MULTIPLE VIEW, MULTIPLE DATA MODEL SUPPORT
IN THE CHEOPS DATABASE MANAGEMENT SYSTEM

by

Anthony Klug

Computer Sciences Technical Report #418

January 1981

Multiple View, Multiple Data Model Support

in the CHEOPS Database Management System

Anthony Klug

University of Wisconsin

épstract

CHEOPS is an experimental database system which supports mul-
tiple user views and multiple user data languages. It current-
ly supports relational, hierarchical and network high-level
interfaces and a very deneral view facility. There may be
many views on one central schema, and one view may be bound to

the central schema in many ways. Queries and updates through
user views are guaranteed to give correct results because

their bindings to the main schema have been verified.

Keywords and Phrases: multiple views, multiple data models,
mapping, structure mapping, operation mapping,

mapping correctness, relational semantics

CR Categories: 3.58, 3.78, 4.22, 4.33, 4.34

1

l.

2

2.
2.

2.

3

4

Contents

INEYodUCEION «cosoocoosoesasossonoessssososooasaascasssssssssnsss
1 Overview Of Paper .ccococcccecocsssosassssccsssnsscanssasacsss
Three External Data Models in CHEOPS ...c..ccecessccscccccocsssa
1 Relational External Modelc.cccscsosasosssccoccsnssnacscsscss
2 Hierarchical External Model ...ccccasscsossscoccosssssssansces
3 Network External Model ..cccceoosescconscocssscssncasccsnsoansesn
The Common Semantics Approach in CHEOPS .cccsccssocecssooosnnns
The Central Data Model in CHEOPS ...c.cctcesscocasoscacosssssccsse
Some Common Semantics in CHEOPS ..cccceccnccvcccscsenncoscncsos
Schema Mappings in CHEOPScosessosccssssossacssssososcssssns
Optimization, Updates, and Other TOPiCS ...ccvvevcccssoccsocces

Summary and ConclusSionsS ..ccceeccsocecsssocssosassccscscsnssoans

19
20
25
40
44

1. Introduction

An important problem in database management systems today is the
development of effective user interfaces. The mass of published work
on the relational data model is ample example of this [Kim]. In addi-
tion, many other interfaces are being developed for different classes
of users. For example, an improved Codasyl-like interface is Dbeing
developed for application programmers [Clem2], and for naive users,
high-level graphics [Hero] and natural language interfaces [Codd3]

have been presented.

With these many interfaces available, each serving a particular
class of users, it is desirable to have a number of them available
simultaneously on the same database. In the "jargon of the field",
this is called support of multiple data models and multiple views.
The desirability of multiple user data models and multiple user views
has been well documented (e.g., [Nijsl, [Bergl, [SWKH], [KlTs],
[TsK1], [Cleml]). Having multiple data models allows the wuser to
choose a data model with the structures and language features best
suited to the application at hand. Having multiple views lets the

user see just that data which is needed for the application.

Providing these facilities requires a special DBMS design. The
ANSI/SPARC DBMS framework [TsKl] provides (among other things)
features through which multiple views and multiple data models may be
implemented. As depicted in Figure 1, a DBMS is functionally parti-
tioned into three levels: the external, at which users work, the cen-
tral, at which the database administrators work, and the internal, at
which the efficiency experts work. The external level may have many
schemas describing various views of the database wusing various data

models. The central level has one schema which describes the totality

| external schemas,
external | various data models,

level partial views of database,
user oriented
——— mappings
|
central | central schema,
level I complete, unbiased
I description of enterprise
——— mapping
| internal schema,
internal | complete description of
level | database + access paths &
| storage structures
FIGURE 1. Levels in ANSI/SPARC Framework
of the information in the database. The internal level has one schema

which describes the implementation of the information in the central

schema. The three levels are connected by "bindings" or "mappings".

Having multiple views means that the information in the database
may be filtered and transformed before presentation to the user. Hav-
ing multiple user data models means that users may interact with the
database through several different languages having quite different
syntax and semantics. Although these two concepts are related in that

seeing the database through a different language can be said to be a

different view, they are not the exactly same concept. For example,
suppose a user, "A", has a tree structured data model and sees a
presidential database[1] with the structure of Figure 2. This user

sees a simple hierarchy in which the children of presidents are the
congresses with which they have served. Note that because of deaths
or resignations, the same congress may appear under more than one

president. However, under each president, the record for a particular

[1] Our running example is a presidential database as in [sibl].

pres(name, party, termstart, termend) hkey(name)

I
I

congress(cong#, housdems, housreps, sendems, senreps)
hkey(cong#)
FIGURE 2. User "A"s View

will appear only once. (This is the meaning of a hierarchical key.)

There could be another user, user "B", who interacts with the
database through the network schema of Figure 3. In this network
view, the "link" record provides the many-to-many relationship between
presidents and congresses. User "A" sees the same information (i.e.

view) that user "B" sees, but the data models are different.

Now consider user "C" who uses the network schema of Figure 4.
This user sees information different from that which the first two
users see. User "C" has the same data model as user "B" but different

view.

In general, both data models and views can be different.

1.1. Overview of Paper

The CHEOPS[2] database management system is being implemented at
the University of Wisconsin to investigate the potentials and the
problems of multiple view, multiple data model DBMSs. This paper
presents and discusses the main design features of the CHEOPS DBMS.
The subject matter of the paper is limited to the external level, the

central level and the mappings between these two levels as they are

[2] The Egyptian king Cheops built the Great Pyramid at Giza. We

chose this name because the CHEOPS structure can be likened to two py-
ramids end-to-end (as in the ANSI/SPARC framework, see [TsLol, p.97).

pres(name, party, termstart, termend)
key(name)

PC
link()
CP

congr (cong#, housdems, housreps, sendems, senreps)
key(cong#)

FIGURE 3. User "B"s View

pres(name, party, numterms)
key(name)

PC
link()
CP
congr (cong#, majorparty)
key(cong#)
FIGURE 4. User "C"s View
implemented in CHEOPS. These are the components which are mainly

responsible for providing multiple view and multiple data model sup-

port.

The design decisions and problems which must be addressed in
implementing a DBMS which supports multiple views and multiple data
models are several. Some of the questions we are addressing in this

paper are:

(1) The multiple user data models must be brought together at some
point. This can happen at the external level, the central level

or the internal level or somewhere in between. Where is the best

place? How is this to be done?

(2) An external schema may have both explicit and implicit con-

straints which help to define the expected Dbehavior of the

5

defined view. What is necessary to guarantee the expected

behavior?

(3) What is the nature of the objects which bind external views to
the central level database? Are different constructs needed for
each different user data model? For example, how does the pro-
cess of extracting a hierarchical view differ from the process of
extracting a network view, and how do these differ from the pro-

cess of extracting a relational view?

(4) How can these many interfaces be implemented efficiently?

In succeeding sections we will show how these gquestions are dealt
with in the CHEOPS DBMS. 1In the next section we begin by describing
the three user data models currently available. Section 3 discusses

the concept of common semantics. The data model used at the central

level is described in Section 4, and in Section 5 we show how common
semantics are given to the three external data models mentioned above.
Mappings and their use are the subject of the sixth section. The Sec-
tion 7 briefly covers the method of reducing the complexity of the
central level statements produced, the treatment of update operations

and the actual CHEOPS interfaces. Finally, Section 8 summarizes the

paper.

