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Abstract

This paper proposes several possible measures for "local
density" of sub-regions of a graph, as opposed to measures of
global density (e.g., the number of nodes in a regular graph of a
given degree and diameter). Global and local density measures
are then used to compare graphs. It is shown that, at least when
programs are mapped onto sub-regions of a computer network in a
way that reflects the flow of messages through the programs' pro-
cedures, dgraphs compounded from locally dense clusters are more
appropriate (although they are not as dense globally as are
graphs where distant nodes are laced together).

Index Terms: (d,k) graphs, Moore graphs, computer networks,
packing density, compounding, graphs of computers, (n,d,k)
graphs, size of graphs, network architectures.




We are today in a position where we can begin to build net-
works with several hundred computers. As VLSI technology matures
during the 1980s and 1990s, it will become quite feasible to
build networks with many thousands of computers. How such large
numbers should be linked together is a major unsolved research

problem.

A variety of different interconnection topologies have been
suggested (e.g., rings, stars, arrays, trees, lenses, X—-trees,
lattices [1-5]), and several different criteria (e.g. average
distance, diameter, maximal girth, symmetry, connectivity [1-3])
with which to evaluate them have been proposed. Almost certainly
there 1is no single overriding criterion, or single provably best
network architecture. Just as with the architecture of single-
processor computers, or any large and complex systems, many al-
ternative solutions are possible. A final choice depends upon a
number of aspects related to the costs and feasibility of exist-

ing technologies.

Message-Passing, Diameter, Density, and Graph Structure

This paper examines the issue of packing computers (or pro-
cessors) as close together as possible, so that the set of com-
puters executing a single program will, when they must pass data
and other kinds of messages from one to another, spend as little
time as possible. This is important, since message-passing can

quickly become the overriding factor in slowing down a network.

This problem has been cast into graph-theoretic terms by

considering the problem of finding, for a particular diameter k
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(the shortest path between the most distant pair of vertices in
the graph) and degree d (the number of edges touching each ver-
tex), the regular (n,d,k) graph with as many vertices, n, as pos-
sible. Equate each of the computer network's individual computer
(or processor) nodes with a vertex; equate the 1links Joining

nodes with edges.

Elspas [6] appears to have been the first person to suggest
techniques for building graphs with as many nodes as possible.
Storwick [7] gave a summarizing table of the densest graphs found
so far, up to degree = 1¥ and diameter = 1@. Arden and Lee [8]
and Toueg and Steiglitz [9] found a number of denser graphs of
degree 3 and 4. Very recently, Imase and Itoh [1@0] proved that
de Bruijn networks [11] (shift registers) are asymptotically best
found so far, and several compounding techniques have been found
at Wisconsin that give densest graphs from roughly 500 to 20,000
nodes [12,13], and a heuristic search program has achieved the
densest graphs below 500 nodes [13]. Thus a number of new graphs
have been found, using several different techniques, that are
promising candidates for computer networks - at 1least from the

point of view of density.

However there are good reasons to think that diameter is not
the most appropriate measure. Diameter is concerned with the
most distant pairs of nodes. But when a program is mapped onto a
network, it seems compelling that those procedures in the program
that pass data and in other ways communicate with one another
should be assigned to and executed by computers that are as close
together as possible. That is, if two <computers diameter dis-
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tance apart must pass messages, the procedures they are executing

should be re—assigned, to adjacent computers.

Ideally, the graph of message-passing between the program's
procedures should determine the topology of the computer sub-
graph that executes that program, so that messages are always
passed over only a single 1link between adjacent nodes. Even
better, the program's graph should be decomposed to assign a
sub-graph to each network node such that message-passing between
nodes is minimized and load of processing at each node 1is bal-

anced.

To put this another way, diameter assumes that a program
might be mapped onto a (possibly disjoint) sub-graph of the
graph—-network in any random way. Such a random mapping 1is,
indeed, a possible alternative, and is being explored by several
researchers. But it is certainly not the only alternative. And
it pays the (very likely heavy) price of more frequent and more

expensive message-passing, among other problems.

