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ABSTRACT

This note defines a linear ordering of the set QZ of all k-member
subsets J = {jl, j2, cees jk} of {1, 2, ..., m}, with 1 < jl < jz <...<
. < . . . .o s ,

Jp S, by I <J iff (3r) i, < I, and (Vs > r) i, = dgs and shows (in
Lemma 1) that this corresponds to the ordinal function AZ(J) =1 + (Jlil)

+ (ngl) o+ (‘7";1). If Ais an (m x m) matrix with elements (A);, =

uij’ this identifies the k-th compound matrix A(k) with the k-rowed minor
(%) - (%) ; = a7 = " i
o7z of D = det A as (A )uv’ with u Ak(I) and v Ak(J). The main

(k) (k)

Theorem then shows that, if A(a ) is the co-factor of « in D, and

IJ IJ
A(k)(aég)) is the co-factor of the same aéi) in D(k) = det A(k), then
A(k)(u§§))/A(a§5)) = Dc—l’ where ¢ = (z:i). From this are derived three

corollaries and a further lemma; and, as a fourth corollary, the well-
known Jacobi Identity is obtained. In the process, the main properties
of determinants, compounds, adjugates, reciprocals, and co-factors are

summarized.






A Co-Factor Identity for Compound Matrices

by

John H., Halton

Let an denote the set of all '(m x n) [m rows, n columns] matrices
with real elements; if X€M , let (X).. = £.. denote the element in
mn 7 ]
row 7 (L7 Sm and column § (1 € J € n); and let | = 'm € Mmm denote

the m~rowed unit (or identity) matrix, with elements (1).. = 6.. [§..
. d J 1d

being the Kronecker function: 0 if ¢ # J, 1 if 7 = j.] If Y€ an, with
Y = , = [ vy = L, =
( )jh np then the matrix product XY = Z Mmp’ where (Z)zh 7

7
‘ R {mi i eM eM i L. =0,
Zle ELJ T]Jh Similarly, if A and B , with (A)w OL’LJ and

(B) i = Bi,j’ we may define the equation A X = B, with A and B given and

X unknown. The determinant of the square matrix A is defined as

D=det A= lo ) oy veea, | = oy 0, ce oy
Gy Gop wes Ooo
%1 %m2 Ome
=z £ ees QO 1
peP  “o “1p(1) *20(2) mp (m) ? 1)
where Pm denotes the set of all permutations of N = Nm = {1, 2, ..., m}

and ep is the parity index of the permutation p (taking values #1: +1 if
p may be represented by an even number of interchanges, -1 otherwise.)
Then, if D # 0, the Leibnitz-Cramer rule! (generalized in the obvious way

to the matrix equation A X = B) tells us that

%j = Dij/D, (2)

! See reference [1] p. 134.



where Dij denotes the determinant obtained by replacing the Z-th column

of the determinant D of A by the j-th column of the matrix B.

o

A determinant may be expanded by any row or column:

g 1+f m
D=7 DY .. Q@) = ) .. Al
FEI g W2 W
and (3)
m 7;+j m
D= ) (<1 0., Q) = ) a.. Mol
i=1 2 M A

where Q(ai,) denotes the complementary minor to aij in D, so that, if ¢

(k)
IJ

A consisting of the kX rows indexed in I and the kX columns indexed in J,

denotes the complementation of a set and we write a for the minor of

. then
m-1) )

= f .
o 5) = aryyelsyes
and where A(aij) denotes the co-factor of aij in D, so that

Moy = (-1)*H 2o, ). (5)

As is well-known? (3) may be extended to state that

7 J

i ~13

m
4 oy A(aij) =8, D and izl o A(aij) =8, . D. (6)

3

The Laplace Expansion Theorem® states that, if we select any k rows

I = {il, Ty eees ik} or k¥ columns J = {jl, jz, cees jk} from N and write

2’

k
I = Szl Gy (7)

2 gee [1] p. 20.
3 gee [1] p. 21, or [2] p. 1l4.




