COMPUTER SCIENCES DEPARTMENT

University of Wisconsin-Madison

A CO-FACTOR IDENTITY FOR COMPOUND MATRICES

bу

John H. Halton

Computer Sciences Technical Report #413

January 1981

그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
그는 사람들이 되었다면 하는 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그

A Co-Factor Identity for Compound Matrices

by

John H. Halton

Computer Sciences Technical Report #413

January 1981

ABSTRACT

This note defines a linear ordering of the set Q_k^m of all k-member subsets $J=\{j_1,\ j_2,\ \ldots,\ j_k\}$ of $\{1,\ 2,\ \ldots,\ m\}$, with $1\leqslant j_1\leqslant j_2\leqslant\ldots\leqslant j_k\leqslant m$, by $I\leqslant J$ iff $(\exists r)$ $i_r\leqslant j_r$ and $(\forall s>r)$ $i_s=j_s$, and shows (in Lemma 1) that this corresponds to the ordinal function $\lambda_k^m(J)=1+({}^{j_1-1})+({}^{j_2-1})+\ldots+({}^{j_k-1})$. If A is an $(m\times m)$ matrix with elements $(A)_{i,j}=\alpha_{i,j}$, this identifies the k-th compound matrix $A^{(k)}$ with the k-rowed minor $\alpha_{IJ}^{(k)}$ of $D=\det A$ as $(A^{(k)})_{uv}$, with $u=\lambda_k^m(I)$ and $v=\lambda_k^m(J)$. The main Theorem then shows that, if $\Lambda(\alpha_{IJ}^{(k)})$ is the co-factor of $\alpha_{IJ}^{(k)}$ in D, and $\Lambda^{(k)}(\alpha_{IJ}^{(k)})$ is the co-factor of the same $\alpha_{IJ}^{(k)}$ in $D^{(k)}=\det A^{(k)}$, then $\Lambda^{(k)}(\alpha_{IJ}^{(k)})/\Lambda(\alpha_{IJ}^{(k)})=D^{c-1}$, where $c=({}^{m-1}_{k-1})$. From this are derived three corollaries and a further lemma; and, as a fourth corollary, the well-known Jacobi Identity is obtained. In the process, the main properties of determinants, compounds, adjugates, reciprocals, and co-factors are summarized.

A Co-Factor Identity for Compound Matrices

bу

John H. Halton

Let \mathbf{M}_{mm} denote the set of all $(m \times n)$ [m rows, n columns] matrices with real elements; if $\mathbf{X} \in \mathbf{M}_{mn}$, let $(\mathbf{X})_{ij} = \xi_{ij}$ denote the element in row i $(1 \le i \le m)$ and column j $(1 \le j \le n)$; and let $\mathbf{I} = \mathbf{I}_m \in \mathbf{M}_{mm}$ denote the m-rowed unit (or identity) matrix, with elements $(\mathbf{I})_{ij} = \delta_{ij}$ $[\delta_{ij}]$ being the Kronecker function: 0 if $i \ne j$, 1 if i = j.] If $\mathbf{Y} \in \mathbf{M}_{np}$, with $(\mathbf{Y})_{jh} = \eta_{jh}$, then the matrix product \mathbf{X} $\mathbf{Y} = \mathbf{Z} \in \mathbf{M}_{mp}$, where $(\mathbf{Z})_{ih} = \zeta_{ih} = \Sigma_{j=1}^n \xi_{ij} \eta_{jh}$. Similarly, if $\mathbf{A} \in \mathbf{M}_{mm}$ and $\mathbf{B} \in \mathbf{M}_{mn}$, with $(\mathbf{A})_{ij} = \alpha_{ij}$ and $(\mathbf{B})_{ij} = \beta_{ij}$, we may define the equation \mathbf{A} $\mathbf{X} = \mathbf{B}$, with \mathbf{A} and \mathbf{B} given and \mathbf{X} unknown. The determinant of the square matrix \mathbf{A} is defined as

$$D = \det \mathbf{A} = \begin{vmatrix} \alpha_{i1} & \alpha_{i2} & \dots & \alpha_{im} \end{vmatrix} = \begin{vmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1m} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2m} \\ \dots & \dots & \dots & \dots \\ \alpha_{m1} & \alpha_{m2} & \alpha_{mm} \end{vmatrix}$$
$$= \sum_{\rho \in P_m} \varepsilon_{\rho} \alpha_{1\rho(1)} \alpha_{2\rho(2)} \dots \alpha_{m\rho(m)}, \tag{1}$$

