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Abstract

Code-generation research is classified into three categories: formal treat-
ments, interpretive approaches and descriptive approaches. Very formal ap-
proaches have usually not considered complete machine architectures. Inter-
pretive approaches are improvements over ad-hoc code generation techniques but

retargeting requires changing the code generator for every new machine.

Descriptive approaches separate the machine description from the code-
generation algorithm, thus providing a higher degree of portability. A review
of these approaches and a critique of automatic code-generation algorithms are

presented.
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1. Introduction

Code generation involves the complex task of selecting machine instructions to
impiement programming language constructs. Code has to be generated in the

following areas:

(1) binding source-language variables to storage locations,

(2) accessing variables,

(3) evaluating arithmetic and Boolean expressions,

(4) executing control constructs and evaluating predicates (without storing an
explicit Boolean result),

(5) setting up run-time display linkage during procedure calls, and

(6) procedure prologue and epilogue.

Previous research in code generation can be broadly classified into three

categories: formal treatments, interpretive approaches and descriptive ap-

proaches.



2. Formal Treatments

Newcomer [Newcomer 75] uses means-end-analysis [Newell 697 to generate code
templates (not machine instructions) from a parse tree and a set of operators.
His scheme is very restrictive and of very 1ittle practical importance be-
cause:
(1) It only deals with arithmetic expression trees.
(2) Real machine architectures are not always readily representable 1in his
specification scheme.
(3) His code generation algorithm can fail to produce a code template due to
(a) a possibly inadequate set of operators, or
(b) a Timitation of the depth of search performed by means-end-analysis (a
limit is needed to prevent the code generator from possibly looping).
(4) The algorithm is exhaustive and therefore far too expensive to be used in
a production compiler. Sometimes, weeks of computer time are required to

analyze even simpie trees!

Aho and Johnson [Aho 76] consider a similar exhaustive "brute force" optimal
code generation scheme. They use a three-phase dynamic programming algorithm
to derive optimal code sequences for expression trees. In the first phase,
trees are traversed bottom-up. For each vertex 'v', all possible machine in-
struction translations of the subtree rooted by 'v' are used to compute an ar-
ray Crfv] (1 < r £ total number of registers) of costs. Cr is the minimum
number of instructions required to compute the subtree wusing 'r' registers.
A11 permutations of evaluation order are considered. At the end of the first

phase the following are determined:




(1) the optimal instruction sequence required to compute the subtree rooted by
vertex 'v', and

(2) the optimal evaluation order for the subtree of 'v',

The second phase uses the cost arrays and traverses top down to mark tree

nodes that must be computed in memory locations (i.e. wherever 'stores' are

necessary because of too few registers). The last phase walks each marked

subtree and generates code to evaluate the subtree followed by appropriate

'stores' into temporary memory locations. Aho & Johnson show that this algo-

rithm requires time linear in the number of tree nodes and exponential in the

number of instruction and addressing mode choices at each point. The

shortcomings of this model are:

(1) It only deals with arithmetic expression trees excluding common sub-
expressions.

(2) Only mathematically clean instructions are dealt with, avoiding asymmetric

registers and special instructions found in real computers.

Samet implemented a verifier [Samet 75] to prove the correctness of PDP-10 as-
sembler code produced by translating a subset of LISP. The assembler language
instructions are symbolically simulated using LISP procedures resulting 1in a
tree representation of their effect. Semantic equivalence axioms [McCarthy
637 are then used to transform trees into equivalent ones until they can be
shown semantically equivalent to a tree representation of the source program.
This verification technique can prove whether assembler code generated from a
source program is a correct implementation independent of the translation pro-
cess. It does not, however, prove the correctness of code generators (in-

dependent of the input program).



