Some Elementary Integrals in k-Dimensional Euclidean Space

bу

John H. Halton

Computer Sciences Technical Report #416

January 1981

Some Elementary Integrals in k-Dimensional Euclidean Space

bу

John H. Halton

Computer Sciences Technical Report #416

January 1981

ABSTRACT

This note derives the expression $\pi^{k/2}$ $r^k/(k/2)!$ for the k-dimensional volume of a sphere $\mathfrak{S}_k(r)$ of radius r, and k $\pi^{k/2} \times r^{k-1}/(k/2)!$ for the surface area of $\mathfrak{S}_k(r)$; $\frac{1}{2}$ h $\pi^{(k-1)/2}$ $r^{k-1}/(k/2)!$ for the volume of a cone $\mathfrak{C}_k(r,h)$ of height h with base $\mathfrak{S}_{k-1}(r)$, and $(r^2+h^2)^{1/2}$ r^{k-2} $\pi^{(k-1)/2}/[(k-1)/2]!$ for the area of the curved surface of $\mathfrak{C}_k(r,h)$. Formulae are obtained for k-dimensional integrals through the volume of $\mathfrak{S}_k(r)$, general spherical polar coordinates, and for the volume of an arbitrary solid whose boundary is given in the form $r=g(\mathbf{u})$, where \mathbf{u} is a unit vector expressed in such coordinates; and finally, for integrals through the volumes, both of an axial sector of $\mathfrak{S}_k(r)$ of vertical angle ψ , and of the cone $\mathfrak{C}_k(r,h)$.

Some Elementary Integrals in k-Dimensional Euclidean Space

John H. Halton

Computer Sciences Department The University of Wisconsin Madison, Wisconsin 53706, U.S.A.

We first consider a *sphere* of radius r > 0 in k-dimensional Euclidean space \mathbb{R}^k :

$$\mathfrak{S}_{k}(r) = \{ \mathbf{x} = [x_{i}]_{i=1}^{k} : \Sigma_{i=1}^{k} |x_{i}|^{2} \leq r^{2} \}.$$
 (1)

If its volume is denoted by $V_k(r)$ and we write v_k for $V_k(1)$, then we see that

$$V_k(r) = r^k V_k(1) = r^k v_k,$$
 (2)

and

$$V_k(r) = \int_0^{\pi} V_{k-1}(r\sin\theta) (r\sin\theta) d\theta, \qquad (3)$$

or

$$v_k = v_{k-1} \int_0^{\pi} \sin^k \theta \ d\theta. \tag{4}$$

If we write

$$J_k = \int_0^{\pi} \sin^k \theta \ d\theta, \tag{5}$$

then

$$J_0 = \pi$$
 and $J_1 = 2$, (6)

and also

$$v_1 = 2$$
 and $v_2 = \pi$, (7)

so that, formally, since $v_1 = v_0 J_1$,

$$v_0 = 1. (8)$$

By (4) and (5), we have, in general, that

$$v_k = v_{k-1} J_k. (9)$$

Now, integrating (5) by parts, we see that, for $k \ge 2$,

$$J_k = \int_0^{\pi} \sin^{k-2}\theta \ (1 - \cos^2\theta) \ d\theta = J_{k-2} - \int_0^{\pi} \sin^{k-2}\theta \cos^2\theta \ d\theta$$

$$=J_{k-2}-\frac{1}{k-1}\left[\sin^{k-1}\theta\,\cos\theta\right]_{0}^{\pi}-\frac{1}{k-1}\int_{0}^{\pi}\,\sin^{k}\!\theta\,\,\mathrm{d}\theta,$$

whence

$$J_{k} = \frac{k-1}{k} J_{k-2}.$$
 (10)

It follows that

$$J_{2r} = \frac{(2r-1)(2r-3)\dots(3)(1)}{(2r)(2r-2)\dots(4)(2)} J_0 = \frac{(2r)!}{2^{2r}(r!)^2} \pi, \tag{11}$$

and

$$J_{2r-1} = \frac{(2r-2)(2r-4)\dots(4)(2)}{(2r-1)(2r-3)\dots(5)(3)} J_1 = \frac{2^{2r}(r!)^2}{(2r)!} \frac{1}{r},$$
 (12)

as is easily verified.