where P_m denotes the set of all permutations of $N=N_m=\{1,\,2,\,\ldots,\,m\}$ and ε_ρ is the parity index of the permutation ρ (taking values ± 1 : ± 1 if ρ may be represented by an even number of interchanges, ± 1 otherwise.) Then, if $D\neq 0$, the Leibnitz-Cramer rule (generalized in the obvious way to the matrix equation $A \times A = B$) tells us that

$$\xi_{i,j} = D_{i,j}/D, \tag{2}$$

See reference [1] p. 134.

where D_{ij} denotes the determinant obtained by replacing the i-th column of the determinant D of A by the j-th column of the matrix B.

A determinant may be expanded by any row or column:

$$D = \sum_{j=1}^{m} (-1)^{i+j} \alpha_{ij} \Omega(\alpha_{ij}) = \sum_{j=1}^{m} \alpha_{ij} \Lambda(\alpha_{ij})$$

$$D = \sum_{i=1}^{m} (-1)^{i+j} \alpha_{ij} \Omega(\alpha_{ij}) = \sum_{i=1}^{m} \alpha_{ij} \Lambda(\alpha_{ij});$$

$$(3)$$

where $\Omega(\alpha_{ij})$ denotes the *complementary minor* to α_{ij} in D, so that, if consisting of the k rows indexed in I and the k columns indexed in J, then

$$\Omega(\alpha_{i,j}) = \alpha_{\{i\} c \{j\} c}^{(m-1)}; \qquad (4)$$

and where $\Lambda(\alpha_{i,j})$ denotes the co-factor of $\alpha_{i,j}$ in D, so that

$$\Lambda(\alpha_{i,j}) = (-1)^{i+j} \Omega(\alpha_{i,j}). \tag{5}$$

As is well-known? (3) may be extended to state that

$$\sum_{j=1}^{m} \alpha_{hj} \Lambda(\alpha_{ij}) = \delta_{hi} D \text{ and } \sum_{i=1}^{m} \alpha_{ih} \Lambda(\alpha_{ij}) = \delta_{hj} D.$$
 (6)

The Laplace Expansion Theorem³ states that, if we select any k rows $I = \{i_1, i_2, \ldots, i_k\} \text{ or } k \text{ columns } J = \{j_1, j_2, \ldots, j_k\} \text{ from } N_m \text{ and write}$

$$\sigma_k^m(J) = \sum_{s=1}^k j_s, \tag{7}$$

and

² See [1] p. 20.

³ See [1] p. 21, or [2] p. 14.

then

and
$$D = \sum_{J \in \mathcal{Q}_{k}^{m}} (-1)^{\alpha_{k}^{m}(J) + \alpha_{k}^{m}(J)} \qquad \alpha_{IJ}^{(k)} \quad \Omega(\alpha_{IJ}^{(k)}) = \sum_{J \in \mathcal{Q}_{k}^{m}} \alpha_{IJ}^{(k)} \quad \Lambda(\alpha_{IJ}^{(k)})$$

$$D = \sum_{I \in \mathcal{Q}_{k}^{m}} (-1)^{\alpha_{k}^{m}(J) + \alpha_{k}^{m}(J)} \quad \alpha_{IJ}^{(k)} \quad \Omega(\alpha_{IJ}^{(k)}) = \sum_{I \in \mathcal{Q}_{k}^{m}} \alpha_{IJ}^{(k)} \quad \Lambda(\alpha_{IJ}^{(k)});$$

$$(8)$$

where $\Omega(\alpha_{IJ}^{(k)})$ denotes the complementary minor to $\alpha_{IJ}^{(k)}$ in D, so that

$$\Omega(\alpha_{IJ}^{(k)}) = \alpha_{I^{C}J^{C}}^{(m-k)}; \qquad (9)$$

and where $\Lambda(\alpha_{IJ}^{(k)})$ denotes the co-factor of $\alpha_{IJ}^{(k)}$ in D, so that

$$\Lambda(\alpha_{IJ}^{(k)}) = (-1)^{\sigma_k^m(I) + \sigma_k^m(J)} \Omega(\alpha_{IJ}^{(k)}). \tag{10}$$