2. Three External Data Models in CHEOPS

The purpose of supporting several data models at the user level
is to give each user the constructs best suited to that user's needs
and skills. To the gquestions of what data models should be included,
and what facilities they should have, we cannot give definitive
answers since there is a large amount of subjectivity involved. We

can, however, make the following important assumption: Navigational

6
languages [Coda] are not needed; high-level data languages will suf-

fice. Note that:

(1) "High-level" does not necessarily imply "relational". For exam-
ple, the language proposed by Fehder [Fehd] (which we also use)

is high level hierarchical data language.

(2) "High-level" does not imply "stand-alone". For example, RIGEL
[RoSh] provides a relational database interface embedded in a

modular programming language.

(3) We do not imply that with current technology, high-level

languages will suffice. (Although, we believe this will be the

case in the future.)

CHEOPS currently supports three external data models with high-
level data languages. They are based on relations, hierarchies, and
networks. Two other external data models are under development. These
are a binary relational model with a data manipulation language simi~
lar to FORAL [Senk], and an entity relationship model with a language
similar to CABLE [Shos]. These five models are the major approaches

to data modeling.

In this paper, only retrievals are discussed in detail. This 1is
solely due to lack of space. CHEOPS supports a full range of database
updates which will be discussed briefly in Section 7. We assume that
the reader is familiar with the basic concepts of the relational,

hierarchical, and network data models. (See, for example, [sibl].)

2.1. Relational External Model

A CHEOPS relational schema contains relation declarations and

constraint declarations (keys, other functional dependencies and

7
subset constraints). An example relational external schema is given
in Figure 5. (Data types of attributes are omitted for brevity.) It
refers to a presidential database which is used throughout this paper.
This schema describes information about states, elections ("repcand"
is the name of the Republican candidate, and so on), administrations,
and congresses. The key declarations specify that the listed domains
uniquely identify tuples [Coddl]. The subset constraints specify that
values in the listed domains of the left-hand relation will occur as
values of the listed domains of the right-hand relation. Subset con-
straints are sometimes called "foreign key constraints" [Coddl], "sub-
set dependencies" [SaWa] or "existence constraints" [Lienl]. These
constraints are essential for representing information structure such
as "there is a one-to-one correspondence between senates and houses of

congresses".

The relational data manipulation language (DML) is based on rela-

tional algebra [Codd2]. A retrieval has the form:

retrieve <expr>

A retrieval simply returns the result of evaluating the expression.
The expression <expr> is built from schema relations using the rela-
tional algebra operations of projection "R(X)" (X a list of domains),
cross product "R X 8", restriction "R[XeY]" (X,Y lists of domains, ©
one of '=', '<', etc.), union "R U 8" and literals "{<a,b,c>, ... }".
Joins "R[X©Y]S" and selections "R[X6V]" (V a constant) may be defined
in terms of these more basic operations. We reference domains in

expressions by their name, if that is unique in the expression, or by

state (name, capital, adpreslname, adpresfname)

election (year, winnerfname, winnerlname, loserlname)
admin (admnum, preslname, presfname, presstate, presparty)
congadmin (congrnum, admnum)

senate (congrnum, numdems, numreps)

house (congrnum, numdems, numreps)

key state (name)

key election (year)
key admin (admnum)
key senate (congrnum)
key house (congrnum)

subset admin (presstate) in state (name)
subset congadmin (congrnum) in senate (congrnum)
subset senate (congrnum) in house (congrnum)
subset house (congrnum) in congadmin (congrnum)
subset state (adpreslname, adpresfname)

in admin (preslname, presfname)

FIGURE 5. Schema STELCONG (State, ELection, CONGress)
A Relational External Schema

a number identifying a cross product term followed by a domain name.

Example 1. Find the names of states admitted by Republican adminis-
trations.
(state X admin[presparty = "republican"])

[admitpres = pres] (name)

2.2. Hierarchical External Model

Figure 6 shows an example of a hierarchical external schema for
the presidential database. Nested parenthesized blocks indicate the
tree structure. Each hierarchical segment must have a hierarchical
key specified. The hierarchical key specifies that under a given

parent the key fields are unique.

The DML for the hierarchical model is similar to that proposed by

Fehder [Fehd]. Statements have the form:

election(year) hkey (year)
(

runner (name, party, evotes)
hkey(name)
)

FIGURE 6. Schema ELECHIST (ELECtion HISTory)
A Hierarchical External Schema

for each <seg> having <qual> : list <outputlist>

The qualification is a boolean combination of terms, where terms com-
pare domains with values or other domains. The domains in the qualif=-
ication may reside in the target segment (the one mentioned in the for
part) or in any ancestor segment. Domains of ancestor segments have
the segment name prepended to them. The output list contains domains
of the target segment or of any of its ancestors. It may also contain
nested for constructs whose target segment is any descendant of the
target segment of the enclosing for clause. The nested fors have the

same form as above but without the list keyword.

Example 2. For each election of this century list the year and candi-

dates who were Democrats.

for each election having year > 1899 : list year,
(for each runner having party = "democratic" :
fname, lname)

Another hierarchical external schema we will consider is given in

Figure 7.

g.g. Network External Model

The CHEOPS network external model provides for definitions of
record types and set types. This model allows reflexive sets, and

sets can be either optional or mandatory (mandatory is default)

19

pres(fname, lname, party) hkey(fname, lname)

(
congr (cong#) hkey(cong#)
(
house (party, seats) hkey(party)
senate(party, seats) hkey(party)

)

FIGURE 7. Schema PRESCONG (PRESident, CONGress)
A Hierarchical External Schema

[Coda]. A network external schema for the presidential database is
given in Figure 8. Aids to understanding this schema are provided in

Figure 9.

The statements for the network model have the same overall struc-

ture as hierarchical statements:

for each <record> having <qual> : list <outputlist>

In a qualification, instead of referenced domains belonging to either
the target record or to an ancestor as in the hierarchical external
model, a domain can belong to any record connected to the target
record by a directed path (in the owner direction only) of sets. 1In a
list statement, a nested for clause specifies a directed path (in

member direction only) of sets.

Example 3. List all presidents names and names of their native

states.

for each pres: list lname, fname, NS.name

records

pres (fname, lname, party) key(fname, lname)
adm (ano, startyr, startmo, startday)

elec (year, votes) key(year)

state (name, capital, yradm) key(name)

congr (congrno, housdem, housrep,

sendem, senrep) key(congrno)

link ()
sets
EW (pres->elec)
Cs (pres->link)
PS (congr->link)
NS (state->pres)
AH (pres->adm)
AD (adm->state)
FIGURE 8. Schema PRADESC (President, ADministration,

Election, State, Congress)
A Network Schema for Presidential Database.

11

EW AH
elec | < pres > | adm
AD
Cs NS
state
link
PS
congr

(a) Data-Structure Diagram for PRADESC Schema

RECORD TYPES

pres president's name, party, and college

adm administration number (per president),
starting year, month and day, and length

elec year of election, electoral votes of winner

state name, capital, and year admitted to union

congr number of congress, number of Democrats and
Republicans in house and senate

link linking record for many-to-many congress-

president relationship

SET TYPES

EW elections won by president owner

cs congresses served (via link) by president owner
PS presidents served (via link) by congress owner
NS native sons for state owner

AH administrations for president owner

AD states admitted during administration owner

(b) Description of Records and Sets

FIGURE 9.

13

Example 4. List the presidents who admitted their own native states
to the union (no presidents actually did this), and list information

on the congresses they served.

for each pres having lname = NS.AD.AH.lname and
fname = NS.AD.AH.fname :
list fname, lname, (for each link via CS :
PS.congrno,
PS.housdem, PS.housrep,
PS.sendem, PS.senrep)

3. The Common Semantics Approach in CHEOPS

The previous section presented three different data models which
are presently available at the CHEOPS user level. 1In this section we

consider the general qguestion of how different data models are to be

supported, and we Jjustify the common semantics approach taken in

CHEOPS.

