. If t = S and o € S, then

d” € 8° is an axiom.[]

Thus, = is indeed a two-level system. From the definition
of the intended interpretation we see that the set of sentences
provable from a possible axiom set is an extension of (D,W) and
that every extension can be generated from some possible axiom

set. Thus, in an obvious sense ¥ is equivalent to (D,W).

5.1.2 Closed Normal Default Theories

Although we have shown that the extensions of a closed de~
fault theory can be accounted for in terms of the object theories
of a two-level system, we did so by introducing a two-level sys-
tem with a metatheory which is not very satisfying. It allows us
to conclude that possible axiom sets are possible axiom sets but
only because an axiom asserting Ap for each such set is included.
Furthermore, the set of these axioms may be uncountably large.
(We also have uncountably many constant symbols, of course.)

It is therefore natural to ask whether a two-level system
can be defined such that the object theories correspond to the
extensions of a closed default theory, but with a countable axiom
set for the metatheory and a more reasonable way of handling Ap.
In particular, we would like the metatheory to agree with the in-
tuitive basis for the notion of a two-level system as presented
in a previous section. There we viewed default reasoning as a

process of adding a default assumption to a set of axioms
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representing the reasoner”s current beliefs. We will see below
that this can essentially be done for a special type of closed
default theory called a closed normal default theory.

A normal default theory is one in which all defaults are of
the form d:MF/?. That is, the only wff which must be consistent
with "what is known" is the one to be assumed. Reiter argues in
[6] that most natural default rules are of this form. He also
shows that for closed normal default theories any member of an
extension has what he calls a default proof.

Given a normal default rule d:M?/?, call d the prerequisite
of the rule and ? the consequent. For any set of normal default
rules D let P(D) be the set of prerequisites occuring in D and
let C(D) be the set of consequents. A default proof of Y from a
closed normal default theory (D,W) is a finite sequence of finite

subsets of D, say {Di} for i = 1 to k, such that

1. For each d € P(Dy), W Fod;

2. For each i, i = 1 to k-1 and for each o € P(Di+1),

wllcm;) ko
3. wljcm ks

4. W || C is consistent where C = Lb(Di), i = 1 to k.

Reiter shows that Y is a member of some extension for (D,W) 1if
and only if Y has a default proof. A similar result for arbi-
trary closed default theories using an analogous definition of
default proof fails to hold indicating a shortcoming in the gen-
eral notion of a default theory.

In effect, although the definition of an extension supplies
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a description of the result of having introduced a certain set of
default assumptions, for the general case there is no notion of a
process which introduces these assumptions. Thus, we have a no-
tion (extension of a default theory) corresponding to the result
of default reasoning but no notion of default reasoning itself.
Obviously, defaults were intended to be a sort of inference rule
for introducing default assumptions. We will see below, however,
that they cannot actually be treated as such in general. On the
other hand, the notion of a default proof represents a way of
describing a default reasoning process for normal default
theories. In the course of defining a two-level system for the
normal case we will see that for this case defaults can be treat-
ed as inference rules, and it is this fact which underlies
Reiter”s result on default proofs. Default proofs are easy to

account for in the context of a two-level system.

5.1.2.1

Let (D,W) be an arbitrary closed normal default theory in
the language L. The following results about (D,W) will be used
in defining a two-level system for (D,W) and will show why the
defaults of D can be thought of as inference rules for introduc-
ing default assumptions.

Let E be a fixed set of closed wffs in the language L of the
closed normal default theory (D,W). Consider the defaults of D
to be given in some order. Suppose that dj’ ?j are the wffs oc—

curing in the jth default.
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Let

FO = W

Fivp = U Fitl,d for 3 = 0 to i+l
where

Fiv1,0 = Fi

Fiy1,541 = Fis1,g H (Byh 1E Fypy g oy

and “B. E
By ¢
= Fi+l,j otherwise.

Let F =||F, for i = 0 to™®,

For our discussion of default theories we will use Th(S) to mean

the set of sentences provable from S.

Lemma 5.4

Th(F) = N(E). Hence, E is an extension for (D,W) iff
E = Th(F).
Proof:

Since E is an extension iff E = F(E), it suffices to show

i

that Th(F) = [N(E). First we will show that Th(F) satisfies the

conditions which must be true of [“(E):

Condition 1

W C Th(F) by the definition of F.

Condition 2

Obviously, Th(F) = Th(Th(F)).

Condition 3

Suppose for some member of D, say dk:MPk/Fk' dkeTh(F) and
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N?k¢E. Since dkeTh(F), there is a least i, say i”, such that

F;}b o, Suppose k < i”. Since F-b oy Fi’+l,kk d, because

F.o CFyryq, g AlSO, “Pk¢E so by the definition of F, B €F. Now
suppose k > i”. Since Fi,k o, and F;. C F; for all i> i, Fiqu
for all i > i”. Therefore, F | o and so Fk+l,kk oy . Also, "B, &E

so again Fk e F.
Thus, Th(F) satisfies the three conditions.

We can show Th(F) C [T(E) by showing by induction that
F C ["(E). Obviously, Fy =W C M(E). Suppose F. C M(E) and
consider BEF, - Either BEF ., in which case ?GF(E) by assumption,
or B = pj where B, is such that Fi,y 549 = Figp 4 L}{§j},
Fi+l,jk Ay and ”Pj¢E. Suppose B is such a ?j‘ Since F, C ™(E)
by assumption, Fiv1,0 = F3 C ["(E). Suppose Fitl,d c T(E). Then
since Fi+l,jk Ay s qjer(E) because [Y(E) = Th({*(E)). Also, ”Fj¢E
so by the definition of [Y(E), PjeF(E). Tt follows that for j = 0
to i+l, Fi+l,j
and so Th(F) C [M(E).

c M™(E) and therefore, F; q C [(E). Thus, F C M(E)

Thus, we have that Th(F) satisfies the three conditions on

P(E) and that Th(F) C N(E). Therefore, Th(F) = [N(E).I]

Consider the class of sets consisting of W and all sets of
the form W |[] {dl,...,dk}. We define a unary relation AP over

this class as follows:

1. WeAP.

2. For any set A in AP and any default d:M?/peD,

if Ald, and Ay~§, then (A || {F})GAP.
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3. No other members of the domain are members of AP.

Lemma 5.5

Suppose E is an extension of (D,W). Then for the sequence

of sets {Fi} defined above, F;€ AP for i = 0 to ®.

Proof:

Clearly, F_€ AP, Suppose erAP and consider Fk+1‘ From

0

the definition we can see that Fk+l= Since Fk+l,0= Fk'

Frsl, k+1e

Fk+l,Oe AP. Suppose Fk+l,ie AP for i < k+1 and consider Fk+l,i+l’

TE Frir, i1 Fra, i 080 Fryg 5407 Fre1, iH {Pj} where ~§j¢ E and
Fk+l,ikdj‘ Since ”Pj¢ E, Bj is consistent with Fk+1,i by the
previous lemma. Therefore, F, ., dj' and ?j satisfy the
conditions of the definition of AP and Fk+l,i+l€ AP. It follows

that F .€ AP for i = 0 to k+l. Thus, F € AP and by induction

k+1,1i
Fie AP for all i.[]

Theorem 5.1
Let E be an extension of (D,W). Then there is a sequence of

sets in AP, say AO,Al,..., such that for each i, A.C A and if

i= Ti+l’
A =|j; for i = 0 to ®, then E = Th(a).

Proof:
By Lemma 5.4 E = Th(F) where F = |ff, for i = 0 to ® and by
the definition of the sedquence {Fi} and Lemma 5.5, the Fi’s

satisfy the other conditions of the theorem.[]

For any closed normal default theory (D,W) and any ordering

of the defaults of D let
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EO = W

Ei+]_ = uEi+l,j' j = 0 to i+l
where

Eiv1,0 = B

Ei+l,j+1 = Ei+1,j H {Pj} if Ei+l,jk dj’
and Ei+l,jy ~Pj

= K, otherwise.

i+l,73

Here we again assume that dj and ?j are the wffs occuring in the
jth default for the given ordering. Let E = Th(E”) where
E* = Lmi, i = 0 to @ and let F be defined as above in terms of this

set E.

Lemma 5.6

E is an extension for (D,W).

Proof:

If W is inconsistent, E = L the entire language. It is
easy to see from the definition of the set F that if W is
inconsistent, it has the unique extension L. Thus, E is an
extension in this case.

Suppose W is consistent. Then by construction E® is
consistent and so is E. We already know that E is an extension
iff E = Th(F). Therefore, we will show that E” = F.