Measures of Local Density

As n increases for a graph of given d and k, we can say we
are achieving "globally denser" graphs. There are several possi-

ble measures for "locally denser" graphs:

1) A simple measure of Local Density is (n,d,r,vi), where r

is the radial-distance from any single node, Vi in G.

Then Average Local Density simply averages n over all Vi for a

given degree and radius.



Maximal Local Density is the largest n for any Vi

Minimal Local Density is the smallest n for any Ve

2) Next consider the (n,d,r,vi) sub-graph, S, with n nodes,
of a graph, G. Now define Density with respect to the diameter

of 8, for the (n,k,d,r,vi) sub-graph.

For all (n,d,r,vi) sub-graphs,
Average Local Density is the average (n,k,d,r,vi) sub-graph;
Maximal Local Density is the largest 1local (n,k,d,r,vi) sub-
graph;
Minimal Local Density is the smallest local (n,k,d,r,vi) sub-

graph.

3) Another alternative decomposes G into (non-overlapping)
sub-graphs, as follows: Decompose G into non-overlapping sub-
graphs, Sj‘

Now the (Average, Maximal, Minimal) Local Density is (average,
max, min) of max(n,k,d,r,Sj) (for each d,k) for the maximal
(known) decomposition. Decomposition means that links are broken
between sub-graphs; these «can now be used to join nodes within

the sub=-graph.

This measure is appropriate for, and can easily be computed
for, compounded graphs [12,13], where local clusters are com-
pounded into larger graphs by raising degree, and introducing new
links outside the local cluster sub-graph. This measure, then,
gets the (largest) Average Local Density of disjoint sub-graphs
(n,d-1,k).

4) Rather than use diameter of sub-graphs, we might use
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average distance between nodes, or weighted average distance, or
simply a count of nodes 1,2,..r away from each node. These are
probably all preferable to diameter, with average distance heavi-
ly weighted toward the smallest distance the best. Just as a
single program should be mapped into as compact as possible a
cluster, so within that cluster the more heavily computers inter-

communicate the closer together they should be.

5) We might further vary these measures to allow for a
decomposition of G using 2,3,...,s different sub—-graphs (all of

the same degree and diameter).

Evaluating Networks In Terms of Local Vs. Global Density

It is not clear which of the above measures are best, how
closely they may be related, or whether other variants might be
preferrable. But for the moment it seems instructive to explore
how one of them might be used to evaluate and choose good network
structures and to investigate the differences between local and

global density (with respect to diameter or average distance).

For simplicity, consider local density using the diameter of
the (n,d-1,k) sub-graph that decomposes the graph G. (This im-
plicitly assumes that (n,d-1,k) graphs have been compounded, and
that n is a number that will frequently be chosen for the number

of computers to assign to one program.)

The following illustrate some of the kinds of interesting

comparisons that can be made:

1. The (110,4,5) graph compounded from 11 (10,3,2) Petersen
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graphs <can obviously be decomposed into those 11 sub-graphs,
which are known optimal. The (123,4,5) heuristically-connected
tree, whose global density is somewhat better than (1160,4,5), if
it can be decomposed at all reasonably (which is unknown, and
doubtful), will certainly give poorer sub-graph clusters, on the

order of (5,3,2).

2. Looking at larger graphs, where the de Bruijn shift regis~-
ters achieve the best global density, we find a similar situa-
tion, Simply "tesselate" some known-dense sub-graph (e.g.
(1¢,3,2)), by starting with one sub-graph, linking each of its
nodes to a new sub-graph, linking each of 1its nodes to a new
sub-graph, etc., to give (at least) (14,4,2). 1In contrast, the
de Bruijn network, which, like the heuristically- completed tree,
is basically 1locally a +tree, will be on the order of (5,3,2)
(that is, with a rather poorer topology from the point of view of

local density).

3. When larger local graphs are desired, either good com-
pounds, or good completed trees, can be chosen, and then
tesselated, or compounded, or "embossed" (i.e., with nodes of de-

gree d replaced by graphs with 4 nodes).