then o
3 IR 2R HCIRo ® NERTAC
D= ] (-1 apy’ Qo) =] ar Aagl)
Jeql B4
k k
and o (8)
_ DD g I S CRTHC
D= ) (-1 ar’ Qo) = ) A(oc )
IGQ’Z JEQZ
where Q(a< )) denotes the complementary minor to &( ) in D, so that
a@l) = o0 9

(k)

and where A(a( )) denotes the co~factor of O s

in D, so that

m
om(I)+ck () (k))

1@ = 1) (10)

By an argument analogous to that yielding (6) from (3) [based on the fact
that a determinant with two rows or two columns identical vanishes], we

.can extend (8) to yield that

k) (k) (k) (k)
I o9 0@y <6, 0 ana § o ne®) -5, 5, an
o S o Su
where
S = 8. 4 O+ 4 weu 8. .. (12)
I Thdy Tyl 1k

The adjugate® (or adjoint) of the matrix A is defined as the matrix
A with elements

A — -

and, if D # 0, the reciprocal® (or inverse) matrix AL of A is defined by
p

Ala-aal_-. (14)

’

* See [1] pp. 24, 88, or [2] p. 13.
> See [1] p. 91, or [2] p. 3.



so that, by (8) and (13), since the reciprocal is unique,

Al ptl oAt (15)

Let T = {7 . ik} and J = {jl, jz, vevs jk} be sets of k

1’ iz, -
distinct indices selected from Nm; to be specific, let these be in

ascending order:

< 7 . _— < s . <
1<, < i, <...< i, Sm and 1<, < Jy <...< Jp Sm (16)

Let us write I = J 4ff [if and only if] (Vs € Nﬁ) is = js; and I < J iff
E . 4 . — - 3 3 3 - 8
(3r Nm) T, < 7, and (Vs > r) T, =g Tt is easily verified that this
is a total ordering of the set ¢ = Qz of all (z) selections of k distinct
~ indices from Nﬁ, and that this ordering coincides both with the lexical
order of the "words" jkjk_l...jzjl and with the ascending order of the
k

m _ M, . . . - . 2 .
.numbers Qk(J) = Qk(gl, Jos wees Jk) d{m + dom + .. + Jym

Lemma 1. ' The function AZ defined by

NUTY = N0y dpo veen ) = 1+ Ch + 2L+ 0w 5 an
18 a bijection from the set § onto the set Nq with g = (Z); and the
ordering of Q defined by AZ(I) < XZ(J) corresponds to the ordering I < J
defined above.

[Proof. I < J iff one of the (clearly) mutually exclusive conditioms,
ir < jp and (ve > r) is = js holds, for some 1 € » < k. The number of sets
I such that I < J is therefore equal to the sum of the number of ways of
choosing 1 < il < iz < vee K ir < jr’ and this is Cﬂ;l). Thus, XZ(J) is

the ordinal number of J in QZ.B




With
g=qm ©) = () and e=cm k= G, (18)

the (g x gq) matrix A(k) whose elements are the k~rowed minors of A

(%) (k)
AV .= a = 0. » Os 2 aes 0. . |, (19)
I I t191 t1d9 T1dg
o, . O. . . O,
t2d1 *2d2 Y29k
o, Uy & ee. O
K1 xd2 Kk

with the compound indices I and J ordered by the function Xz, as was
established in Lemma 1, is called the k-th compound matrix® of A. We

note that
AD oA ang A™ - ger A = p; (20)

that the k-th compound of the unit matrix is a unit matrix

&) -
b =1y (21)

' k . .
[By (19), (|é ))IJ has as its (r, g)-entry Gi,j ; so that, if I = J,

8

this determinant is det lk = 1, while, if T # J, it has at least one

null row, and so vanishes; or, in other words, (Iék))IJ = §_._, yielding

17
(21) ]; and that |
(A R = y* A0 (22)

- = . k)yy
]I(YA)ij =Y uij’ and det (YA) = v det A; so, by (19), ((YA) )IJ =
Yk aéi), and (22) follows.] The Binet-Cauchy Theorem’ asserts that

x ) = X @, (23)

whence, if A X = B, then
alk) x(k) _ gk (24)

5 gee [2] p. 16.
7 See [2] p. 1l4.