By an argument analogous to that yielding (6) from (3) [based on the fact that a determinant with two rows or two columns identical vanishes], we can extend (8) to yield that

$$\sum_{J \in Q} \alpha_{HJ}^{(k)} \Lambda(\alpha_{IJ}^{(k)}) = \delta_{HI} D \quad \text{and} \quad \sum_{I \in Q} \alpha_{IH}^{(k)} \Lambda(\alpha_{IJ}^{(k)}) = \delta_{HJ} D, \quad (11)$$

where

$$\delta_{IJ} = \delta_{i_1 j_1} \delta_{i_2 j_2} \cdots \delta_{i_k j_k}. \tag{12}$$

The $adjugate^4$ (or adjoint) of the matrix ${f A}$ is defined as the matrix ${f A}^A$ with elements

$$(\mathbf{A}^{\mathbf{A}})_{ji} = \Lambda(\alpha_{ij}); \tag{13}$$

and, if $D \neq 0$, the reciprocal⁵ (or inverse) matrix A^{-1} of A is defined by

$$A^{-1} A = A A^{-1} = I;$$
 (14)

⁴ See [1] pp. 24, 88, or [2] p. 13.

⁵ See [1] p. 91, or [2] p. 3.

so that, by (8) and (13), since the reciprocal is unique,

$$A^{-1} = D^{-1} A^{A}. (15)$$

Let $I = \{i_1, i_2, \ldots, i_k\}$ and $J = \{j_1, j_2, \ldots, j_k\}$ be sets of k distinct indices selected from N_m ; to be specific, let these be in ascending order:

 $1\leqslant i_1\leqslant i_2\leqslant \ldots \leqslant i_k\leqslant m \quad \text{and} \quad 1\leqslant j_1\leqslant j_2\leqslant \ldots \leqslant j_k\leqslant m. \tag{16}$ Let us write I=J iff [if and only if] $(\forall s\in N_m)$ $i_s=j_s;$ and $I\leqslant J$ iff $(\exists r\in N_m)$ $i_r\leqslant j_r$ and $(\forall s>r)$ $i_s=j_s.$ It is easily verified that this is a total ordering of the set $Q=Q_k^m$ of all $\binom{m}{k}$ selections of k distinct indices from N_m , and that this ordering coincides both with the lexical order of the "words" $j_kj_{k-1}\ldots j_2j_1$ and with the ascending order of the numbers $\ell_k^m(J)=\ell_k^m(j_1,j_2,\ldots,j_k)=j_1^m+j_2^{m^2}+\ldots+j_k^{m^k}.$

LEMMA 1. The function λ_k^m defined by

 $\lambda_k^m(J) = \lambda_k^m(j_1, j_2, \ldots, j_k) = 1 + \binom{j_1-1}{1} + \binom{j_2-1}{2} + \ldots + \binom{j_k-1}{k} \quad (17)$ is a bijection from the set Q onto the set \mathbb{N}_q with $q = \binom{m}{k}$; and the ordering of Q defined by $\lambda_k^m(I) < \lambda_k^m(J)$ corresponds to the ordering I < J defined above.

With

$$q = q(m, k) = {m \choose k}$$
 and $c = c(m, k) = {m-1 \choose k-1}$, (18)

the $(q \times q)$ matrix $\mathbf{A}^{(k)}$ whose elements are the k-rowed minors of \mathbf{A}

$$(\mathbf{A}^{(k)})_{IJ} = \alpha_{IJ}^{(k)} = \begin{vmatrix} \alpha_{i_1} j_1 & \alpha_{i_1} j_2 & \cdots & \alpha_{i_1} j_k \\ \alpha_{i_2} j_1 & \alpha_{i_2} j_2 & \cdots & \alpha_{i_2} j_k \\ \cdots & \cdots & \cdots & \cdots \\ \alpha_{i_k} j_1 & \alpha_{i_k} j_2 & \cdots & \alpha_{i_k} j_k \end{vmatrix}.$$
(19)

with the compound indices I and J ordered by the function λ_k^m , as was established in Lemma 1, is called the k-th compound matrix 6 of A. We note that

$$A^{(1)} = A$$
 and $A^{(m)} = \det A = D$; (20)

