OPTIMAL CODE FROM FLOW GRAPHS
OR
NOTES ON AVOIDING GOTO STATEMENTS

by

M. V. S. Ramanath and Marvin Solomon

Computer Sciences Technical Report #415

January 1981

Optimal Code from Flow Graphs
or

Notes on Avoiding Goto Statements

by

M. V. S. Ramanath and Marvin Solomon

ABSTRACT

This paper considers the problem of generating a linear sequence
of instructions from a flow graph so as to minimize the number of
jumps. We show that for programs constructed from atomic state-

ments with semicolon, if-then, if-then-else, and repeat-until,

the minimal number of unconditional jumps is bounded from above
by e+l and from below by max{ e-b+l, T?é+1)/51 }, where e is the
number of if-then-else statements and b is the number of repeat-
until statements. We show that these bounds are tight and
present a linear-time algorithm for finding the optimal +transla-

tion of a flow graph.

Optimal Code from Flow Graphs

1. INTRODUCTION

Over the years, there has been considerable research in the
area called "code optimization", which concerns itself with tech-
niques for producing the best possible machine code from a high-
level program. There are many possible definitions of "best pos-
sible”, and the techniques are highly influenced by the natures
of the source language and the target machine. 1In any realistic
situation, the problem of producing optimal code is intractable,
sO0 researchers content themselves with producing good but not
necessarily optimal code, or code that is optimal with respect to
some restricted set of transformations or source programs.

The general class of "global" optimizations includes tech-
niques for re-organizing the flow graph of a program, for example
removing invariant expressions from loops. However, surprisingly
little attention has been paid to the problem of mapping the
resulting flow graph into the linear form required Dby most
machine architectures. Careful attention to this step can result
in substantial improvements in both space and time.

For example, consider the programs H . defined recursively

on n as follows:

‘if B, then H_ _; else Sj

repeat if B, then H _, else

(For each 1i, S; is some atomic statement

an expressions.) Figure 1 shows

nodes are labeled for future referen
code generation would translate Hy

where P; is defined recursively by

if not Bi then L

Pi-1
Sg goto Mj
Li: Sy
Mi:
if i =0 if i > ¥ and 1 is even

The translation of H6 is shown in Fi

ed code generator would produce "

and "goto M5" instead of "goto M4",

is Tni where T, is
Py
Mn+2: exit
“n odd
P, is defined by

(n even)
Sp until Ch (n odad)

and B; and C; are Boole-

the flow graph of Hg. (Some
ce.) Standard techniques of
into the program 'P, ; exit',
Ni: _Z_L__g not Bi then Li
Pi1
goto M;
Li: 854
Mj s E not C; then Ny
T ——

if 1 > @ and i is odd

gure 2a. A more sophisticat-

goto M3" instead of "goto M2"

but a much better translation

P
n-1
if Bn then L,

Snh

goto Mn—l

Ln: 1

Mn+l: exit

T
n even

Li_l: if B, ; then Lo

Lg: Sg Si-1
Mi: if Cp then My Mj: if C; then My,
Ll: _j..__ﬁ-f_ Bl then L@ Li: _j___f_ Bi then Li__l

Sl Si

goto Ml goto Ml

N e N

i=1 i > 1, i odd

and the initial entrance to H, is at L,. The translation of Hg
according to this scheme 1is shown in Figure 2b. There are n
jumps in the first translation of H, and only n/2 in the second.

In this paper, we confine our attention to translations that
preserve the topology of the flow graph exactly, and ignore im-
provements that might result from techniques such as node split-
ting or 1loop unrolling [1]. Under this restriction, there is a
one-to—-one correspondence between nodes in the graph and instruc-
tions other than jumps in the translation. An optimal transla-
tion is thus one that minimizes the number of jumps. Since each
goto-free segment of the translation corresponds to a simple path
in the flow graph, the problem reduces to finding a partition of
the graph into as few disjoint simple paths as possible.

A Jjump-free translation is possible if and only if the graph
has a Hamiltonian path. The Hamiltonian path problem is known to
be NP-complete, even for planar graphs with in-degree and out-
degree bounded by 2 [2]. Since NP-complete problems are widely
conjectured to require exponential time for their solution, we do
not try to find optimal translations for arbitrary flow graphs,

but restrict our attention to "structured" flow graphs that arise

from programs composed of if-then-else, if-then, and repeat-until

statements.

