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Abstract

A large-network algorithm solves a problem of size N

on a network of N processors. We present a general method
for transforming large-network algorithms into quotient-

network algorithms, which solve problems of size N on net-

works with fewer processors. This transformation allows
algorithms to be designed assuming any number of processing
elements. The implementation of such algorithms on a quo-
tient network results in no loss of efficiency, and often a

great savings in hardware cost.






TABLE OF CONTENTS

INTRODUCTION-0.0'.'.'.‘......0..‘.0..--...00‘..

EXISTING NETWORKS....00...‘0.......0‘...0..0'OO

Grid-Connected NetWOIrK.:i:.eeeeooooososas
Perfect Shuffle..eecececescsceccocccnscs

Pleo.o.co.ooo..o--‘o-ovo.oooo-o-o-oooo

. .
> w N
.

NN
.
.

CUbE................--.......-.....-.-.

EXISTING ALGORITHMS.O..‘....O..'..’.."C‘.Q..‘.

Fast-Fourier Transform on the Shuffle..
Sorting on the Shuffle.iicieceeecenennsne
Polynomial Evaluation on the Shuffle...
Finite-difference MethodS.....eeeceeeen

Wwww
¢« o o o
> W N -
s o 0

NETWORK EMULATION.c.cevoeevecseocscccsonasccsacs

Perfect Shuffle...cceescceossocecsoncss
Grid—-connected NetWOIrK....eeoeoeocoooos

CUberoo'-olno.coo-ooo'-‘..oo'ooovo00--

> b b
. L ] *

.

& W
£ ] L ] .

PMZI‘..QDQQOOOOQ....0...‘..0......O.-IQ
SOME RESULTING ALGORITHMS: s cecoovcosacescecsaasn
. Fast—-Fourier Transform on the Shuffle..
Sorting on the Shuffle..ieeeececcccecnen

. Polynomial Evaluation on the Shuffle...
. Finite-difference Methods.....eceeeuenn

[S2 0 0 ]
da W o

THE ECONOMICS OF EMULATION. ¢cececesccssccnnsacas

CONCLUSIONS.....-...0...0‘.00.......00..0..O.l.

ACKNOWLEDGEMENTS‘..lQ‘...Q'.‘O'..‘...Q...'I....

REFERENCES....QQQ'ocoo-o--o..oooccoo'oooooo-.-.

U Ut b b W

QOO U

12
15
18
20
22
22
24
25
25

26

27

28

29






1. INTRODUCTION

One barrier to the practical wuse of interconnection
networks is the lack of algorithms for processing large
problems on small machines. (By an interconnection network
we mean an SIMD parallel computer interconnected by some
interconnection strategy.) Typically, it is assumed that N
processors are available to process N data [l,2]. If we
happen to have N+l or more data points, then we must choose
between the serial algorithm and a bigger machine. Notable
exceptions can be found in work by Baudet and Steven-
son [3], and by Siegel, Mueller and Siegel [4]. This paper
investigates a method that constructs algorithms for solv-
ing large problems on small networks. We call these algo-

rithms quotient-network algorithms. In Section 2, we re-

view some proposed interconnection networks. Section 3 re-
views proposed algorithms for those networks. We call

these algorithms large-network algorithms, since each one

assumes as many processors as points in the problem to be
solved. Section 4 presents a general method for transform-
ing a large-network algorithm into a quotient-network algo-
rithm, Section 5 applies this method to each of the
algorithm-machine combinations of Section 3. Section 6
discusses some economic advantages of quotient-network al-

gorithms.