that the k-th compound of the unit matrix is a unit matrix

$$I_{m}^{(k)} = I_{q} \tag{21}$$

[By (19), $(\mathbf{I}_{m}^{(k)})_{IJ}$ has as its (r, s)-entry $\delta_{i_r j_s}$; so that, if I = J, this determinant is det $\mathbf{I}_{k} = 1$, while, if $I \neq J$, it has at least one null row, and so vanishes; or, in other words, $(\mathbf{I}_{m}^{(k)})_{IJ} = \delta_{IJ}$, yielding (21)]; and that

$$(\gamma \mathbf{A})^{(k)} = \gamma^k \mathbf{A}^{(k)} \tag{22}$$

 $[(\gamma A)_{ij} = \gamma \alpha_{ij}, \text{ and det } (\gamma A) = \gamma^m \text{ det } A; \text{ so, by (19), } ((\gamma A)^{(k)})_{IJ} = \gamma^k \alpha_{IJ}^{(k)}, \text{ and (22) follows.}]$ The Binet-Cauchy Theorem⁷ asserts that

$$(X Y)^{(k)} = X^{(k)} Y^{(k)};$$
 (23)

whence, if A X = B, then

$$A^{(k)} X^{(k)} = B^{(k)}$$
 (24)

⁶ See [2] p. 16.

⁷ See [2] p. 14.

Let us write $D^{(k)} = \det \mathbf{A}^{(k)}$ and, by analogy with D_{ij} , let $D^{(k)}_{IJ}$ denote the determinant obtained by replacing the $\lambda_k^m(I)$ -th column of the determinant $D^{(k)}$ of $\mathbf{A}^{(k)}$ by the $\lambda_k^m(J)$ -th column of the matrix $\mathbf{B}^{(k)}$. Then, by the Leibnitz-Cramer Rule¹ applied directly to (24), we get

$$\xi_{T,T}^{(k)} = D_{T,T}^{(k)}/D^{(k)},$$
 (25)

if $D^{(k)} \neq 0$, just like (2). In addition, the Sylvester-Franke Theorem⁸ asserts that

$$D^{(k)} = D^{c}, (26)$$

so that (25) applies if $D \neq 0$.

By (14), (21), and (23), we see that the compound of the reciprocal matrix is the reciprocal of the compound matrix:

$$A^{-1(k)} = A^{(k)-1}.$$
 (27)

Finally, by applying (5) and (6) to the compound matrix $\mathbf{A}^{(k)}$, we obtain that

$$\Lambda^{(k)}(\alpha_{TJ}^{(k)}) = (-1)^{\lambda_{k}^{m}(I) + \lambda_{k}^{m}(J)} \Omega^{(k)}(\alpha_{TJ}^{(k)}), \quad (28)$$

where $\Omega^{(k)}(\alpha_{IJ}^{(k)})$ denotes the minor of $D^{(k)}$ complementary to the element $\alpha_{IJ}^{(k)}$, and $\Lambda(\alpha_{IJ}^{(k)})$ denotes the co-factor of $\alpha_{IJ}^{(k)}$ in $D^{(k)}$; and

$$\sum_{J \in \mathcal{Q}} \alpha_{HJ}^{(k)} \Lambda(\alpha_{IJ}^{(k)}) = \delta_{HI} D^{\mathcal{C}} \quad \text{and} \quad \sum_{T \in \mathcal{Q}} \alpha_{IH}^{(k)} \Lambda(\alpha_{IJ}^{(k)}) = \delta_{HJ} D^{\mathcal{C}}, \quad (29)$$

by (26). We are now ready to prove our main result:

THEOREM. The co-factors of $\alpha^{(k)}_{IJ}$ in D and in D $^{(k)}$ are related by the identity

$$\frac{\Lambda^{(k)}(\alpha_{IJ}^{(k)})}{\Lambda(\alpha_{IJ}^{(k)})} = D^{c-1}.$$
(30)

⁸ See [2] p. 17.