The remainder of this paper is organized as follows: Sec-
tion 2 sketches the definitions and formally states the basic
problem. Section 3 presents a linear-~time algorithm for finding
the optimal translation of any program that uses only if-then-

else and repeat-until statements. Section 4 states and proves

bounds on the the cost of a partition and proves that the algo-
rithm finds a optimal partition. Section 5 shows that the bounds
are tight by exhibiting families of graphs for which the cost of
an optimal partition attains the upper and lower bounds. Section
6 shows how to accommodate if-then statements (without an else
clause). Section 7 compares our work to previous results and in-

dicates the direction of our current research.

2. "DEFINITIONS

We assume the reader is familiar with standard terms of
graph theory such as directed graph (digraph), directed acyclic
graph (DAG), node, arc, and simple path. By "path" we will mean
"simple path".

A flow graph is a digraph G = (N,A) together with a dis-

tinguished start node s(G) and set EX(G) of exit nodes, such that

each node is reachable from the start node. A simple flow graph

(SFG) 1is a flow graph constructed according to the following

rules:

1. A single node n is an SFG with s = n and EX = {n}

2. If P = (Np,Ap) and Q = (Ny/Py) are SFG's then a new SFG
T = (NT,AT) may be constructed from P and Q by any of the follow-

ing four operations (see Figure 3):
CAT ite T = C(P, : N _ = .
(write (P,Q)) T =Np U Ny

A, =A_ UA. U {(x,s(Q)) | x € EX(P)}; s(T) = s(P);

T P 0
EX(T) = EX(Q).

IF (write T = I(P,i)): Let i be a new node. Then
Np =Np U {i}; Ap = Ap U {(i,s(P)}; s(T) = i;

EX(T) = EX(P) W {i}.

ELSE (write T = E(P,Q,i)): Let i be a new node. Then
Np = Np UNy U {i}; Ay = Ap U A, U {(i,s(P)), (i,s(Q))};

s(T) = i; EX(T) EX(P) U EX(Q).

REPEAT (write T R(P,t): Let t be a new node. Then

Np =Np U {t}; Ap = Ap, U {(t,s(P)} U {(x,t) | x € EX(P)};

s(T) = s(P); EX(T) = {t}.

The number of applications of ELSE is called the branching factor

of G, denoted e(G). The back arcs of G (denoted B(G)) are the
arcs of the form (t,s(P)) introduced by REPEAT; the scope of the
back arc (t,s(P)), denoted SCOPE(t,s(P)) is N,. The number of
back arcs is denoted b(G). It should be clear that every SFG is
reducible [3,4] and that the set B(G) is precisely the unique set
of back-arcs [3]. Hence B(G) and SCOPE(a), for each a € B(G),

are independent of the construction of G. The branching factor

is also an inherent property of G.

A restricted SFG is one constructed without any use of IF.

If G be an SFG, the restricted SFG corresponding to G is the SFG

obtained by replacing each use of I(P,i) in the construction of G
with Cc({i},p).

Assume G is a restricted SFG.

The set AG - B(G) is called the set of DAG edges of G. A
partition p of G is a set of simple paths such that each node of
G is in exactly one path. A path using only DAG edges is a DAG

path; a DAG partition is one composed of DAG paths. The cost of

the partition, c(p), is the number of paths in it. The cost of
G, <c(G), 1is the cost of a cheapest partition of G. Partition P
is optimal if c(p) = c(G).

A path is a top hook if it starts at s(G) and a bottom hook

if it ends at a node in EX(G). A partition is top-open if it

contains a top hook, bottom-open if it contains a bottom hook,

open if it contains both a top hook and a bottom hook, and hice
if it contains a top hook and a bottom hook that are distinct.
The algorithm for finding an optimal partition of G produces
two partitions for each subgraph in the construction of G; one is
an optimal partition and the other is an optimal open partition.
The next definition 1is wused in building these partitions of a

graph from partitions of its parts.

Let P and Q be restricted SFG's, and let pp and p, be parti-
tions of them (see Figure 4.)