We proceed to apply (11) and (12) to (9), observing that

$$v_k = J_k J_{k-1} \dots J_2 J_1 v_0;$$
 (13)

so that

$$v_{2r} = (J_{2r} J_{2r-1})(J_{2r-2} J_{2r-3}) \dots (J_2 J_1) v_0$$

$$= \frac{\pi}{r} \frac{\pi}{r-1} \frac{\pi}{r-2} \dots \frac{\pi}{1} = \frac{\pi^r}{r!},$$
(14)

and similarly,

$$v_{2r-1} = J_{2r-1} (J_{2r-2} J_{2r-3}) (J_{2r-4} J_{2r-5}) \dots (J_{2} J_{1}) v_{0}$$

$$= \frac{2^{2r} (r!)^{2}}{(2r)!} \frac{1}{r} \frac{\pi}{r-1} \frac{\pi}{r-2} \dots \frac{\pi}{1}$$

$$= \frac{\pi^{r-1} 2^{2r} r!}{(2r)!} = \frac{\pi^{r-1}}{(r-\frac{1}{2})(r-\frac{3}{2}) \dots (\frac{3}{2})(\frac{1}{2})}.$$
(15)

We recall that the Gamma Function integral

$$\Gamma(z+1) = \int_0^\infty t^z e^{-t} dt$$
 (16)

yields, by integration by parts, that, if z > 0,

$$\Gamma(z + 1) = [-t^{z} e^{-t}]_{0}^{\infty} + z \int_{0}^{\infty} t^{z-1} e^{-t} dt = z \Gamma(z).$$
 (17)

Thus, if z is an integer, we have that

$$\Gamma(z+1) = z! \ \Gamma(1) = z! \tag{18}$$

and we extend the definition of the factorial function by this identity. We now note that, if $r \ge 1$ is an integer,

$$(r - \frac{1}{2})! = (r - \frac{1}{2})(r - \frac{3}{2})...(\frac{3}{2})(\frac{1}{2})(-\frac{1}{2})!$$
 (19)

and

$$(-\frac{1}{2})! = \int_0^\infty t^{-1/2} e^{-t} dt = 2 \int_0^\infty e^{-u^2} du = \sqrt{\pi}; \qquad (20)$$

so that (15), (19), and (20) yield that $v_{2r-1} = \pi^{r-1} \sqrt{\pi/(r-\frac{1}{2})}!$ We now see that (14) and (15) take the same form: whether k be odd or even,

$$v_{k} = \frac{\pi^{k/2}}{(k/2)!} . {(21)}$$

We now turn to the $surface~area~S_{\vec{k}}(r)$ of $\mathbf{S}_{\vec{k}}(r),$ and write $s_{\vec{k}}$ for $S_{\vec{k}}(1).$ We then see that

$$S_k(r) = r^{k-1} S_k(1) = r^{k-1} S_k.$$
 (22)

Clearly,

$$V_k(r) = \int_0^r S_k(u) \, \mathrm{d}u, \qquad (23)$$

whence

$$S_k(r) = \frac{d}{dr} V_k(r) = k r^{k-1} v_k,$$
 (24)

by (2); and so, by (21) and (22),

$$s_k = k \ v_k = \frac{k \ \pi^{k/2}}{(k/2)!} \ . \tag{25}$$

In particular, we observe that

$$v_1 = 2$$
, $v_2 = \pi$, $v_3 = \frac{4}{3}$; and $s_1 = 2$, $s_2 = 2\pi$, $s_3 = 4\pi$, (26)

by direct application of (21) and (25), confirming well-known results.

Finally, we consider the cone $\mathfrak{C}_k(r,\ h)$, whose base is $\mathfrak{Z}_{k-1}(r)$ and whose height is h. The volume of this solid in \mathfrak{X}^k is clearly

$$C_k(r, h) = \int_0^h V_{k-1}(\frac{r}{h}x) dx,$$
 (27)

so that, by (2),

$$C_k(r, h) = \left(\frac{r}{h}\right)^{k-1} v_{k-1} \int_0^h x^{k-1} dx$$
 (28)

$$= \frac{h}{k} r^{k-1} v_{k-1}. (29)$$

The area of the curved surface of $\mathfrak{C}_k(r,\ h)$ may be determined in two ways. First, we see that it is

$$D_{k}(r, h) = \int_{0}^{h} S_{k-1}(\frac{r}{h}x) dx \frac{(r^{2} + h^{2})^{1/2}}{h}$$
 (30)