3. Interpretive Approaches

Two-level translation schemes were suggested to help design portable compilers
[Ershov 58, Strong 58, Steel 61]. To implement 'p' programming languages on
'm' machine architectures only p+m translators are necessary instead of p*m.
Code is produced for a virtual machine and is then expanded into real machine
instructions. Such schemes wuse code generation Tlanguages specifically
designed to describe the code generation process along with the target machine
instructions (GCL [Elson 707, BCPL Ocode [Richards 717, ICL [Wilcox 71, Young
747, CGPL, CGGL [Donegan 73, Donegan 79], Pascal P-code [Ammann 77]). While
such approaches are a distinct improvement over ad-hoc methods, they suffer

from serious limitations:

(1) Due to the diversity in addressing modes, target machine data types and
instructions, it is very hard, if not impossible, to anticipate a variety
of machine organizations (e.g. whether a hardware stack exists) in one
virtual machine. Interpreters tend to be very large and complex (In Elson
and Rake's implementation [Eison 70], macros had to be paged in from

disk).

(2) Code generation languages are closely tied to a specific language or

machine. Thus they cannot be considered truly portable.




(3)

(4)

(5)

The description of the target machine is mixed with the code generation
algorithm; the description cannot be changed without changing the algo-

rithm.

The implementor must perform a tedious case analysis of code sequences and
make all Tlow-level decisions as to what kind of code is to be generated.
The quality of the code produced depends on the implementor's ability to

design and debug code generation rou:ines.

The implementor has a very local view of the code to be generated. It s

hard to incorporate context-dependent optimizations such as:

(a) use of indexing instead of explicit addition in an addressing context,

(b) differentiation between Boolean values to be stored (i.e., expres-
sions) and Boolean values that need only be tested (i.e., predicates),

(c) branch chaining and other flow-dependent optimizations [Wulf 75].




4. Descriptive Approaches

For reasons of portability, code generation research has concentrated on
separating machine descriptions from the code generation algorithm itself.
The advantage of this approach is the potential ability to use one code gen-

eration algorithm for all machines.

4.1 Hand-written Code Generation Algorithms

Miller made the first attempt to isolate machine-dependent issues from the
code generation algorithm [Miller 71]. The scurce language is mapped to two-
address code sequences, which are macros written in MIML (Machine Independent

Macro Language). These macros specify the actual code generation algorithm,

e.g.

macro Add x, y
If type of x = integer and type of y = integer
then Iadd x, y
else if type of x = float and type of y = float
then Fadd x, y
else error

The specifications of, e.g., macros ladd and Fadd 1in OMML (Object Machine

Macro Language) form the description of addition on the target machine. Thus,

for the IBM-360:

macro Iadd a, b
from a in R1, b in R2 emit (AR a, b) result in R1
from a in R, b in M emit (A a, r) result in R
from a in M, b in R emit (A b, a) result in R




States are defined as configurations of operand Tlocations. A state 1is 'per-
mitted' if from that state code can be emitted with operands unmoved. Every
macro is associated with a set of permitted states only. The designer is
therefore required to specify transitions between memory and registers so that
the code generator automatically moves to a permitted state 1if needed (e.g.
movement of an operand 1in storage to a register to implement storage-to-
storage addition). To retarget a compiler to a new machine, Tadd and Fadd
must be «changed. The algorithm represented in Add is expected to remain un-
changed. Miller's model, however, is too restrictive because it deals with
expression evaluation and very simple addressing schemes only; it does not al-

Tow indexing, auto-increment, or indirect addressing.

Weingart introduced pattern matching to avoid interpretation [Weingart 73].
Target machine characteristics are encoded into a single pattern tree that is
expected to be a compact-and efficient means —of —representing most —-machine-
dependent information. The code generator is a tree traverser that accepts
tokens from a parse tree of the source language and stores them until a suit-
able match «can be found in the pattern tree. To transport this code genera-
tion scheme to a different target machine, the user creates a new pattern tree
for the new machine. 1In practice, Weingart's ideas are not easy to use be-
cause:

(1) Creating a single tree structure to encode all potential dinstruction pat-
terns and code sequences is often hard. For example, Weingart had diffi-
culties creating the pattern tree for the PDP-11. He tried to generate
the tree from a machine description automatically, but did not succeed

very well,



(2) There exists a possibility that on some machines no instructions at all
will match parse trees, Pattern mismatches are handled by a set of
conversion patterns. However, there is no way to determine if a suffi-
cient set of conversion patterns has been supplied. The code generator
might therefore fail to produce any code for some 1legal subtree of the
source language.