(car) If T = C(P,Q), define the partition PC(pP,pQ) of T as
follows: If Pp is bottom-open and Pq is top-open, let h, be a
bottom hook of py (distinct from the top hook if possible) and hQ
be the top hook of p,. Then PC(pp,Py) = {hp hQ} U (pp - {hpl) ©
(pQ - {hQ}). Otherwise PC(pp,py) = pp U py-

(ELSE) If T = E(P,Q,i) and at least one of p,, Py 1is top-
open, define the partition PE(pP,pQ,i) of T as follows: If pp is
top-open, let h, be its top hook. Then PE(pP,pQ,i) = (i hP) 1]
(pP - {hP}) U pg- Similarly, if pp is not top-open, but py is,
PE(pp,pn.i) = (L hy) U (py - {hy}) U pp.

(REPEAT) If T = R(P,t) and pp is open, define partitions
PR(pp,t) and PR'(pp,t) of T as follows: Let h, and hy be top and
bottom hooks of pp with hg # h, 1if pp is nice. Then
PR' (pp,t) = {hb t} U (pp - {hb}) and PR(pp,t) = {hb t ht} U

(pp -~ {hy,h }) if pp is nice and PR(pp,t) = PR'(pp,t) otherwise.

3. THE ALGORITHM

We are now ready to state the main algorithm of this paper:

3.1 Algorithm PARTITION

Input. A restricted SFG G.
Output. Two partitions p and p' for G.

Method. If G = C(P,Q), call PARTITION recursively to get parti-
tions pp and pé for P and partitions Pq and pé for Q. Let

p' = PC(pé,pé). Let p=rp if either c(pﬁ) = c(pp) or

c(pé) = c(pQ), and let p = PC(pP,pQ) otherwise.

If G = E(P,Q,1), call PARTITION recursively to get partitions Pp
and pp for P and partitions Pq and pé for Q. Let p = PE(pP,pé)
if q(pé) = c(pQ) but c(pﬁ) # c(pP). Otherwise, let p = PE(pﬁ,pQ).

Let p' = p.

If G = R(P,t), call PARTITION recursively to get partitions Pp
and pp for P. Let p' = PR'(pp), and let p = PR(pﬁ) if pp is

nice; let p = p' otherwise.
3.2 Theorem

The partitions p and p' computed for G from Algorithm 3.1 have
the following properties:

1. p is optimal.

2. c(p') £ c(p) + 1.

3. p' is open.

4. If p' is not optimal then p' is nice and no optimal parti-
tion of G is top-open or bottom-open.
5. If G has a nice partition of cost c(p'), then p' is nice.
Proof. The proof is by induction on the construction of G.
The result is trivial if G is the one-node graph.

If G = C(P,Q), four cases arise:

Case I. pé and pé are both optimal. By definition, pé = pg and
C(pG) = ¢c(P) + c(Q) - 1. 1If we could bet a cheaper partition for
G, we would be able to decompose it into partitions for P and Q,
one of which must be better than optimal. Thus property 1 is
proved. Properties 2, 3, and 4 are easy. Property 5 follows
from the fact that a nice optimal partition for G can be decom-
posed into partitions for P and Q, one of which must be optimal
and nice. Hence, using 5 inductively, either pé or pé is nice

and so is Pg-

Case II. ppj is not optimal, but pé is optimal. Here too,
Pg = pg by definition, and c(pgz) = c(P) + c(Q). Properties 2 and
3 are obvious. Using 4 inductively, we see that pé is nice and
hence so is Pg- So property 5 is proved. To prove 1, we note
that any partition cheaper than pé can be used to yield an op-
timal partition for P whcih is bottom-open, violating property 4

for P. Property 4 follows from 1.

Case III. pé is optimal, but pé is not optimal. This case 1is

very similar to case II.

Case IV. Both pp and pé are suboptimal. From the definition, we

19

see that c(pé) = c(P) + c¢(Q) + 1. By property 4, neither pp nor
Py is open at either end, so c(pG) = c(P) + c(Q). Also, by an
inductive use of 4, pé and pé are nice and hence so is pé. Thus
2, 3, and 5 are proved. To prove 4, suppose an optimal partition
of G were top-open or bottom open. We could then get a top-open
partition that is optimal for P or for Q, violating property 4
for P or for Q. Property 1 is proved as in case II.

If G = E(P,Q,1i), we have the same four cases as for CAT. In
all cases pPg = P; and so properties 2 and 3 are obvious and 4

follows from 1. Thus, only 1 and 5 need proof.