Obviously, Ej = Fy. Suppose E; = F;. Then E; 1 o = Fis1,0
so assume that Ei+l,j = Fi+l,j
and ?j¢Ei+l,j (and hence, Fi+l,jk dj and ?j¢ Fi+l,j)' If

Ei+l,jy "By, then "§j¢Ei or Ej 1 r k=0 toJ and furthermore

and that Fj is such that Ei+l,jkdj
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?jeEi+l and hence also Ek for all k > i+l. Therefore, since E

is consistent, "§j¢E. Thus, Fiip, 541 = Fi41,9 L {Pj} =
Ei41,5 L] {Pj} = Biy1, 5941 in this case. If N?j ¢E, (so that
= F u {Fj})’ then we also have Ei+l,jy N?j and so

Fivl, 341 i+1,3

Eir1,441 = Big1,4 H {Fj}- Thus, By,q 4 = Fi4p,40 J = 0 to i+l
and it follows that Eipp = Fyap- Therefore, by induction,

E° = F.[]

In the definition of the sets E, given before Lemma 5.6 an
ordering of the defaults of D is assumed. It is important to
note that the lemma does not tell us that we could construct an
extension by simply attempting to apply each default as a rule in
the order given by the ordering. That is, we cannot attempt to
apply the first rule to W, then attempt to apply the second rule
to the set of wffs which results from applying the first rule,
and so on. It is easy to see that such a procedure need not
result in an extension. However, the definition of the sets E.l
induces another ordering, possibly distinct from the assumed ord-
ering. In this ordering, defaults which are actually applied in
constructing some Ei come before those which never apply and
those defaults which are applied are ordered in the order in
which they apply. Using this second ordering we could construct
an extension simply by applying the defaults in the order given
by the ordering. Similarly, the definition of the sets F. given
before Lemma 5.4 induces an ordering of the defaults for any
given extension E such that E can be constructed by applying the

defaults in the order given by the ordering.
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Lemma 5.6 also lets us show in the next theorem that if we
treat the defaults as rules, then any set of formulas contstruct-
ed from W by applying defaults will be a subset of some exten-

sion.

Theorem 5.2

Suppose A € AP. Then there is an extension E of (D,W)

such that Th(A) C E.

Proof:
Since A € AP, either A = W or A = Ay |l|...|| Ay where Ay = W
and for each i A, q= A L {?i} for some B. such that for some d;

di:MPi/?ie D and Ai, di' and ?i satisfy the conditions of the

definition of AP. Order the defaults of D so that the first k
defaults are those used to form Al""'Ak' We will show that
A C E” where E” is the set defined above.

Clearly Ay = E;. Suppose that A; = E; for i < k and
consider A;.; and Ejyq. Ejypp = [Bj4q,4, 3 = 0 to i+l. Also,
Eiy1,0 = Bi = Ai- Bigp,g41 = Biga,g U {Bs} if Byyq 5k oy and
Ei+l,jy “pj. But for j < i PjeAi' Therefore, for j = 0 to i

Ei+l,j = A;. Hence, for j =i Ei+l,jk dj and Ei+l'jy”§j.
Therefore, By, 341 = Ay L {B;} = A;,1, and it follows that
Ei+l = Ajq also. Hence, A C E which is an extension by Lemma
5.5.11

Theorem 5.3

A sentence ? is a member of some extension E of (D,W) iff

? € Th(A) for some A € AP.




40

Proof:

If ? € Th(A), then ? € E for some extension E by the
previous theorem.

1f ? € E for some extension E, then ? € Th(F) by Lemma 5.4
(where F is as in Lemma 5.4). Since the proof of ? from F must
be finite, there is an i such that FiF?. By Lemma 5.5

FiG AP.[]

The above results show that for the normal case we can give
a characterization of an extension which is different from that
given by Reiter who defines an extension to be a fixed point of
the operator r; The set of theorems of an ordinary formal theory
is in a sense a fixed point too, but we can also think of this
set as being produced by the inference process from the axioms of
the theory. Analogously, we would like to think of an extension
of a default theory (D,W) as being produced from W by a process
involving ordinary inference rules and the defaults of D treated
as rules for introducing default assumptions. However, we cannot
do this in general.

Reiter”s intuitive description of the meaning of a default
employs the phrase "what is known". To actually use a default as
a rule for introducing an assumption we must make the definition
of this phrase precise. It is natural to try to interpret "what
is known" to mean the set of sentences accepted as true at the
time the default is applied. Thus, W would initially represent
what is known and each time an assumption was introduced we would

add the assumption to the set representing what is known. We
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could then use defaults as rules for introducing assumptions by
saying that if o:Md,,...Md, /B is a member of D, then B may be ad-
ded to the set of formulas representing what is currently known
if d is provable from that set and dl""'dk are consistent with
that set. Unfortunately this approach fails.

Suppose that the default d:Mdl,...,qu/g applies to W in
the manner Jjust described. Then if we apply this default, we
have a new set of formulas representing what is known, namely W L
{?}. Now, however, suppose we have another default, say
o :MA”y,...,Md" /B” such that o is provable from W L {F},
d"ys...,qd", are consistent with W L {?}, and ?’ is, say, "dj-.
Thus, we could add "d; to W L {P} but the resulting set contains
? when it should not.

For example, let W = {p(a)} and D =
{P(a):MQ(b)/R(a),P(a):MR(a)/"Q(b)}. If the first default is ap-
plied to W in the manner described above, we get W ‘J {R(a)} as
the new set representing what is known. If the second default is
then applied to W || {R(a)}, we get W || [R(a),~0Q(b)} representing
what is known. But the condition for applying the first default
was that Q(b) be consistent with what is known. Q(b) is not con-
sistent with the last set derived so we must ask whether we are
justified in including R(a) in that set. 1In fact the defintion
of an extension is such that the justification for the occurance
in an extension of any default assumption depends on all other
default assumptions occuring in the extension. Because of this
there does not appear to be any way to treat defaults as rules in

the case of an arbitrary default theory.
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5.1.2.2

For a closed normal default theory the above results show
that we can treat the defaults as rules for introducing assump-
tions in the manner described above. Because of this Reiter”’s
result concerning default proofs is not surprising. Each default
proof corresponds to an initial segment of one of the segquences
of sets {Ei} defined above in an obvious way. Furthermore, be-
cause we can treat the defaults of a closed normal default theory
as rules for introducing assumptions, we can define a two-level
system for such a default theory where the meta-axioms for Ap
correspond directly to the defaults. We now proceed to do this.

Suppose (D,W) is a closed normal default theory in the

language L. We first define a metalanguage, L”, consisting of:

1. A constant symbol for each wff, o, of L, say d7;

2. A constant symbol for W, say W';

3. One binary function symbol, say ad;

4. The usual connectives and quantifiers and an infinite
supply of variables;

5. The binary predicate symbols € and Pr and the unary

predicate symbols S, and Ap,

Next, we define a structure for L”. The domain of discourse
consists of A || B || {w} where A is the set of wffs of L and B is
the set of sets of the form W |] {dl,...,dk}. Thus, the domain

consists of the wffs of L, the set W, and all sets consisting of
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the union of W and some finite set of wffs of L. Symbols of the
form d° from L~ are interpreted as the corresponding wff o of L.
The symbol W is interpreted as the set W. We interpret € as the
standard membership relation. S(x) is interpreted to mean that x
is a set while Pr(x,y) is interpreted to mean that the wff y is
provable from the set of wffs x. AP is interpreted as the unary
relation defined above.

The function adj is defined as follows:

If x = Wor x =W || {dl,...,dk} and y is a wff of L,
x || {y}

d.

]

then let adj(x,y)

else let adj(x,y)

Here, d is some fixed wff of L. Thus, if x is one of the sets in
the domain and y is one of the wffs, then adj(x,y) is the union
of x and {y}. Otherwise adj(x,y) is a wff. The function symbol
ad is interpreted as the function adj. This completes our in-

terpretation of L”.

Our metatheory must allow us to deal to a certain extent
with sets of wffs of L. We must be able to handle taking the un-
jon of a set of wffs and a singleton and we must be able to show
that members of one of these sets are indeed members. However,
we do not wish to get bogged down in the machinery of set theory
since we do not need anything so powerful. We thus introduce the
function adj and its corresponding symbol ad as well as the sym-
bol S and its interpretation. The axioms for ad and € given

below allow us the necessary ability to manipulate sets. The ax-
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ioms for S allow us to distinguish terms denoting sets from those
denoting wffs.

We also wish to keep our metatheory first order. For many
of the axioms below it would be most natural to quantify over
sets of wffs but this would result in a second order theory. We
therefore use countably infinite sets of axioms in these cases,
one axiom for each finite set of wffs. Finally, we introduce ax-
ioms asserting both provability and unprovability statements for
wffs in L. In the case of provability our purpose is to keep the
metatheory simple. In the case of unprovability we of course
have no choice.

We can now state the axioms of the metatheory to be
emmployed in the two-level system we wish to define. They are

as follows:

In the following we write ad(W’,d’l,...,q’k) for

ad(...ad(w’,d’l),...,q’k).

1. “eW” for each deW.

2. “(d"ew”) for each g&w.

3. S(W").

4. “S(d”) for all constants of L other than W”.

5. ¥x¥y (S(x) & ~S(y) < S(ad(x,y))).