Consider the problem of binding (mapping) of user views and user
data models to the central schema and central data model. This bind-
ing must do two things: It must change data models, since the user
and the central data models will in general not be the same. The
binding must also extract the view, masking and transforming whatever

1s necessary.

In addition, in whatever manner the mapping is done, certain map-
ping processors must be available. There must be a compiler for the
mapping, and there must be a mapping verifier. (Mapping verification

is discussed in Section 6).

Changing data models and extracting the view can be done in three

ways:

(1)

(2)

14
The mapping can do both simultaneously. In this case the exter-
nal schemas, regardless of the models to which they belong, would
be connected directly by the mappings to the central schema as in
Figure 1@. For each different external data model there must be
a different mapping language. The mapping language must associ-
ate one kind of structure (external) with another type (central),
and must also perform transformations such as joining, averaging,
projecting, and so on. This double duty will complicate the syn-
tax and semantics of a "cross data model" mapping language. The
necessary mapping processors (see Section 6) will also be compli-

cated.

We can change the data model at the central level and extract the
view using constructs of the external data model. Then for every
external data model there is a transformation which from the cen-
tral schema produces an equivalent schema conforming to that
external data model as in Figure 11. Here, the syntax and seman-
tics of a mapping language will not be so complicated since it
will map the data model constructs to constructs of the same
type. On the other hand, many mapping languages and processors
must still be written. This will not be easy. Consider only the
language design problem. A designer of, say, a hierarchical map-
ping language must ask: "What are all the possible ways to
derive a hierarchical view from a given hierarchy?" A designer of
a network mapping language must ask: "What are all the possible
ways to derive a network view from a given network schema?" A
designer of an entity/relationship mapping language must ask:
"What are all the possible ways in which one view of entities and
relationships can be derived from a given set of entities and

relationships?" Each time a new external data model is to be

| model X |
external
| sChema
o +
|
|
|

: X/Y
: mapping

a o o 8 2 0 8 s 0 0 s

-
-
-
-

FIGURE 1@. Direct Connection, No Transformations

o +
| model X |
| external |
| schema |
I +
|
|
|
: X/X s
: mapping :
|
|
|
Fmm b mm e + e Fomm e —
| model X | .equivalence. | model Y
| central |<=====—- .transforma-.-—-—-———--= | central
| schema | . tion . | schema
Homm o + e O —

FIGURE 1l1. Equivalence Transformation of Central Schema

15

16
added, we would have to consider this difficult question.

Another problem is that the equivalence transforms are
going in the "wrong direction". That is, they must take a schema
from a model which is specifically desigﬁed to be used at the
central level, i.e., is designed to represent general information
structures, and produce an equivalent schema in a model which is
end-user oriented and may be restrictive and simplified. For
example, from an entity/relationship [Chen] central schema it is
harder to produce an equivalent hierarchical schema than it is to

produce an equivalent relational schema.

(3) We can change the data model at the external level and extract
the view using constructs of the central data model. In this
approach to designing the central/external interface, all exter-
nal schemas regardless of their data model are transformed into
schemas of the central data model as in Figure 12. Now there 1is
a need for only a single mapping language and a single mapping
processor. In addition, a transform represents the less general,
end-user data models by constructs of the more general central
data model. Clearly, this is an easier transformation than the
previous one. Finally, the question "What are all the possible

ways to derive a view?" needs to be answered only once.

The schema transformation we have just described is one component

of common semantics for an external data model. This transformation
we call the schema semantics. Since a data model also has a data
manipulation language, we also need DML semantics. These functions[3]

are depicted in Figure 13.

[3] The schema is needed as a parameter to the DML transform, and
the dots under the arrows indicate that several relational DML state-
ments and results may be needed with intermediate processing for
translating a DML statement of data model X. (Such complications are

17

R + e $ommm e +
| model X | .equivalence. | model Y |
| external |-=——=———- .transforma-.-————--- >| external

| schema | . tion . | schema |
o m + e o —mm e +

=1
v
oK
o~
P
o]
(o]

| model Y |
| central |
| schema |

FIGURE 12. Equivalence Transformation of External Schema

ignored in this paper.) Also, we have anticipated the next section by
calling the central data model relational rather than just "model Y".

fomm +
| I
| schema |--
| (data |
|model X)I
R +

FIGURE 1l1l3a.

IR +
| DML |
| statement |-
| (data |
| model X)|
o +
Fommmmm e +
| DML I
| result |«
| (data |
| model X)I
o +

FIGURE 13b.

We can contrast the common semantics

different

"subsetting" approach [Datel].

rela-

tional
.semantic.
.function.

- .

s e 0 e s 0 s 0 s

Schema Semantic Function

.

DML
.semantic.
. function.

.

DML Semantic Function

In this approach, there is one

approach to

18

Fmmm e +
l |

| rela- |

| tional |

| schema |

. +

o +
| rela- |
| tional |
| DML I
| statement |
fmmmmmmm +
o +
| rela- |
| tional |
| result |
| |
o +

accommodating

data models with another approach which might be called the

"super-

model" from which all other data models are derived by adding restric—

tions on language

syntax. For example

(in terms

of schemas only),

Date considers a hierarchy to be a special case of a network -- one in

which each child record has exactly one parent record, and he

consid-

ers a relation to be a special case of a hierarchy -- a hierarchy con-

sisting of a root only.

network,
ized. For example

cannot

With the subsetting approach,

hierarchical,

reasonably be

and

’

relational models,

even relational algebra

i

and

all user models must be

While subsetting may work well for particular

t cannot be general-

relational calculus

considered to be subsets of the same language.

made mutually

19
consistent in their syntax and semantics. With our common semantics
approach, we may use any sort of procedure to define any external data

model within the expressive power of the central data model.

Another advantage of the common semantics approach to supporting
multiple data models is that the "cross data model interference"
[PaPe] problem disappears. This is the problem of how to handle con-
flicting update semantics from different data models. For example,
deletion in hierarchical data models implies deletion of subordinate
segments, while deletion in relational models has no implied dele-
tions. Presumably, simultaneous updates by users of these models
could cause consistency problems. With the common semantics approach
all model-specific operation effects, whether implied or explicit, are

explicitly phrased in terms of operations of the common data model.

4. The Central Data Model in CHEOPS

The last section explained why CHEOPS defines common semantics
for all of its external data models. In this section we describe the
CHEOPS central data model (the target model of the semantic func-

tions).

Several complete papers could be (and have been, see [BrPP],
[Hawr], [Kentl], [Schm], for example) written on the subject of what
should be or should not be in the central data model. This debate
lies beyond the scope of this paper, and we have attempted to indicate
this by our choice of terms: "central data model" rather than the more
traditional "conceptual data model". The central data model must,
nevertheless, have at least the facility to support, via the semantic
functions of the previous section, the external data models. It has

been shown that relations plus functional dependencies and subset con-

20
straints can represent a large class of other structures such as
hierarchies [Coddl], networks [Zani] [Lien2], and entities and rela-
tionships [Klug4] [ZaMe] [Chen]. Thus the CHEOPS central data model
is relational (with functional dependencies and subset constraints):
A CHEOPS central schema contains relation declarations and constraint
declarations (keys, other functional dependencies and subset con-
straints). The central schema for the presidential database is given

in Figure 14. Some explanations are given in Figure 15.

The DML at the central level is based on relational algebra. The
language is thus identical with that of the external relational data

language.