2. EXISTING NETWORKS

In this section we briefly review some proposed inter-
connection networks. For a more thorough overview,
see [5]. We assume that each network contains N proces-
sors. We denote the square root of N by n, and log2 N by
m. We will name the processors PE(@) through PE(N-1).
Sometimes we refer to a processor by the binary form of its

number, p = Pp-1Pp-2+-+P1Pg-

2.1. Grid-Connected Network

In this network, the processors are arranged in a
two-dimensional n by n grid. The processor in the ith row
and jth column is named PE(i,j), for 2 < i,J < n. A pro-
cessor 1s <connected to its north, south, east and west

neighbors:

If i > @, PE(i,j) is connected to PE(i-1,3j).
If i < n-1, PE(i,j) is connected to PE(i+1,]j).
I£ j > @, PE(i,j) is connected to PE(i,j-1).
If j < n-1, PE(i,j) is connected to PE(i,j+1).

The Illiac IV network adds additional connections between

edge processors [6].



2.2. Perfect Shuffle

Shuffle-Exchange

In this network, PE(Pm_le_Z:::Png) is connected to
PE(pm_z:::plpgpm_l) by  the shuffle function and to

PE(pm_lpmgzilﬁplﬁg) by the exchange function.

4-pin shuffle

In this network, each processor has two input pins
IPING and IPIN1l, and two output pins OPINg and OPINl. We
can number all input pins by assigning to IPIN# on proces-
SOr  Pp_1Pp_p---P1Py the number pm—lpm—Z"‘plpGg' IPIN]1 on
the same processor is assigned the number pm—lpm—Z"'plpﬂl‘
This numbering allows us to refer to input pins as IPIN(Q)
through IPIN(2N-1). Output pins are numbered in the same
way, OPIN(#) through OPIN(2N-1). The shuffle function is
used to transfer data from the output pins of
PE(Pm_lpm_z...plpg) to the input pins of processors

PE(pm_z...plpgﬁ) and PE(pm_z...plpgl).

2.3. PM2I

In the Plus-Minus 2' network (PM2I), PE(]j) is connect-

ed to processors



j+2' mod N

and
i

j=27 mod N,

for g < 1 < m.
2.4. Cube

PE(pm—l"'pi+lpipi-l‘"pﬂ) in the cube network is con-
nected to the m processors PE(pm—l"’pi+lpipi~l'"p@)’ for

g < i< m.

3. EXISTING ALGORITHMS

In this section we review some proposed large-network
algorithms. The number of such algorithms is large and
growing, so we do not attempt to be comprehensive. our
goal is to illustrate the process of transforming large-

network algorithms into quotient-network algorithms.

3.1. PFast-Fourier Transform on the shuffle

Let A(k), k=@, 1, ..., N-1, be a vector of N complex

numbers. The Discrete Fourier Transform (DFT) of A is de-

fined to be the vector



N-1 jk _
(1) X(j) = = A(k)W =0,1,...,N-1
k=0
where W = eZWI/N. The obvious algorithm for computing X

takes time O(Nz). An important advance in the theory of
algorithms was the discovery of an O(Nlog N) algorithm for

the DFT [7]. This algorithm 1is called the Fast Fourier

Transform (FFT). Pease [8] has discovered an algorithm
that computes the FFT on N/2 processors in time proportion-
al to log N, thus achieving optimal speedup. Pease's algo-
rithm can be explained as follows: First, we represent
both k and j by their binary expansion.

k =k k k

m-1"m-2°°°""9

and
J = Jm_ljm_zc-o]ﬂ.

Equation 1 then becomes

(2) X(3J)

jkm-—lzm—l jkm~22m—2 jk@
=2 X ... =2 A(k _lk 2...kg)w W ce oW
k, k k Mol ommes
g "1 m-1
. . m-1
jkg jklZ jkm_lZ
== W = W cee = W A(k k ceok ).
m-1"m-2 ]
k k k
g 1 m—-1
Equation 2 consists of m nested summations. Since WN=1,
j2m-s . . . . ,M=S
W Jg-13g-27+-3p"2

= W '
so the innermost s summations depend only on the m binary
variables Jgr +e+r Jg_q @nd ko 1+ -..s kg. Thus the in-
nermost s summations represent a function from g, ..., N-1
to the complex numbers; we represent this function as an

array BS of N complex numbers. Bs satisfies



B, (k

g .o-k

= A(k k ...k

m~lkm—2 E) m-1"m-2 @)’