(3) Some machines provide a choice of instructions to implement a source
language construct. Code quality depends critically on the selection of
the most appropriate instructions (e.g. wusing 'increment' instead of 'add
one'). Special care must therefore be taken by the tree traverser to make
the best possible instruction choice (Weingart's technique cannot make

such a choice).

Snyder [Snyder 75] attempted to write a portable compiler for the language C
[Ritchie 78] (but he did not succeed very well). His compiler uses a two-
phase translation scheme very similar to Miller's. 1In a first phase, the code
generator walks an expression tree and generates three-address instructions.
The classification of registers and the register requirements of these in-
structions are defined by the programmer. A second phase then transtates
three-address instructions into assembler code for the target machine. Macros
and C routines are used to perform tedious case analysis of code sequences.

Snyder to a large extent ignored object code optimization.




A number of Snyder's ideas are used by Johnson in his successful 1implementa-

tion of the portable C compiler [Johnson 77, Johnson 78]. Templates and a

template-matching algorithm form the central idea around which code generation

is designed. Templates specify:

(1) the operator of the subtree (e.g. an assign-op),

(2) the desired result location on the target machine (e.g. a register loca-
tion or a condition-code setting),

(3) the machine addressing mode and the language data type of the operands of
the expression, if any (e.g. register mode, pointer type),

(4) the resource requirements: the number of temporaries and scratch registers
needed for implementing the subtree,

(5) a rewrite rule specifying how to replace a subtree by another, and

(6) the machine instruction(s) to be emitted on a successful match; the op-

codes and operands are, in general, macros that are expanded into assem-

bler mnemonics of the target machine (e.g. emit Integer-Opcode, Address-

form-of-Left-Operand, Address~f6rm—of—Right-Operand).
The template-matching algorithm tries to match a subtree against suitable tem-
plates in an attempt to transform the subtree. Such transformations must con-
sider the result location specified in the template. For an efficient 1imple-
mentation of the algorithm, it is essential to restrict the search for an ac-
ceptable template. A template matches a subtree when all the template specif-
ications (1) through (5) match. Condition (4) includes a call to a resource
allocator; the match fails if it is unable to allocate the required resources.
On a failure, an attempt is made to transform the subtree using default or

machine-dependent rewrite rules, for example,
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a += b becomes a = a + b
X++ becomes ((x += 1) -1)

The shortcomings of Johnson's approach are:

(1)

(2)

(3)

(4)

(8)

Templates are not the only places where code selection is specified. Oth-
er phases of the compiler must emit code for storage allocation and sub-
routine prologue.

The 1intermediate representation is specifically designed for +the C
language. Language dependent data types are embedded in the templates.
Feldman uses C's code generator in his implementation of the portable For-
tran 77 compiler [Feldman 797]. Most register and temporary allocation is
taken care of by the code generator. However, mapping the different fla-
vors of Fortran integer variables to C's types and generating the neces-
sary type conversions are not easy tasks. Furthermore, Fortran's power
operator (**) must be treated as a special case, and MIN and MAX functions
are implemented as nested conditional expressions.

Macro interpretation is used for selecting the assembler instruction from
a set of possible dinstructions matching the subtree. Multiple matches
between templates and subtrees are thus avoided, but these macros must be
changed when the compiler 1is transported to a new machine.

On a mismatch, machine-dependent rewrite rules call the code generator for

possible tree alterations. Such rules potentially can produce infinite
Toops.
Not much thought is given to machine specific optimizations. Condition

codes are not saved between expressions.




11

4.2 Table-driven Code Generation

To suit a variety of target architectures, a lot of flexibility and tuning of
the code generation algorithm is usually necessary. Lately, research has con-
centrated on providing this flexibility by an automatic analysis of a formal
description of the target machine. A critique and survey of such research is
presented under the following titles:

(1) Intermediate representation (IR) and code generation, and

(2) Machine analysis and code generator-generators (algorithms that produce

code generators).