5. Some Common Semantics ig CHEOPS

The algorithm for giving relational semantics to a CHEOPS
hierarchical schema is essentially Codd's First Normal Form algorithm
[Coddl]. For example, the PRESCONG schema (Figure 7) is represented by
the relational schema in Figure 16. Each hierarchical segment gen-
erates a corresponding relation. The relational keys are generated by
recursively bringing down keys of "parent" relations and concatenating
them with domains of the given hierarchical key. (Segment names are
added to guarantee uniqueness of domain names). The subset con-
straints are generated to model the fact that hierarchical children
always have parents. It is important to note that the subset con-
straints are an essential part of the semantics of the hierarchical
schema. If they were omitted, there would be legal instances of the
relational schema in which parts were children of nonexistent sup-
pliers. This would not be the intended semantics of a hierarchical

model.

Pres(lname, fname, party, state)

Admin(admink, imonth, iday, iyear, plname, pfname)
State(sname, yearad, capital, admitadm)
Elecloser(year, name, party, evotes)
Senate(congky, party, seats)

House (congky, party, seats)

Congpres(congky, plname, pfname)

Elecwinner(year, plname, pfname, evotes)

key Pres(lname, fname)
key Admin(admink)

key State(sname)

key Elecloser(year)
key Senate(congky)
key House(congky)

key Elecwinner(year)

subset Admin(plname, pfname) in Pres(lname, fname)
subset Senate(congky) in House(congky)

subset House(congky) in Senate(congky)

subset Congpresf{congky) in Senate(congky)

subset Senate(congky) in Congpres(congky)

subset Congpres(plname, pfname) in Pres(lname, fname)
subset Elecwinner(plname, pfname) in Pres(lname, fname)

FIGURE 14. Central Schema for Presidential Database

Pres last name, first name, party, native state
of president
Admin president's administration with number,
inauguration date and president's name
State state name, year became state, capital city,
administration admitting
Elecloser year of election, loser's name,
party and electoral votes won
Senate congress number, party name,
senate seats for party
House congress number, party name,
house seats for party
Congpres congress number and president name
serving together
Elecwinner year of election, winner (i.e., president)

name and electoral votes

FIGURE 15. Description of Central Schema.

21

22
pres(fname, lname, party)
congr(pres” fname, pres”lname, cong)
house(congr“cong#, pres”fname, pres”lname, party, seats)
senate (congr cong#, pres”fname, pres”lname, party, seats)
key pres(fname, lname)
key congr(pres” fname, pres” lname, cong#)
key house(congr”cong#, pres” fname, pres”lname, party)
key senate(congr”cong#, pres” fname, pres”lname, party)
subset congr(pres”fname, pres”lname) in pres(fname, lname)
subset house(congr”cong#, pres”fname, pres”lname) in
congr(cong#, pres”fname, pres”lname)
subset senate(congr”cong#, pres”fname, pres”lname) in
congr(cong#, pres” fname, pres” lname)

FIGURE 16. Relational Semantics of PRESCONG Schema (Fig. 7)

The relational semantics for the ELECHIST schema (Figure 6) are shown

in Figure 17.

We will illustrate here only the semantics of simple hierarchical
queries which require no intermediate processing by the semantic func-
tion. Given a hierarchical gquery containing no nested for-
constructs[4], the semantic function generates a relational query
which joins on hierarchical keys all relations corresponding to refer-
enced segments, restricts according to the gqualification and projects
according to the output list. Consider the following query for the
ELECHIST schema:

for each runner having party = "democratic" and

election.year > 1899 :
list election.year, fname, lname)

The meaning of this query (using the relations from the

equivalent relational schema) is the following relational query:

[4] Intermediate processing is required when there nested for's,
and the output must be made to look "hierarchical" rather than "flat".

23

elec(year)
runner(elec”year, name, party, votes)

key elec(year)
key runner(elec”year, name)

subset runner(elec”year) in elec(year)

FIGURE 17. Relational Semantics for ELECHIST Schema (Figure 6)

retrieve (runner X elec)
[elec”year = year and party = "democratic”

and year > 1899] (year, fname, lname)
The relations are joined on the hierarchical keys, the proper restric-

tions are made, and the requested domains are projected out.

The schema semantic function for the network model is driven Dby
two goals: One or more keys must be determined for each record type
to make it into a relation, and each set must be relationally
represented in the member relation by new domains referring to key
attributes of the owner relation plus some subset constraints. (New
domain names are made unique by concatenating to them the name of the
set which caused their creation.) The algorithm in CHEOPS 1is similar
to but simpler than the one given by Zaniolo. An outline of the algo-
rithm for the schema semantic function is given in Figure 18. The
PRADESC network schema (Figure 8) is mapped by the semantic function

to the relational schema of Figure 19.

In general, the query semantic function for simple network
queries forms a join containing all paths referenced in the query and

selects out the target records satisfying the qualification.

Example 5. Consider the query using the PRADESC schema to list
congress numbers which served presidents who admitted to the union

their own native states:

24

mark TO-DO all records with keys declared in schema;
repeat
while (there exists record R TO-DO)
{
for each set X owned by R
{
concatenate 'X”' to key attrs and
make these new attrs in mem rec S of X;
if (X has key-clause)
{
add new key-decl to rel schema
consisting of new attrs and
attrs in key-clause;
if (S not DONE)
mark S TO-DO;
}
}
mark R DONE;
}
while (there exists record R not DONE)
{
add new key decl to rel schema
consisting of all new attrs;
mark R TO-DO;
}

until (no more changes)

FIGURE 18. Network Schema Semantic Function

pres(fname, lname, party, NS name)

adm(ano, startyr, startmo, startday, AH"fname, AH”lname)
elec(year, votes, EW” fname, EW™ lname)

state(name, capital, yradm, AD"ano)

congr (cong#, housdem, housrep, sendem, senrep)

1ink(CS” fname, CS"lname, PS”cong#)

key pres(fname, lname)

key adm(ano)

key elec(year)

key state(name)

key congr(cong#)

key link(CS”fname, CS”lname, PS " cong#)

subset pres(NS“name) in state(name)

subset adm(AH”fname, AH"lname) in pres(fname, lname)
subset elec(EW” fname, EW"lname) in pres(fname, lname)
subset state(AD"ano) in adm(ano)

subset 1ink(CS”fname, CS”lname) in pres(fname, lname)
subset link(PS“cong#) in congr(cong#)

FIGURE 19. Relational Semantics of PRADESC Schema (Fig. 8)

25

for each link having
CS.lname = CS.NS.AD.AH.lname and
CS.fname = CS.NS.AD.AH.fname :
list PS.cong#

The semantic function produces the statement:

retrieve (link X pres X state X adm X pres X congr)
[¢8” fname = 2.fname and CS"lname = 2.lname and

2 .NS"name = name and
AD"ano = ano and
AH” fname = 5.fname and AH" lname = 5.lname and
PS"cong# = cong# and
2.lname = 5.lname and 2.fname = 5. fname]
(cong#)
The terms on lines 1,2,3, and 4 of the restriction "follow", respec-

tively, the path from link via CS to pres, from pres via NS to state,
from state via AD to adm, and from adm via AH to pres. The last term
equates the first occurrence of pres (the one who is the native son)
with the second occurrence of pres (the one who admitted the state),

and the term on line 5 joins link with congr to get the output domain.

6. Schema Mappings in CHEOPS

In the last section we saw how schemas and queries of different
data models could be represented by schemas and queries of a single
common data model (a relational one). In this section we describe how
user views are bound to the central schema in CHEOPS via the common

semantics.

An important result of the Section 3 is that CHEOPS may pretend,
for the purposes of binding external user models to the central model,
that all external models are relational. Thus, this section on map-
pings between schemas refers only to relational external schemas. To
bind a network, hierarchical or any other external schema, we bind the

equivalent relational schema which is produced by the schema semantic

26

function.