 $\llbracket Proof. \rrbracket$ Use the second equation (the sum by columns) of (11) and the first equation (the sum by rows) of (29) to yield that

$$D \Lambda^{(k)}(\alpha_{IJ}^{(k)}) = \Sigma_K \Lambda^{(k)}(\alpha_{IK}^{(k)}) \delta_{KJ} D = \Sigma_K \Sigma_H \Lambda^{(k)}(\alpha_{IK}^{(k)}) \alpha_{HK}^{(k)} \Lambda(\alpha_{HJ}^{(k)})$$
$$= \Sigma_H \delta_{HT} D^c \Lambda(\alpha_{HJ}^{(k)}) = D^c \Lambda(\alpha_{IJ}^{(k)}),$$

and (30) follows.

Corollary 1. The minors complementary to $\alpha_{IJ}^{(k)}$ in D and in $\mathcal{D}^{(k)}$ are related by the identity

$$\frac{\Omega^{(k)}(\alpha_{IJ}^{(k)})}{\Omega(\alpha_{IJ}^{(k)})} = D^{c-1} (-1)^{\lambda_k^m(I) + \lambda_k^m(J) + \sigma_k^m(I) + \sigma_k^m(J)}. \tag{31}$$

[Proof. This follows immediately from (10), (28), and (30).] Corollary 2. The adjugate of $\mathbf{A}^{(k)}$ is given by

$$(\mathbf{A}^{(k)\mathbf{A}})_{JI} = D^{\mathcal{C}-1} \Lambda(\alpha_{IJ}^{(k)}). \tag{32}$$

[Proof. By the definition (13), applied to the matrix $\mathbf{A}^{(k)}$, $(\mathbf{A}^{(k)\mathbf{A}})_{JI} = \Lambda^{(k)}(\alpha_{IJ}^{(k)})$. Now (32) follows by application of (30).

Corollary 3. If $D \neq 0$, the reciprocal of $A^{(k)}$ is given by

$$A^{(k)-1} = D^{-c} A^{(k)A}.$$
 (33)

[Proof. By (15) and (26), $A^{(k)-1} = D^{(k)-1} A^{(k)A}$ and (33) follows.

By (27), Corollary 3 gives us all we need to know about compounds of reciprocals of matrices. For adjugates, we have:

LEMMA 2. The adjugate of the compound is related to the compound of the adjugate by the identity

$$D^{k} \mathbf{A}^{(k)\mathbf{A}} = D^{c} \mathbf{A}^{\mathbf{A}(k)}. \tag{34}$$

[Proof. If D = 0, (34) is trivially true. So suppose that $D \neq 0$. By Corollary 3, $D^k A^{(k)A} = D^{k+c} A^{(k)-1}$; and, by (15) and (22), $D^c A^{A(k)} = D^c (DA^{-1})^{(k)} = D^{c+k} A^{-1(k)}$: by (27), (34) follows.]

Another consequence of (27), (33), and (34) is that, if $D \neq 0$,

$$A^{(k)-1} = A^{-1(k)} = D^{-k} A^{A(k)}.$$
 (35)

Corollary 4 (Jacobi's Identity)⁹. If $\alpha_{IJ}^{(k)}$ is a k-rowed minor of a matrix A, $(\mathbf{A}^{\mathbf{A}})_{JI}^{(k)}$ is the corresponding minor of the adjugate matrix $\mathbf{A}^{\mathbf{A}}$, and $\Lambda(\alpha_{IJ}^{(k)})$ is the co-factor of $\alpha_{IJ}^{(k)}$; then

$$(\mathbf{A}^{\mathbf{A}})_{JI}^{(k)} = D^{k-1} \Lambda(\alpha_{IJ}^{(k)}). \tag{36}$$

[Proof. By (32), with (34), $(\mathbf{A}^{\mathbf{A}})_{JI}^{(k)} = D^{k-c} (\mathbf{A}^{(k)})_{JI} = D$

REFERENCES

- [1] L. MIRSKY. An Introduction to Linear Algebra. Clarendon Press, Oxford, 1955: corrected 1972.
- [2] M. MARCUS and H. MINC. A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston, 1964.

See [1] p. 25. Note that the adjugate determinant referred to by Mirsky is defined as the determinant of the transpose of the adjugate matrix (which does not matter, since det $A = \det A^T$), accounting for the transposition of compound indices "JI" (not "IJ") on the left-hand side of (36).

•		

	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 아내는 그 아내는
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그는 그 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
•	
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그는 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그리고
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	그 사람들은 사람들이 되었다. 그 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.
	그 그 그 그 그 그는 그는 그는 그 그는 그 그는 그는 그는 그는 그는