THE ICON COMPUTER PERCEPTION LABORATORY USERS
GUIDE AND REFERENCE MANUAL

by
Lorenz A. Schmitt

Computer Sciences Technical Report #421

March 1981



The ICON Computer Perception Laboratory Users
Guide and Reference Manual

Lorenz A. Schmitt

University of Wisconsin - Madison

ABSTRACT

The ICON Computer Perception Laboratory is an
integrated collection of software designed to
allow a user to easily research and design com-
puter vision systems. The ICON system is based
upon the recognition cone paradigm and uses these
cones to perform the visual tasks. It allows the

user to interactively create, maintain, manipu-
late, test and refine systems to recognize real
and artificial scenes. The objective of the

laboratory is to provide an easy to use but
sophisticated interactive environment for both the
naive and experienced computer user. The system
provides not only the capability of creating and
maintaining recognition cone systems, but also
attempts to analyze the run time characteristics
of these systems in order to give the user feed-
back about the efectiveness of his design.



I) Introduction
1.1) Design Overview

TAEBLE OF CONTEN

@ 6 2 0 06 0 s 008 0 0

“ o

1.2) Operating Environment

II) Recognition Cones cee

2.1) Trans

2.2) Layers ceeean

forms e e e

TS

e s o o 4 0o

2.3) The Transformation Process
2.3.1) Numeric Transformation

2.3.2)

Symbolic Transformation

III) TRANSFORM EDITOR Program

3.1) Introduction e

®® 0 0 &

LR N ) LY
L . .
. s .

LI A R I )

3.2) Transform Creation and Maintenance
3.3) Configuration Development
3.4) Controlling the Interpreter and Dlsplay Progrdms

3.5) Commands

3.5.1)

.

U"l
(AJN
— S

. s e
e =

.

oo otonuoto,;

. - . e = 2
NN NNDNNNNDNR RO GG UTD

Nt Nl N Vs St e N Nt Mt Ml e et i Nl Nai? s et wss e Nmat

. s e .
- . . LI

wwwwwwwwwwwwwwwwwwwwwwwwwwww

IV) RECOGNITION

@ 4 5 0 6 000 0 0 0

CLOSE command
COMPILE command

LR A ]

e s 0 s 0 e

. s 0 00

CONFIGURE command s s s e s as e
CREATE command se e e e ceees
DELINK command s es e enes e e e
DESTROY command cess s e
DISPLAY command ceee P
END command c s e e es s cees .
GET command e e e s aaasan o
HELP command et s ecene s s s e .
INITIALIZE command creeave e
LAYER command et s eeen e
LINK command ces e e e e
LOAD command e st enoeas s e et e
LOCATE command . P e
MONITOR command ces s es e e
OPEN command s e s s e st ene
QUIT command  ..... ceescensee
RESET command t st .
RUN command  ........ ce s s e
SAVE command .o . .
SHOW command s ue csene .
STATISTICS command s e s e aaee

STATUS command
SUSPEND command

ADD command . e

CHANGE command
DELETE command

COPY command e

CONE INTERPRETER

» s e 0

® ¢ a a0 0 0 .
. » .0

L 1 .

L .

. . . o

© s e o

ooooooooo
. s s 0 o .
ooooo
. o o 8 0 0 0
« * a0 .o .
® & 0 0 8 0 0 .
. . 0 0 . .
------ . . .
o 8 0 0 8 e e ..
-------- o s & ..
L A A )
* e s 0 08 0 0 .

. o s &
® s 8 80 2 s 000
® o 8 0060 0 80
LR AN ] ° »
.. . LI Y
. o . . o .
----- o e &
© 6 6 s 0 8 ¢ 0 0
L A -
3 - e s s o
. o
® 8 s 0 .
* o s e . s 0
. e ..
s s o a0 e
..... o s
® 6 6 s s 6 0 @
s e o 8 000 00
ooooo . e
. s 0 0 0 e

° . LA 1 .
L] LR
* 0o s 0 s s .
® o 0 s s

L L ¥ .

O UT UL DD D



V)

VI)

VII)

VIII)

4.,1) Introduction

4.2) Operation ceesescns et e ceene ceecenane
RECOGNITION CONE MONITOR program cees e avr s aoe .
5.1) Introduction T e et sees st es et e e ee e
5.2 ) Operation e e e e G h et e et a st et
RECOGNITION CONE STATISTICS program S es s e s e v
6.1) Introduction Cereet it s esccansaas co
6.2) Transform Hit Report N .o .
6.3) Individual Transform Report N
6.4) Transform Threshold Histogram .o cee e v e
6.5) Running the Program Cesesas et ensassarsnaannns
RECOGNITION CONE COMPILER T oo
7.1) Introduction Gt ettt et easae s et et aeaeean
7.2) Operation et chhe e teessssecennnenune
CPERATING INSTRUCTIONS UNDER VAX/Unix .. csesesos s

22
22
22

24
24
24
24
25
26

28
28
28

29



APPENDIX A)

APPENDIX B) Transform File Format

APPENDIX C) Configuration File Format

APPENDIX D) Statistics File Format

APPENDICIES

APPENDIX E) Interprogram Communication

1) Messages

2) Files

e % 5 6 o s s 2 00 8 88 s 00

@ 8 ® 6 8 0 0 8 2 8 0 & 8 S s S s e s

a) status file format .
b) layer file format ..

APPENDIX F) Transform Library .
1) Directories
2) Transforms

APPENDIX G) Transform Library Interface Module
1) Introduction

4) Procedures

a)
b)

R AN O HROUFTO MO AN
N N’ Ve’ Ve” Vs Nt Vvt st Vg Nt Vgt Nt N Vairt Nt? g gt “ppe

u)

function

© s 0 0 0 s 0

LI I T S S Y

® 4 0 0 ® 8 6 0 s 6 8 8 68 68 008 0

2) Current Attribute and Transform List
3) Interface Area

# 6 6 8 & 6 0 0 s 8 9 s a8 e s e

backup

.

function changetransform

procedure closetransforms

function
function
function
function
function
function
function
function
function

function
function
function
function
function

deleteattribute

deletetranattr

deletetransform

errortype

getdirectory

getname

getattribute

LI Y

LI I I

getcurtransform
getanytransform
procedure inittransforms
locateattribute

opentransforms
putattribute
puttranattr
puttransform

procedure relocate

procedure resetattributes
procedure resettransforms
5) Use of Interface Module

« o 00

-

Transform Directory File Format

® ¢ # 5 o 2 2 0 6 85 0 & 8 s s % o0 @

39

31

33

34

35
35
35
35
35

36
36
37

38
38
38
49
43
43
43
43
43
43
43
44
44
44
44
44
44
44
44
45
45
45
45
45
45
45
45



APPENDIX H) Parpas Generation Example st erertrennsaasasnae 47

APPENDIX I) Numeric Transform Example Y

BIBLIOGRAPHY -....lll‘."..'...l.I‘..l..l.l....‘....l..l'.l 53



The ICON Computer Perception Laboratory Users
Guide and Reference Manual

Lorenz A. Schmitt

University of Wisconsin - Madison

SECTION I
INTRODUCTION

b=

l.i. Design Overview

The ICON Computer Perception Laboratory is designed to
allow a user access to a wide variety of hardware and
software for the purposes of performing computer vision
tasks. The software described here is a part of a larger
body of software which provides the device (ie. TV camera,
graphics terminals) dependant software as well as general
routines to handle pictures (ie. intensity arrays). This
document describes the software which is specific to the
implementation of a computer vision laboratory employing the
recognition cone paradigm [1,2,3]. This software is avail-
able for use on the Computer Science Departments VAX 11/789
and provides the user with the means to develop, maintain
and interface all of the necessary data structures, software
routines and hardware required by the Recognition Cone
operation. The ICON Laboratory software package consists of
five major programs and the related files necessary for
their operation. All five programs work together to allow
the wuser to interact with the recognition process in such a
way that the development of an effective recognition program
comes easily and naturally.

The first major program is the TRANSFORM EDITOR. This
is a program which provides an interactive means of creating
and maintaining specific recognition cone configurations.
These configurations can then be interpreted and monitored
all under control of the TRANSFORM EDITOR program. This
piece of software uses the Transform Library Interface
Module (see APPENDIX G) to allow a user to create
transforms, catalog them with meaningful attributes and
assign them to specified layers of a Recognition Cone to
create a specific configuration. The editor is easy enough
to use so that a person unfamiliar with computer vision
techniques 1in general and Recognition Cones in particular
can create meaningful transforms in a very short time. The



editor is also powerful enough so that the advanced user can
utilize all of the inherent capabilities of a Recognition
Cone system. Section 1III describes the operation of the
TRANSFORM EDITOR.