6. ¥x¥yV¥z(x € ad(y,z) < (S(y) & "S(z)) & (x € vy Q X = 2z)).

75- Pr(W”,d”) for each d such that W .

7 . Pr(ad(W’,d’l,...,d’n),P‘) for each q'l,...,q’n,g' such
that W || {«"y,...,d" } FB”.

n
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80. ~Pr (W ,a”) for each d such that W ¥d.

8n‘ ”Pr(ad(W’,d'l,...,d'n),P’) for each d’l,...,d’n,P’ such

that W || {d"; ..o a” ) ¥B”.

9. Ap(w’),
90. Pr (W ,d") & ~Pr(W’,”?’) > Ap(ad(w’,P')) for each

d:Mp/p € D.

gn. VXl...Vxn(Ap(ad(W’,Xl,---,Xn)) & Pr(ad(w’lxll"‘lxn) ld’)

& ~Pr(ad(W’,xl,...,xn),“P) > Ap(ad(w’,xl,...,xn,P))) for

each d:M?/? € D.

As we will see below, these axioms represent true statements con-
cerning the function and predicate symbols of L” as we have in-
terpreted them.

To define the two-level system we wish to consider we take
the above axioms as the axioms of the metatheory. The possible
axiom sets are just the members of AP. We take the structure de-
fined above as the intended interpretation of the metatheory.

The metatheory we have defined would not be recursively ax-
iomatizable in general and we will discuss this point below.
However, the set of axioms we have defined for the metatheory is
countable. Let us call the system just defined Z. We must now

show that = meets the requirements for a two-level system.
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Lemma 5.7

Let t be a term of L” of the form ad(W’,d’l,,..,q’k). Then

t denotes W || {dl,...,dk}.

Proof:
We use induction on k. If k =1, then t = ad(W’,d’l) and
by our definition of "denotes" t denotes adj(w,dl) =W u {ql}.
Suppose the lemma is true for k = n and consider k = n+l.
By assumption ad(W’,d”;,...,d",_;) denotes W L {dl,...dk_l} so
again by the definition of "denotes" ad(W’,d'l,...,d’k) denotes

LA NIE ST S

Lemma 5.8
If S =Wor S =W]|[]| {ql,...,dk}, then there is a closed term

t of I.” such that t denotes S.

Proof:

W is denoted by W'. By Lemma 5.7 W || {dl,...,dk} is denoted

by ad(W',d'l,...,d’k).[]

Lemma 5.9
Let t be a closed term in which ad occurs such that t is not
of the form ad(w’,d’l,...,d’k). Then t denotes d, the arbitrary

wff specified in the definition of adj.

Proof:
Since the only function symbol is ad, t must be of the form
ad(tl,tz).

Suppose tl and t2 are constant symbols. Then either
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ti# W oor t,= W* (otherwise t is of the wrong form). 1In either
case, t denotes d.

Suppose the claim is true for terms containing k occurances
of ad and consider t containing k+1 occurances of ad. 1If tl
denotes a set and t2 denotes a wff, then t is of the wrong form.
Thus, either tl does not denote a set or t2 does not denote a wff

so again, t denotes d.[]

Lemma 5.10

A closed term t of I.” denotes a set iff t = W* or t is of

the form ad(W’,d’l,...,d’k).

Proof:

Since the only function symbol is ad, t must either be a
constant symbol or a term of the form ad(tlrtz)' By the
interpretation of the constant symbols, only W® denotes a set.
By Lemma 5.9 if ad occurs in t, then t denotes a set iff t is of

the form ad(W’,d’l,...,d’k).[]

Lemma 5.11
The axioms of >=”s metatheory are satisfied by the given

structure.

Proof:

Axioms of the form o € W and d” ¢ W’ are obviously
satisfied by the structure as are S(W") and axioms of the form
s (d) .

If x is a set in the domain of discourse, then x is either W

or the union of W and a finite set of wffs of L. If y is not a
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set, then y is a wff of L. Thus, by the definition of adj,
adj(x,y) is a set. Conversely, if adj(x,y) is a set, then x must
be a set and y a wiff. Hence, the axiom

¥x¥y (S(x) & "S(y) <« S(ad(x,y)))
is satisfied by the structure and similarly

Vx¥y¥z (x € ad(y,z) < (S(y) & "S(z)) & (x€y v x=2))
is also satisfied.

Axioms of the form Pr (W’ ,d”) and "“Pr (W ,d”) are obviously
satisfied by the structure. By Lemma 5.7 any term of the form
ad(W’,d’l,...,d’k) denotes the set W || {dl,...,dk} so it is also
clear that axioms of the form Pr(ad(W’,d’l,...,d’k),?’) and
~Pr(ad(W’,d’l,...,c(’k),P’) are satisfied.

The axiom AP(W’) is also obviously satisfied. If for any
d:M?/P € D Wha and WV”P, then adj(W,B) € AP. Therefore, axioms of
the form

Pr (W ,d”) & "Pr (W ,B7) > Ap(ad(w’,p’)
are satisfied by the structure. Simlilarly, axioms of the form

¥x ...Vxn(Ap(ad(W ,xl,...,xn) &

1
Pr(ad(W’,xl,...,xn),d’) &
~Pr(ad(W',xl,...,xk),{B’) >
Ap(ad(W’ ’xl,--tlxklP’)))

are satisfied. To see this we note that by Lemma 5.10

ad(W’,al,...,an) denotes a set 1iff ajr.-.sa, are constants, say

d*1s...sd”,, denoting wifs of L. But if A (ad(W A"y, ... A7),

Pr(ad(w,ld,ll"'ld,n) Id,)l ”Pr(ad(W’,d’l,...,d’n) r?’) are

satisfied by the structure, then adj (W || {ql,...,dn},?) belongs

to AP and Ap(ad(W’,d’l,...,d’n,p’)) is also satisfied.[]
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Theorem 5.4

If S € AP then there is a closed term t of L” denoting S

such that Ap(t) is provable in £”s metatheory.

Proof:

For S = W we have Ap(W’) as an axiom.

For S a union of W and a finite set R of wffs it is obvious
that the members of R can be ordered, say as Fl""'?k’ such
that W || {131} € ap, W || {pl,pz} € AP,..., W] {pl,...,pk} € AP.
For S # W we will show that if s = W || {Pl""'?k} where By, ..., By
are ordered in the way just described, then
Ap(ad(w’,p’l,...,p’k)) is provable. By Lemma 5.7 this will
satisfy the theorem”s claim.

Suppose S = W || {Fl}‘ Then by the definition of AP there
is dy:MB;/B; € D where W I o, and W is consistent with B,. Thus,
there is an instance of axiom schema 90 in which q’l and ?’l
occur. Furthermore, Pr(W’,d’l) and ~Pr(W’,”F’l) are instances of
axiom schemas 70 and 8, respectively. Thus, Ap(ad(W’,§’l)) is
provable.

Suppose that for S = W || {Pl,...pk} with By,...,B, ordered
as above Ap(ad(W’,P'l,...,y’k) is provable. Consider
s =W|| {Pl""Fk+l} where again we assume the Fj’s are ordered
as above. Then there must be dk+l=MPk+l/Pk+l € D such that
W L}{Pl,...,pk} - o, 41 and is consistent with B, ,. Therefore,
there is an instance of axiom schema 9k in which d’k+l and ?’k+l

occur. Furthermore, there are instances of axiom schemas 7k and

8, of the form Pr(ad (W ,B yse.«/By) A yq) and
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”Pr(ad(W’,?’l,...,P’k),"?’k+l). By hypothesis we have
Ap(ad(W’,?’l,...,?’k)) S0 Ap(ad((W',?’l,...,F'k+l)) is also

provable. []

Theorem 5.5
If Ap(t) is provable in £”s metatheory for a closed term t,

then t denotes a member of AP.

Proof:

By Lemma 5.11 the axioms of the metatheory are satisfied by
the structure defined for . Therefore, we can make the same

argument as for Lemma 5.1.[]

Theorem 5.6

For any closed term t of L.”, d” € t is provable in Z”s

metatheory iff t denotes a set and d is a member of the set.

Proof:

Suppose d” € t is provable. Then d” € t must be satisfied
by =”s structure since the axioms are. Therefore, t must denote
a set and ¢ must be a member of it.

Suppose t denotes a set and d is a member of the set. By
Lemma 5.10 t is either W* or of the form ad(W',d’l,...,d’k). If t
is W then o € W is an axiom. Otherwise, ” € t is provable

by repeated applications of axiom 5.[]

Thus, = is a two-level system which 1is -equivalent to a
closed normal default theory in the sense that the sentences

provable from each possible axiom set are contained in an exten-
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sion and every extension <corresponds to the set of sentences
provable from an increasing sequence of possible axiom sets. The
set of axioms of the metatheory is countable and the axioms for
Ap correspond directly to the defaults of the default theory. As
a result, = corresponds well with our intuitive view of default
reasoning as a process of introducing a new assumption because it
is Jjustified by our current assumptions. We were able to define
the meta-axioms for Ap in a natural way because, unlike the case
for arbitrary closed default theories, the extensions of a closed
normal default theory may be defined in terms of a sequence of
increasing sets of assumptions where each set contains only fin-

itely many more wffs than its predecessor. This fact is not ob-

vious from the results of [6].