4.2.1 Intermediate Representation and Code Generation

Fraser [Fraser 77] uses ad-hoc rules (coded as MLISP [Smith 70] subroutines)

—to—minimize-—machine—dependency——in-code-generation:—He-uses—XL,a-machine
independent IR that may need to be adapted to accommodate new source languages
or target machines. Rules are used to perform storage allocation (more on
this topic in the next section) and in this process XL is rewritten into ISP’
[Wick 757 (a modified version of ISP [Bell 71]). Code generation then con-
sists of matching this ISP' form with machine instruction patterns that are
also in ISP'. Pattern mismatches invoke rules (subroutines written in MLISP)
that try to rewrite the ISP' form of the IR. Examples of such rules include:
invert vrelational tests and alter control flow, replace indirect references
with indexed ones, 1load non-accumulator operands into accumulators. The
rules, of course, do not guarantee that a code sequence will eventually be

found. Fraser's knowledge-based approach has several shortcomings:
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(1) Rules compromise generality for efficiency. They are based on the obser-
vation that computer architectures are similar in design (as Wick postu-
lated in assemblers). The same rules are not usable for diverse architec-
tures; often completely new rules are necessary. Some rules such as "load
non-accumulator operands into accumulators” could potentially contradict
other parts of a compiler (such as the register allocator). In Fraser's
scheme, redundant loads and stores are unavoidable.

(2) It is hard, if not impossible, to utilize special instructions and ad-
dressing modes of a target machine. An XL primitive such as 'a = a+l1' may
match multiple machine instructions ('add #1,a' and 'inc a' on the PDP-
11). It is not clear when (if ever) his code generator would resolve such
multiple matches and choose the best alternative.

(3) The code generator is very slow: the implementation in Lisp on a PDP-10

KA10 generates one line of assembler code each second.

Glanvilie [Glanville 77, Glanville 78, Graham 80] chose a very low level IR in
the form of Polish prefix expressions. Storage allocation and binding are as-
sumed to be already done by other phases of a compiler. The code generation
algorithm 1is derived from context-free parsing theory [Aho 73]. Instructions
in the target machine are also expressed in prefix form and they form grammar
productions with the left hand side (LHS) specifying the result of an opera-
tion and the right hand side (RHS) the operation. The assembler instruction
computing the RHS is supplied with each production. Thus, r.1 ->+ r.1 k=1
"inc rl1" specifies that an addition of 1 to registerl (with the sum going to
the same register) can be obtained by an "inc rl1" instruction. A one-to-one

mapping is assumed between productions (serving as machine templates to the
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code generator) and target machine instructions. Since the addressing modes
of operands are explicitly described as grammar terminals, this one-to-one
restriction is essential. The IR string is parsed according to the context-
free grammar and the appropriate assembler instructions are emitted. Since
the grammar is usually ambiguous, a modified LR(1) phrsing algorithm is used.
The table driven code generator is automatically derived from instruction pat-
terns (more on this technique in the next section). 1In practice, reasonably
compact tables are obtained and also, because standard context-free parsing
techniques (which forbid backup) are wused, a linear time algorithm is ob-
tained. Multiple matches produce shift-reduce or reduce-reduce conflicts and
are resolved heuristicly. Shift-reduce conflicts are resolved in favor of a
shift so that more powerful single machine-instructions are preferred to
equivalent sequences of instructions. Similarly, reduce-reduce conflicts are

resolved in favor of the production with the longer RHS. In case of conflicts

between identical 1length productions, a "best instruction first"” ordering is

used to select the first production.

While Glanville's scheme is very efficient (easily the fastest among compar-
able code generation schemes) and provably correct, it is not truly portabie

because:

(1) The IR is very low level; it contains assumptions about the addressing
structure of the target machine. The mapping between operators in the IR
and target machine opcodes 1is required to be one-to-one. Thus, in tran-
sporting a compiler from one machine to another, changes have to be made

to the IR. Such changes are reflected in Glanville's IRs for the PDP-11



(2)

(3)

(4)
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and the IBM-360 (16 bit address computations as opposed to 24 bits).
Since storage allocation and binding issues are avoided, any change in the
implementation of (e.g.) the run-time display will result in changes to
the IR code to access variables. Some interfacing problems, such as the
allocation of registers that are used for display purposes, might arise
between the register allocator and the display mechanism.