Section IV describes the second program, the RECOGNI-
TION CONE INTERPRETER. This program takes a configuration
developed by the Transform Editor program and interprets it.
This program is activated as a separate process which in
initiated by the TRANSFORM EDITOR program. The user can thus
continue the monitoring, analysis and development of other
configurations concurrently with the interpretation of a
recognition cone configuration.

The third piece of software 1is the RECOGNITION CONE
MONITOR program. The operation and results of the RECOGNI-
TION CONE INTERPRETER are displayed by this program when
requested by the user. The monitoring and display of the
recognition cone results are requested through the TRANSFORM
EDITOR program which passes these requests to the RECOGNI-
TION CONE MONITOR program. These results can be displayed
upon graphics or character terminals or upon hard copy dev-
ices. Section V contains a description of the RECOGNITION
CONE MONITOR program.

The fourth program is the RECOGNITION CONE STATISTICS
program. The information gathered during the interpretation
of a recognition cone are analyzed by this program which
will produce reports indicating the effectiveness of all
parts of the designed cone configuration. These reports can
be used to refine and enhance the vision process. Section VI
describes this program.

The fifth program is the RECOGNITION CONE COMPILER.
This program will take a configuration and output a parallel
pascal program [4,5] which is then compiled using the paral-~
lel pascal precompiler. This program will be a direct com-
piled ‘implementation of the configuration designed by the
user. This program will execute much faster than the RECOG-
NITION CCONE INTERPRETER program but usually is much larger
than the interpreted version. This program is described in
section VII.

These five pieces of software are designed to provide a
freindly interactive environment for the development of
recognition programs by both naive and experienced users.
The design of the system allows a user to develop, test,
change, retest and finally execute his design of a recogni-
tion system.

l.2. Operating Environment

The vision laboratory is designed to be an interactive
system which allows the user a great deal of flexibility in



creating and testing vision programs. An integral part of
any such laboratory is the software and hardware environment
in which it runs. For vision research, this environment must
include mechanisms to manipulate, store and retrieve images
which are going to be used. The handling of images is not
done directly by the ICON programs. Instead it is done by a
package called PICT . This PICT software allows one to take
pictures with a TV camera, save and retrieve these pictures,
display the pictures upon several different graphic devices
and to manipulate the pictures in various ways. All of these
things can and must be done independantly of the other pro-
grams 1in the ICON system. The RECOGNITION CONE INTERPRETER
depends on receiving an image produced by PICT. For this
reason the wuser should become familiar with dealing with
images using the P1CT software.

One of the primary concerns addressed by this labora-
tory 1is the necessity of providing automatic methods of
analyzing the effectiveness of the vision process. The moni-
toring of the recognition cones and the gathering of sta-
tistical information is integrated into the system in such a
way that a wuser will get the information he needs to more
effectively refine and improve the recognition process.



SECTION II
RECOGNITION CONES

1o

2.1.

In order to work effectively with this software, the
user must be familiar with the principles and workings of a
recognition cone as a means of visually analyzing a scene.
A very Dbrief description will be given here. For more
detailed information the user should refer to the articles
mentioned in the bibliography.

A recognition cone is the name for a specific class of
computer vision paradigms. The cone consists of a particu-
lar type of data structure along with specific algorithms
operating upon that structure. The data structures used are
commonly called TRANSFORMS and LAYERS. The algorithms which
use these data structures are called TRANSFORMATIONS.

2.2. Transforms

A transform consists of three parts, a global part, a
lookfor part, and an implied part. The objective of a
transform is to store knowledge about a particular pattern
and what that pattern means. These patterns can be as com-
plex as necessary, but the basic structure of the transform
is always the same and very simple. The global part of a
transform contains such information as the name of the
transform, the size of the pattern being looked for and a
threshold to be used in the TRANSFORMATION process. The
lookfor part of a transform contains the pattern. This pat-
tern is represented as an array of either numeric (integer)
or symbolic (names) attributes. The objective of the
TRANSFORMATION process is to find all occurrences of a
transforms pattern in the processed image. The implied part
of a TRANSFORM is a list of numeric and/or symbolic attri-
butes. If the 1lookfor pattern is found, then this list of
names will be implied into a layer by the TRANSFORMATION
process.

2.3. Layers

The layers of a recognition cone hold the results of
all of the TRANSFORMATIONS that are taking place. There can
be any number of layers of any size in a recognition cone.
Commonly, the layers are arranged in a sequence of decreas-
ing size from the retina (most often 256 x 256) to the apex.
The layers are always sequentially ordered. This arrangement
of layers is what gives a cone appearance and hence gives
rise to the name 'recognition cone'.

A layer consists of a two dimensional array of cells.



Each cell in a layer is a list of numeric and/or symbolic
attributes. These attributes are placed in the cells of a
layer by the TRANSFORMATION process when it has found a pat-
tern, and consist of the implied list of the TRANSFORM whose
lookfor pattern has been found. It is these cell lists which
are examined when a lookfor pattern is being looked for dur-
ing a TRANSFORMATION. Typically, a TRANSFORMATION will
lookfor a pattern in one layer and put the implied 1list of
the TRANSFORM in another layer. This action is what gives
TRANSFORMS their name. The are used by the TRANSFORMATION
proces to transform (change) the contents of one layer into
a different pattern of attributes in another layer. It is
through tthis TRANSFORMATION process that visual recognition
takes place. With a well designed set of transforms, the
TRANSFORMATION process will discover patterns which imply
visually meaningful objects.

g.g. The Transformation Process

The TRANSFORMATION process consists of what is called
‘applying' TRANSFORMS to the layers of a recognition cone.
The transforms which can be applyed are of two type called
numeric and symbolic. Numeric transforms are used on
integer arrays like the kind obtained from the digitized
input to the system. These transforms are used to convert
the integer array into a symbolic or integer representation.
Symbolic transforms are used on the symbolic attributes con-
tained in the cells of a layer and convert symbolic patterns
in one layer into other symbolic patterns in another layer.
The action of these two types of transforms in the TRANSFOR-
MATION process is discussed in more detail Dbelow.

2.4.1. Numeric Transformation

The ICON system has two types of predefined transforms
called 'ratio' and 'absolute'. The ratio numeric transform
is designed to locate patterns of relative intensities
(values) in an integer array. Such transforms are useful in
locating such things as gradients and spatial frequencies
regardless of the absolute intensities of these patterns.
The formula used in calculating the strength of the pattern
being looked for as it exists in the actual integer array is
the following.

lev.,-tv.

I
. R
TR W ¥ oe
i=1 1
A - exponential decay constant
tv -~ transform lookfor value at location i in transform pattern
ev - expected integer array value at location i in window

max - maximum integer array value within window



w - welght at location i1 in transform window
n - size of the window

The window mentioned above is the portion of the
integer array which is being looked at by a transform. This
window will be the size of the transform being applied which
can be anywhere from 1 x 1 up to 5 x 5. The formula above
has the following properties.

[1] The weight contributed by a particular location of the
transform (when matched against its particular location
in the integer array) decreases exponentially as the
difference between the actual retina value (av ) and
the expected retina value (ev ) increases.

[2] The expected retina value (ev ) is itself a function of
the transform window applied at a particular point on
the integer array, and is calculated with the following

formula
| i=n l
| £ tvil
_ li=1 -
ev, = = av,
i |i=n | i
| = avil
li=1 I
tv - sum of all transform lookfor values
av - sum of all integer array values within the

transform window

[3] The value of w will be multiplied by a term varying
from between & and 1. This means that the strength of a
particular transform pattern is estimated by a weight
which is decreased exponentially the farther the
transform pattern is from the actual integer array pat-
tern.

The absolute numeric transform is designed to locate
patterns of absolute intensities within an integer array.
The formula used for calculating the strength of an absolute
pattern is identical to that for calculating a ratio pattern
except for the replacement of the ev term with av (the
value of the transform at location i in the window). An
example of the numeric transformation process is given in
appendix 1I.