$$= \left(\frac{r}{h}\right)^{k-2} s_{k-1} \int_0^h x^{k-2} dx \frac{\left(r^2 + h^2\right)^{1/2}}{h}$$
 (31)

$$=\frac{(r^2+h^2)^{1/2}}{k-1}r^{k-2}s_{k-1},$$
(32)

by (22). On the other hand, we see that

$$C_k(r, h) = \int_0^h D_k(\frac{r}{h} x, x) dx \frac{r}{(r^2 + h^2)^{1/2}};$$
 (33)

so that

$$D_{k}(r, h) = \frac{d}{dy} C_{k}(\frac{r}{h}y, y) \frac{(r^{2} + h^{2})^{1/2}}{r} \Big|_{y=h}$$
(34)
$$= \frac{d}{dy} \frac{y}{k} (\frac{r}{h}y)^{k-1} v_{k-1} \frac{(r^{2} + h^{2})^{1/2}}{r} \Big|_{y=h}$$

$$= (r^{2} + h^{2})^{1/2} r^{k-2} v_{k-1}.$$
(35)

We now see by (25) that (32) and (35) agree.

By (21) and (25), we finally obtain that, if $r/h = \tan \psi$ and

$$C_k(r, h) = r^k c_k(\psi) \text{ and } D_k(r, h) = r^{k-1} d_k(\psi),$$
 (36)

then

$$c_k(\psi) = \frac{\pi^{(k-1)/2}}{(\frac{k-1}{2})!} \frac{\cot \psi}{k} \text{ and } d_k(\psi) = \frac{\pi^{(k-1)/2}}{(\frac{k-1}{2})!} \csc \psi.$$
 (37)

In particular,

$$c_2(\psi) = \cot \psi, \ c_3(\psi) = \frac{\pi}{3} \cot \psi, \ \text{and} \ d_2(\psi) = 2 \csc \psi, \ d_3(\psi) = \pi \csc \psi,$$
 (38)

confirming well-known results.

and then (41) holds, as required; and indeed

$$\|\mathbf{x}\| = (\sum_{i=1}^{k} |x_i|^2)^{1/2} = r.$$
 (43)

We now note that

$$\frac{\partial x_{i}}{\partial r} = u_{i}, \text{ and } \frac{\partial x_{i}}{\partial \theta_{j-1}} = \left\{ \begin{array}{ll} 0 & \text{if } j > i+1 \\ -ru_{i} & \tan\theta_{j-1} & \text{if } j = i+1 \\ ru_{i} & \cot\theta_{j-1} & \text{if } j < i+1 \end{array} \right\}; \tag{44}$$

so that the Jacobian of the transformation is

$$\begin{array}{l} \boldsymbol{3}_{k} = \vartheta(x_{1}, \, x_{2}, \, \ldots, \, x_{k})/\vartheta(r, \, \theta_{1}, \, \theta_{2}, \, \ldots, \, \theta_{k-1}) \\ = \begin{vmatrix} u_{1} & -ru_{1} & \tan\theta_{1} & 0 & \ldots & 0 & 0 \\ u_{2} & ru_{2} & \cot\theta_{1} & -ru_{2} & \tan\theta_{2} & \ldots & 0 & 0 \\ u_{3} & ru_{3} & \cot\theta_{1} & ru_{3} & \cot\theta_{2} & \ldots & 0 & 0 \\ & & & & & & & & & & & & \\ u_{k-2} & ru_{k-2} & \cot\theta_{1} & ru_{k-2} & \cot\theta_{2} & \ldots & -ru_{k-2} & \tan\theta_{k-2} & 0 \\ & & & & & & & & & & \\ u_{k-1} & ru_{k-1} & \cot\theta_{1} & ru_{k-1} & \cot\theta_{2} & \ldots & ru_{k-1} & \cot\theta_{k-2} & -ru_{k-1} & \tan\theta_{k-1} \\ u_{k} & ru_{k} & \cot\theta_{1} & ru_{k} & \cot\theta_{2} & \ldots & ru_{k} & \cot\theta_{k-2} & ru_{k} & \cot\theta_{k-1} \\ \end{array} \right] \\ = r^{k-1} \, u_{1} \, u_{2} \, \ldots \, u_{k} \, \Delta_{k}; \end{array}$$