Very good code cannot be generated by purely context-free expansion (e.g.
‘a & b' in 'if (a & b)' and 'c := a & b' may need to yield different code
because of the context in which it is used). Because this method uses
limited context, the quality of generated code is strongly dependent on
the exact IR form generated by the front end (e.g. in an addressing con-
text, explicit addition is performed instead of using indexing).

Heuristic resolution of multiple matches fails in certain cases (e.g., in
the choice of two-address or three-address instructions on the VAX-11/780
[DEC 79]). Such cases can be resolved by using semantics to control the
parser [Milton 77] (the interested reader is referred to [Ganapathi 80]
for more details).

The code generator does not worry about information retention (e.g.
values left in registers from previous computations). Thus, redundant
load and store elimination, recognition of equivalent locations, subsump-
tion of addition or subtraction via auto-increment and decrement are not

done.




15

As an extension and natural successor to Glanville's work, attribute grammars
are used to specify translations from a linear representation of parse trees
to a target code representation of programs [Ganapathi 80]. The intermediate
representation is at a higher level than that proposed by Glanville. Seman-
tics and context in the form of attributes are used to control parsing of the
intermediate representation. Machine-dependent optimizations such as choosing
between two-address and three-address instructions, using auto-increment and
auto-decrement addressing modes are "cleanly" organized within the attributed
parsing framework of code generation. Implementations of a code generator
based on this model exist for the VAX-11/780 and the PDP-11/70. The results
reveal better code quality than that produced by C compilers with their addi-

tional pass of peephole optimization.

Ripken [Ripken 77] uses an extended version of Aho & Johnson's —algorithm to
generate locally optimal code. His IR consists of attributed expression trees
linked together as a graph according to the flow of control of the source pro-
gram. The instruction set of the machine is described as attributed tree pat-
terns with a set of attribute transformation (AT) rules (more details in the
next section). A pre-pass to code generation maps simple (i.e. non-
aggregate) source language types to characteristic value-ranges of machine

storage locations.
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Code generation then consists of a two-phase transformation of the IR. In the
first phase, AT rules (derived from an analysis of the machine's AT rules) are
used to generate code for expression trees. A machine operation is assumed to
exist for every IR operator and its attribute values. A three-pass tree
traversal scheme (very similar to Aho & Johnson's) determines the order of
AT-rule applications and which AT rule is to be applied at each node. The
difference between Aho & Johnson's algorithm and Ripken's is that Ripken con-
siders real instruction sets with several register classes and addressing
modes. Transfer operations (not only 'stores') between machine storage Tloca-
tions are also considered (sufficient transfer operations are assumed to allow
operand transfer between all storage classes) together with register, tem-
porary allocation and assignment. Like Aho & Johnson's, Ripken's first phase
emphasizes locally optimal code. The second phase linearly arranges such Tlo-
cally optimal code blocks and generates the necessary branch instructions

among them.

Ripken did not implement his proposal. A straightforward implementation would
require a great deal of computation of different permutations with combina-
torially explosive choices. A code generator based on this model would be
very slow. Also, 1in spite of emphasis on optimal code geneqation, certain
inefficiences are likely to occur at the border between code blocks (which
represent individual statements rather than the basic blocks of [Aho 77]) of
different expression trees. These inefficiencies include redundant lToads and
stores, and failure to take advantage of auto-increment/decrement possibili-

ties.
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Cattell [Cattell 78, Cattell 79, Cattell 80, Wulf 79, Wulf 80] wuses TCOL (a
tree-based intermediate representation) as the IR and a recursive tree
traversing algorithm to generate code. Templates of the form 'tree pattern ->-
result sequence' are used to specify the translation from a TCOL program tree
to machine code. The result sequence specifies code to be generated, calls to
a register allocator or Tlabel generator, further matches to be recursively
performed (e.g. a statement within a control construct). Templates are
grouped into schemata representing the context (e.g. flow result, value
result) in which code is to be generated. The code generator starts from the
root of the IR tree and attempts to match templates with the largest possible
subtree at the current tree node. On a match, the corresponding result se-
quence is processed. Templates must therefore be composed recursively to
match an entire program tree. Operand mismatches are forcefully resolved by a
subtargeting —operation——that consists-of-allocating-a-location—of the desired—
data type and emitting a 'store' into that location. If an IR operator does
not match any template operator, an attempt is made to transform the operator
using tree equivalence axioms and heuristic search (details in the next sec-
tion). Multiple matches are handled by sorting the alternatives with decreas-
ing preference and choosing the first (e.g. x < x+1 occurs before x <-
x+constant). While Cattell's model is more general than Newcomer's (which