A mapping specifies relations between schema (syntactic) objects.
The CHEOPS schema mapping language is based on relational algebra. A

structure mapping consists of a set of equations

where R is an external relation and e is a relational algebra expres-
sion over relations 1in the central schema. For each R there is
exactly one such equation in a mapping, and the type of R defined in
the external schema is the same as the type of e as determined by the

relations in the central schema.

In the terminology of, say, INGRES [SWKH], R is a view relation.
There is an important difference, however, between view relations in
the style of INGRES and CHEOPS external relations. The definition and
declared constraints of an external relation are completely indepen-
dent of the mapping equation which "implements" the external relation,
whereas an INGRES view relation has no existence independent of its

defining query.

A structure mapping completely determines the results of external
retrieval statements. The structural part of the mapping is used to
to substitute central schema expressions for the external schema rela-

tions. This is analogous to query modification in INGRES [Ston].

In Section 2, where three user data models were presented, we
gave four example schemas which belonged to different data models (2
were hierarchical), which all represented some view of a presidential
database, and whose structures were quite different. In the following

paragraphs we will show:

27

(1) How the schema semantics work with the schema mapping to produce
output.

(2) How these four different views expressed in different data models
can all be bound to the same central schema (Figure 14).

(3) How a single user schema (we use the ELECHIST schema) can be
bound to the central schema in several different ways producing
quite different views. (The view acts as a movable window over
the database.)

In Figures 26 through 22 we give mappings for the STELCONG,

PRESCONG, and PRADESC schemas. In Figures 23 and 24 two different

mappings are given for the ELECHIST schema. Commentary on these map-

pings follows:

The STELCONG schema is relational. Thus it can be bound directly
to the central schema by a mapping. The mappings for state, admin and

congadmin are simple joins to get the correct attributes into one

relation. The senate view contains attributes for Democrat numbers
and for Republican numbers. (The case for house is similar.) How-
ever, the Senate central relation has a different structure. Thus the

mapping must join two copies of the Senate relation (on year) and
select Democrat tuples from one copy and Republican tuples from the
other. (Note that congresses without both Democrats and Republicans
will not appear.) To derive a desired structure for the election
view, we must first Jjoin Elecwinner with Pres to correlate the
winner's party with the vote and year attributes. Then we will add a
join with Elecloser. Thus far, there will be as many tuples for a
given vyear as there are losers. Only those tuples are selected
involving Democrats and Republicans. A mapping could also be written
which places in the view other combinations of winners and losers.

The only restriction is that only one loser can appear for each year.

The PRESCONG schema is hierarchical. Thus the mapping is defined

between the central schema and the relational equivalent of the

state

election

admin

congadmin

senate

house

FIGURE

pres

congr

house

senate

FIGURE

21.

il

Il

28

(state X Admitadmin X Admin)
[1l.sname=2.sname and 2 .admink=3.admink]
(1.sname, capital, plname, pfname)

(Elecwinner X Pres X Elecloser)
[1.plname=2.1lname and 1l.pfname=2.fname and
l.year=3.year and
(2.party="democratic" or 2.party="republican") and
(3.party="democratic" or 3.party="republican")]
(1.year, l.pfname, l.plname, 3.name)

(Admin X Pres) [plname=lname and pfname=fname]
(admink, lname, fname, state, party)

(Congpres X Admin) [plname=lname and pfname=lname]
(congky, admink)

(Senate X Senate)
[1.congky=2.congky and 1l.party="democratic" and
2.party="republican"]
(1.congky, l.seats, 2.seats)

(House X House)
[1.congky=2.congky and l.party="democratic" and
2.party="republican"]
(1.congky, 1l.seats, 2.seats)

Mapping for STELCONG Schema (Figure 5)

Pres (fname, lname, party)
Congpres (pfname, plname, congky)

(House X Congpres)

[1.congky=2.congky]
(1.congky, pfname, plname, party, seats)

(Senate X Congpres)

[1.congky=2.congky]
(1.congky, pfname, plname, party, seats)

Mapping for PRESCONG Schema (Figures 7,16)

pres = Pres (fname, lname, party, state)
adm = Admin (admink, iyear, imonth, iday, pfname, plname)
elec = Elecwinner (year, pfname, plname, evotes)
state = (State X Admitadmin) [1l.sname=2.sname]
(1.sname, capital, yearad, admink)
congr = (House X House X Senate X Senate)
[1.congky=2.congky and 1l.congky=3.congky and
1.congky=4.congky and l.party="democratic"
and 2.party="republican" and
3.party="democratic" and 4.party="republican"]
(1.congky, l.seats, 2.seats, 3.seats, 4.seats)
link = Congpres (pfname, plname, congky)

FIGURE 22. Mapping for PRADESC Schema (Figures 8,19)

elec = Elecwinner(year)
runner = (Elecwinner X Pres) [plname=lname and pfname=fname]
(year, lname, party, evotes)
U
Elecloser

FIGURE 23. Mapping 1 for ELECHIST Schema (Figures 6,17)

elec = (Elecwinner X Pres)
[plname=1lname and pfname=fname
and party="whig"] (year)
U
Elecloser [party="whig"] (year)

runner = (Elecwinner X Pres X Elecloser)

[plname=lname and pfname=fname and
l.year=3.year and
(2.party="whig" or 3.party="whig")]

(1.year, lname, 2.party, l.evotes)

U
(Elecwinner X Pres X Elecloser)

[plname=lname and pfname=fname and
l.year=3.year and
(2.party="whig" or 3.party="whig")]

(3.year, 3.name, 3.party, 3.evotes)

FIGURE 24. Mapping 2 for ELECHIST Schema (Figures 6,17)

29

30
hierarchical view (Figure 16). This mapping happens to be as simple
as possible. It merely Jjoins appropriate relations to get the

required attributes in one place.

The PRADESC schema is a network. The mapping is defined Dbetween
the central schema and the relational equivalent of this network view
(Figure 19). The mappings for pres, adm, elec, and link are simple
reorderings of the attributes. The mapping for state is a join to get
the needed attributes together. The mapping for congr performs a task
similar to the mapping for the election relation above. It must join
two copies each of House and Senate and select out Democratic and

Republican numbers.

The ELECHIST schema is hierarchical. The relational equivalent
is in Figure 17. For this schema we have defined two mappings. Map-

ping 1 extracts all elections and the winner and all losers in the

elections. The set of all election years is the projection on the
year attribute of Elecwinner (or Elecloser). The set of all runners
(candidates) is the set of winners (presidents, with a join needed)

plus the set of losers.

Mapping 2 illustrates how the election history schema can be used
as a window over selected parts of the database. With mapping 2 we
see only elections involving the Whig party. To get the elections
years we take a union of years that winners were Whigs with years that
losers were Whigs. To get the runners in years in which Whigs ran, we
first Jjoin winners (with a join to Pres to get the party) with losers
and select those joined tuples which have either a Whig winner or a
Whig loser. We then take a union of a projection on winner attributes

with a projection on loser attributes.

To illustrate the effect of these several views and mappings,

give below some sample output from typical queries.