2.4.2. Symbolic Transformation

A symbolic transform is very similar to a numeric
transform except that a pattern of symbols (names) is looked

for instead of a pattern of integers. These symbols are
looked for in a layer containing the symbolic attributes
produced by other transformations. The matching process

consists of searching a window in a layer for the attributes
in the lookfor pattern of a transform. When an attribute is
found in the layer, the weight of that attribute is added to
a running total for the transform. If this running total
exceeds the transform threshold (contained in the global
portion of the transform) then the transform is said to have
succeeded over the particular window in the layer. When a
transform succeeds, the attributes in the transforms implied
list are put into another layer of the recognition cone. For
each transform in a recognition cone configuration, this
process 1is repeated at every cell in the layer to which the
transform is assigned. The symbolic pattern can represent
virtually any kind of Xknowledge the wuser wishes. The
discovery of these patterns in the layers of a recognition
cone is what drives the recognition process.



SECTION ITII
TRANSFORM EDITOR

.

Jeo

3.1. Introduction

Several functions are performed by this program. The
major functions are to create and maintain transforms and to
develop a configuration for later interpretation or compil-
ing. On top of this, the TRANSFORM EDITOR also initiates
and interfaces with the RECOGNITION CONE INTERPRETER and the
RECOGNITION CONE MONITOR program thus controling the func-
tioning of the entire system. The following paragraphs
describe each of these functions in detail.

3.2. Transform creation and maintenance

The creation and maintenance of transforms and their
associated attributes is done by the TRANSFORM EDITOR using
the TLIM routines (see APPENDIX G). These routines are
invoked by the TRANSFORM EDITOR when they are requested by
the user through the use of commands to the editor. The TLIM
routines do the actual directory and transform file mainte-
nance, the TRANSFORM EDITOR is designed to provide a
friendly interface between the user and the TLIM routines.
When a user executes the TRANSFORM EDITOR he has access to
the full set of commands described below. These commands are
designed to aide in developing transforms (ie the 'ADD' com-
mand) and to aide in cataloging transforms (ie the 'LOCATE'
and 'DISPLAY' commands). Many of the commands provided
cause the current transform and current attribute lists
maintained by the TLIM routines to be updated. The user can,
at any time, display the current contents of these lists
(see DISPLAY command). APPENDIX G describes the current
transform and current attribute lists and should be read
before any of these commands are tried.

The transform editor itself always maintains a direc-
tory of the transforms which have been loaded from the
transform library. This directory is empty when the program
first gets executed and has transforms loaded into it when
the user does a GET, LOAD or ADD command (see below). All
commands that affect transforms (CHANGE,DELETE,SHOW) operate
upon previously loaded transforms. Many commands (CREATE,
DISPLAY, DESTROY, LINK, LOCATE, RESET, OPEN CLOSE, INITIAL-
IZE, QUIT) do not effect the current loaded directory and
may be entered no matter what it contains.



3.3. Configuration Development

One of the basic functions of the TRANSFORM EDITOR pro-
gram 1is to specify the configurations of the recognition
cones that the developed transforms are to be used with. A
configuration consists of a specification of the layers and
transforms involved in a recognition cone. The user can
define an arbitrary number of layers (currently 26 maximum)
of arbitrary sizes (currently 256 x 256 maximum) and
describe which transforms are assigned to each layer. A
user can name and describe as many configurations as he
wishes. The configuration name is what distinguishes the
specific recognition cone to the RECOGNITION CONE INTER-
PRETER. This name is given to the INTERPRETER when the user
issues a RUN command. Although the user may describe and
save as many configurations as he wishes, only one such con-
figuration can be RUN at any one time. The commands which
develop, maintain and display configurations are the CONFIG-
URE, SHOW, LOAD and SAVE commands. The LOAD and SAVE com-
mands allow a user to save configurations across sessions.

3.4. Controlling the Interpreter and Display programs

The third major function of the TRANSFORM EDITOR pro-
gram is to provide a means of initiating and controlling the
other programs in the system. These programs communicate
with the TRANSFORM EDITOR by means of messages passed
between them. There are a number of commands which are
designed to provide the interface with the other programs.
The RUN, MONITOR, STATISTICS, END, SUSPEND, and LAYER com-
mands deal solely with the control of these other programs.
The messages passed between the programs are sent by means
of a communications module which always runs in the back-
ground when the TRANSFORM EDITOR is running. The following
diagram shows the communications interfaces between the
three major programs in the system and the commands which
effect each program.



TRANSFORM EDITOR

7 <
RUN / *
MONITOR [/ *
SUSPEND / ' LAYER
STATISTICS [/ t
PICTURE / *
/ LY
I I | I
| | | I
| RECOGNITION CONE | | RECOGNITION CONE I
{ INTERPRETER : I MONITOR {

- —— - ——— P ] {— " ot " T —— - _— - . U o ——_" - -~ ] — (o~ — " T_— - o - S —"

é.i. TRANSFORM EDITOR Commands

All commands are described using a railroad syntax. In
order to determine how to use the command just follow one of
the paths through the diagram for the particular command.
The characters in parentheses are the command abbreviations
which may be used in place of the commands. All commands
may be entered in either upper or lower case. Words
enclosed in '<>' represent a class of objects which must be
replaced by the name of a particular object of the class.
Words not enclosed must be entered the way they are shown.
In all cases, keying RETURN will cause a prompt for the next
input.

Any system command can be executed through the shell by
having an exclamation ('!') be the first character of the
input.

example: lps



CLOSE (CL)
OO E = = o e e e e
~-=-< directory name >-—----
Closes the currently opened directory. If a name is

given then the name must match the currently opened direc-
tory or it will not be closed.

COMPILE (CP)
COMPILE== == <config name>-=———- <source name>——-—-—- <program name?>--,
Initiates the parallel pascal code generation program

which will produce a source file of parallel pascal code
implementing the named configuration.



CONFIGURE (CF)

CONFIGURE ====—- <configname»-=———-— <num layers>-—-—-———————e-- /
[m—————— < layer size list>--—--- <layer transform list>-—----

—————————— end =mmem———————eeee
A cone configuration with the specified name is

created. The configuration specifies the number and size of
each layer along with the transforms assigned to each layer.

CREATE (CR)
CREATE~—=m e e e e e < attribute name >----—mmm e

| l

Creates a new attribute and adds it to the directory.
The attribute can be made current by specifying 'yes'.

DELINK(DL)
DELINK~==——cm— e m < transform name >=———meee- < attribute name >-.
Removes the association between a transform and an

attribute. This is implicitly done when a transform is
deleted or an attribute is destroyed.



DESTROY (DS)

DESTROY == === === m e

Deletes an attribute from the directory and from any

transforms with which it is associated.

DISPLAY(DI)

- i S (i Ve i T W W, {— T Wt Do Vo Vo T Wt o S i R o oo o — b o T W o - - - o o T s e o ot s

DISPLAY
I I

~-—- current —--——-—--—
I I
-=- transforms -——=—-—
| |

-- attributes ----

Displays the lists of current attributes and transforms
or the set of all attributes or all transforms in the direc-

tory. The default parameter is 'current’'.

END(ED)

T G S s G - ———" T -— W Wt So—e S S T T W S T T " S W Wt " [ 2o WS G ot G e B e o Wt S S Pame e o o i o e

Ends the currently executing recognition cone.

GET(GE)

- o T -~ o~ . [ " o —" S "

—————————— all ——m—em—————————

Gets a transform from the current transform list and
loads it into the directory. If 'all' is specified, all of
the transforms having the current attributes are loded.



HELP (HE)

=== {COMMNANA > == = e

Prints the list of available commands or the syntax and
function of a particular command.

INITIALIZE(IT)

INITIALIZE-====m———— < directory name >===e—mmemmem e

Creates and initializes a transform directory with the
given name. The directory must be opened in order to be
used.

LAYER(LA)

LAYER~----<layer nuUmber> — = = e e e e e e e e e e

The specified layer is displayed on the specified dev-
ice. This display is done by the RECOGNITION CONE MONITOR
program as a separately running process. The allowed devices
are 'term', 'terak', 'printer', 'tektronix', and 'versatec'.
The default is 'term'. If an attribute list is specified the
location and weights of the given attributes will be
displayed. If no attribute list is given, the count of the
existing attributes at each point in the layer will be
given.

LINK(LI)

LINK-——— e < transform name >——=em————-— < attribute name >--.