only deals with arithmetic expressions), it has the following drawbacks:
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(1) The code generator avoids machine-dependent issues such as binding vari-

(2)

(3)

(4)

ables to storage formats, space allocation and addressing of variables.
The model fits only the 'Code' part of Bliss' [Wulf 75] Delay-Tnbind-
Code-Final model. The allocation commands emitted by the code generator
may conflict with the requirements of Tnbind [Johnsson 75]. Interfacing

the code generator within Bliss' framework might therefore be hard.

Templates are part of the code generation algorithm because some result
sequences specify further matches to be performed. It is therefore hard

to alter the templates without changing the algorithm.

For subtargeting to be successful, there must be 'store' instructions in
the target machine between all possible location types. Otherwise, the

code generator may block generation of code for a valid program tree.

Multiple matches are 'statically' resolved by ordering alternatives. This
strategy does not result in optimal code sequences in certain cases. For
example, on machines such as the VAX-11/780 that have both two-address and
three-address operations for a single IR operator, the optimal choice
depends on whether the operator is commutative and the operands are des-

troyable.




(5)

(6)

19

Operator mismatches invoke a heuristic search that is recursive and com-
binatorially explosive. The search must be cut off at some point so that
the code generator will not loep or use excessive amounts of time. Conse-
quently, no machine code may be generated in cases where the search is cut

off.

Optimal code sequences are usually not produced. Special case subsumption
operations such as auto-increment are hard to describe as templates.
Also, equivalent locations are not recognized. Thus, if a register con-
tains an operand that is also in a memory location, the code generator
fails to identify this equivalence and use the register. Even if a value
is already in a register, it is invariably reloaded. This reload happens

because the code preceding the reload could possibly be generated from an

therefore hard to recognize in any 1local tree context analysis. A
separate peephole optimizer package [Mckeeman 70, Fraser 79, Fraser 80]
may solve some of these problems but there may be conflicts with other

parts of the compiler (such as the register allocator [Rudmik 79]).

arbitrar "ﬂ‘y’ —distant—sectionof- 't'h'e"p’rog ram—tree—and-this—o p’t'i mization—is—
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4.2.2 Machine Analysis and Code-Generator Generators

In the previous section a number of code-generation techniques were analyzed
with respect to their generality and target-code quality. However, another
important issue is the variety of ways machine descriptions are utilized to
perform code synthesis. It will be seen that these same techniques differ
widely in the generality and depth of analyses they perform (e.g. in the for-
mal correctness of code generation and range of machine-dependent aspects that

are included).

Fraser performes syntactic analysis of ISP [Bell 71] descriptions at code gen-
eration time to recognize stack operations, macros that set condition codes,
index registers and accumulators. Rules (subroutines in MLISP) are wused to
allocate storage for variables and classify registers as index registers and
accumulators. Examples of such rules are "store integers in the widest possi-
ble memory that can participate in an add instruction” and "if a single in-
struction can add a register to some offset and use the result to index some
memory then the register is an index register". On machines such as the IBM-
360 or the PDP-11 where small integers can be stored in a half-word or a byte,
the allocation rule for integers is inefficient. On architectures with no in-
dex registers (e.g. Intel 8080) the index register rule is useless. In gen-
eral, Fraser's rules are ad-hoc and machine specific. Machine descriptions
could be used as a substitute for some of these rules (it is not hard for the