31

we

Example 6. With the STELCONG schema and the given mapping, get infor-

mation on elections since 1954.

query:

result:

retrieve election [year > 1950]

year |winnerfname|winnerlname| loserlname|

1952 | dwight]|
1956 | dwight]|
1960 | john |
1964 | lyndon]
1968| richard|
1972 richard|
1976 | Jimmy |
1980 | ronald|

eisenhowe|
eisenhowe|
kennedy |
johnson |
nixon|
nixon]
carter|
reagan |

stevenson|
stevenson |
nixon|
goldwater]
humphrey|
mc govern|
ford|
carter|

Example 7.

congress

information

Using the PRESCONG

schema and

the given

which there is complete information in our database).

query:

mapping,

for each congr having cong# >= 89 and cong#<=93

list cong#,

result:

| cong#|

partyl

seats|

partyl

(for each house: party,
(for each senate: party,

seats|

|
l
I
|
I
I
l
l
|
|
|
l
I
l

89| democratic|
| republican]
9¢ | democraticl
| republican]
91 | democratic|
| republicanl
92| democratic|
| independnt|
| republican]

93|democraticl|
| independnt |
| republican]|

295 | democratic|
140 | republican|
248 | democratic|
187 | republican]|
243 |democratic]
192 | republican]
254 | conserve. |
1 |democratic]
186 | independnt |
| republican|
255 | democratic]
1l republicanl|
179/ I

seats),
seats)

32

get

for recent congresses (the most recent five for

33

Example 8. Using the PRADESC schema and the given mapping, get names
of presidents with last names beginning with 'N','P' or 'R' (to keep
output small), the elections they won and the numbers of the

congresses they served.

guery: for each pres having lname>"n" and lname<"s" :
list fname, lname,
(for each elec via EW : year),
(for each link via CS : PS.cong#)

result:

| m— e |

: pres% elec{ llnk=

} fname | lname{ year| cong#|

| franklin]| piercel 1852 34|

| franklin| roosevelt| 1932} 73|

I | | 1936] 74|

I | | 1944 75|

I I | 1944 76|

I | I | 771

| | I I 78|

I | I I 79|

| james | polk| 1844| | (no republican party
I richard] nixon| 1968 | 91| yet, see mapping)
I 1972 92|

I | | | 93|

| ronald| reagan| 1980 | | (no house informa-
| theodorel roosevelt] 1904 | 57| tion in database)
I I I I 58|

| | | I 59|

| l I I

|

Example

formation for the elections since 1958.

query:

9.

list year,

eisenhowe | republican]|
stevenson|democratic|
eisenhowe| republican|
stevenson|democratic|
kennedy| democratic|
nixon| republican]|
goldwater| republican|
johnson|democratic|
humphrey|democratic]
nixon| republican|
wallace| americanl|
mc govern|democraticl|
nixon| republican]|
carter|democratic]
ford| republican|
anderson | indep. |
carter|democratic]|
reagan| republican]|

for each elec having year > 1950
(for each runner: name, party, votes)

(no info)
(no info)

34

Using the ELECHIST schema with mapping 1, get election in-

35

Example 10. With the ELECHIST schema and mapping 2, get all informa-
tion.
query: for each elec :
list year, (for each runner: name, party, votes)
result:
elec runner
year name party votes
1836 harrison whig 73
mangum indep. 11
van buren|democratic 170
webster whig 14
white whig 26
1840 harrison whig 234
van buren|democratic 60
1844 clay whig 105
polk |democratic 170
1848 cass|democratic 127
taylor whig 163
1852 pierce|democratic 254
scott whig 42
To get the output in the above examples, the following process
occurs:

(1) The user query is converted to relational form by the common
semantic function.

(2) The mapping is applied to the resulting relational algebra
retrievals. For every external relation in the view, the
corresponding entry is found in the mapping, and the right-hand
side of the equation is substituted.

(3) The resulting expression referring to central relations 1is exe-

cuted.

We illustrate this process with an example:

Example 11.

the

each

query

parts:

Using the PRESCONG schema and the given mapping, consider

to list numbers of senates along with numbers of seats for

36

for each senate:list congr.cong#,party,seats

The DML semantic function of CHEOPS outputs the relational dqueryl[5]

(referencing the relations of Figure 16):

retrieve (senate
X
congr
) [D1L = D8 and D2 = D6 and D3 = D7]
(D8,D4,D5)

The mapping entries for senate and congr are found, and the right~-hand
sides are substituted:
retrieve ((Senate X Congpres) [DO = D3] (D0O,D5,D4,D1,D2)
X
Congpres (D2, D1, DO)
) [D1 = D8 and D2 = D6 and D3 = D7]

(D8 ,D4,D5)

This is the query which 1is sent to central 1level processors for

evaluation.

Mapping Correctness

The database mappings in CHEOPS share some properties with imple-
mentations of one data type (e.g., a stack) in terms of another data
type (e.g., an array) Like data type implementations, database map-
pings must be "correct" for the user to see a view having the struc-
ture specified in the schema. If the mapping is not correct, the

expected structure may not be present. Below are two examples showing

[5] Here, we have identified attributes by number rather than by
name. This is how CHEOPS actually works, because by avoiding the
renaming of attributes, query mapping is easier.

incorrect mappings and the unexpected results they give.

Example 12.

of Figure 25.

which

Suppose the ELECHIST schema were bound with
The binding for elec erroneously selects only years

the winner was a Whig.

The

a parent") in Figure 17 will fail.

error, consider the dquery:

for each

The result with the incorrect mapping will be:

1840

1848

Clay and Polk seem to have run in 1840, and a number of candidates

elec :

list vyear,
(for each runner:name,

subset constraint ("every

To see

party,

o —c— " —- 2" 7 " —" > i T — G o SVl W (T S WO T o S S i P S S

——— " " - — o |2t} Jri7 o D] o] Tl i Lo W S) S TS TS T e S St

harrison
mangum
van buren
webster
white
harrison
van buren
clay

polk

cass
taylor
pierce
scott

democratic
whig
whig
whig
democratic
whig
democratic
democratic
whig
democratic
whig

not even have a parent year.

Example 13.

of Figure 26.

there can

this view constraint fail.

Suppose the STELCONG schema were bound with

Year is supposed to be a key for

retrieve election [year=1980]

To see

be many losers in an election, the given mapping will make

this, consider the query:

mapping

child has

manifestation

mapping

election,

38

elec = (Elecwinner X Pres)
[plname=1lname and pfname=fname
and party="whig"] (year)
runner = (Elecwinner X Pres X Elecloser)

[plname=lname and pfname=fname and
l.year=3.year and
(2.party="whig" or 3.party="whig")]

(lL.year, lname, 2.party, l.evotes)

U
(Elecwinner X Pres X Elecloser)

[plname=lname and pfname=fname and
l.year=3.year and
(2.party="whig" or 3.party="whig")]

(3.year, 3.name, 3.party, 3.evotes)

FIGURE 25. 1Incorrect Mapping for ELECHIST Schema

election = (Elecwinner X Elecloser)
[l.year=2.year]
(l.year, l.pfname, l.plname, 2.name)

e

. (others unchanged)

FIGURE 26. Incorrect Mapping for STELCONG Schema

With incorrect mapping, this query gives the result:

i - o —— "] —— v — - v e o | i v e oty o e b o it | ——— i oo

1980 ronald reagan anderson
1980 ronald reagan carter

- —— -~ o > o ——_ — —— —" S T] —— T T (o - " Ot WA TN O A S Kl WSS U G B P Sorm G S

The problem of determining correctness of structure mappings is
not the problem of determining losslessness of joins [AhBU] or decom-
posability of relations [Riss]. External views are supposed to hide
information and provide irreversible transformations; we do not want

to require that a structure mapping be lossless or reversible.