Case I. pp and pé are both optimal. Here c(pé) = c(P) + c(Q)

and pé is nice. Thus 5 is proved. Property 1 follows from the
fact that any partition for G better than pé can be used to pro-

duce a better-than-optimal partition for P or for 0.

Case 1II. Pp is not optimal, but pé is optimal. Here
c(pé) = ¢(P) + c(Q). Property 1 follows as in Case I. To prove
5, suppose pé is not nice. Then pé is not nice. An inductive

use of 4 shows that any optimal nice partition for G yields an
optimal nice partition for Q, which is a contradiction, since pé

is not nice.

Case III. pé is optimal, but pé is not. The proof is similar to

case II.

Case 1IV. pﬁ and pé are both suboptimal. Here pﬁ is nice by pro-
perty 4 so Pg is nice, proving property 5, and c(pé) = c(P) + 1.

Property 1 follows from the fact that any partition better than

11

Pé would vyield an optimal top-open partition for P or for Q,

violating property 4 of the inductive hypothesis.

Finally, we consider the case that G = R(P,t). Properties 2

and 3 are obvious. We have three cases:

Case I. pé is optimal and nice. Clearly, pé is nice, proving
property 5. Since c(pG) = c(pP) - 1, any partition for G better
than pPg would yield a partition for P better than optimal. Hence

property 5 is proved. The proof of 4 is similar.

Case 1II. Pp is optimal but not nice. In this case,
C(pG) = c(pg) = clpp). Property 4 follows from 1, which may be
proved by arguments similar to case I above. Property 5 follows

from the fact that an optimal nice partition for G would imply an

optimal nice partition for P.

Case I1I. jolk is not optimal. In this case
P p

c(pé) = c{pp) + 1 = c(P) + 1 and clpg) = c(P). pPp is nice so pg
is nice and 5 is proved. Properties 1 and 4 follow by the usual
arguments.

This conpletes the proof of Theorem 3.2. The algorithm is
clearly linear in the length of the derivation of G, and hence in

the size of G.

12

4. BOUNDS ON COSTS

In this section, we derive upper and lower bounds on the cost of

a restricted SFG.
4.1 Theorem
Let G be a restricted SFG. Then
max { e(G)-b(G)+l, [(e(G)+1)/2] } < c(@) < e(G) + 1
Before proving 4.1 we state and prove some preliminary results.

4.2 Lemma

If p is any DAG partition of G, then c(p) > e(G) + 1; there is an

algorithm to find a DAG partition such that c(p) = e(G) + 1.

Proof The usual code-generation algorithm produces a partition
of cost e(G) + 1. The proof that this cost is the best possible
is by induction on the construction of G.

If G is a single node, the result is trivial. Otherwise,
let Pg be a DAG partition of G.

If G = C(P,Q), then Pg clearly decomposes into DAG partions

Pp and Po of P and Q, respectively, such that c(pG)

il
i v

-]

C(PP) + C(pQ) - 1. By the induction hypothesis, c(pP) > e(pP) +
and c(pQ) > e(Q) + 1, so c(pp) > e(P) +1 +e(Q) +1 -1 =

e(P) + e(Q) + 1 = e(G) + 1.

13

If ¢ = E(P,Q,1i), then e(G) = e(P) + e(Q) + 1 and pp can be
decomposed into DAG partitions of P and Q such that
c(pG) > c(pP) + c(pQ). Once again, by the inductive hypothesis,
c(pp) > c(pp) + clpy) 2 e(P)+l+e(Q)+l = e(G) + 1.

If G = R(P,t), then there is a DAG partition of P such that
c(pG) > c(pP). By induction, c(pG) > c(pp) > e(pP) +1 =
e(G) + 1.

This proves lemma 4.2.

4.3 Corollary

For any partition Pg of an SFG G,
(i) c(pG) > e(G) - b(pG) + 1
(11) elpg) 2 [(e(@)+1)/2]

(iii) if elpg) = [(e(@)+1)/2], then [(e(@)+1)/2] < blpg) <
Me(a)+1)/2}

Proof Deleting back arcs from Pg yeilds a DAG partition pé of

cost c(pG) + b(pG). Hence, by Lemma 4.2, c(pG) + b(pG) >

e(G) + 1, and (i) follows. To prove (ii), suppose

c(pg) < [(e(e)+1)/2]. Ten blpg) < clpg) < T(e(@)+1)/2}, so by
4.2, T(e(@)+1)/2] + |(e(e)+1)/2] = e+l < clpy) = clpg) + blpg) <
TZe<G>+1>/£1 + blpg) < f?;(c)+l)/;1 + f7;(6)+1)/§7. Cancelling
occurences of r?e(G)+l)/£T yeilds [5e(s)+1)/gj < Dblpg) <

Tze(G)+l)/§], which is impossible.