4. Emboss a graph with the desired 1local properties into a
graph with the desired global properties whose degree equals the
number of nodes in the first graph, by Jjoining each link to the

original node to a different node in the graph embossed into it.

5. Emboss complete bi-partite graphs into a tree, by replacing
each node with n copies of an n-node graph, replacing each link
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in the original tree by n links from each graph (one from each
node). This increases local density, and puts many local cluster

graphs into close proximity to one another.

Loosening the Coupling Between Clusters, to Increase Local Density

To the extent that message-passing can be contained within
each cluster, so that the need to traverse links between clusters
becomes rarer and rarer, there might be fewer and fewer inter-

cluster links, freeing more and more links for other purposes.

This suggests building graphs using sub-graphs that are as
dense as possible, and/or have whatever mix of properties are
deemed most desirable, but linking 1,2,...n of each sub-graph's
nodes to other sub-graphs. Therefore, assuming local density to
be the only criterion, we should search for dense clusters that

were regular graphs of degree d, but missing 1,2,...n joins.

Since the basic clusters will be quite small, on the order
of tens, or at most a few hundred, nodes, heuristic searches of
the sort Leland [13] and Toueg and Stieglitz [9] have used so
successfully should work well, Note that such architectures
would map especially well onto VLSI chips, if a whole cluster
could be fabricated on a single chip. For now the number of
links to other chip-contained clusters could be kept within the

pin-fanout limits.

Possibly a more realistic, more useful and simpler variant
is the following (this can be viewed as simply a different in-
terpretation of the functions of nodes): Assume that a sub-graph
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cluster is given one extra join to each node (that is, its degree
is raised by 1), and that these joins serve to handle the several
auxiliary jobs of: a) input-output, b) access to mass stores and
other devices, and c¢) links to other sub-graph clusters. Now
these Jjoins will be allocated to each job in proportion to the
data-flow traffic of each. We might consider still another al-
ternative interpretation: treat each input-output, mass store,

or other device as simply another node in the cluster.

A variant that would allow the network to be adjusted to
different traffic 1loads, wunder program control, would put a
switch on this last link, so that it could be switched to span
out to another cluster when that was needed, or to connect to
input-output, mass store or other devices when that was needed

(usually these will be needed at different times).

Discussion and Conclusions

Local Density seems an interesting measure to explore; it
appears to be more appropriate than is global density for large
computer networks where each program is mapped, for efficiency,
onto a relatively compact sub-network. Probably the best way to
achieve high local densities, and to exercise tight control over
local density and simply be able to measure it easily, is to con-

struct larger graphs from smaller, locally dense sub-graphs.

This, basically, suggests we should explore compounding and
other construction techniques that combine good basic building-
blocks, ones that are locally dense. This further allows one to

shape these building blocks according to whatever combinations of
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criteria seem most desirable. As many links as are needed to
handle spill-over can be used between clusters. Once these span-
ning links have been traversed, density (and any other desired
characteristics) become good again, since another good sub-graph

is now being used.

Measures of local density, and other local characteristics,
make compounds of clusters look far more desirable and appropri-
ate than do measures of global density, e.g., diameter. Thus
augmented trees and de Bruijn networks, which give many densest
graphs from the point of view of diameter, are relatively poor,
when compared to compounded clusters, from the point of view of

local diameter.

This seems quite reasonable when we remember that globally
dense graphs are constructed by linking far-distant nodes, in
order to draw regions together and reduce diameter. On the con-
trary, local density and other local characteristics are achieved
by properly shaping each local sub-graph cluster. Note that this
is a far easier task, since we now are working with a far smaller
graph. And we have decomposed our problem into one where we can
first shape the local structures, then use these as building
blocks for the next-level structure. This process can be iterat-
ed, thus sub-dividing and simplifying our task as much as
desired. And we can cycle through the design process, modifying
the clusters and/or the compounding/spanning techniques, to best

fit one another.
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