39

In the CHEOPS system, constraints consist of key constraints
(which are sets of functional dependencies), other functional depen-
dencies and subset constraints. The structure mapping verifier must
check that the validity of every constraint in the external schema E
is implied by the mapping m plus the constraints of the central
schema C. If the external constraint is a functional dependency R:Z-
>A, and the equation R = e is in m, the verifier must check that Z->A
is wvalid on expression e over C. If the constraint is a subset con-
straint R1(X1) in R2(X2), and the equations Rl = el and R2 = e2 are in

m, the verifier must check that el(X1l) in e2(X2) is wvalid over C.

In [K1Pr] (with an earlier version in [Klugl]), an algorithm
based on the tableau technique [AhSUl,2] has been given for the con-

straint verifier. The outline of the algorithm follows:

Constraint Verifier Algorithm

Given schema C and candidate FD e:%2->A, construct tables (a
tableau) for relations of C such that two formal tuples tl, t2 having
t1[2] = t2[Z] will appear in expression e. If after ensuring that all
constraints of C hold on the tables, it is found that tl[A] = t2[A]l,
then Z->A is valid on e. If not, then Z->A is invalid because a coun-
terexample state has been constructed. Given schema C and candidate
subset constraint el (X1) in e2(X2) .construct tables for relations of S
such that a formal tuple t will appear in el(X1l). If after ensuring
that all constraints of C hold on the tables, it is found that t also
appears in e2(X2), then el(X1) in e2(X2) is valid. If not, then it is

invalid because a counterexample has been constructed.

40

7. Optimization, Updates, and Other Topics

In this section, we briefly discuss other features of CHEOPS.

Logical Optimization

In a database system supporting multiple views and multiple data
models, we can identify two kinds of new performance problems:

(1) Problems resulting from the extra levels through which queries,
updates, and results must pass.

(2) Problems resulting from a view being radically different from the
underlying database structure (either central or internal).
The second class of problems cannot really be termed "wasteful" or
"inefficient" because by binding a view with a complicated mapping
(e.g., mapping 2 for ELECHIST), we save the user a great deal of work
in formulating queries. If the storage structure is not designed with
a certain complicated mapping in mind, it cannot be expected that
queries going through this mapping will be efficient. On the other

hand, the first type of inefficiency should and can be dealt with.

The problem is that the process which starts with a query or
operation in one of the external user models, which translates the
statement to an equivalent relational form, and which maps the stéte—
ment down to the central level, can result in an unnecessarily compli-
cated query or operation. There may be cross product terms which con-
tribute nothing to the result; there may be projections on projec-
tions, and so on. To solve this problem, the resulting expressions
referring to central 1level relations are sent in CHEOPS through a
"logical optimization" stage. By "logical" we mean that relational
algebra equivalence transformations which are independent of access
paths, storage structures or any other physical characteristics of the

database are applied to expressions to reduce their complexity. We

41

illustrate the effect of logical optimization with an example.

Example 14. Consider the query, using the PRADESC schema, to retrieve
the names of presidents who have admitted states to the union:

for each state :
list AD.AH.fname, AD.AH.lname

The relational equivalent of this query and the mapped duery are,
respectively (again using attribute numbers for brevity):
retrieve (state X adm X pres)
[D4 = D5 and D9 = D11 and D10 = D12]
(D11, D12)
retrieve ((State X Admitadmin) [D1 = D6] (D1, D3, D2, D5)
X Admin(Dl, D4, D2, D3, D6, D5)
X Pres (D2, D1, D3, D4))
[D4d = D5 and D9 = D1l and D10 = D12]
(D11, D12)

The CHEOPS logical optimization step produces a query containing Jjust

one join:
retrieve (Admitadmin [DO = DO] Admin) (D7, D6)

In words, the presidents who admitted states are the ones who have a

tuple in Admin joining with at least one tuple in Admitadmin.

The current implementation of logical optimization is ad hoc. We
are currently working on a theoretical basis. The problem is a gen-
eralization of the optimization discussed in [AhSUl,2] and [ChMe]. 1In
our case. the presence of subset constraints changes the problem. The
basic way in which a subset dependency can be used to reduce the size

of an expression is as follows:

A projection of a join of the form (R[A=B]S) (X), where X contains only
domains of R and S is a base relation (no selections), is equivalent

to the projection R(X) if the subset constraint R(A) in S(B) is valid.

42
The expression is essentially a semi~join [BeGo], and the subset con-

straint guarantees that the semi-join is all of R.

Update Operations

In a future paper we will discuss treatment in CHEOPS of opera-
tions in different user data models which update the database. Here,
we will simply note that the common semantics approach is still wvalid.
That 1is, the DML semantic function (Figure 13) represents each updat-

ing operation of a user model by relational algebra operations.

Example 15. Suppose we wanted to delete all president information
from the PRESCONG schema for president Smith. The update statement

would be:

for each pres having lname="smith" : delete

The DML semantic function outputs the following sequence of statements

referencing the relations of Figure 16:

delete from senate
(senate X pres)
[pres”fname = fname and pres”lname = lname
and lname = "smith"]
(congr”cong#, pres”fname, pres”lname,
party, seats)

delete from house
(house X pres)
[pres”"fname = fname and pres”lname = lname
and lname = "smith"]
(congr”"cong#, pres”fname, pres”lname,
party, seats)

delete from congr
(congr X pres)
[pres”fname = fname and pres”lname = lname
and #4 = "smith"]
(pres”fname, pres”lname, cong#)

delete from pres
pres [lname = "smith"]

To delete a root occurrence from a hierarchy, all descendants must

43
also be deleted. Thus the relational semantics of a delete of a pres
occurrence consists of a sequence of four relational deletes. The
first one deletes from the senate relation those senate tuples "under"”
the Smith pres tuple. (The expression is essentially a semi-join.)
Similarly, the second and third statements delete house and congr
tuples, respectively, which are under the Smith pres tuple. Finally,

the Smith tuple itself is deleted.

The mappings we have specified do not supply enough information

to bind update operations to the central level. "Operation mappings"

are used for this purpose.

Implementation Notes

CHEOPS runs on a Virtual VAX/UNIX system. There are separate
interfaces for entering schemas, for entering mappings and for query-
ing or updating the database. All interfaces use the same interactive
monitor. Schemas, mappings and dueries are first read into a tem-
porary buffer, the buffer is edited if necessary to correct errors,
and a GO monitor command is executed to send the buffer to the lower

levels of the system.

The user interfaces are invoked with the commands:

rqg <db> <sch> <map> (relational interface)
hg <db> <sch> <map> (hierarchical interface)
ng <db> <sch> <map> {(network interface)

Here, <db> is the database, <sch> is the external schema, and <map> is
the mapping to be used to bind the external schema to the central

schema.

44

8. Summary and Conclusions

CHEOPS provides facilities for multiple user data models and
multiple user views. These facilities are provided through the fol-

lowing facilities:

(1) Central Data Model with functional dependencies and subset con-
straints. These constructs allow the support of the major data

models at the external level.

(2) Relational Semantics. All external data models are given a
semantics in terms of relations. This eliminates cross data model

interference and the need for multiple mapping languages and

verifiers.

(3) Structure and Operation Mappings. Explicit bindings of struc-
tures and operations of user views are independent of view defin-

itions.

(4) Mapping Verifiers. The implementation of external views by their
binding to the central level database can be proved correct by

the mapping verifiers.

(5) Logical Optimization. Queries and operations produced at the
central 1level have inefficiencies introduced by the mapping pro-

cess removed.

Future Work

Future extensions to this work will include:

(L) Multiple Concurrent Users. This will demonstrate the effective-
ness of relational semantics in eliminating the problem of cross
data model interference. Some initial work has been done on a

generalization of predicate locks [EGLT] for providing

45

concurrency control [Klug3].