(%)

Let us write D = det A(k) and, by analogy with Dij’ let D(k)

IJ
denote the determinant obtained by replacing the AZ(I)=th column of the
determinant D(k) of Aﬁk) by the AZ(J)—th column of the matrix B(k)a

Then, by the Leibnitz-Cramer Rule! applied directly to (24), we get
(k) (k) ,, (&)
gry =Dy /DY, (25)

if D(k) # 0, just like (2). 1In addition, the Sylvester-~Franke Theorem®

asserts that

=D, (26)
so that (25) applies if D # 0.

By (14), (21), and (23), we see that the compound of the reciprocal
I;matrix is the reciprocal of the compound matrix:

AR _ AR)-L 27)

Finally, by applying (5) and (6) to the compound matrix A(k), we

obtain that

AT (I)+X )
(k)(a(k)) (-1) k (k)(a(k)), (28)
where Q(k)( (k)) denotes the minor of D( ) complementary to the element
;k), and A(a( )) denotes the co-factor of u( ) in D( ); and
k) (%) (k) (k) °
I off n@iy =6, 0° ana ] a 1@y =5, 0% 29
70 %g.y g %

by (26). We are now ready to prove our main result:

( ) (k)

Tueorem, The co-factors of oy in D and in D

are related by

the identity
' k), (%)
ﬁ———-%-)-—)— = oot (30)
Afar ")

8 gee [2] p. 17.




[Proof. Use the second equation (the sum by columns) of (11) and

the first equation (the sum by rows) of (29) to yield that

pa®®) o 1 ®GE) 5 pos 4B 6E) (6 o0

2y 8r 07 0@y = 0% 2y,

and (30) follows. ]
CorovLary 1. The minors complementary to aéJ) in D and in D(k)

related by the identity
Q(k)(a(k))

AN D+ (YT (D) +TT ()
1 k k el (31)

|
(e}

[Proof. This follows immediately from (10), (28), and (30).]
Corovrary 2. The adjugate of A(k) 18 given by

Ao (k)

@Al ). (32)

Vg1 =
[Proof. By the definition (13), applied to the matrix A(k),

G

)JI = A(k)(u(k)) Now (32) follows by application of (30).]
Cororrary 3. If D # 0, the reciprocal of A s given by

A(k)"‘l = D—C A(k)A. (33)
[Broof. By (15) and (26), AP™L o pUO=1 ACA 4 (33) follows. ]

By (27), Corollary 3 gives us all we need to know about compounds
of reciprocals of matrices. For adjugates, we have:

Lewma 2, The adjugate of the compound is related to the compound
of the adjugate by the identity

Dk A(k)A - ° Af(k). (34)



[Proof. 1f D = 0, (34) is trivially true. So suppose that D # 0.

k poa _ pkte aA(R)=1. 4 by (15) and (22), 0° A O

By Corollary 3, D
- - -
¢ (DA l)(k) = 1° K A l(k): by (27), (34) follows. |
Another consequence of (27), (33), and (34) is that, if D # 0,

A(k)--l - Afl(k) - D—k Aﬁ(k). (35)

ComorrLary 4 (Jacobi's Identity)®. If m(k) 18 a k-rowed minor of a
matrixz A, (A )(k) is the corresponding minor of the adjugate matrix A,

and A(a(k)) 18 the co-factor of u( ), then

IJ °?
SV e YIS (36)
‘IPY’OOfo By (32), with (34)9 (AA) (k) k-‘c (A(k)A)JI =
k—c c l A(Ot(k)) (k)) ]]
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® gee [1] p. 25. Note that the adjugate determinant referred to by
Mirsky is defined as the determinant of the transpose of the adjugate
matrix (which does not matter, since det A = det PF), accounting for
the transposition of compound indices "JI" (not "IJ") on the left-hand

side of (36).