5.2 Nonmonotonic Theories

For the nonmonotonic theories of McDermott and Doyle we can

also supply a trivial two-level system. Recall that

As, (S) = {M? : "F¢S} - Th(a)
NM, (8) = Th(A || As,(S))
and that FP(A) is the class of all sets S such that 8 = NMA(S)

while TH(A) is the intersection of the members of FP(A).

Lemma 5.12

TH(A) is closed under ordinary dedcution.

Proof:
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First, note that if S € FP(A), then S is deductiveiy closed.
This is true because S = Th(A || As, (S)) .

Suppose TH(A) } . Then o is provable from some finite
subset B of TH(A). By the definition of TH(A) B C S for all
S € FP(A). Therefore, since for all S € FP(A) S is deductively

closed, o € S for all such S. Thus, d € TH(A).[]

Given a nonomonotonic theory TH(A) in the language LM we
define a system Z. We begin by defining a ﬁetalanguage L’M

consisting of:

1. A constant symbol, say d°, for each wff o € L’M;
2. A constant symbol, say S7;
3. A unary predicate symbol, say Ap' and a binary predicate

symbol, say €.

We next define a structure for L’M. The domain of the
structure consists of the wffs of LM and the set TH(A). Each
symbol o~ is interpreted as the corresponding wff . The symbol
S* is interpreted as the set TH(A). The predicate symbol € is
interpreted as set membership while Ap(x) is interpreted to mean

that x is TH(A).

We can now define the axioms of Z”s metatheory:

1. d” € 8° for each o € TH(A);

2. AP(S').

To complete our definition of > we define TH(A) to be the

only - possible axiom set of . It is easy to show that £ satis-
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fies the requirements for a two-level system.

Lemma 5.13

Z is a two-level system.

Proof:

Requirements one and three of the definition of a two-level
system are obviously satisfied. For requirements two and four we
use the fact that the meta-axioms of = are obviously satisfied

by the structure and argue as in Lemmas 5.1 and 5.3[]

From Lemma 5.12 we see that = is equivalent to TH(A) in the
sense that d is a member of =Z”s only object theory if and only if
d is a member of TH(A). Note that here we have a two-level sys-
tem with a meaningful metatheory and a meaningless object theory.

As with closed default theories, we introduce the above
two-level system simply to show that a nonmonotonic theory can be
treated in terms of formal theories. Unlike default theories we
do not have a more promising special case to investigate. Howev-
er, we can take note of one possible variation on the definition
of nonmonotonic theory.

In the section 4 we noted that the definition of the class
FP(A) 1is similar to the definition of the class of extensions of
a default theory, but where each extension is considered a
seperate "possible world", so to speak, a wff of Ly is not con-
sidered believable uless it occurs in every member of FP(A). of
these two approaches to the definition of the believable formu-

las, the treatment of extensions seems to us to more closely re-
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flect the intuitive idea of default reasoning. A natural modifi-
cation to the definition of a nonmonotonic theory, therefore,
would be to discard the definition of TH(A) and instead to con-
sider each member of FP(A) to be a set of assertions which could
be accepted as simultaneously true.

In the above outline of a two-level system equivalent to a
nonmonotonic theory we used TH(A) as the only object theory and
treated it as its own axiom set. In fact there does not seem to
be a natural set of axioms for TH(A). This is not true, however,
for the inidvidual members of FP(A). Suppose that a set of wffs
A is given and suppose that S is a set of wffs with the following

properties:

1. AC s;

2. Every wff in S - A is of the form M? where ? is
consistent with S;

3. If Y is a wff such that Y is consistent with S, then

MYy € S.

As we show below, if S satisfies properties one, two, and
three, then Th(S) € FP(A). On the other hand if S” € FP(A), then
there is a set S satisfying properties one through three such
that 8° = Th(S). We now show these claims. Given a set A of

wffs in LM define the class CA of sets of wffs of LM as follows:
Cp = {s| s satisfies properties 1, 2, and 3}.

Recall that

As, (S) = {Mp : “p¢s} - Th(A)
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NM, (S) = Th(A Ll As, (8))

where Th(S) is the set of wffs provable from S. Notice that if
we let Bs,(S) = {Mp : “p¢s} then NM, (S) is also

equal to Th(a || Bs, (5)).

Lemma 5.14
Suppose SEFP(A) and suppose RGCA. Then
a. A |l Bs,(S) € Cp.

b. Th(R)EFP (A).

Proof:
Part a.

Clearly A C (A || Bs,). If d€Bs,, then d = MB such that
"?¢S. If ”P¢S, then Sy”? since S = Th(S) by the definition of S.
Thus, (A [| Bs,)F"B.

Suppose there exists a B such that (A Ll Bsp)¥"B. Since
s = Th(a || Bs,), S¥”B. Thus, "BgS and therefore, MpEBs, by

definition. Hence, A || Bs, € C,.

Part b.

Suppose that R€ C,. To show Th(R)EFP(A) we must show that
Th(R) = Th(A || Bs, (Th(R))). We will show R = A |l Bs, (Th(R)) . By
definition, Bs, (Th(R)) = {MB l ~§¢Th(R)}. But "F¢Th(R) iff RV”?.
Therefore, by the definition of CA, MPGR' Thus, BSA(Th(R)) C R,
and since A C R, (A |} Bs,) C R.

If dER, then either d€A or d = MBp for some B such that Ry”p.
If = MB, then, since Ry“p, MBEBsS, (Th(R)) . It follows that

R C (A|]Bs,(Th(R))). Thus, R =A Ll Bs, (Th(R)) . [1]
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Thus, a member of FP(A) can be thought of as the deductive
closure of a set consisting of the union of an initial set of ax-
ioms and a set of default assumptions. Of course, the problem of

interpreting the symbol M remains.

5.3 Systems Based on Heuristic Rules

Let us now turn to the systems characterized by Winograd’s
categories. We will assume for our discussion that the asser-
tions treated by these systems are expressed in some formal
language L. This ignores the question of whether the languages
used by some of the systems considered by Winograd can be thought
of as formal languages, but the significant characteristics of
the heuristic default rules being considered do not depend on the
choice of language. We will also assume that with the exception
of some given default inference rule all inference rules employed
by a system are conventional. This assumption also does not ef-
fect the properties of default inference rules that we wish to
study.

The notion of a two-level system relies on the ability to
reason about sets of wffs in a language. Each category defined
by Winograd represents a heuristic principle of default reason-
ing. For example, the first category represents the principle of
introducing an assumption because its negation is not in memory
rather than because it is consistent with current assumptions.
We will argue that the principle represented by each category can

be thought of as a principle for reasoning about sets of wffs in
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a language and so can be incorporated in a two-level system.
First we will relate the notion of reasoning about sets of
wffs to the sort of computations done by computer reasoning sys-
tems. Typically, a system of the sort considered by Winograd be-
gins with an initial set of assumptions in memory. All wffs in
memory at any time during a computation are considered true.
Thus a default assumption is introduced simply by placing the
formula in memory. It is also usual for the system to add each
newly inferred formula to memory as it is inferred. At any point
during a computation, therefore, memory contains the initial as-
sumptions, any default assumptions which have been introduced up
to that point, and any formulas which have so far been inferred
from other formulas in memory. (We will ignore here the possi-
bility of deleting assumptions or adding new assumptions which
are not default assumptions.) The computations of such a system
can thus be described by a finite or infinite sequence of finite
sets of wffs of L, say 81'52""' that has the following proper-

ties:

1. Sl igs the initial set of axioms (note that Sl is

finite);
2. If Sj and Sj+l are consecutive members of the sequence
then Sj+l= Sj Ll {dj} where either dj is a default

assumption whose introduction is justified by applying

the system”s default inference rule to the members of Sj

or dj is the result of applying a conventional inference

rule to members of Sj;
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3. For each i and j, Si # Sj if i # 3J.

The members of such a sequence represent the contents or state of
the system”s memory at successive stages of the computation.  Let

us call such a sequence a memory-state sequence. The collection

of all memory-state sequences determined by a particular set of
rules and initial assumption set can be thought of as represent-
ing the set of all computations which might be performed by a
system using these rules and initial assumptions.

Given the notion of a memory-state sequence it is reasonable
to say that the set of wffs which can be accepted as true by the
system at any point during a computation is just the deductive
closure of the set representing the contents of memory at that
point. We can therefore reasonably say that a two-level system
accounts for the type of reasoning done by our hypothetical com-
puter system if it is the case that each object theory
corresponds to the closure of some member of a memory-state se-
quence and the closure of each member of a memory-state sequence
corresponds to some object theory. Thus, our approach will be to
define a two-level system meeting these conditions. The system
defined will also be such that the meta-axioms for A

P
tural relation to the heuristic default reasoning rule being con-

bear a na-

sidered.