(2) Aggregate functions will be incorporated into the wuser query
languages and into the mapping language. Aggregate functions are
important for providing summary-type user views. We have identi-
fied relational algebra constructs which can model aggregate or

statistical operations in any user model [Klug2].

(3) An Internal Level. The internal level and mappings from the cen-
tral level to the internal 1level will allow investigation of

efficient compilation of mappings.

(4) Automatic Remapping. After a change to the central schema, map-
pings to the external schemas have to be rewritten. Automatic
remappings may be possible. This would be a novel approach to
the problem of application program conversion.

References

[(AhBU] Aho A.V., Beeri C., and Ullman J.D. "The Theory of Joins in
Relational Databases" ACM-TODS 4, 297-314 (1979)

{AhSU1] Aho A.V., Sagiv Y., and Ullman J.D. "Efficient Optimization
of a Class of Relational Expressions", ACM-SIGMOD 1978 Interna-
tional Conference on Management of Data

[AhSU2] Aho A.V. Sagiv Y., and Ullman J.D. "Equivalences among Rela-
tional Expressions" SIAM J. Comptng. 8, 2, 218-246 (May 1979)

[BeGo] Bernstein P.A. and Goodman N. "The Theory of Semi-Joins",
Tech. Rep. CCA-79-27, 1979, Computer Corp. of America

[Berg]l] Berg J.L. "A DBMS Architecture for Prudent Managers" Infor~-
mation & Management, 1 (1978) 265-276

[BrPP] Bracchi G., Paolini P., and Pelagatti G. "Binary Logical
Associations in Data Modelling", IFIP Working Conference on Model-
ling in Data Base Management Systems, North Holland, 1976

[ChMe] Chandra A.K. and Merlin P.M. "Optimal Implementation of Con-
junctive Queries in Relational Databases”, Proc. 9-th Annual Symp.
on Theory of Computing, May, 1976, 77-90

[Chen] Chen P.P.S5. "The Entity~Relationship Model: Towards a Unified
View of Data", TODS 1, pp. 9-36

[Cleml] Clemons E.K. "An external schema facility for Codasyl 1978"

46
Proc. 5th Int. Conf. Very Large Data Bases, 1979

[Clem2] Clemons E.K. "Design of a Prototype ANSI/SPARC Three-Schema
Data Base System" Proc. NCC, 1979

[Coda] Codasyl Data Base Task Group, April 1971 report, ACM, New York

[Coddl] Codd E.F. "A Relational Model of Data for Large Shared Data
Banks" CACM, 13, pp.377-387, 1970

[Codd?2] Codd E.F. "Relational Completeness of Data Base Sub-
languages" Data Base Systems, R. Rustin (ed.), Prentice Hall, 1972

[Codd3] Codd E.F., Arnold R.S., Cadiou J-M., Chang C.L., and Rousso-
poulos N. "Rendezvous version l: an experimental english-language
query formulation system for casual users of relational data bases"
IBM Research Report RJ2144(29407) 1978

[Date] Date C.J. "An Introduction to the Unified Database Language"

Proceedings Sixth International Conference on Very Large Databases,
Montreal, 1980

[EGLT] Eswaran K.P., Gray J.N., Lorie R.A., and Traiger I.L. "The
Notions of Consistency and Predicate Locks in a Database System"
cACM 19, 11, pp.624-633

[Fehd] Fehder P.L. "HQL: A Set-Oriented Transaction Language for
Hierarchically-Structured Data Bases" ACM “74, Proceedings of the
Annual Conference, 1974

[Hawr] Hawryszkiewycz I.T. "Alternate Implementations of the Concep-
tual Schema" Information Systems, 5, pp.203-217 (1980)

[Hero] Herot C.F. "Spatial Management of Data" ACM TODS 5, pp.493-
513 (1980)

[Kent] Kent W. "New Criteria for the Conceptual Model" Systems for

Large Data Bases, Lockemann & Neuhold (eds.), North Holland Pub.
Co., 1976

[Kim] Kim W. "Relational Database Systems", ACM Computing Surveys,
11, pp.185-212 (1979)

[K1Ts] Klug A. and Tsichritzis D. "Multiple View Support within the
ANSI/SPARC Framework", Third International Conference on Very Large
Data Bases, 1977

[Klugl] Klug A. "Calculating Constraints on Relational Expressions”,
ACM Trans. on Database Systems, 5, #3 (1980)

[Klug2] Klug A. "Equivalence of relational algebra and relational
calculus query languages having aggregate functions", to appear,
available as UW CSD Technical Report #839 (1980)

[Klug3] Klug A. "Locking expressions for increased database con-
currency" to appear, available as UW CSD Technical Report #400
(1980)

[Klug4] Klug A. "Entity-Relationship Views Over Uninterpreted

47

Enterprise Schemas", International Conference on Entity—
Relationship Approach to Systems Analysis and Design, 1979

[K1Pr] Klug A. and Price R. "Generalized Tableaux for Chasing
Expression Constraints” to appear

[Lienl] Lien Y.E. "On the Equivalence of Database Models", Bell
Laboratories Database Research Report No. 3, Holmdel NJ

[Lien2] Lien Y.E. "Hierarchical Schemata for Relational Databases",
to appear ACM-TODS

[Nijs] Nijssen G.M. "A Gross Architecture for the Next Generation
Database Management Systems” Modelling in Data Base Management Sys-
tems, G.M. Nijssen {(ed.), North Holland Pub. Co., 1976

[PaPe] Paolini P. and Pelagatti G. "Formal Definition of Mappings in
a Data Base" Proc.ACM-SIGMOD Conf. 1977

[Riss] Rissanen J. "Independent Components of Relations", ACM Trans.
on Database Systems 2, 317-325 (1977)

[RoSh] Rowe L.A. and Shoens K.A. "Data Abstractions, Views, and
Updates in RIGEL" Proc. ACM-SIGMOD Conf. 1979

[saWwa] Sagiv Y. and Walecka "Subset Dependencies as an Alternative to
embedded multivalued Dependencies" UlUCDCS-R-79-980 (1979), Dept.
of Computer Science, Univ. of Illinois

[Schm] Schmid H.A. "An Analysis of Some Constructs for Conceptual
Models" (to appear, Information Systems)

[Senk] Senko M.E. "Specification of stored data structures and
desired output results in DIAM II with FORAL" Proc. lst Int. Conf.
Very Large Data Bases, 1975

[Shos] Shoshani A. "Cable: a chain based language for the entity-
relationship model" International Conference on Entity-Relationship
Approach to Systems Analysis and Design, 1979

[8ibl] Sibley E.H. (ed) "Data-Base Management Systems" ACM Computing
Surveys, 8, #1 (1976)

[Ston] Stonebraker M. "Implementation of Integrity Constraints and
Views by Query Modifications" Proc. ACM-SIGMOD Conf.1975

[SWKH] Stonebraker M., Wong E., Kreps P., and Held G. "The Design and
Implementation of INGRES", ACM-TODS 1, #3, 1976, pp.189-222

[TsK1l] Tsichritzis D. and Klug A. (eds) "The ANSI/X3/SPARC DBMS
Framework: Report of the Study Group on Database Management Sys-
tems", Information Systems, 3, #3, 1978

[TsLol] Tsichritzis D. and Lochovsky F. Data Base Management Systems,
Academic Press, 1977

[Zani] Zaniolo C. "Design of Relational Views Over Network Schemas,
Proc. ACM~-SIGMOD Conf., 1979

48

[ZaMe] Zaniolo C. and Melkanoff M.A. "Decomposition of relations and

synthesis of entity-relationship diagrams" Sperry Research Report
SRC-RP-79-76