Associates an attribute with a transform. Both the
attribute and the transform must have been created or added
previously.



LOAD(LD)

A previously saved configuration is loaded from the
named file. All transforms in the file are loaded automati-
cally and assigned to the layers they were assigned to at
the time of the SAVE command.

LOCATE (LO)

LOCATE-====— < SttribDULE NAIME D = o o e o o oo o o i o o oo e o o
-,<attribute name>-

Locates the given attribute in the directory and
updates the current transform list to reflect the changed
attribute list.

MONITOR (MO)
MON TTOR == = = = m oo o o o e e o o e e e e o e e e e e

The monitor command causes the TRANSFORM EDITOR to tell
the currently executing configuration to start monitoring
the contents of the layers as transforms are being applied.
Each layer will be dumped once each cycle. These layer dumps
permit the RECOGNITION CONE MONITOR program to go in and
analyze the results of the transformations. (see LAYER com-
mand) .

OPEN (OP)

Opens the named directory and reads the directory file.
Any changes made to transforms or attributes will not be
made permanent until the directory is closed (see QUIT and
CLOSE command) .



QUIT(QU)

Stops the editor program and saves the directory and
all changes.

RESET (RE)

——————— - - " - —— [ - — - -

l - , <attribute name>- |

Takes an attribute (or all attributes) out of the
current attribute 1list and adjusts the 1list of current
transforms accordingly.

RUN (RU)

A recognition cone will be executed with the named con-
figuration. The cone program will be a separate process exe-
cuting independantly of the transform editor program.

SAVE (SV)

The current configuration is saved in the named file,
if one is given, or in the default file CONFIG.DAT if no
file is named. All existing loaded transforms, their active
state, and the layers they are assigned to are saved so that
they can be recreated at a later date with the LOAD command.



SHOW(SH)
—————— config ------< configuration name »>—-—-——m-m——emme - ——
i ————— loaded e e e o o e e e e
SHOW——1<transform FLETIIE P = o o o o o o o e o o e e e o e B e S
l——- table ——-—-l l~ parameters -——l
1——— graph —————1 1—— lookfors ~--—i

--- implieds -----

Shows a particular transform in several formats, a par-
ticular configuration or the directory of loded transforms.
The particular part of the transform to be shown can be
selected with the second parameter. The first parameter
indicates how the lookfors are to be displayed. The defaults
are 'graph' and 'all’'.

STATISTICS(SS)
STATISTICS == = m e o e e e e e e e e e .

Signals the RECOGNITION CONE INTERPRETER to start gath-
ering statistics on the currently executing configuration.

STATUS (ST)
STATUS = = = o e o o e e e e e e e e e e e .

The current status of the currently executing confi-
guration is displayed.

SUSPEND (SU)
SUS PEND == = = = = = o e e e e et e e e e e e e e .

The currently executing configuration is suspended at
the next interruptable point.



- 18 -

The following commands are used to add and update
transforms. These functions are interactive in that the
TRANSFORM EDITOR will prompt the user for any needed infor-
mation. The wuser can also put in the information without
being prompted by using the syntax described below.

ADD(AD)

<transform body > :

—————————— < transform threshold »>-----<transform type >-->
P e — < transform function >-==ww—- <transform size >=-->
D et < lookfor list >==e-eee—ee—- < implied list >---.

< transform size > :
—————————————— < INteger D> m e e e,

W ————— - S - - -~ O S P G - o U BOis e W i e SR W W e e o e - - -

\% I
————————————————————————————————— § e e e e v e @I -
| b I
~~<cell no>-—————m—mmm——e | |
| I I
R S IR ———
I I I
-—-,<cell no>-- -~-<attribute>-
< attribute > :
____________________________ | o o e e e e e
| |
\ I
---<attribue name>-- : —T-—————-——-~~——~T:T—————~——*-~——Y-—-—
I_< weight >——-—T -~<threshold>-~-
-——— delete —-—=—-
< implied list > :
-—-<implied name>-- : --<weight>-- : —-<typed-—=rmem—cmeoean_— .

-~ delete --

Add a transform to the system with the given attri-
butes. A description of all of the fields of a transform is
given in appendix G. The add fast form of this command will
inhibit the display of intermediate stages of transform
creation.



CHANGE (CH)
CHANGE ~ === e e em params ——-——-- type --- <integer> —=—-—meememmee——o
} —--- thresh -- <integer> —————l :
{ l—— function -- <integer»> ———l }
l-——— lookfors —==m—wew- < lookfor list > ——————«-l
l~——— implieds =====e——- < implied list > ——~~————l

Allows one to add change or delete a transforms com—
ponents. The transforms type, thresshold or function can be
changed along with the lookfors and implieds. The changes
to the transforms lookfors or implieds has the same format
as that in the ADD command.

DELETE (DL)
DELETE == = s o o o e o e <transform name> —— e ————— e

Deletes the current transform from the directory file
and removes the transform file so that it can no longer be
accessed. ‘

COPY(CO)

Coplies a transform from one name to another. An exact
copy 1s made and put into the transform directory.



- 20 -

SECTION 1V
RECOGNITION CONE INTERPRETER

Jobs

4.1. Introduction

The RECOGNITION CONE INTERPRETER program allows the
user to test his designs in a simple interactive manner to
see if they are valid. The recognition cone configurations
developed by the user using the TRANSFORM EDITOR program are
interpreted by this program resulting in the desired recog-
nition process. The interpretive functioning of this program
means that it is slow, however great flexibility is provided
to the user in monitoring the functioning of the cone and in
the displaying of the results. In this manner a user can see
the effectiveness of the transforms he designs and rapidly
modify his transforms to achieve better success.

4.2. Operation

The program itself is initiated by the TRANSFORM EDITOR
when a user enters a RUN command. The program gets the name
of the transform directory and the configuration file from
the TRANSFORM EDITOR and sets up the desired configuration.
This configuration is then executed until the user enters
and END command to the TRANSFORM EDITOR at which time it
tells this program to stop executing.

The operation of this program can be thought of as a
series of cycles through the cone layers starting at the
retina. At the beginning of each cycle an image must be sup-
plied to the cone. This is done by the PICTURE command in
the TRANSFORM EDITOR. The name of the picture must be the
name of an image file produced by the PICT software. This
image should match the size of the retina in the configura-
tion being interpreted and should be scaled to have inten-
sity values in the range of 1 to 64. The user can either
provide one picture at a time to the interpreter, or he can
set up a sequence of pictures which are provided when the
interpreter requests them. During each cycle, the transforms
which are assigned to each 1layer are applied to these
layers. Before any transform is applied to a layer, the
interpreter checks if it has received any messages from the
TRANSFORM EDITOR. The wuser can thus turn on and off the
statistics gathering and monitoring functions of the RECOG-
NITION CONE INTERPRETER during its execution. The inter-
preter can be instructed to dump the contents of any layer
or its current executing status into a file for analysis and
dlsplay by the RECOGNITION CONE MONITOR program. After dump-
ing the requested information the interpreter continues
executing,letting the user examine the results at his lei-
sure. The user requests results to be dumiped and displayed
through the MONITOR, STATUS and LAYER commands of the



TRANSFORM EDITOR.

- 21



- 2D -
SECTION V
RECOGNITION CONE MONITOR
_5_.

5.1. Introduction

Results of the execution of the RECOGNITION CONE INTER=
PRETER are displayed Dby this program. These results are
requested by the TRANSFORM EDITOR when a user types in a
LAYER command. This request is given to the RECOGNITION CONE
MONITOR program which then reads the correct monitor file
produced by the RECOGNITION CONE INTERPRETER and displays
the information requested by the user with the LAYER com-
mand. Once the information has been displayed, control is
returned to the TRANSFORM EDITOR.

5.2. Operation

The file produced by the RECOGNITION CONE INTERPRETER
contains the raw layer or global data representing the
current status of the interpretation. This data is analyzed
by the RECOGNITION CONE MONITOR program to produce meaning-
ful displays on a variety of devices. There are several
display devices currently available for display of both
graphic and symbolic information produced by the inter-
preter. Both the display device and the mode of representa-
tion (graphic or symbolic) are specified by the user with
the LAYER command. The display devices available are the
users terminal, the tektronix graphics terminal, the terak
or the 1line printer. The users terminal can be used as
either a symbolic or graphic device. The terak and the tek-
tronix terminals can be used only as graphic devices and the
line printer can be used only as a symbolic device.