(3) Bs(]ﬂ"‘Js—lkm-s—l"‘kﬂ)

m-s,

. . js—ljs—Z"'jE.2 m-s
. BS—l(Jﬂ'"jS—ka—s"'kB)w ’

m-s
and

Bm(j@"‘jm—l) = X(jm—l"‘j@)‘
Equation 3 reveals how we can use the 4-pin shuffle to com-
pute the FFT: We iteratively compute BS for s = 1 to m.
Iteration s results in Bg distributed on the output pins.
To perform iteration s, we form the weighted sum of ele-

ments from B whose indices differ only in bit position

s-1
number m-s. The 4-pin shuffle with N/2 processors provides
exactly the data alignment we want, since shuffling an ar-
ray s times causes the indices of the two numbers in each
processor to differ only in bit position number m-s.

The following is a description of Pease's parallel FFT
algorithm. The hardware is assumed to be a 4-pin shuffle
with N/2 PEs. The machine operates in SIMD mode, and PEs

differ only in that each processor PE(pm_Z...pg) knows its

own address Pp—2°++Pge



Large-network Parallel FFT

Input: data items A(k) k=8, ..., N-1
with A(k) on OPIN (k)

Output: the Fourier transform X (j) of A(k)
with X(jm—l"‘jg) on OPIN(jg...jm_l)

begin
SHUFFLE; n—s
Epﬂ...ps_2'2
OPING := IPING + W m_s'IPINl;
lp@...ps_2°2
OPIN1l := IPINGg + W *IPINI1;
end

This algorithm can be proved correct by induction on the
following loop invariant:

Immediately after shuffle number s,

Bs—l(j@"‘js—zgkm—s-l‘"ka)
and

Bs-l(jﬂ'°'35—21km—s—l'"kﬂ)
are in processor PE(km-s—l"°kﬂ3@"'Js—2) at pin posi-

tions

IPIN (kp o qe--Kpigeeadg_,0)

k

and

IPIN(km_s_looo @jg..‘js‘zl)'

respectively. This processor then places

Bs(j@"'js—zgkm~s—1‘"k@)
and

Bo(Jgee-Tgoplkp goye--Kp)

onto output pin positions



OPIN(km S 2)

—ae JgereTdas
and s-1 2-0 s-2
OP;N(k

...k 1),

m-s~1 ﬂjﬂ"'Js~2

respectively.

3.2. Sorting on the Shuffle

Batcher's algorithm [9], as adapted by Stone [2], sorts N
numbers in 1092 N passes through the N/2-processor 4-pin
shuffle., After each shuffle, a processor either
1. Copies the two inputs directly to the two outputs.
2. Compares the two inputs and puts the lower on OPIN@
and the higher on OPINI.
3. Compares the two inputs and puts the higher on OPIN#
and the lower on OPINI.

2

Hence Batcher's algorithm requires log® N shuffle steps on

the 4-pin shuffle.

3.3. Polynomial Evaluation on the Shuffle

Consider the problem of evaluating the (N-2)nd-degree poly-
nomial

N=2 .
(4) DA
i=p 1

for given numbers x and aj, i=¢, ..., N=-2. Horner's rule,

which evaluates a polynomial by the scheme



10

(...((anx+an_l)x+an_2)x+...+al)x+ag,
is an optimal serial algorithm that requires exactly N-2
multiplications and N-2 additions. Stone [2] presents an
algorithm for computing (4) with 2 log N passes through the

N/2-processor 4-pin shuffle.

3.4. Finite-difference Methods

The literature is full of proposals for the parallel execu-
tion of finite~difference calculations [14,11,12,13,14,15].
Often, the reciilinear problem grid 1is mapped one-~to-one
onto the rectilinear ©processor grid. At each time step,
each processor communicates 1ts values to and receives
values from each of its nearest neighbors. This exchange

provides each processor with the necessary values to com-

pute the value of its point at the next time step.