5.3.1 Systems Based on "Memory Contents Rules”

The basis of the definition of the first category is the no-

tion of asserting that an assumption is reasonable because of the
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absence of some formula from memory. The most natural example of
this form of justification is the case of asserting the reason-
ableness of an assertion because of the absence of the

assertion”s negation.
5.3.1.1

Consider a computer reasoning system which employs a rule of
the form: If o is such that if it were true then it would already
be in memory and if o is not in memory, then it is reasonable to
assume “d. Since it is the computer system which determines
whether a wff would already be in memory, the set of potential
default assumptions, those wffs which can be assumed if their ne-
gations do not occur in memory, must be recursively enumerable.
Let us call this set of wffs PA. Thus, the memory-state se-
quences of this system would be all finite or infinite sequences

of sets Sl,...,Sk,... such that:

1. S, =1 where I is the initial set of assumptions;

2. For each j, S.,, = Sj L {dj} where either dj € PA and

]
e S. or S. .3
d] ¢ J J F d]

3. Si # Sj for distinct i and j.

We can think of PA as defining a predicate, say P, where
P(q) is true just if o € PA. In the two-level system defined
below we will simply include all true instances of P(d) as ax-
ioms. Of course the problem of which formulas should actually
belong to PA is likely to be difficult. However, it is the no-

tion of introducing an assumption because of the absence of some
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formula from memory which Winograd is presenting as being outside
the concepts of conventional logic, and this contention is not
dependent on a realistic approach to handling PA.

Let us suppose that the language used by the computer system
is I and that the initial set of assumptions is I. Consider the
class of sets consisting of I and all sets of the form I ||
{dl,...,dk} where each di is a wff of L. We define two relations
by simultaneous recursion over this class. The first, M (for

"memory set"), is unary; the second, MA (for "memory set axioms")

is binary.

1. I € M;

2. For all sets S and R belonging to the class if 5 € M,
(S,R) € MA, S } o, and d ¢ s, then S || {d} e M;

3. For all sets S and R belonging to the class if S € M,
(S,R) € MA, d € PA, ¢ S, and "d ¢ S, then S || {d} € M;

4. Nothing else is in M.
In the definition of M, d is any wff of L.

1. (I,I) € MA;
2. For all (S,R) belonging to the class if 5 € M,

(S,R) € MA, S } d, and o & s, then (S |] {d},R) € mMA;
3. For all (S,R) belonging to the class if S € M,

(S,R) € MA, d € PA, o ¢ S, and "d € S, then

(s ] {d},r |] {a}) € ma;

4. Nothing else is in MA.

A third relation, AP, will serve the same purpose as those
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previously defined with this name:

1. AP is the range of MA. That is, R € AP if there is
a set S belonging to the class such that (S,R) € MA.

2. Nothing else is in AP.

We will see that sets belonging to M can be thought of as
representing the states of memory which could occur during a com-
putation. We will also see that if (S8,R) belongs to MA then
Th(S) = Th(R). The result of these observations will be that the
memory-state sequences can be characterized by sequences of
members of AP while every member of AP is a subset of some member
of a memory-state sequence. This correspondence will allow us to

define the desired two-level system.

Lemma 5.15

S € M iff there is R such that (S,R) € MA.

Proof:

Only if:

We use induction on the cardinality of S - I. Suppose S = I.
Then (I,I) € MA by definition.

Assume that if the cardinality of S - I is n, then there is
R such that (S,R) € MA. Consider S such that the cardinality of
S - I is n+tl. We are assuming S € M which must be as a result of
either condition two or three of the definition. Thus, there are
S and d such that S = s Ll {a}, a & é, and S M. By the induction

hypothesis there is R such that (S,R) € MA.

If S € M by condition two, then S } d, and thus (S,R) € MA.
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If S € M by condition three, then d € PA and "d € S so

(8.R || {a}) e ma.

If:

Given S suppose there is R such that (S,R) € MA. If S = I,
then S € M. If S # I, then (S,R) € MA by condition two or three.
Therefore, there is d such that either S - {d}, d, and R satisfy
the prerequisites of condition two or S - la}, d, R - {d} satisfy
the prerequisites of condition three. 1In either case the
prerequisites of the corresponding condition of the definiton of

M are satisfied and S € M.[]

Lemma 5.16

If (S,R) € MA, then R C S and Th(S) = Th(R).

Proof:
We use induction on the cardinality of S - I. Suppose S = I.
Since (S,R) € MA by condition two or three requires that
s =5 Il {d} where o ¢ g and g € M, (I,R) € MA only if R = I.
Assume the claim is true for (S,R) € MA where the
cardinality of S - I is n and consider (S,R) € MA such that the
cardinality of 8§ -~ I is n + 1. (S,R) must be in MA by condition
two or three. Thus, there must be g and d such S = g L]{d}, and
o & §, If (S,R) € MA by condition two, then (é,R) € MA and § Fd.

C 8 and Th(S) = Th(R). Thus,

By the induction hypothesis R
Th(S) = Th(R) and R C S. A similar argument applies if (S,R) € MA

by condition three.[]
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Lemma 5.17

S €M iff S is a member of a memory-state sequence.

Proof:

Only if:

We use induction on the cardinality of S - I. Suppose S = 1I.
I is a member of every memory-state sequence.

Assume that if S € M and the cardinality of 8 — I is n, then
S is a member of a memory-state sequence. Consider S € M such
that the cardinality of S - I is n + 1. We know that there are §
and q such that S = s L] {«} and s and d satisfy either condition
two or three of the definition of M. By the induction hypothesis
there is a memory-state sequence, say Sl""'Sk"" such that
§ = Sp. Define a new finite sequence, say Ql""’Qk+l where
Qi = Si for 1i = 1 to k and Qk+l = 8§, Then Ql""’Qk+l is a

memory-state sequence with S as a memeber.

If:

Let Sl""'sk"" be a memory-state sequence. Since S1 = I,
Sl € M. Suppose Sk € M and consider Sk+l' By Lemma 5.15 there
is R such that (S ,R) € MA. Furthermore, S ., = S, | {a} where
either s  d or € PA and "d, d ¢ S, - Therefore, S, , R, and d

satisfy either condition two or three of the definition of M and

S, 41 € M.l

Theorem 5.7
If S is a member of a memory-state sequence, then there is

R € AP such that Th(S) = Th(R) and R C §.
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Proof
Suppose S is a member of a memory-state sequence. Then by
Lemma 5.17, S € M. By Lemma 5.15 there is R such that (5,R) € MA.

By Lemma 5.16 Th(S) = Th(R).T[]

Theorem 5.8
If R € AP, then there is S such that S is a member of a

memory-state sequence, Th(S) = Th(R), and R C S.

Proof:
Suppose R € AP. Then there is S such that (S,R) € MA. By
Lemma 5.15, S € M. By Lemma 5.17, S is a member of a memory-state

sequence. By Lemma 5.16 Th(R) = Th(S) and R C S.[]

5.3.1.2

The above results show that the members of AP as determined
by the relations M and MA are just the sets of assumptions (ini-
tial and default) which generate the deductive closures of the
members of the memory-state sequences. We will next define a
two-level system whose intended interpretation includes M and MA.
The axioms of the system”s metatheory will be such that they al-
low deduction of assertions corresponding to the true instances
of S e Mand (S,R) € MA. This will result in the system”s object
theories being just the deductive closures of the members of all
memory-state sequences as desired.

We now define a two-level system =. L”, the metalanguage of

>, consists of:
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1. A constant symbol o for each d € L;
2. A constant symbol 17;

3. Four unary predicate symbols: S, M, P, and A

~e

4. Three binary predicate symbols: €, Pr, MA;
5. One binary function symbol, ad;
6. An infinite supply of variables and the usual quantifiers

and connectives.