There agraphic devices and the line printer can be used
only as a symbolic device.

There are several different types of display which can
be produced by the RECOGNITICON CONE MONITOR program. In gen-
eral, the type of display is determined Dby the choice of
symbolic or graphic representation and by the presence of an
attribute list in the display request (see LAYER command).
For symbolic display, if no attribute list is given, the
display program will list, for every row and column position
in the layer, the attributes currently occupying that posi-
tion. If an attribute list is given, the display program
will 1list, for every attribute chosen, the locations it
occupies within the chosen layer. Thus for symbolic display
mode there exist the following two types of displays.

attribute list present

<attribute name> : <loc 1> <loc 2> . . .



- 23 -

<attribute name> : <loc 1> <loc 2> . . .

attribute list not present

<loc 1> : <attr 1> <attr 2> . . .
<loc 2> : <attr 1> <attr 2> . . .

.
®

.

Graphic displays also depend on the presence or absence
of an attribute list. When an attribute list is present, a
display is produced which represents the sum of the weights
of the named attributes at each point in the layer. When the
attribute 1list 1is not present, the display produced
represents the strict count of the number of attributes
existing at each point in the layer. In both these cases,
the sum of the weights or the count of the atributes, the
integer obtained at each point in the layer is used as a
direct indication of the intensity of the display at the
point. More intense portions of the display thus indicate
higher weights or greater numbers of attributes at the point
on the display which represents a location in the layer.



- 24 -

SECTION VI
RECOGNITION CONE STATISTICS

o

.

6.1. Introduction

The operation of a recognition cone depends upon many
subtle influences in the design of the transforms used. The
RECOGNITION CONE STATISTICS program is designed to take some
of the guesswork out of transform design by providing infor-
mation about the effectiveness of particular transforms in
the various vision processes they are involved in. This pro-
gram will produce three reports from the information gath-
ered during the interpretation of a particular configuration
when a user issues the STATISTICS command via the TRANSFORM
EDITOR. These reports can be requested in a number of ways,
by the image name , by the layer number, by the transform
name or by any combination of these three factors. The
three reports produced are described in the following sec-
tions.

6.2. Transform Hit Report

This report details the number of times a particular
transform 'succeeded' in a particular layer for a particular
image. The report will lock like the following.

TRANSFORM HIT REPORT

IMAGE = <image name>
LAYER = <layer number>

TRANSFORM NAME NUMBER OF HITS

—— o — - - W - — " - ——— - o e i -~

<transform name> <number of hits>

This report is useful in performing a gross culling of the
transforms which might or might not be effective, in deter-
mining those images for which more transforms need to Dbe
developed or in determining a more effective assignment of
transforms to layers.

6.3. 1Individual Transform Report

This report contains detailed information about the
action of a particular transform. The format of the report
is the following.



INDIVIDUAL TRANSFORM REPORT
TRANSFORM NAME = <transform name>

HITS PER LAYER
LAYER NUMBER NUMBERCF HITS

<layer number> <number of hits>

. .

HITS PER IMAGE
IMAGE NAME NUMBER OF HITS
<image name> <number of hits>

# HITS WHERE THIS LOOKFOR CONTRIBUTED

LOOKFOR CONTRIBUTION =  =-mmm e o e e e e e e e e e e e
# HITS FOR THIS TRANSFORM
LOCKFOR NAME PERCENTAGE CONTRIBUTION
<lookfor name> TOTAL = <contribution»>
FOR IMAGE <name> <contribution>

The Individual Transform Report is useful in determining if
the transform design 1is good for the task it is used for.
The lookfor contribution can be used to analyze the lookfor
pattern to make it more effective.

6.4. Transform Threshold Histogram

This histogram is used to determine the most effective
value for a particular transforms threshold. The report has
the following form.



TRANSFORM THRESHOLD HISTOGRAM

TRANSFORM NAME = <transform name>
IMAGE NAME = <image name>
LAYER NUMBER = <layer number>

|
|
|
I
|
|
number |
of points |
where |
calculated|
weight |
was |
found |

|

I

25 50 75 109 125 158 175 200

calculated transform
weight

With this histogram the user can see the distribution of the
calculated transform weights for a particular image in a
particular layer. The transform threshold value which is
most effective can be determined from this histogram

6.5. Running the Program

The RECOGNITION CONE STATISTICS program is called
'conestats'. To use it the user merely executes the program
and informs it of the reports desired. This 1is done by
entering the images,layers, transforms and reports to be
used. The command format for doing this is shown below.

-—-—<report name>---<images>--:--<layers>--:--<transforms>---end--.

" l

L T e e e



<layers> ::1= ————-- all ===
| I
S et N
[ !
-=-<layer num >=-==——-
<transforms> :1:= ————- all ——=m—rmr e e
l l
€ i o e e L e e e e e o



- 28 =
SECTION VII

RECOGNITION CONE COMPILER

7. Introduction

The cone compiler is designed to take a configuration
the user has designed and create a specific pascal program
for the execution of that configuration. This results in a
program which 1is specifically designed with a particular
layer configuration and a particular set of transforms. The
purpose of compiling the configuration is to provide a sig-
nificant increase in execution speed over the interpreted
approach. The cone compiler is meant to be invoked after the
user has 'debugged' his configuration with the RECOGNITION
CONE INTERPRETER.

7.1. Operation

The recognition cone compiler is initiated with the
COMPILE command to the TRANSFORM EDITOR. The compiler is
given, as arguments, four names. These names are the name of
the configuration file, the name of the transform directory
to be used, the name of the source file which is to be pro-
duced by the compiler, and the name which is to be given to
the program when it is compiled. The compiler uses the con-
figuration file to determine the number of layers in the
desired recognition cone, and the transforms which are
assigned to each of these layers. The specified transforms
are then read from the transform library and parallel pascal
code is generated for each transform in each layer. Routines
are also generated to execute the layer and transform pro-
cedures and to provide input into the retina layer. A sam-
ple configuration file and the resultant parallel pascal
code generated by the compiler is given in appendix E.

When the parallel pascal code has been generated, it is
put into the file named when the compiler was executed. This
file can then be wused as input to the parallel pascal
preprocessor which will convert the parallel pascal con-
structs to standard pascal. This preprocessor is called par-
pas and must be invoked by the user after the parallel pas-
cal code has been generated by the cone compiler. Detailed
instructions for wusing the parpas precompiler can be found
in (Uhr 1979).



- 29 -

SECTION VIII
OPERATING INSTRUCTIONS UNDER VAX/UNIX

8. Introduction

The TRANSFORM EDITOR program is the initiator and
driver of all of the other pieces of software which make up
this system. The TRANSFORM EDITOR program is initiated by
typing in the command

icon

This invokes a shell file which will then execute Dboth the
TRANSFORM EDITOR program and the communications module. 1In
order to effectively use the system, the user must be fami-
liar with Dboth the TRANSFORM EDITOR and PICT commands. The
user must use PICT to retrieve, manipulate and supply images
to the RECOGNITION CONE INTERPRETER. This is done by calling
PICT using the exclamation (ie. lpict) getting the image you
want, rescaling it to a range of 1-64, resizing it to the
correct size of the retina, and storing it in a disk file.
The TRANSFORM EDITOR command PICTURE can then be used to
pass this picture to the currently running RECOGNITION CONE
INTERPRETER.

When the TRANSFORM EDITOR is initiated and a transform
directory is opened, this directory will reside in the
directory the user was in when he invoked the program. All
transforms which are created will reside in files within
this same directory. There is currently no provision for
accessing transform directories or transform files which
reside in another Unix directory. This means that a user who
wishes to use the transforms created by another person in
another directory must sign on as that person or copy them
into his own directory.



- 3¢ -

APPENDIX A
TRANSFORM DIRECTORY FILE FORMAT

The directory file is kept on disk and read in to
memory by a TLIM routine when the opentransforms procedure
is called. The directory contains the names of all
transforms and attributes and the associations of each
transfform to its attributes. Several flags indicate various
conditions 1in the file. The meaning of these flags is
described after the diagram.