4. NETWORK EMULATION

Definition: Suppose that G = (VG,EG) and H = (VH,EH) are

graphs. We say that a function £:Vv, ---> V., is an emula-

H G

tion of H by G if for every edge (hl'hz) e EH
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f(hl) = f(h2) or (f(hl),f(hz)) € Eg.

Every emulation f:vH ===> Vg induces a mapping
f':EH -==> Vg Al E; in a natural way:

£'(hy,hy) = (£(hy),£(hy)) if (£(h}),E(h,)) € Eg
otherwise

¥ - —

£ (hl,hz) = f(hl) = f(hz).

We say that the node g € VG emulates the nodes f‘l(g), and
-1

that the edge (gl,gz) € EG emulates the edges f' (gl,gz).

If If_l(g)l is the same for every g € V;, then we say that

f is computationally uniform, and If“l(g)l is the computa-

1

tion factor of f£; if £ (e)l is the same for every e €

EG, then we say that £ is exchange-uniform, and f'-l(e)

is the exchange factor of f. If f is computationally uni-

form and exchange-uniform, and if the computation factor

equals the exchange factor, then we say that £ is totally

uniform, and ‘f_l

(g)l is the emulation factor of £f.

If the graphs G and H are interconnection networks,
then the existence of an emulation of H by G provides a way
for the network G to emulate the actions of the network H.
By analogy with the notion of quotient groups in abstract

algebra, we call G a guotient network. The processor g €

VG is time-shared to emulate the group of processors

f”l(g) in Vg, and the communications line (g;,9,) € E is

G
time-multiplexed to emulate the communication 1lines

|"l .
£ (gl]gz) in EH.
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If the emulation of H by G is computationally uniform,
then the processors in G can efficiently perform the ac-
tions of the processors of H: Since each processor 1in G
emulates the same number of processors of H, all of the
processors in G can proceed in unison and finish simultane-
ously. No processors sit idle while other overloaded pro-
cessors finish their work. Likewise, if the emulation of H
by G is exchange-uniform, then the communications lines in
G can efficiently perform the actions of the communications
lines of H: Since each communications line in G emulates
the same number of communications lines of H, all of the’
data transfers in G can proceed in unison and finish simul-
taneously. No communications lines sit idle while other
overloaded communications lines finish their work.

We now present an emulation for each of the networks
reviewed in Section 2. 1In each case, a large network H is
emulated by a smaller network G of the same general inter-

connection scheme.

4.1. Perfect Shuffle

Suppose that H is a shuffle-exchange network with N =
2™ processors. We will emulate this network with a 4-pin
shuffle network of size N/2, and then -emulate the 4-pin

shuffle network with any 4-pin shuffle network of size a

smaller power of two.
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Theorem 1l: The function f(pm_l...pzplpg) Pp—1°°-PoP;
emulates the shuffle-exchange network of size N with the
4-pin shuffle of size N/2.

Proof: Suppose that e = (hl’hz) € Ey. If e is an exchange
connection, then f(hl) = f(hz). If e is a shuffle connec-

tion, then

(£(h}) ,£(h)))

(£(P_y+--P1Py) +E(Pp_p-+-P1PgPr_1))
(Ppop+«+PysPpp---P1Pg) € Eg-

Q.E.D.

The emulation f is computationally uniform and exchange-
uniform, but not totally uniform. The computation factor
is two and the exchange factor is one.

