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ABSTRACT

ki2 Pk/(k/Z)! for the

k/2

k-dimensional volume of a sphere 5k(P) of radius r, and k 7w x
l~h w<k_1)/2 rk—l
2
for the volume of a cone @k(r, %) of height % with base %

(PZ " h2)1/2 Pk—z 7T(k—-l)/Z

This note derives the expression 7

k-1 1 1
r /(k/2)! for the surface area of $k(r); J(k/2)!
k_l(r), and
/1 (k=1)/2]! for the area of the curved

surface of @k(p, %). TFormulae are obtained for k-dimensional integrals
through the volume of $k(r), general spherical polar coordinates, and for
the volume of an arbitrary solid whose boundary is given in the form
r = g(u), where U is a unit vector expressed in such coordinates; and

finally, for integrals through the volumes, both of an axial sector of

%k(r) of vertical angle ¢, and of the cone @k(r, ny.
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We first consider a sphere of radius r > 0 in k-dimensional Euclid-

ean space Rk:

Sk(r) = {x = [x.]% K

. Ix 12 2
7i1=1" "7=1 7

< r°}. (1)

If its volume is denoted by Vk(r) and we write vy for Vk(l)’ then we see

that
. _ Uk _k
Vk(r) =r V(1) =r v, (2)
and
T
Vk(r) = JO Vk_l(rsine) (rsind) do, (3)
or
i} " K
vk = Uk-l JO sin 8 do. (4)
If we write
ks
Jy, = f sin 8 de, (5)
0
then
JO =T and Jl = 2, (6)
and also
v, = 2 and U, = T, (7)



so that, formally, since v, = v,  J
v, = 1, (8)
By (4) and (5), we have, in general, that

Uk = Uk_l Jk. (M

Now, integrating (5) by parts, we see that, for k = 2,

T W
J, = sink—ze (1 - c0526) do = J - sink—ze c0526 de
k k-2
0 0
ﬂ
= [sin 6 cose]7T - L gin & 46
k-2 k-1 0 k-1 0 ?
whence
_ k=1
Jk == Jk—Z' (10)
It follows that
(2r. ~ 1) (2r = 3)...(3) (1) (2r)!
J. = J.o= Ty (1)
2r (2r) @2r - 2)...(4)(2) 0 22r (P!)Z
and
L e o we ;2 en’l (12)
2r-1 2r - 1)@2r - 3)...(5)((3) 1 2r)! r’
as is easily verified.
We proceed to apply (11) and (12) to (9), observing that
vy = Jk Jk-l cee dy Jy Vg3 (13)
so that
Vo, = (sz J2p—l)(J2p~2 JZP—B)"'(JZ Jl) Y
i i To_ o
“yr-ir-2 1 (14



and similarly,

Vope1 = P21 Ponmg T00m3) Uopy Jop5) -y I1) ¥
22?1 W T
(2r)! rr-1r-2"""1
r-1 _2r r-1
_ 2 r! _ il (15)
(2r)1 ., 3 3L
r-PE -3 G
We recall that the Gamma Function integral
I'(z + 1) = [ tT e ~ dt (16)
0
yields, by integration by parts, that, if z > 0,
rz+ 1) = [-t% 710 + 2 J £t ar = 2 T, (17)
0
Thus, if 2 is an integer, we have that
T'(z +1) = 2! T() = 2! (18)

and we extend the definition of the factorial function by this identity.