Directory File

tlibfile
<name> <flag>
<name?> <flag>
<name> <flag>
SOSSSESSSS

<attribute name> <transform name>
<attribute name> <transform name>

<attribute name> <transform name>

$SSPPSSSSE
EOF

The first part of the file (before the first '$$$5888888")
contains a list of names. These names are either attribute
names or transform names. The flag indicates if the name is
an attribute or a transform. A flag of @ means the name is
an attribute name, a flag of 1 means the name is a transform
name.



- 31 -

APPENDIX B
TRANSFORM FILE FORMAT

A Transform file is stored as a sequence of strings
and integers representing the wvarious parts of the
transform. The flags put in as part of the file signal
things such as the start and end of the lookfor and implied
lists as well as the lookfor type. These flags are described
after the diagram.

Figure 3
Transform File

<transform name> <threshold> <type> <function> <refcell>

<lookfor list flag>
<x disp> <ydisp> <dist 1> <dist 2> <dist 3> <dist 4>
<lookfor type flag>

<attribute list flag>

<attribute present flag>

<attribute name> <weight> <threshold>

<attribute present flag>

<attribute name> <weight> <threhold>

<attribute 1list flag>
<xdisp> <ydisp> <dist 1> <dist 2> <dist 3> <dist 4>
<lookfor type flag>

<lookfor list flag>
<implied present flag>

<rowslize> <cc

<implied name> <weight> <factor> <type> <xdisp> <ydisp> <function>

<implied present flag>

<implied name> <weight> <factor> <type> <xdisp> <ydisp> <function>

<implied present flag>
EOF



- 32 -

The lookfor list flag is 1 at the beginning of the
lookfor 1ist and @ at the end. The lookfor type flag is @
for an attributelookfor and 1 for a lookforlookfor. The
attribute 1list flag marks the end of the attribute list and
is always @. The attribute present flag is 1 if another
attriibute remains and @ if there are no more attributes.
The implied present flag is 1 if another implied remains and
@ otherwise. A sample transform file is shown below.

Figure 4
Sample Transform File

tranl a0 l1 1 5 3 3

o 0 g O 0 6

sky 25 5
cloud 19 3

-1 -1 9 @ @ @

tree 15 4

cutdoor 49 a 2 1] 19 4]
1

forest 39 4] 1] 4] ] 4]
7]

EOF



- 33 -

APPENDIX C
CONFIGURATION FILE FORMAT

The configuration file contains the configurations
developed by the wuser with the CONFIGURE command. These
files are created by the TRANSFORM EDITOR program and are
used by the RECOGNITION CONE INTERPRETER to set up its cone.
The following diagram shows the format of this file.

Figure 5
Configuration File

configfile
<number of layers>
<layer number> <layer size>

<layer transform name>

FhHEFERFSEH
<layer number> <layer size>
<layer transform name>

RREEREF RS



- 34 -

APPENDIX D
STATISTICS FILE FORMAT

#<image name>
*<layer number>
$<transform name> <transform threshold>

<threshold bucket count>
Z<attribute name> <hit count>

. o .

$<transform name >

<transform threshold>

LOF

<threshold bucket count> - Dbuckets are from §-280 in increments
of 5. The count denotes the number of times the

transform would have succeeded if the threshold
was in the bucket range.

<hit count> - This count denotes the number of

times the attribute was found when the transform
was successful.



- 35 =

APPENDIX E
INTERPROGRAM COMMUNICATION

MESSAGES
TRANSFORM EDITOR ----> RECOGNITION CONE INTERPRETER
command message
RUN <configuration file name> <transform directory r
PICTURE tranedit picture <picture name>
SUSPEND tranedit suspend
STATISTICS tranedit statistics
MONITOR tranedit monitor
TRANSFORM EDITOR =----~> RECOGNITION CONE MONITOR
command message
LAYER tranedit layer <layer number> <device> <attribute
FILES

STATUS FILE

<current cycle>

<current image name>
<current layer>

<current transform name>

<current status> - WAITING PICTURE, SUSPENDED,APPLYING TRANSF
EQF

LAYER FILE
<layer number> <layer size>
<x coord> <y coord>
<attribute name>

<x coord> <y coord>

EOF



- 36 -

APPENDIX F
TRANSFORM LIBRARIES

9.

A Transform Library consists of a directory file and a
set of transform files. The Transform Library Interface
Module (see section I11) contains routines to create and
maintain these files. The TRANSFORM EDITOR program (see sec-
tion IV) provides an interactive interface to the TLIM rou-
tines and thus to the Transform Library. The Vision program
uses the Transform Library to get the transforms necessary
for processing.

9.1. DIRECTORIES

A directory file contains the names of all transforms
in the Library, the names of all attributes which have been
created (see Editor program documentation) and a 1list of
transform-attribute pairs which specify the attributes that
have been associated with each transform. A transform can
have any number of attributes associated with it. These
attributes can convey any information which the designer of
the transform wishes. For example, a transform designed to
'recognize' a green leaf might have the following attributes

transform: grnleaf
attributes: myname, test,outdoor,highlevel, tree,leaf

signifying that this is a transform in the test stage
belonging to 'myname' for outdoor scenes etc.

It is through the use of these attributes that a user
can Dbrowse through the transform 1library, creating or
selecting transforms which he wishes to use. Attributes
should be created so that they are meaningful to the user
and also to other persons who might use the transform. It is
the attribute 1list associated with the transform which can
define what the transform can be used for.

A directory file will contain all transform names and
the transform-attribute associations which have been defined
by the user. There will be only one directory file per
Transform Library, although a wuser can create as many
libraries as he wishes. Appendix A shows the format of the
directory file.



9.2. 'TRANSFORMS

A transform in a Transform Library is kept as a disk
file, one transform per file. The name of the file is the
same as the name given to the transform by the user, there-
for transform names must be unique in the first eight (8)
characters. Transform files are created and maintained by
routines 1in the TLIM. TLIM routines also read transform
files into memory for use by the Editor and Vision programs.
Appendix B shows the format of a Transform file.




- 38 -

APPENGIX G
TRANSFORM LIBRARY INTERFACE MODULE

1.

19.1. Introduction

The Transform Library Interface Module (TLIM) contains
routines to create , maintain and search a transform
library. A user interfaces to a transform library by using
the appropriate routines from the TLIM. Through calls to
these routines, a user can generally manipulate transforms
and attributes of the transform in any way he wishes. A user
should avoid wupdating the transform or directory files
directly by always using the routines provided in the TLIM.
The following sections describe the operation of the rou-
tines in the TLIM. Sections 3 and 4 can be skipped by those
users who do not wish to write their own programs utilizing
these routines. Section 2 should be read by everyone.

l@.g. Current Attribute and Transform Lists

From the time a transform library is opened (see open-
transforms procedure) until it is closed (see
closetransforms procedure) the TLIM routines maintain two
lists called the Current Attribute 1list and the Current
Transform list. Attributes are put into the Current Attri-
bute 1list Dby the locateattribute function and taken out of
the list by the backup function. Because transforms are
located via their attributes, the current transform list is
automatically updated any time the current attribute 1list
changes. There are no specific routines to manipulate the
current transform list.

At any point in time, the transforms in the current
transform 1list all share the attributes in the current
attribute list. This means that each transform in the
current transform list has associated with it (in the direc-
tory file) at least all of the attributes in the current
attribute 1list (it may have more attributes associated with
it than are in the list but never less). Take as an example
the following transforms and their associated attributes.

transform : tranl
attributes: test,retina,myname,brite

transform : tran2



- 39 -

attributes: test,layerl,myname,longline

transform : tran3
attributes: layerl,brite,region

If the current attribute list contained just the attribute
‘test' then the current transform list would be :

current attributes: test
current transforms: tranl,tran2

since both of these transforms share the attribute 'test'.
If, however, the attribute 'brite' was added to the current
attribute list (by calling the locateattribute procedure)
then the current transform list would become ;

current attributes: test,brite
current transforms: tranl

(note: the modification of the current transform list
happens automatically and is beyond the control of
the user of the routines)

As another example, suppose the user removed the attribute
‘test' from the current attribute list by using the backup
function. The current transform list would then look like ;

current attributes: brite
current transforms: tranl,tran3

It can be seen from these examples that the list of current
transforms will contain all existing transforms which have
all of the attributes in the current attribute 1list as a
subset of the set of attributes associated with them in the
directory. Many of the TLIM procedures may affect the con-
tents of the current transform list by either updating the
current attribute list or changing an association between a
transform and an attribute (see link and delink procedures).
In the discussion of the routines below, it is noted when
the routine may cause a change in the current transform or
attribute lists.