Theorem 2: The function

f(pm+q--lpm+<;{—2'"pqpq—l‘"pfa) = pm+q—lpm+q—2“‘pq

emulates the 4-pin shuffle of size Np=2"t4

with the 4-pin
shuffle of size N=2".
Proof: Let

(hy,hy)

(P4 q-1Pmtg-2° * “PqPg-1-"Pp- pm+q_2...pqpq_l...ng)

be an edge in H. Then
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(£(hy) ,£(By))

(Pr+q-1Pm+g-2 "Pq’ Ppeg-2°* *PgPq-1) € Eg-
Q.Ech

The emulation f is totally uniform, with emulation factor
29, Figure 1 illustrates a 4-pin shuffle with four PEs

emulating a 4-pin shuffle with eight PEs.

4.2. Grid-connected Network

o

The emulation of a 1arge”§rid-connected network with a
small one 1is fairly straightforward; we simply partition
the large network into square regions.

Theorem 3: The function

E(Pryg-1-++PrProy+--Pyr qr+s—l"‘qrqr-l"'qﬂ)

(pr+s—l"'pr' qr+s—l"‘qr)

is an emulation of a grid-connected network of size 22r+25
by a grid-connected network of size 225.

Proof: Suppose that h = (hl'hz) = ((Pl’Ql)'(PZ'QZ)) e EH.
We assume that h is a "North" connection, so that Pl = P2

and Ql = Q2 - 1. A similar proof can be used when h is any
of the other three grid connections. We can represent Pl’

P2, Ql’ and Q2 as follows:
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Fig. 1. 4-PE 4-pin shuffle emulating 8-PE 4-pin shuffle.
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P) = Py = Prygy+++PrProy-+-Py

Qp =9y =1 = Qpyg -9 9rg---9p
If incrementing Ql results in a carry into the top s bits
in its binary representation, then

(£(hy) ,£(hy))

(E(Ppyg-1--+PrProy---Pyr Apts-1°+99p-1--9g) s
E(Prig1++PrPro1+-+Pgr rsgo1+--9r9r-1-+-9g + 1))
((Pryg-1-+--Prs Apys-1°-9c)
(pr+s—l"‘pr' Ar4s-1°*Y9r + 1))
€ Eg.
If not, then
£(h,)

f(pr:~t~s--l'"prpr—l"'pﬂ’ qr+s—l"'qrqr-l"'qﬂ)

(Prog-1-++Prr dpyg-1-+-9p)

f(pr+s—l"'prpr—l"'p@' qr+s-—l"‘qrqr—l"‘q@ + 1)
f(h

5)
Q.E.D.

The emulation f is computationally wuniform and exchange-
uniform, but not totally uniform. The computation factor

2T and the exchange factor is 2f, Figure 2 illustrates

is 2
part of a grid-connected network emulating a grid-connected

network that is four times larger.



- _—————
B o
AN e S e K4
N ked W
Lf'l Ll B
~ ’
~ d

Fig. 2. Grid emulation with r=2.
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In general, a k-dimensional grid may be emulated by a

smaller k-dimensional grid. For a given r, the exchange

factor is 2° and the computation factor is 2kr.

4.3. Cube

Theorem 4: The function

f(pm+q--lprn+q--2‘”pqpq-l"'pfij) = pm+q—lpm+q—-2‘°'pq

emulates the cube of size NP=2m+q with the <cube of size
N=2",
Proof: Suppose that (hl'hz) e EH' Then hl and h2 are of
the form

h —

l - pm+q_loocpiooopg

vhz = pm+q—l..0pi...pg.

If i < g, then f(hl) = f(hz). If i > g, then

and

f£(h,) = p _qesePie..P
and 1 m+g-1 i q

£(hy) = Ppyg_y-+-Pj---Pqy-
Hence (f(hl),f(hz)) e EG‘

Q.E.D.

The emulation f is totally uniform, with emulation factor
24, Any function that discards g bits and permutes the
remaining bits is also an emulation. Figure 3 illustrates

a cube of size four emulating a cube of size eight.
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emulating three-dimensional

Two-dimensional cube

3.

Fig.

cube.
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4.4, PM2I

Theorem 5: The function

f(Pm+q_lpm+q_2...pqpq_l...p@) = Pntq-1Pm+q-2°**Pq
emulates the PM2I network of size Np=2"T9 with the BPM2I

network of size N=2T.