user to specify index registers and accumulators as part of the machine

description).
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Glanville's machine description (Polish prefix expressions) is not very for-
mal, Different data types of the target machine (e.g. bytes, words, floating
point) and special addressing modes (e.g. auto-increment, auto-decrement) are
not used. The code generating IR parser is automatically constructed from the
instruction-set description using an LR(1)-1ike table constructor [Aho 76].
Correctness of the code generator is emphasized. Possible looping configura-
tions (where V =»* V) are detected by analysis of grammar tables using a tran-
sitive closure algorithm on a relation characterizing parser moves. Instruc-
tion grammars are analyzed for uniformity (all operands being uniformly valid
to operators independent of the context in which they appear). States are in-
spected to check that for all first symbols of left or right operands, either
a shift or a reduce is signaled (i.e. no error actions are encountered).
Although some of the semantics (e.g. register number, source-destination rela-

tionship) that are necessary to emitting instructions are used in productions,

they are not used to control parsing. Sometimes semantic restrictions (e.g.
constant required to have value 1 or required register usage) may not be sa-
tisfied for any production in the set of possible reductions in a particular
state.  In such cases, the action of the code generator is simulated with the
semantically restricted instruction pattern using only those reduction rules
with patterns shorter than the one under consideration. Default instruction
Tists for reduce states are thus automatically constructed. Action tables are
changed to consider default reductions instead of signaling an error. This
consideration ensures that a necessary set of conversion patterns has been

supplied and thus that the code generator cannot block for a valid IR input.
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In [Ganapathi 80], a more complete machine description is used by adding at-
tributes to instruction-set productions (including machine data types and ad-
dressing mode productions). Storage allocation is viewed as part of the issue
of portable code generation. This approach essentially retains all formal

properties established by Glanville including:

(1) correctness of the code generation algorithm,
(2) detection of syntactic errors in the intermediate representation, and
(3) detection of incomplete instruction-set specification by blocking (instead

of looping or generating incorrect code).

In Ripken's scheme, storage locations are described as pairs containing an
operand class and address (e.g. (bytes, 15), (words, 16), (register, 2)). An
operand is described by its address descriptor and value-range (e.g. 'n' bit,
-2**(n-1) .. 2**(n-1), 2's complement). Operations are described by tree pat-
terns (at least one pattern per IR operator) with predicates on attribute

values and evaluation rules to describe the semantics.
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E.g. addition on the Intel 8080; template: + 01 02 -» 03

AT-rules:
choice (1)

predicates:
cell_class(01)
cell _class(02)
value(02)

evaluations:
cell_class(03)
address(03)
code
Z, S, P, AC affected

accumulator
immediate mode
1

ouou

accumulator
address(02)

inr A

choice (2)

predicates:
cell_ctass(01)
cell_class(02)
value_range(01)
value_range(02)

evaiuations:
cell_ctlass(03)

H and L register pair
H and L register pair
F+15
F+15

f#ononou

H and L register pair

value_range(03) = F+16
code = dad HL
CY affected

....choices ~(,3A)A,A(AA) similar_to_above

From these AT-rules, IR operand specific application rules are selected for
code generation. Ripken also requires templates for operand transfer between
two storage classes even if the machine architecture does not have a 'move'
instruction between them. This specification is needed so that transfer paths
exist from any storage class to any other,.
e.g. := Register_pair HL_pair

mov 2*i, H (i=address of register pair)

mov 2*i+1, L
Addressing modes are also represented as tree templates. They are inserted in
applicable places for operands in the IR tree before code generation. An at-

~tempt is made to subsume address computations by machine addressing modes.
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Cattell proposes a formal model of instruction set processors (Mop: genealogi-
cally related to ISP) containing descriptions of storage locations, addressing
modes and instructions. A set of assertions (in a parenthesized Lisp-Tike no-
tation) are written for addressing modes and instructions. Such descriptions
are significantly more useful for automating software than ISPS procedural
descriptions. An attempt is made to derive code sequences for IR operators
that do not have equivalent machine opcodes (e.g. subtraction on the PDP-8)
by using tree equivalence axioms (e.g. DeMorgan's laws, relations between ad-
dition and subtraction) and heuristic search. The Mop assertion templates are
then augmented with such derived sequences and pseudo-operations (utilizing

side-effects of instructions to implement IR operators).