10.3. Interface Area

The main objective of the TLIM routines is to allow
users to retrieve and store the transforms they desire.
Transforms are malntained in memory as a data structure con-
sisting of four different pascal record types. When a
transform is to be retrieved or stored (see gettransform and
puttransform - functions) -a pointer to the transform memory
data structure is passed between the calling program and the
TLIM routine. When a transform is requested by the calling
program, the TLIM routine gettransform initializes the data
structure and fills in the data from the transform disk
file. When a transform is to be stored by the TLIM routine
puttransform, it is the responsibility of the calling pro-
gram to pass the pointer to a valid transform data struc-
ture. A transform memory data structure can be diagramed as
follows.



| |
| I
| TRANSFORM | I
| e
| | e e |
I |- = > | I l I
I | | LOOKFOR |- - >| ATTRIBUTE | \%
—————————————— I I | ———————————
———————————————————————— | l
| | | IMPLIED |
| \Y% | |
| e e
| | | |
| | ATTRIBUTE | |
l | | \
R — .
| | .
l \% .
I . e
| . | I
\Y . | IMPLIED |
ettt LT | I
| I
. g ATTRIBUTE |
| |
| LOOKFOR |

The following are the pascal record definitions which
implement this structure. These record definitions must be
included in any program wishing to interface with the TLIM
routines.

{******************************************************************}

{ INTERFACE AREA }
{******************************************************************}

transformptr = “transformrecord;
lookforptr = "lookforrecord;
impliedptr = “impliedrecord
attributeptr = “attributerecord;

{******************************************************************}

{ TRANSFORM RECORD }
{******************************************************************}



transformrecord = record

transformname : string;
transformthreshold : integer;
transformtype : integer;
transformfunction : integer;
transformrefcell : integer;
transformrowsize : integer;
transformcolsize : integer;
centerlookfor : lookforptr;
implieds : impliedptr;

end { transform record };
{******************************************************************}

{ LOOKFOR RECORD }
{******************************************************************}

lookforrecord = record

lookfornext : lookforptr;

lookxdisp, lookydisp : integer;

lookdist : array [1..4] of integer;

case lookfortag : integer of
ATTRIBUTELOOKFOR : (attributelist : attributeptr);
LOOKFORLOOKFOR : (lookforlist : lookforptr);

end { lookfor record }:
{******************************************************************}

{ ATTRIBUTE RECORD : }
{******************************************************************}
attributerecord = record
attributenext : attributeptr;
attributename : string;
attributeweight : integer;
attributethresh : integer;

end { attribute record };
{******************************************************************}

{ IMPLIED RECORD }
{******************************************************************}
impliedrecord = record

impliednext : impliedptr;

impliedweight : integer;

impliedfactor : integer;

impliedtype : integer;

impliedname : string;

impliedxdisp,impliedydisp : integer;

impliedfcn : integer;

end { implied record };

These record definitions are in a file called
'interecs.i' which can be included in a pascal source pro-
gram. Several of the fields of these records can have values
which are predefined (ie they have special significance to
the Vision program described later). The field and the
predefined values are described below. These constants are
in the file 'tranconst.i' and should be included in the con-
stant section of any program using the TLIM routines.



- 43 -

{ values for field lookfortag in lookfor record }

ATTRIBUTELOUKFOR = 1;
LOOKFORLOOKFOR = 2;

{ values for field impliedtype in implied record }
ATTRIBUTEIMP = 1;
TRANSFORMIMP = 2;

{ values for field transformtype in transform record }
RETINATRAN =1
LAYERTRAN = 2;

{ values for field transformfunction in trasform record
RATIOFCN = 1;:
ABSOLUTEFCN = 2;

In order to store or retrieve transforms using the TLIM rou-
tines the user must use a pointer such as the following.

transformptr = “transformrecord

lﬁ.ﬂ. Procedures

The following TLIM routines are ones that can be called
from a user program. Each procedure is listed along with its
formal parameters as it would appear in a pascal program.

function backup(attr : string) : boolean;

Removes the specified attribute name from the current
attribute list.

function changetransform(name : string;trans : transformptr)

Changes the named transform to be what is pointed to by
the transform pointer without modifying the current
transform or attribute lists

procedure closetransforms;

Closes the transform directory after writing out to it
all updated information.

function deleteattribute(attr : string) : boolean;
Removes the named attribute from the directory as well
as all of its 1links to transforms. The attribute is
unavailable for location of transforms.

function deletetranattr(tran,attr : string) : boolean;

Removes the link between an attribute and a transform
and updates the current transform list if necessary.

function deletetransform(name : string) : boolean;

boolean;



- 44 -

Removes the named transform from thi¢ *transform direc-—
tory and deletes the transform file the transform is
stored in.

function errortype : integer;

Returns an integer indicating the type of error encoun-
tered. Always returns an error or a @ indicating last
call did not produce an error.

function getdirectory(var ptype : integer;var pname : string) : boolean;

This procedure will, upon repeated calls, return all
attribute and trnasform names in the transform direc-
tory. This function returns false when there are no
more names left.

function getname(var name : string;t : integer) : boolean;

This procudure will, upon repeated calls, return the
contents o©f the current attribute list (if t = @) or
the current transform list (if t = 1) in name. The
function will become false when the last name in the
list is returned.

function getattribute(var name : string;tran : string) : boolean;

This procedure will, upon repeated calls, return all
attributes associated with the named transform tran.
The names are returned in name. The function will be
false when the last attribute name is returned.

function getcurtransform(name : string) : transformptr;
A  pointer to the memory structure of the named
transform will be returned. This function will return
nil if the named transform is not in the current
transform list.

function getanytransform(name : string) : transformptr;
A pointer to the memory structure of the named
transform is returned. The transform does not have to
be in the current transform list. A nil is returned is
the transform is not in the directory.

procedure inittransforms(name : string);

A transform directory with the given name is initial-
ized.

function locateattribute(attr : string) : boolean:



- 45 -

The named attribute is found and the current attribute
and current transform lists are updated appropriately.
False is returned if the attribute daoes not exist in
the directory.

function opentransforms(name : string) : boolean;

Opens the named directory. This procedure must be
called before any other procedures.

function putattribute(attr : string) : boolean;
Puts a new attribute into the directory.
function puttranattr(tran,attr : string) : boolean;

Forms a link between the named attribute and the named
transform.

function puttransform(name : string;trans : transformptr) :
Inserts the named transform into the transform direc-
tory and creates the transform file to store the
transform.

procedure resetattributes;
Removes all attributes from the current attribute list.

procedure resettransforms;

Removes all transforms from the current transform list.

l@.g. Use of Interface Module

In order to use the TLIM routines the user must include
several source files in his program. These files provide the
necessary constant,type,variable and external definitions
necessary to interface with the TLIM routines. The following
files should be included in the appropriate sections of the
user program.

const
ginclude 'errconst.i' {constants for error flags }

boolean;

$include 'tranconst.i' {constants for interface records}

type
ginclude 'intetype.i {types for interface records }
ginclude 'interecs.i' {interface record descriptions}

var



- 46 -

$include 'intevar.i' {globals for interface }

$include ‘intertns.i' {defines of interface routines}



- 47 -

APPENDIX H
Parpas GENERATION EXAMPLE

The RECOGNITION CONE COMPILER uses the configuration
file created by the TRANSFORM EDITOR to create a parallel
pascal program. The following configuration file was created
when the COMPILE command was given to the TRANSFORM EDITOR.
For example the following command

compile configl trandir sourcel rconel

Configuration File (configl)

3

1 159

2 75

3 25
trcross 1 3
trlinepdy 1 1 2
trline@d9o@ 1 1 2

The following Parallel pascal program is generated from
the above configuration file and is put into a file called
sourcel.

program rconel (input,output);

const

type

var

{ feature arrays for layer 1 }
gradgvu9 : arrayl[®..149,0..149] of integer;
gradggy7 : arrayl#..149,0..149] of integer;
gradoges : array[@..149,0..149] of integer;
grad@g9o9 : arrayl©..149,8..149] of integer;
gradgog7 : arrayl@..149,0..149] of integer;
gradg@9gs : arrayl[d..149,0..149] of integer;

{ feature arrays for layer 2 }
gradgwg9o : arrayl[@.. 74,9.. 74] of integer;
gradygg7 : arrayl[@.. 74,0.. 74] of integer;
gradggeys : arrayl@.. 74,8.. 74] of integer;
gradg9g9 : arraylg.. 74,8.. 74] of integer;
grad@9g7 : arrayl@.. 74,0.. 74] of integer;
grad@9ys : arrayl@.. 74,0.. 74] of integer;

{ feature arrays for layer 3 }
crossggo : arrayl®@.. 24,0.. 24] of integer;

cross@ly : arrayl@.. 24,8.. 24] of integer;



cross@gly
cross3bo
linelg®
liney8H
linepogy
line359
line@lp
line@@@

- 48 -

arrayld.

arraylg..

arrayld.
arraylo.
arrayl®.
arraylo.
arrayiL@.

arrayl@..