14

The proof of part (iii) is the same as part (ii), except all

occurences of < should be replaced by X.

Proof of Theorem 4.1. The upper bound follows directly from the
Lemma 4.2. One lower bound follows directly from 4.3(ii). The
other lower bound is proved inductively:

If G is a single node, then e(G)-b(G)+1l =1 = c(G).

If G = C(P,Q), then c(G) > c(P)+c(Q)-1 >
(e(G)-b(G)+1) + (e(Q)-b(Q)+1) - 1 = (e(P)+e(Q)) - (b(P)+b(Q)) + 1
= e(G)-b(G)+1.

If G = E(P,Q,1), then c(G) > c(P)+c(Q) >
(e(G)-b(G)+1) + (e(Q)-b(Q)+1) = (e(P)+e(Q)+1) - (b(P)+b(Q)) + 1 =
e(G)-b(G)+1.

If G = R(P,t), then c(G) > c(P)-1 > (e(G)-b(G)+1l) - 1 =

e(P) - (b(P)+1) + 1 = e(G)~-b{(G)+1.

5. ADDING IF-THEN STATEMENTS

In this section we show that the results for restricted SFG's
remain valid when if-then statements are added. Intuitively, the
construction "if B then S" is modelled by "if B then S else
skip". However, rather than introduce skip as a primitive con-
cept, we model the if-then statement as C(i,P) (where i is a new
node representing the condition B and P is the flow graph of S),

and make 1 an additional exit node.

15

5.1 Theorem

Let G be an SFG and G' the corresponding restricted SFG. Any op-
timal partition p of G can be effectively transformed into a par-
tition p' of G' such that c(p') < c(p).

Proof (sketch). call an arc (i,n) a forward arc if i is the node

introduced by the operation T = I(P,i), but n is not s(P) (see
Figure 5). G and G' differ only in that forward arcs are present
in the former and absent in the latter; hence, to transform p to
p', we need only eliminate all forward arcs from p.

Choose an innermost forward arc (i,n) used by p. Since the
paths in p are node-disjoint, p does not use the arc (i,s(P)).
That arc is the only arc entering the subgraph P, so p can be
decomposed into paths outside P and paths inside P. The set of
paths inside P forms an optimal partition Pp of P, so by Theorem
3.2, it may be replaced by an open partition pﬁ of P with at most
one more path. Modify the original partition of G by replacing
pp with pp- Then remove the path that uses (i,n), say u(i,n)v,
add u to the top hook of pﬁ, and add v to a bottom hook of pé.
(The latter operation 1is possible since the construction of an
SFG ensures that any successor of any exit node of a subgraph is
a successor of every exit node of that subgraph. Hence n is a
successor of each exit node of P.) This construction deletes the
path u(i,n)v, so even if c(pﬁ) = c(pP)+l, the net increase in

cost is zero.

16

5.2 Corollary.

If p is an optimal partition for G' then it is also an optimal

partition for G.

6. TIGHTNESS OF BOUNDS

In this section, we show that the bounds derived in Section 4 are

tight.
6.1 Theorem.

For any positive integer e, there are graphs G; and G, with
branching factor e such that c(Gl) = e+l and c(Gz) = |(e+l)/2].
If b is an integer such that e-b+l > |(e+l)/2], there is also a
graph G3 such that e(G3) = e, b(G3) = b, and c(G3) = e-b+1.
Proof. ©Let G; be any graph with branching factor e and no loops
(b(Gy) = @). By Theorem 4.1, c(G;) = e+l.

Let G, be the graph H, defined in the introduction:
Hy = Sy, H = E(He~1'se'Be) if e is even, and

e

H
e

R(E(He—l'se’Be)) if e is odd. Then the partition created by

the algorithm is

(B21851Cpi41B21 415241 | 18| (e-1)/2[) U {SpC1B1S, B,S,]

(The last path mentioned above is omitted if e is odd.)