where

$$\Delta_{k} = \begin{vmatrix}
1 & -\tan\theta_{1} & 0 & \cdots & 0 & 0 \\
1 & \cot\theta_{1} & -\tan\theta_{2} & \cdots & 0 & 0 \\
1 & \cot\theta_{1} & \cot\theta_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \cot\theta_{1} & \cot\theta_{2} & \cdots & \cot\theta_{k-2} & 0 \\
1 & \cot\theta_{1} & \cot\theta_{2} & \cdots & \cot\theta_{k-2} & -\tan\theta_{k-1} \\
1 & \cot\theta_{1} & \cot\theta_{2} & \cdots & \cot\theta_{k-2} & \cot\theta_{k-1}
\end{vmatrix} = \frac{\Delta_{k-1}}{\sin\theta_{k-1} \cos\theta_{k-1}}, (47)$$

We now turn to the general question of integrating a function $f(\mathbf{x})$ = $f(x_1, x_2, \ldots, x_k)$ through the volume of the sphere $\mathcal{S}_k(R)$ of radius R:

$$I = \int_{\mathfrak{S}_{k}(R)} dV_{k}(\mathbf{x}) \ f(\mathbf{x}) = \underbrace{\int dx_{1} \int dx_{2} \dots \int dx_{k}}_{\mathbf{x} \in \mathfrak{S}_{k}(R)} f(x_{1}, x_{2}, \dots, x_{k}), \quad (39)$$

where $\mathrm{d}V_k(\mathbf{x})$ denotes an element of volume in $\mathbf{S}_k(R)$ [with $\mathbf{x} \in \mathbf{S}_k(R)$ understood.] Integrating in spherical shells, as in (23), we get that

$$I = \int_0^R \mathrm{d}r \int_{\partial \mathcal{B}_k(r)} \mathrm{d}S_k(r \mathbf{u}) f(r \mathbf{u}) = \int_0^R \mathrm{d}r r^{k-1} \int_{\partial \mathcal{B}_k(1)} \mathrm{d}S_k(\mathbf{u}) f(r \mathbf{u}), \tag{40}$$

where $\partial \mathbf{S}_k(r)$ denotes the surface of the sphere $\mathbf{S}_k(r)$, $\mathbf{x}=r$ \mathbf{u} is a point on this surface, \mathbf{u} denotes a unit vector, with

$$\|\mathbf{u}\| = (\sum_{i=1}^{k} |u_i|^2)^{1/2} = 1,$$
 (41)

 $\mathrm{d}S_k(r\,\mathbf{u})$ and $\mathrm{d}S_k(\mathbf{u})$ denote element of surface area on $\partial S_k(r)$ and $\partial S_k(1)$, respectively, and we use (22) to scale back to the unit sphere $S_k(1)$. We may now explicitly express the point $\mathbf{x}=r\,\mathbf{u}$ on $S_k(r)$ in spherical polar coordinates:

as is readily verified by expanding the determinant Δ_{k} by its last column (and noting that the last two rows are identical, except in the last column, and that Δ_{k-1} is the leading principal (k-1)-rowed minor of Δ_{k} .) We may now combine (42), (46), and (47), to yield that

$$\mathfrak{I}_{k} = r^{k-1} \sin^{k-2}\theta_{1} \sin^{k-3}\theta_{2} \dots \sin^{2}\theta_{k-3} \sin^{2}\theta_{k-2}.$$
 (48)

Returning to (40), we now see that

$$I = \int_{0}^{R} dr \ r^{k-1} \int_{0}^{\pi} d\theta_{1} \sin^{k-2}\theta_{1} \int_{0}^{\pi} d\theta_{2} \sin^{k-3}\theta_{2} \cdots$$

$$\int_{0}^{\pi} d\theta_{k-3} \sin^{2}\theta_{k-3} \int_{0}^{\pi} d\theta_{k-2} \sin^{k}\theta_{k-2} \int_{0}^{2\pi} d\theta_{k-1} f(r^{\mathbf{u}}). \tag{49}$$

Incidentally, we see that we obtain an independent derivation of (13), by putting $f(\mathbf{x}) = 1$ in (49); since this allows us to separate the integrals in (49) to give that

$$v_{k} = \frac{1}{k} J_{k-2} J_{k-3} \dots J_{2} J_{1} 2\pi = \frac{1}{k} \frac{\pi^{(k-2)/2}}{(\frac{k-2}{2})!} 2 = \frac{\pi^{k/2}}{(k/2)!}$$

$$= J_{k} J_{k-1} \dots J_{2} J_{1} v_{0}, \text{ since } v_{0} = 1.$$
(50)