24]
24 ]
24]
24 ]
24]
24]
24]
24]

24,9..
24,9..
24,8..
24,0..
24,9..
24,49..
24,9..
24,9..

of
of
of
of
of
of
of
of

integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;

{*******************************************************}

{
{*
| | procedure layerl
| Ibegin
| IROWMIN :
| |ROWMAX :
| |COLMIN :
| | COLMAX :
| | ROWSHRINK
| | COLSHRINK :

munu
NSNS
b~ o~

\e]

~-e

)

~s

-
’

2;

’

parallel procedure for layer

1

}

******************************************************}

{***********************************************}

{ transform trline@9g
{***********************************************}

|1if gradsow9
grad@gop’7
grad@g9gs
| | then
| Ibegin
|llet
| l1let
lllet
| lend;

[+(
L+
C+(

-1:0
~1:0
~-1:0

linel@®
line@89
1ine@9og@

in layer

1

* 19,1:8% 10,0:6% 1@)] +
* 8,1:89*% 8,0:0% 8)] +
*¥* 6,1:0% 6,0:6% 6)] >
:= linel@w + 15;
:= line@89 + 15;
:= lineg99 + 49;

}

49

{***********************************************}

{ transform trline@pgy
{***********************************************}

|1if gradogg9o
grad@gu7
grad@gyes
| | then
| Ibegin
| llet
I l1let
| llet
| lend;
| lend;

[+(g:-1
[+(@:-1

line35@
line@gl®
lineg@®

[+(@:~-1% 10,0:1* 10,0:6* 1g)] +
* 8,0:1* 8,p:86*% 8)] +

* 6,0:1% 6,0:8* 6)] >

:= line35@ + 15;

:= line@l@ + 15;

:= line@p@ + 40

in layer

1

{*******************************************************}

{ parallel procedure for layer
{*******************************************************}

llprocedure layer2

-
,

2

}



| lbegin
| | ROWMIN 9;
| | ROWMAX : 4;
| |COLMIN := g;
| |lCOLMAX := 74;
| IROWSHRINK := 3;
| | COLSHRINK := 3;
{***********************************************}

{ transform trlineg9® in layer 2 }
{***********************************************}

[1if grad@9e9 [+(-~1:0* 10,1:8* 10,0:0% 10)] +
grad@%p7 [+(-1:6* 8,1:8* 8,0:0* 8)] +
gradg9us5 [+(-1:0*% 6,1:0* 6,0:6*% 6)] > 40

| | then

| Ibegin
lllet linelo® = linel@® + 15;
lllet line@&g@ = line@8&® + 15;
[llet linew9o := line@9w +  40;
| lend;
{***********************************************}
{ transform trline@d@@ in layer 2 }

{***********************************************}

|1if gradewsy [+(G:-1* 1¢,0:1*% 10,8:6% 16)]1 +
gradwgwg7 [+(@:-1*% 8,9:1* 8,0:6* 8)] +
gradgggs [+(@:-1* 6,0:1% 6,08:6*% 6)] >

| | then

| Ibegin
|llet line35@ := line35% + 15;
[llet 1line@l@ := line@l® + 15;
|llet 1inepgw := line@@y + 49;
| lend;
| lend;

44

{*******************************************************}

{ parallel procedure for layer 3

}

{*******************************************************}

| | procedure layer3 ;
| Ibegin
| IROWMIN := @;
| |ROWMAX := 24;
| |COLMIN := @;
| |COLMAX := 24;
{***********************************************}

{ transform trcross in layer 3 }
{***********************************************}

[Iif 1linelegw [+(g:-1% 10,06:1*% 10,0:0* 10)] +
line@80 [+(F:-1* 10,0:1% 10,0:0* 16)] +
line@90 [+(@:-1* 20,@:1% 29,0:0% 20)] +
line350 [+(-1:6* 10,0:-1% 10,0:1% 10,1:08* 10,0:6*
line@ly [(+(-1:9% 1¢,9:-1% 10,0:1* 19,1:0* 14,0:0%

19)]
19)]

+
+



- 50 -

line@@@ [+(=1:0*% 20,0:-1* 20,0:1% 206,1:0* 20,0:6*% 20)] > 40

| | then
| Ibegin
| let cross350 := cross359 + 15;
|llet cross@lg := crossg@lg + 15;
| llet cross@wy := crossgygy +  40;
| fend;
| lend;

{******************** start of main procedure ******************}
begin
layerl
layer2
layer3
end .

~e wo wo



- 51 -

APPENDIX I
Numeric Transformation Example

Numeric Transform Lookfor Pattern

- - - o— - - " -~ 9o oo o Yo e T -~

I 19 I 20 I 39 I
| tvl | tv2 | tv3 |
| | | |
| 19 | 20 | 39 |
| tvéd | tv5 |  tveé |
I | | |
I 16 I 20 I 30 |
| tv7 |  tv8 | tvo |
Integer array
I | | I I I |
I 4 | 4 | 121 171 16 | 13 |
| | avl | av2 | av3d | I |
I ¢ | 5 | 161 15| 206 | 18 |
| | avé | avs | ave | | |
I 7 | 201 191 5 | 12| 10 |
| | av? | av8 | av9 | | I
I 5 } e | 7 | 161 18 | 13 |
I | I I | | I
| ¢ | 8 | 11| 111 9 | 14 |
i=n
N
ien = 1.9149
£ av,
i=1  *



Ratio transform calculation

max = 20

evl = 1.9149 * 5 = 9.5745

evz = 1.9149 * 1g¢ = 19.149

evd = 1.9149 * 15 = 28.7235

evd = 1,9149 * 2¢p = 38.298

evdh = 1.9149 * 19 = 19.149

eve = 1.9149 * 5 = 9,5745

evi = 1.9149 * ¢ = 11.4894

evB = 1.9149 * 7 = 13.4043

ev? = 1.9149 * 16 = 30.6384

For a value A = 3.0
levl - avl| = .4255 : multiply factor = .93817
.4255 3
29 _
e = ,93817

lev2 - tv2| = .851 : multiply factor = .88016
lev3d - tv3| = 1.2765 : multiply factor = .82574
levda - tv4| = 28.298 : multiply factor = .§1436
levs - tv5] = .851 : multiply factor = .83016
leve - tve| = 20.4255 : multiply factor = .g4671
lev7 - tv7] = 1.4894 : multiply factor = .79979
lev8 - tv8| = 6.5957 : multiply factor = .37182
levo - tv9]| = .6384 : multiply factor = .9@868

Depending upon what the weights of the particular look-

for attributes are
transform might or might not succeed.

and

the

transforms

threshold,

this



(1]

[2]

L31]

L51]

- 53 -

BIBLIOGRAPHY

Douglass, Robert; Recognition and Spatial Organization
of Objects in Natural Scenes; CSD Tech Report 5420 (UW
Madison); 1978

Uhr, Leonard and Douglass, Robert; A Parallel-Serial
'Recognition Cone' System for Perception : Some Test
Results; CSD Tech Report 4894 (UW Madison) 1977

Uhr, Leonard; 'Recognition Cones' And Some Test
Results : The Imminent Arrival of Well-Structured
Parallel-Serial Computers, Positions and Positions on
Positions; CSD Tech Report 5099 (UW Madison); 1977

Uhr, Leonard; A Language for Parallel Processing of
Arrays Embedded in Pascal; CSD Tech Report 6730 (UW
Madison); 1979

Uhr, Leonard; A Higher-Level Language for a Large
Parallel Array Computer; CSD Tech Report 6295 (UW
Madison); 1979