For the intended interpretation we define a structure whose
domain consists of A || B || {1} where A is the set of wffs of L
and B is the set of all sets of the form I |[] {dl,...dk}. The
symbols 8, Pr, €, and ad are interpreted over this domain in the
same manner as for the two-level system defined for closed normal
default theories. The symbols P, M, MA, and Ap are interpreted

as the relations PA, M, MA, and AP respectively.
The axioms of the metatheory are as follows:

1. M(I7).

2. Pr(1”,a") & a° $ I7 > M(ad(1”,d7)).

3. P(d”) s ¢ I & "¢ I°> M@A(I7,d7)).

4. For each n > 1 and each k £ n,
Vxl...Vanyl...Vk(M(ad(I’,xl,...,xn))&
MA(ad(I’,xl,...,xn),ad(I’,yl,---rYk)) &

o ¢ ad(I” /%, ...,%)) & Pr(ad(I”,xy,...,x),d7) »
M(ad(I’,xl,...,xn,d’)).
5. For each n > 1 and each k < n,

le...Vanyl...Vk(M(ad(I ,xl,...,xn))&
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MA(ad(I’,xl,...,xn),ad(I’,yl,--.,yk)) &
d” ¢ ad(I’,xl,...,xn) & “d” ¢ ad(I',xl,...,xn) &
P(d’) =l M(ad(l,rxlroo-rxnrd’))-

6. MA(I®,I7).

7. Pr(I”,d”) s d” ¢ I° > MA(ad(1",d7),17).

8. P(d") s d ¢ I” & "d¢ I”> MA(ad(I”,d”),ad(1”,d")).

9. For each n > 1 and each k < n,
Vxl...Vanyl...Vk(M(ad(I’,xl,...,xn))&
MA(ad(I’,xl,...,xn),ad(I’,yl,...,yk)) &
d° ¢ ad(I’,xl,...,xn) & Pr(ad(I',xl,...,xn),d') >
MA(ad(I)lel"'lxnld’)Iad(I,IYlI"~IYK))'

10. For each n > 1 and each k < n,
Vxl...Vanyl...Vk(M(ad(I ’Xl""’xn))&
MA(ad(I’,xl,...,xn),ad(I',yl,...,yk)) &

o & ad(I’,xl,...,xn) & "d” ¢ ad(I’,xl,...,xn) &
P(d”) > MA(ad(I”, %y, ..., x A7) 20 (Y 0000 r¥y)) e

11. o € I°7 for each g € I.

12. d” ¢ 1I° for each o ¢ I.

13. a© # ?’ for each distinct pair of constants d, ?.

14. P(d”) for each o € PA.

15. Axioms for S, Pr, and ad as in the system for a closed

normal default theory.

16. A_(I7).

p( )

17. For each n > 1 and each k < n,

Vxl...ka(Ap(ad(I’,xl,...,xk)) <

SYlI'"IaynMA(ad(I,lyll'-'Iyn)Iad(I)lxll"'rxk)))-
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Finally, the possible axiom sets of Z are just the members
of AP. This completes our definition of Z. We must now show
that > satisfies the requirements for a two-level system. We do
this in the same way as for the system defined for closed normal
default theories. The following lemmas are analogous to lemmas

already stated above.

Lemma 5.18

Let t be a term of L of the form ad(I’,d’l,...,d’k). Then

t denotes I || {dl,...,dk}.

Lemma 5.19
IfS =Ior §=11] {dl""'dk}V then there is a closed term

t of I.,” such that t denotes S.

Lemma 5.20
Let t be a closed term in which ad occurs such that t is not
of the form ad(I',d’l,...,d’k). Then t denotes d, the arbitrary

wff specified in the definition of adj.

Lemma 5.21
A closed term t of L” denotes a set iff t = 17 or t is of

the form ad(I’,d’l,...,d’k).

Lemma 5.22
The axioms of Z”s metatheory are satisfied by the given

structure.

Proof:

Axiom one is obvious.
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By the definitions of the relations M and MA axioms of type
two or three are satisfied.
For an axiom of type four suppose that M(ad(I’,al,...,an)),

MA (ad(I”,a ,...,an), ad(I’,bl,...,bk)) are satisfied by some

1
assignment. Then by Lemma 5.21 for each i a; and bi must be
constant symbols, say d’i and P’i respectively, denoting wffs of
L. Thus, I L]{dl,...,dn} € M and
(T I {dyree-od boT L {Bys---B}) € MA. If the wifs
d ¢ ad(I',d'l,.;.,d’n) and Pr(ad(I’,d’l,...,dn),d’) are also
satisfied, then by definition of the relation M
I {dys-eerd o} € M. Thus, M(ad(I”,d"y,...,d" ,d")) is also
satisfied.

For axioms of type five the argument is similar to that for
axioms of type four.

Axiom six is obvious.

Axioms of types seven and eight are similar to axioms of
type two.

Axioms of types nine and ten are similar to those of type
four. |

Types eleven, twelve, thirteen, and fourteen are obvious.

The axioms for S, Pr, and ad are similar to those given
above.

Axiom sixteen is obvious.

For axioms of type seventeen the argument is similar to that

for axioms of type four.[]

Lemma 5.23
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Let t be a closed term of L.” of the form ad(I’,d’l,...,d’k).
Then " ¢ t is provable in =“s metatheory iff

o ¢ 1] {dyseeeidlp s

Proof:
Only if:
If " ¢ t is provable, it must be satisfied by the intended

interpretation. Since t denotes I L]{dl,...,dk} it must be that

o ¢ I {dyreaadte

If:
By applying the axioms for ¢, #, and ad we can prove in the

metatheory:

a” ¢ °,q” ¢ ad(I’rd,l)r---rd) ¢ ad(I‘rd,lr---vd’k)'[]

Lemma 5.24

If S € M, then there is a closed term s of L” denoting S
such that M(s) is provable in z”s metatheory and for every R such
that (S,R) € MA there is a closed term r such that MA(s,r) is

provable.

Proof:
If S = I, then M(I“) is an axiom. Furthermore, I is the
only set such that (I,I) € MA and MA(I”,I”) is also an axiom.
Suppose the claim is true for all S such that the
cardinality of 8§ — I is n. Consider S € M such that the
cardinality of S = I is n + 1. S must be in M by condition two or
three. In either case there are S, {a}, and R such that S eM,

(S,R) € MA, and S = S || {d}. By hypothesis there are closed terms
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; and r denoting § and R such that M(;) and MA(;,r) are provable.
Since d ¢ S, d ¢ s is provable. by Lemmas 5.21 and 5.23 If S € M
by condition two, then é F o so Pr(;,d’) is also provable. It
follows that M(ad(;,d’)) is provable and since ; denotes
S - {d}, ad(g,d’) denotes S. A similar argument applies in the
case that S € M by condition three.

Let R be any set such that (S,R) € MA. Then since
(S,R) € MA by condition two or three there are é and d such
that S = S || {a} and either (g,R) € MA or (é,ﬁ) € MA where
R = R || {a«}. By an argument similar to that given above we have

that either MA(ad(g,d’),r) is provable where r denotes R or

MA(ad(g,d'),ad(;,d’)) is provable where ad(r,d”) denotes r.[]

Lemma 5.25
If M(s) or M(s,r) are provable in >“s metatheory for s and r
closed terms of L”°, then s denotes S and r denotes R such that

S e Mand (S,R) € MA.

Proof:

Similar to Theorem 5.5.{]

The previous two lemmas along with Lemma 5.15 tell us also
that M(s) is provable for closed s if and only if there is closed
r such that MA(s,r) is provable. Thus, > correctly characterizes

the relations M and MA.

Theorem 5.7

I1f S € AP, then there is a closed term t of L” denoting S

such that Ap(t) is provable in =”s metatheory.
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Proof:
If 8 € AP, then there is R such that (R,S) € MA. By Lemma
5.15 R € M. Therefore, by Lemma 5.24 there are closed r and s

denoting R and S such that MA(r,s) is provable. It follows that

Ap(s) is also provable.[]

The last two results needed are the same as results stated

for the case of a closed normal default theory above.

Theorem 5.8
If Ap(t) is provable in £°s metatheory for a closed term t,

then t denotes a member of AP.

Theorem 5.9
For any closed term t of L”, d” € t is provable in =’s

metatheory iff t denotes a set and d is a member of the set.

Thus, we see that = is indeed a two-level system. Further-
more, the definition of > directly translates a heuristic default
inference rule relying on the notion of the current contents of a
system”s memory into a (recursive) set of meta-level axioms.
This fact provides evidence to support the claim that a heuristic
default inference employing the principle of testing memory for
the absence of a formula can be modelled by conventional logical
concepts and therefore does not represent some sort of extended

mode of inference.
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5.3.2 Systems Based on Recursive Deductive Procedures

The definition of Winograd”s second category relies on the
notion of a total recursive procedure which, given a set of as-
sumptions and an assertion as input, attempts to find a proof of
the assertion from the given assumptions and returns "yes" or
"no" depending on whether a proof is found. An obvious example
of a default reasoning rule employing such a procedure is: If
procedure f fails to find a proof of d from the current assump-
tions and d is such that if it were true f would have been likely
to succeed, then it is reasonable to assume "d.

As in the case of the first category, we can consider a com-
puter reasoning system based on the above rule in combination
with conventional inference. The class of potential default as-
sumptions would be recursively enumerable just as the correspond-
ing class was for the first category, and, as we did for the
first category, we can treat this class in terms of a predicate,
say P. The procedure £ which we are postulating is Jjust a
presentation of a recursive function which we may also call f.
Thus, the above rule as it would be impelemented in a hypotheti-
cal computer system can be thought of as stating that if P(d) 1is
provable and f(d,A) is "no" (where A is the system”s current set
of assumptions), then "d can be introduced as an assumption.