We now note that, if r» 2 1 is an integer,

(r-D=@-D@-D. DG P! (19)

and ® ” 2
(--%)! = J £7H2 g = 2 J e du = (20)
0 0

2l Wr—l /r/ (r - %)! We now

so that (15), (19), and (20) yield that v
see that (14) and (15) take the same form: whether k be odd or even,
k/2

— m
k - (k/z)! » (21)

v



We now turn to the surface area Sk(r) of Sk(r), and write 81, for

Sk(l). We then see that

5,0 = X g ) = e (22)

Clearly,
r

Vk(r) = fo Sk(u) du, (23)
whence

5,0 = v () = & A1 vy, (24)
by (2); and so, by (21) and (22),

% nk/Z
8 = k vy = DI (25)

In particular, we observe that

4
v, = 2, v, =T, 03 = 5-; and 8. = 2, 82 = 2m, 33 = 4w, (26)

by direct application of (21) and (25), confirming well-known results.
Finally, we consider the cone @k(r, k), whose base is Ek_l(r) and

whose height is h. The volume of this solid in Rk is clearly

h

= 24l

Ck(r, h) = Jo Vk—1<h x) dx, 27)
so that, by (2),
h

_ k-1 k-1
0 (s B) = ) Vpo1 Jo x dx (28)

= %—rknl R (29)

The area of the curved surface of @k(r, h) may be determined in two ways.

First, we see that it is



h 2,1/2
- r @™+ )
Dk(r, h) [o Sk—l(h x) dx 7 (30)
r k=2 O Y
= G 811 . x de 7 (31)
2 1/2
+ h ,—2
- LD fr-1° (32)
by (22). On the other hand, we see that
& r r
C,(r, h) = J D, GGz, x) dx 3 (33)
k 0 kh (PZ 2)1/2
so that
2 2,1/2
_ 4 (r” + 1)
Dk(P’ n) dy k(h > Y) > I y=h (34)
Ly eyl @2+ n2yt/?
dy k Y Pk-1 r y=h
_ o2 4 212 k=2
= (r h™) Uyt (35)

We now see by (25) that (32) and (35) agree.

By (21) and (25), we finally obtain that, if »/h = tany and

Cploy 1) = ) and b, ) = T A @), 66)

then
(k=1)/2 (k=1)/2
ck(W) = nk ) C%fw and dk(w) = E%—:—I~— cosecy. (37)
| ! !

In particular,

CZ(W) = coty, 03(¢) = %-cotw, and dz(w) = 2 cosecy, dB(w) = 1 cosecy,

(38)

confirming well-known results.



and then (41) holds, as required; and indeed

k 2.1/2
x| = (z . =
Ixl = ¢y l=;19 r (43)
We now note that
axi axt 0 if j>1+1
7§:~= ui, and 86._1 = —rui tanej_l if g=171+1 ; (44)
J ru. coth. if j <72+ 1
7 J-1
so that the Jacobian of the transformation is
3k = B(xl, Tys wees xk)/a(r, 61, 62, vees ek-l) (45)
= Uy —rug tanel 0 e 0 0
Uy ruz cotel -ruz tan62
u3 ruB cotel Pu3 cot62
Upg  TUp_o cotb; ruy_, coth, ... Ty _, tand, , 0
Up1  Thp_g cotel rUg_q cot62 see TU_g cotek_2 “rUy_q tanek_l
uk Puk cotel ruk cot62 .o ruk cot6k_2 ruk cotek_l
k-1
- . . 46
r Uy Uy Uy, Ays (46)
where
A
k-1
AZ< = |1 —-tanel 0 .o 0 0 = sinek_l Cosek_l’
1 cotel —tan62 RN 0 0
1 cotel cote2 .o 0 0 (47)
1 cote1 cot@2 ves -tanek_z 0
1 cot6l cot62 o cot@k_2 —tanek_l
1 cotel cote2 e cotek_2 COtek—l




We now turn to the general question of integrating a function f(X)

= f(xl, xz, e xk) through the volume of the sphere $k(R) of radius R:

dvk(x) f(x) = del dez v dek f(xl, Loy e xk), (39)
X € 5, ()

|
5, ()

where de(X) denotes an element of volume in $k(R) [with x € $k(R) under—-
stood.] Integrating in spherical shells, as in (23), we get that

R
ar 7 f ds, () f(r ),

0 a%k(l) (40)

R
I = J dr J dSk(r u) f(ru) = J
BSk(P) ' 0

where 35k(P) denotes the surface of the sphere Ek(r), X = p U is a point

on this surface, U denotes a unit vector, with

121/2

) 1, (41)