[We use the earlier-proven fact that $J_1 J_2 \dots J_{k-1} J_k = \pi^{k/2}/(k/2)!$]

Similarly, if we seek to determine the volume of a solid given by an equation of the (polar) form

$$r = g(\mathbf{u}), \tag{51}$$

we see that this will be the integral

$$Q_{k} = \int_{0}^{\pi} d\theta_{1} \sin^{k-2}\theta_{1} \cdots \int_{0}^{\pi} d\theta_{k-2} \sin\theta_{k-2} \int_{0}^{2\pi} d\theta_{k-1} \frac{[g(\mathbf{u})]^{k}}{k}, \quad (52)$$

where we have integrated with respect to r from 0 to $g(\mathbf{u})$.

If we wish to integrate only over an $axial\ sector$ of $\mathfrak{S}_k(R)$ of vertical angle ψ , we may take the axis of the sector to be the axis of the coordinate x_1 , i.e., the axis of the angle θ_1 . Then the integral of $f(\mathbf{X})$ becomes [compare (49)]

$$I(\psi) = \int_{0}^{R} dr \ r^{k-1} \int_{0}^{\psi} d\theta_{1} \sin^{k-2}\theta_{1} \int_{0}^{\pi} d\theta_{2} \sin^{k-3}\theta_{2} \cdots \int_{0}^{\pi} d\theta_{k-3} \sin^{2}\theta_{k-3} \int_{0}^{\pi} d\theta_{k-2} \sin^{k}\theta_{k-2} \int_{0}^{2\pi} d\theta_{k-1} f(r \mathbf{u}).$$

$$(53)$$

Finally, we turn to the cone $\mathfrak{C}_k(R, H)$ with $R/H = \tan \psi$, so that the vertical angle of the cone is ψ . We may again adopt the spherical polar coordinates (42), and then we see that, if the axis of the cone is the axis of x_1 (i.e. of θ_1), then $(r\sin \theta_1, \theta_2, \theta_3, \dots, \theta_{k-1})$ are spherical polar coordinates in the (k-1)-dimensional base $\mathfrak{S}_{k-1}(R)$ of $\mathfrak{C}_k(R, H)$. So the integral of $f(\mathbf{x})$ over $\mathfrak{C}_k(R, H)$ becomes

$$K = \int_{\mathbb{C}_{k}(R, H)} dC_{k}(R, H) f(\mathbf{x}) = \int_{0}^{H} dh \int_{0}^{Rh/H} dt t^{k-2} \int_{0}^{\pi} d\theta_{2} \sin^{k-3}\theta_{2} \cdots$$

$$\int_{0}^{\pi} d\theta_{k-2} \sin\theta_{k-2} \int_{0}^{2\pi} d\theta_{k-1} f(\mathbf{x}), \qquad (54)$$

where we put $h = r\cos\theta_1$ and $t = r\sin\theta_1$. We may now compute the volume

of the cone, just like that of the sphere, by putting $f(\mathbf{x}) = 1$. The integrals then separate, and we obtain that, by (50).

$$C_{k}(R, H) = J_{k-3} J_{k-4} \cdots J_{2} J_{1} 2\pi \int_{0}^{H} dh \int_{0}^{Rh/H} dt \ t^{k-2}$$

$$= (k-1) v_{k-1} \int_{0}^{H} dh \frac{1}{k-1} \left(\frac{Rh}{H}\right)^{k-1}$$

$$= v_{k-1} \left(\frac{R}{H}\right)^{k-1} \frac{H^{k}}{k} = \frac{H}{k} R^{k-1}, \qquad (55)$$

in agreement with (29).

TECHNICAL TYPING & DUPLICATING REQUEST FORM

OK YL

Originator of Request:	Halton
Date of Request:	1/16/81
:	CLASSWORK
Course & Section:	Instructor in charge:
Typing: Ditto (purp	le): Mimeo (stencil): Offset:
Xerox: Pages	through
Stapled: YesNo _	
Number of Copies Wanted:	Date Wanted:
3	MANUSCRIPT
	Paper: Book:
•	Approval of deadline:
peadime.	Approval of deadline.
	SPECIAL INSTRUCTIONS
<u> </u>	
Needs approval as	Tech. Report.
	Marilyn
-	