In the case of this system we could provide axioms for P as
we did in the previous example. We could also introduce axioms
of the form f£(d,A) = "yes" and £(d,B) = "no" for each instance of

o and A such that f would return "yes" and each instance of d and
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B such that f would return "no". Since f is recursive the set of
such axioms would be recursive. Thus, it is obvious that the ap-
proach to be taken in defining a two-level system to account for
the type of default reasoning represented by the second category
is to employ P and f in the definition of the axiom set predicate
Ap. It is easy to see how such a system could be defined in a

form simlilar to the two-level system defined for the first

category.

5.3.3 Systems Based on Inconsistent Sets of Assumptions

Finally, the third category is concerned with the notion of
asserting that some property holds for all individuals of a class
while also asserting the negation of that property for some
members of the class. Let us suppose we have a computer reason-
ing system employing such assertions and relying on an algorithm
which handles these assertions in the manner described in section
4. We cannot treat such a system in exactly the same terms as
the previous two cases because in this case it is not reasonable
to say that all formulas in memory at any time are accepted as
true by the system. The system”s initial axiom set is itself in-
consistent, and it is not reasonable to suppose that the system
(or a human) somehow accepts simultaneously assertions which ob-
viously contradict each other. Instead we can divide the assump-
tions of the system into currently accepted assumptions and po-
tential assumptions. The currently accepted assumptions are

those from which the system is currently attempting a proof.
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Corresponding to this view, we would say that the set of formulas
accepted as true by the system at any time is the deductive clo-
sure of the set of current assumptions.

We can define a trivial two-level system which can be em-
ployed by the computer system”s algorithm in exactly the same way
we suppose the algorithm to manipulate the given axioms of the
system.

We let the axiom set of the initial object theory of the
two-level system be empty. The other object theories are defined
to be the deductive closures of all subsets of the computer
system”s axiom set. The metatheory simply defines the predicate
Ap to be provable for a term denoting the empty set and also
specifies that if Ap(s) is provable for a term s denoting some
set of wffs S and if d is a member of the computer system”s axiom
set, then Ap(ad(s,q’)) can be inferred. Thus, Ap will be prov-
able for every subset of the computer system”™s axiom set. It is
easy to see that such a two-level system can be defined and that
d is provable from a consistent subset of the computer system”s
axioms Jjust if it is a theorem of the object theory whose axioms
are that same subset. Since we assume that the given system’s
algorithm never constructs an inconsistent set of current assump-
tions, the sets of formulas which could be accepted as true by
the system would be just the deductive closures of the consistent
possible axiom sets. Here, we have simply made use of the
algorithm”s assumed ability to always choose a consistent subset
of the system”s axioms and noted that since the algorithm is as-

sumed to employ at any time only a proper subset of the given set
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of axioms, we can treat each such subset as the axioms of a

seperate theory.

6. Nonmonotonicity and Other Properties

It is often assumed that any system for default reasoning
will be nonmonotonic. This means that the system will be such
that if we add an assumption to a given example of the system,
thereby creating a second example, it may be the case that a for-
mula which could be inferred in the first example cannot be in-
ferred in the second example. Default theories and nonmonotonic
theories are both claimed to be nonmonotonic as are the systems
using the heuristic rules discussed by Winograd. We will argque
here that the claimed nonmonotonicity of these systems is the
results of a misconception about what constitutes the systems”
axiom sets. We will also consider the problem of the recursive

enumerability of default reasoning systems.

6.1 Nonmonotonicity

If we are to consider whether a given reasoning system is
nonmonotonic, we must first decide what constitutes the assump-
tions or axioms of the system. A two-level system consists of a
collection of formal theories each with its own set of axioms.
The meta-axioms represent a set of assumptions which remain in

force during the reasoning process while each possible axiom set
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represents assumptions which may be accepted by the reasoner at
some point during the process. A possible axiom set consists of
the union of a set of initial axioms and a set of default assump-
tions. Since the meta-axioms and the initial object level axioms
remain in force throughout the reasoning process they must cer-
tainly be considered among the axioms of the system. However,
the default assumptions in force at any point during the reason-
ing process are also axioms of the system at that point. They
are, after all, formulas representing assertions which the rea-
soner accepts as true at that point but which have not been
proved from other axioms. We cannot say that the axioms of a
two-level system consist of the meta-axioms, the initial object
axioms, and all default assumptions which could be introduced be-
cause then we would have an inconsistent system. 1In fact, it
does not make sense to speak of "the axioms" of a two-level sys-
tem. A two-level system is a collection of axiom sets and the
property of nonmonotonicity must be considered seperately for
each of these sets.

Of course, the theories of a two-level system are monotonic
by definition so the question of nonmonotonicity is trivially
answered. However, it is useful to examine some examples of
two-level systems more closely in order to better understand the
apparent nonmonotonicity of some of the systems mentioned above.
As we have already seen, the general default theories and non-
monotonic theories are not very interesting systems. We there-
fore examine two-level systems for a closed normal default theory

and our example of Winograd”s "memory contents" principle.
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6.1.1

In the case of Reiter”s approach it is possible to have two
default theories, (D,W) and (C,V) such that D C C, W C V and yet
have a formula d such that some extension E of (D,W) contains d
but no extension F of (C,V) contains . This possibility also ex-
ists for closed normal default theories. Both D and W are viewed
as representing the axioms of (D,W). Thus, the default theories
(D,W) and (C,V) appear to be nonmonotonically related. We will
argue that the interpretations intended for (D,W) and (C,V) in-
volve additonal axioms which are not made explicit.

Suppose (D,W), (C,V) are closed normal default theories such
that D C C and W C V. Suppose also that d is a wff such that d€E
where E is some extension of (D,W) and d¢F where F is any exten-
sion of (C,V). Let = and £° be the two-level systems generated
by (D,W) and (C,V). We first show in what sense the theories of
> are monotonically related to those of s” and then discuss the
apparent nonmonotonicity of (D,W) and (C,V). Recall that the de-
fault assumptions of a default theory (D,W) are those formulas ?

for which there is some default in D of the form d:M¥/F‘

Theorem 6.1

Let », =7 be as above.

a) If the metatheory of ¥° is a proper extension of %, then
the intended interpretation of ¥ is not a submodel of £°.

b) There exists a finite set {dl,...,dk} of default

assumptions such that for some possible axiom set, A, of =
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{dl,...,dk} C A but {dl,...,dk} is not a subset of any possible

axiom set of 7.
Proof:

Part a.

Since o is a member of an extension of (D,W) iff o is
provable from some possible axiom set of ¥, the assumption that
deE but q¢F is equivalent to assuming that there is a
possible axiom set of =, say A, such that Ald but that o is not
provable from any possible axiom set of =7.

Suppose W = V. Then A is a possible axiom set of =° since
we have the same initial object level axiom set as for = and we
have among the axioms of =”““s metatheory all the axioms of the
metatheory of ¥, Therefore, if W = V, the possible axiom sets
of = are also possible axiom sets of £7. Thus, in this case d

»

would be a member of some extension of ¥° as well as of £.
Hence, for d to exist we must have that W # V. But then the
metatheory of > contains the axiom AP(V’) instead of the axiom
AP(W’) contained in the metatheory of £ where V” must be

-

interpreted as V and W* as W. For the metatheory of Z° to be an
extension of that of = we would have to have W' = V°. But then
the intended interpretation of = is not a submodel of £°7s

interpretation.

Part b.
Since d is a member of an extension of (D,W), there is a

possible axiom set of z, say A, such that Akd. If there were
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a possible axiom set of =”, say B, such that A C B, then we

would have that Bkd contradicting the assumption that d is not

a member of any extension of >”. Therefore, there must be some
finite subset of A, say {dl,...dk}, such that di occurs in the
proof of d for each i and {ql,...,dk} is not a subset of any
possible axiom set of s*. Since W C V and V is a subset of every
possible axiom set of =7, di must be a default assumption for

each i.[]

The above result states that =””s metatheory cannot be an
extension of >“s metatheory in any meaningful way. The meaning
of the meta-axiom Ap(w’) in § is that W represents the set of all
initial assumptions about which the reasoner may reflect. This
axiom also represents an assumption of the reasoner, one that he
must be making if he is going to apply rules of the form: If A is
consistent with what I know... If a new assumption is added to
the set about which the reasoner reflects, then the meta-level
assumption has also changed. It now is made for a new, larger
set of assumptions.

The second part of the result states that it cannot Dbe the
case that every object theory of Z is a subtheory of an object
theory of =°. If this were the case, every object-level theorem
of > would be an object-level theorem of Z”.