- sk
"U” - (Z'Z:_—'l Iui

dSk(r u) and dSkGJ) denote element of surface area on ag%(p) and 82%(1),
respectively, and we use (22) to scale back to the unit sphere Sk(l).
We may now explicitly express the point X = r» U on 5k(r) in spherical

polar coordinates:

xl = ul = r cos@l,
Ty = r uz = p sinel cosez,
x3 = p u3 =r sinel sinez cosSB,
.o “ae . ces “es ro(42)
xk—Z = p uk_z =r sinel sin62 . e sinek_3 cosek_z,
xk—l r uk~l = p sinal sin82 e sin@k_3 sinek_2 Cosek-l’
xk =pr uk = p sinel sin62 e sinek_3 sinek_z Sinek—l;



as is readily verified by expanding the determinant Ak by its last column
(and noting that the last two rows are identical, except in the last
column, and that Ak—l is the leading principal (k-1)-rowed minor of Ak')

We may now combine (42), (46), and (47), to yield that

k-1, k=2 . k-3 . 2 .
Zk =p sin 61 sin 62 ... 8in ek—B 81n8k_2. (48)
Returning to (40), we now see that
R b ki
I = J ar <7 J de, sink_zel { de, sink”3ez cee
0 0 0
' A

T 2
J dek_3 sin 6k~3 J

; de, , sinb;_, Jo de,_, fow).

0
(49)
Incidentally, we see that we obtain an independent derivation of (13),

by putting f(X) = 1 in (49); since this allows us to separate the inte-

grals in (49) to give that

. (k=2)/2 k/2
I § _1lm __T
O RS R ST I 2 N TR
5!
= Jk Jk—l . J2 Jl Ve since vy = 1. (50)

K12 /2y

[We use the earlier-proven fact that Jl J2 ‘e Jk-l Jk
Similarly, if we seek to determine the volume of a solid given by
an equation of the (polar) form
r =g, (51)

we see that this will be the integral



9 = {Zdel sink'zel szek—z sinb, , szdek—l _[.Qﬁ‘k_)ﬁ, (52)
where we have integrated with respect to r from 0 to g(u).

If we wish to integrate only over an axial sector of $k(ﬁ) of
vertical angle ¥, we may take the axis of the sector to be the axis

of the coordinate xl, i.e., the axis of the angle el. Then the inte-

gral of f(X) becomes [compare (49)]

R P m
T = J ap <7 J a0, sink"zel J as, sink‘%2 )
0 0 0
il ﬂ 2m
J dek—B sin ek—B J dek—Z sin@k_2 J de_l Flr w).
0 0] 0
(53)

Finally, we turn to the cone @k(ﬁ, H) with R/H = tany, so that the
vertical angle of the cone is y. We may again adopt the spherical polar
coordinates (42), and then we see that, if the axis of the cone is the
axis of xq (i.e. of 61), then (PSlﬂ@l, 62, 63, cres ek_l) are spherical
polar coordinates in the (k-1)-dimensional base Sk_l(R) of Ek(R, H. So

the integral of f(X) over Ck(R’ H) becomes

B (BR/H (T 23
K = J ac, (&, H) £0O =J dah J dt ¢ J de, sin” 6, ...
@k(R, H) 0 0 0
2
™ i
Jodek—Z 81n6k_2 Jo dek-l Fx), (54)

where we put h = Pcosel and t = Psinel. We may now compute the volume



-10-

of the cone, just like that of the sphere, by putting f(x) =

integrals then separate, and we obtain that, by (50).

H  (Rh/H
J, Jq 21 J dh J ar 572

CL(Ry HY = d, o J, , +os
% %-3 x4 2 2
H 1 Rhk-1
= (k-1 vy J dh G—ﬂ
0
&
_ Byk-1H _H 5 k-1
= Vg1 G ) 7

in agreement with (29).

The

(55)
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