Proof: Let (hl,hz) e EH' Hence hl and h2 are of the form

h., = p _.P heesP P _1e.eP
and 1 m+g-1m+g-2 g©g-1 g

_ i
h2 - pm+q-lpm+q-—2‘"pqpq-—l"'pﬁ 2y

for some #§ < i < m. If i < g and if the addition of 2t to
hl does not cause a carry into the top m bits of its ad-
dress, then f(hl) = f(hz). Otherwise, if i > g then

- i-q
£(h,) = £(h;) + 2 ,

and if 1 < g then

£(h = f(hl) + 1.

2)
In either case, (f(hl),f(hz)) e EG.

Q.E.D.
The emulation f is computationally uniform, with computa-
tion factor 29. But f is not exchange-uniform, since each

"+1" link in G emulates 2m+l

-1 links in H, while every oth-
er link in G emulates 2™ links. . Figure 4 1illustrates a

PM2I of size eight emulating a PM2I of size sixteen.
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ixteen.

ize eight emulating PM2I of size six

PM2I of si

ig. 4.

F
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5. SOME RESULTING ALGORITHMS

In this section we transform the large-network algo-
rithms of Section 3 into quotient-network algorithms.
Since the transformation is a fairly mechanical one, we
present it in detail only for the FFT algorithm. For the

other algorithms we only summarize the result.

5.1. Fast-Fourier Transform on the Shuffle

The FFT algorithm presented in Section 3 consists of a
loop executed m times. The body of the loop consists of a
SHUFFLE followed by placing weighted sums of the input pins

onto the output pins. We assume, as in Section 3, that our

m-1

network contains N/2 = 2 machines. We wish to compute

the DFT of NP = 29 data items A(i) for i=g, ..., NP-1.
We therefore emulate the actions of a 4-pin network of size
_ ~mt+g-1l . :
NP/2 = 2 . Each processor represents the virtual pins
of the processors it is emulating by arrays: The virtual

PE(k kg) has pins OPIN@, OPIN1l, IPING, and IPINI.

m+g-2° " "

These pins are emulated on actual PE(km+q~2...kq) at 1index

kq_l...kg of arrays EOPING, EOPIN1l, EIPIN@, and EIPINI,

respectively. Here is the quotient-network FFT algorithm:
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Quotient-Network Parallel FFT

Input: data items A(i), i=6, ..., NP-1 such that

A(k k ...kg) is stored on machine

m+q—l“'kq+l q

PE (k in EOPINk@[kq...k

Output: The Discrete Fourier Transform X (i),
i=@, ..., NP-1 such that
k

X(kﬂ...k is stored on machine

qkq+l"' m+q—l)

PE (k S

m+g-1 g+l) in EOPINk@[kq...k

11
for s := 1 to m do
begin

{ emulate SHUFFLE: }

for j := 0 to 29 -1 do
begin { emulate PE(Pm_

SR - DR, D B
if j is even then2 0-q-1 ?

begin
OPIN@ := EOPIN#[J/21; __,
OPINL := EOPIN@[j/2+297%];
end else
begin

OPIN@ := EOPIN1{LJ/21l;__,
OPIN1 := EOPINL[L3/2+297%1;

end;

SHUFFLE;

EIPING[j] := IPING;
EIPIN1[3j] := IPINI;

end;

{ emulate computation: }
for j := 0 to 29 -1 do

begin { emulate PE(Pm—Z"'P@jq—l"'jﬂ) }

em+q‘-2...eﬂ Hiad Pm_zocopgjq_looojg;
EOPIN@[j] :=
ge@occes_z'zm—s

EIPING[]] + W *EIPIN1[3];

EOPIN1[]j] := s
) leg...es_2‘2
EIPING[]J] + W “EIPIN1[]];
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end;

end;