We argue that an assumption about what is initially known is
implicitly present in the intuitive interpretation of a default
as stated by Reiter. If d:M?/P is to mean: Assume F if o follows

from what 1is known and ? is consistent with what is known, then
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the reasoner in applying such a rule must be making some assump-
tion about what it is that he knows. We have shown in section 5
that for a closed normal default theory "what is known" can be
identified initially with the inital axiom set and subsequently
with the union of this set and the set of default assumptions in-
troduced up to the point when the rule is applied. Thus, the
assertions of the predicate Ap in the corresponding two-level
system are just an explicit representation of the reasoner”s as-
sumptions concerning what is known. Although these assumptions
are made explicit by the meta-axioms of = and £°, we argue that
they are implicit in (D,W) and (C,V). Otherwise Reiter”s intend-
ed interpretation of a system like (D,W) as a set of initial as-
sumptions and rules for introducing new assumptions does not make
sense.

There is a second sense in which the assumptions of (D,W)
differ from those of (C,V). Our analysis of closed normal de-
fault theoriés in section 5 shows that (D,W) and (C,V) each
represent a collection of sets of assumptions just as a two-level
system does. The second part of the above result tells us that
at least one of these sets for (D,W) is not a subset of any such
set for (C,V) since these sets correspond to the possible axiom
sets of = and £”.

Thus, we argue that the nonmonotonic relation of (D,W) and
(C,v) 1is fictitious for two reasons. First, because (D,W) in-
volves an implicit assumption about what is known, an assumption
which is not in force in (C,V). Second, a default theory actual-

ly represents a collection of sets of assumptions. The assump-
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tion set of (D,W) which entails the wff o that cannot be derived

in (C,V) is in fact not a subset of any assumption set of (c, V).

6.1.2

In section 5 we considered a hypothetical computer system
employing a heuristic default reasoning rule based on Winograd”s
"memory contents" principle. Our definition of a memory~state
sequence is such that we can obviously define the provable formu-
las of the system to be just those which occur as members of
some member of a memory-state sequence. For such a system it is
possible that if we replace the initial axiom set I by J where I
C J there will be a formula o such that d was provable starting
with I but is not provable starting with J. Here we again appear
to have nonmonotonic behavior, but, as with default theories, we
argue that in addition to the assumptions represented by I and J
there are implicit assumptions which must be made explicit before
comparing the two systems.

Let us suppose we have two two-level systems Z and £’ as de-
fined in the previous section with initial axiom sets I and J
where I C J. Suppose also that there is a wff d such that d is
provable in € and not in £°. We can then show a result similar

to that stated in Theorem 6.1

Theorem 6.2

a) If the metatheory of £° is an extension of Z, then the
intended interpretation of £ is not a submodel of =7,

b) There exists a finite set {dl,...,dk} of default
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assumptions such that for some possible axiom set, A, of £
{dl,...,dk} C A but {dl,...,dk} is not a subset of any possible

axiom set of £7.

Proof:

Similar to Theorem 6.1.(]

6.2 Recursive Enumerability for Default Reasoning Systems

Obviously, for any default theory (D,W) and wff d for which
there is an extension of (D,W) containing d, we would like to
have an algorithm which, given d, determines that there is an ex-
tension for it. It is easy to see that there are default
theories for which no algorithm exists. However, by considering
our analysis of closed normal default theories in section 5 we
can give conditions under which an algorithm exists.

The decision problem for classes of first-order formulas can
be gstated as: Given a class of formulas, is there a procedure for
deciding whether or not a formula in the <class 1is satisfiable?
The fact that there are classes of formulas for which a decision
procedure exists allows us to give one criterion for the ex-
istence of an algorithm for closed normal (D,W).

Consider the two-level system generated by a closed normal
default theory (D,W). Recall that each default of D leads to a
corresponding set of axiom schemas in the metatheory, each set
containing a schema for each natural number n. Let us assume
these sets are given some order and call the jth set dj' Also,

let us call the wff names o and F’ which occur in each member of
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dj and are determined by the corresponding default d’j and ?,j'
Given a metalanguage term t that denotes a possible axiom set, if
we wish to show that ad(t,?’j) also denotes a possible axiom set,
we must have ~Pr(t,”F’j) as a meta-axiom. Suppose that W is fin-
ite. Then ~Pr(t,”P’j) has the interpretation yl,...,yky "B where
yl,...,yk are the members of the set denoted by t. This is
equivalent to le&...&ygé"ﬁj and this last formula is not prov-
able just if (yl&...&yk) & ?j is satisfiable since the language L
over which (D,W) is defined is chosen by Reiter to be first ord-
er. Thus, each default and each possible axiom set lead to a
formula which must be satisfiable as one of the conditions for
applying a meta-axiom corrseponding to the default to a term
denoting the possible axiom set. Let us suppose that there is a
decision procedure for the set S of all such formulas for the
two-level system generated by (D,W). Under these conditions we
can give a procedure for enumerating the members of all exten-

sions of (D,W).

Theorem 6.3
Suppose (D,W) and S satisfy the above conditions. Then there

is a procedure for enumerating the members of all extensions of

(D,W).

Proof:
Let us call the possible axiom sets determined by (D,W) the
A-sets. Let us call the jth theorem in an enumeration of the

theorems of a set of axioms, A, t3 We define a procedure as

Ao

follows:
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Maintain the following lists:
L, a list of the A-sets enumereated so far;
For each Aj on L, Lj' a list of the theorems of Aj

enumerated so far.

Al = W

put Al on L

put tl on L
Al 1

for k = 1 to @ do
for each (dj,?j) r 1 < k do
for each i such that Ai is on L do
if . is on L, then
j i
if ?. is consistent with A, then
j i
let Am be the last element of L
Am+l = Ai L {Pj}
put Am+1 on L
end
end
end
end
for each i such that Ai is on L do

Let tX be the last element of Li
i

put tn+i on Li
i
end

end

By our assumptions we can test the consistency of Pj and Ai
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by determining whether the appropriate wff is satisfiable or not.
It is easy to show by induction on the length of L that if A is
on L, then A is an A-set.

Suppose A is an A-set. Then A = Ay |[...|| Ay where A) =W
and A; ; = A || {B} for i = 1 to h-1 where A; is consistent with
B and for some o Aik d and for some m d = o and B = B_.

W is on L. Suppose Ai is on L for 1 < i < h-1. Then since

. n
Aik o, eventually d_ is added to A;, say as t, - Also,

1

eventually k becomes such that k > m and k > n. Thus, A,

i+1 would

be added to L.[]

Since a formula is a member of an extension if and only if
it is provable from some possible axiom set the above procedure
enumerates all members of all extensions. Hence there is a pro-
cedure which, given a member of some extension, will determine
that the formula is indeed a member of an extension. However, it
is easy to see that there are default theories for which no good

algorithm is known.

Theorem 6.4
There is a closed normal default theory for which the
problem of deciding whether a given wff is a member of some

extension is NP complete.

Proof:
We define a closed normal default theory (D,W). The language
of the wffs of (D,W) is the language of the propositional

calculus. W is the empty set, and D is the set of all defaults
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of the form Md/d where o is any proposition.

Suppose d is satisfiable. Then since @, the empty set, is
the initial possible axiom set of the corresponding two-level
system, {«} is a possible axiom set. Thus, every satisfiable
proposistion is a member of a possible axiom set and hence, a
member of some extension.

Suppose that o is provable from some possible axiom set.
Since each possible axiom set is consistent d must be satisfiable
also. Thus, every member of every extension is satisfiable.

The union of the extensions of (D,W) is thus the set of all
satisfiable propositions. Hence, the problem of deciding whether
d is a member of an extension of (D,W) is just the problem of
deciding whether o is satisfiable which is an NP complete

problem. []

7. Conclusion
7.1 Deleting Assumptions

Throughout this paper we have only discussed the introduc-
tion of assumptions. What about deleting assumptions? From our
point of view there are two types of assumptions: the initial as-
sumptions of the system and the default assumptions introduced
during the reasoning process. Deleting an initial assumption,
like introducing a new initial assumption, simply changes the de-
finition of the system. The other possibility would be to delete

a default assumption after it has been introduced while maintain-
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ing the same initial assumptions.
For a case like the two-level system generated by a closed
normal
default theory, once a default assumption is introduced there
can never be any reason to delete it. 1In such systems no default
assumption can be introduced unless it is consistent with the as-
sumptions made so far. Thus, the assumptions remain consistent
throughout. On the other hand, for a system like the one used to
model Winograd”s memory contents rule it would be possible to ar-
rive at a set of inconsistent assumptions. There does not seem
to be any good solution to this problem. It seems to be the

price paid for an effectively computable default inference rule.

7.2 Summary

Default reasoning has been considered to be a process which
cannot be understood in terms of the idea of inference by conven-
tional rules of inference in an ordinary formal theory. Several
approaches to default reasoning have been put forward which do
not appear to be explicable in terms of the concepts of conven-
tional logic. In particular these approaches appear to be non-
monotonic.

We have introduced in this paper a definition for a reason-
ing system, called a two-level system, based on conventional
inference and provided evidence that two-level systems subsume
several apparently nonmonotonic approaches to default reasoning.

Using our characterizations of these systems in terms of two-
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level systems we have argued that their claimed nonmonotonicity
was fictitious. Finally, we have shown the possibility of

mechanizable versions of certain of these systems.
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