17

1£ [(e+1)/2] < e-b+l, then b < |(e+1)/2|. Let G, be H_ with
all but the b innermost back arcs deleted. The partition of cost
e~-b+l is the partition p above, modified by removing the deleted

arcs and splitting the paths that contained them in two.

7. SUMMARY AND CONCLUSIONS

Considering the amount of work that has been done on program
optimization, it 1is surprising that more attention has not been
paid to the problem tackled in this paper. Most literature on
program optimization deals either with transformations on the
flow graph of a program or with translation of an individual
statement into machine code. The only other work we know of in
this area is by Boesch and Gimpel [5]. They show that in the
simple case that the flow graph is acyclic, the optimum partition
problem can be reduced to the maximum matching problem for bipar-
tite graphs. Hence any good algorithm for maximum matchings,
such as the O(n2‘5) algorithm of Hopcroft and Karp [6], yields an
algorithm for optimal partition of an acyclic flow graph. Since
acyclic flow graphs are rare in practice, they present a heuris-
tic algorithm for arbitrary graphs that proceeds by performing an
interval analysis of the graph [3], finding optimal partition for
the intervals, and pasting the partitions together. However,
this procedure does not, in general, yield an optimal partition,
and Boesch and Gimpel present no results on how close to optimal

it comes.

18

Other related work involves investigations into the effect
of 1long and short branch instructions on code length (see, for
example, [7]) and the impact of restricting set of flow graphs
to ‘"structured programs" on program efficiency (for example,
[sl1).

The results here are only preliminary. We are currently ex-
tending the methods of this paper to cover other common con-

structs such as case, while and exit-loop statements. We conjec-

ture that there is a polynomial algorithm for finding an optimal

partition of any reducible flow graph.

8. REFERENCES

[1] F. Baskett, "The best simple code generation technique for
WHILE, FOR, and DO loops," Sigplan Notices 13, 4, pp. 31-32
(April 1978).

[2] J. Plesnik, "The NP-completeness of the Hamiltonian cycle
problem in planar digraphs with degree bound 2," Information
Proc. Letters 8, 4, pp. 199-201 (April 1979).

[3] M. S. Hecht and J. D. Ullman, "Characterizations of reduci-
ble flow graphs," Journal of the ACM 21, 3, pp. 367-375
(1974).

[4] M. s. Hecht, Flow Analysis of Computer Programs, American
Elsevier, New York (1977).

[5] F. T. Boesch and J. F. Gimpel, "Covering the points of a di-
graph with point-disjoint paths and its application to code
optimization,” Journal of the ACM 24, 2, pp. 192-198 (April
1977).

L6l

L7]

[8]

puting 2, 4, pp. 225-230 (December 1973).

19

J. E. Hopcroft and R. M. Karp, "An ns/2 algorithm for max-
imum matchings in bipartite graphs.," SIAM Journal on Com~-

T. G. Szymanski, "Assembling code for machines with span-

dependent instructions," CACM 21, 5, pp. 300-398 (April
1978).

R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton, "Can

structured programs be efficient?," SIGPLAN Notices, pp.
19-18 (October 1976).

The Flow Graph of Hg

if
if
: _i.__f_not B3
if
if

then

if not B6

not BS

then

not B4

then

then

not B2

then

not Bl

then

then

then

then

(a)

Lﬁ: S@
Ng Mj: if C; then
Ng Ly: if By then
Ny Sq
N3 goto M
N2 Lp: 1f By then
Nj S,
M3y: if C5 then
L3: 1f B3 then
53
Ll goto M3
Ly: if B, then
Sq
Mg: if Cg then
Lg: if Bg then
Ly Ss
goto Mg
start:
Lg: if Bg then
S6
Lg M-: exit

(b)

Figure 2

Two Translations of H6

i

Figure 3

SFG Operations

s(P

/i)

s (@)

PC(Pppo) A

Pp bottom-open and pQ top—-open

t

s(P) = (R)
PE (Pp,Py) A

pP top-open

s(P)

PR(pp)

t
Pp nice

Figure 4

Operations for Combining Partitions

s(P) 4\5(@))
A \Y

I(P,1) E(P,Q,1) R(P,t)

s(p)
5(&9)

otherwise

/Mf“

top—open

s(P)

7

otherwise

s(P)

3

Figure 5

Eliminating Forward Arcs