The original large—-network FFT algorithm is optimal in
the number of processors; that is, the speedup is propor-
tional to the number of processors used. In the above ex-
ample, the large-network FFT algorithm rests on top of an
emulation, which rests on the actual hardware. Apart from
thehrldap and indexing overhead needed to emulate the SHUF-
FLE step, the Zm"l-processor network is 29 times as slow as

the 2°ta-l

-processor network. The loop and indexing over-
head slows the algorithm down by only a constant factor,
and could be eliminated entirely by unrolling the loops.
Therefore the quotient-network algorithm is also optimal:
We gain approximately N speedup with N processors. While
the original 1afge-network FFT algorithm performs log N

operate-shuffle steps, the quotient-network algorithm per-

forms quog N operate-shuffle steps.

5.2. Sorting on the shuffle

As we have seen, Batcher's large-network algorithm

sorts N = 2m+q numbers in (m+q)2 operate-shuffle steps on a
4-pin shuffle with 2m+q—l processors. A quotient-network
version of this algorithm sorts the 2m+q numbers in

Zq(m+q)2 operate-shuffle steps on a 4-pin shuffle with Zm—l

processors.
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5.3. Polynomial Evaluation on the Shuffle

m+g=-1

A 2 -processor 4-pin shuffle network can evaluate a po-

lynomial of degree 2°t971_

2 in 2(m+q) operate-shuffle
steps. The quotient-network version of this algorithm
evaluates the same polynomial in 2q+l(m+q) operate-shuffle

steps with 271 processors.

5.4, Finite-difference Methods

2r+2s

A large-network algorithm that maps the 2 points

of a finite-difference grid one-to-one onto a 22r+2$

grid-
connected network must communicate each point at each time
step to all four neighbors. The quotient-network version
of this algorithm reduces the communication/computation ra-
tio by communicating only the border points of a
processor's region to that processor's neighbors. For a

detailed discussion of quotient-network finite-difference

methods, see [1l6].
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THE ECONOMICS OF EMULATION

We can give several economic arguments in favor of

solving large problems on small networks through emulation.

1.

The cost of a word of storage is much smaller than
the cost of a processor. This fact is independent of
further increases in scale of integration. By adding
extra storage at each processor in G, we increase the
potential computation factor of an emulation; that
is, we can emulate a larger H. We therefore increase
the largest problem that the network can handle, with
a much smaller increase in hardware'cost than would
be incurred by expanding G to H.

Suppose that a solution must meet a time constraint
for a problem of size N. One processor cannot meet
this constraint, but N processors (the network H) are
much too expensive and much faster than needed. An
intermediate number of ©processors (the network G)
emulating H may be fast enough and affordable.

Given a large-~network algorithm, an emulation au-
tomatically produces a quotient-network algorithm to
solve the same problem on a smaller machine. We
achieve economy of thought by solving once and for
all the "emulation problem": doing on a small machine
what a large machine can do. Thereafter, we can deal

exclusively with the simpler class of problems: data
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sets of size N on networks with N processors.

7. CONCLUSIONS

We have defined the concept of emulation of one inter-
connection network by a quotient network. We have seen
that quotient networks of variocus intermediate sizes may be
formed for the shuffle-exchange, the 4-pin shuffle, the
cube, and the PM2I. These emulations can be evaluated on
the basis of computational and exchange uniformity. We
plan to extend this work to other networks. Preliminary
results imply that the Lens [17], for example, can be emu-
lated, but not in a computationally uniform manner.

Emulations lead to a general method for transforming
large-network algorithms into quotient-network algorithms,
which solve problems of size N on networks with fewer pro-
cessors. We have carried out this method in detail for the
FFT; similar transformations are possible for a large
number of SIMD algorithms that depend on a particular in-
terconnection scheme.

This transformation allows algorithms to be designed
assuming any number of processing elements. The implemen-
tation of such algorithms on a quotient network results in
no loss of efficiency, and often a great savings in

hardware cost.
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