For example, consider 'c <- a & b' on the PDP-11 (which does not have a Boole-
an ‘'and'). Heuristic search obtains the closest machine instruction 'bic'.
Means-end-analysis is then used to try matching 'c <- a & b' with 'c < ¢ &

~d' (assertion for 'bic d,c').

code emitted

IR: c €- a &b

goal: c €~ ¢c & ~d 'bic d,c’

mismatch: a with ¢, decomposition 'c £~ a' mov a,c
b with ~d, transformation 'b <- ~~b'

IR: c €- ¢ & ~~b

goal: c €- ¢ & ~d 'bic d,c¢’

mismatch: ~b with d, decomposition 'd €<- ~b'

heuristic search obtains 'com'

IR: d €- ~b

goal: d €- ~d 'com d'

mismatch: b with d, decomposition 'd <- b mov b,d
match: com d

match: bic d,c
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Attempts are also made to match the IR with other potentially useful instruc-
tions ('c ¢~ a & b' with 'c €- ~¢' ('com')) but the search is too deep and

subsequently cut-off before a code sequence can be found.

Such a heuristic search is too time consuming to be applied during code (den-
eration (on machines with condition codes, a conditional jump requires several
transformations), so Cattell suggests doing such searches before code genera-
tijon and t:abulating the results for the code generator. In practice, it is
very hard and time consuming (if not impossible) for such an axiomatic ap-
proach to automatically derive code sequences for floating point operations or
doing a '2n'-bit arithmetic on an 'n'-bit machine (e.g. 16-bit arithmetic on
the Intel 8080 or 32-bit arithmetic on the PDP-11). The Intel 8080 has no ex-
plicit 'branch on greater' or 'branch on equal' instructions. It has 'jz'

(branch if zero flag is set) and 'jp' (branch if sign flag is clear). Code

sequences for IR control-statements are very long,
e.g. 'Beq x y La’ if x =y jump to La
assumptions: x and y are 16 bit integers

x is 1in register pair BC
y is in memory addressed by the HL pair

mov A, M accumulator €- y's low order bhyte

cmp C compare x's low order byte with accumulator
jnz Lb jump to Lb if the zero flag is not set

inx H increment address register

mov A, M accumulator <- y's higher order byte

cmp B compare x's higher order byte with accumulator
jz La jump to La if zero flag is set

Lb:

The code for 'Bge x y La' (if x > y jump to La) is twice as long!
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5. Summary

There has been much theoretical research done in code generation. Very formal
research has usually not considered real machine architectures. Interpretive
approaches are improvements over ad-hoc code generation because only 'p+m’
translators are needed to implement 'p' languages on 'm' architectures. But
for such schemes machine descriptions are intermixed with the code generation
algorithm. Retargeting thus requires changing the code generator for every
new machine. Descriptive approaches separate the machine description from the
code generation algorithm, thus providing a higher degree of portability. In
such schemes, pattern matching is used to replace interpretation. Fraser,
Glanviile, Ripken and Cattell have tried to automatically derive code genera-
tors from a machine description though their methods are very much different.
Fraser's rule based system is inefficient and its portability is questionable.
Ripken has considered in detail the interaction between different phases in a
compiler., However, an implementation of his dynamic programming algorithm can
be expected to be prohibitively slow. Cattell uses a heuristic search algo-
rithm to derive code sequences in cases of operator mismatch between the IR
and target machine templates. Such automatic derivation using axioms is not
practical for a variety of machine instructions. Glanville's scheme is best
from the point of view of practicality. However, using his scheme in a pro-
duction compiler requires a lot of machine-dependent work to be done by other

phases of the compiler.
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Since we have criticized other approaches to automatic code generation, it s
but fair to evaluate our own technique [Ganapathi 80]. The shortcomings of

our implementations are:

(1) Register allocation is not driven by machine description. (This shortcom-
ing is questionable in view of recent architectures such as the Intel
iAPX-432 that do not contain general purpose registers. In such cases,

register allocation is an irrelevant issue.)
(2) Many optimizations are not extended beyond basic blocks.

(3) The code generater is not intelligent enough to automatically derive code
sequences in cases of non-orthogonal instruction sets (Cattell's scheme

could possibly derive code sequences). However, in our scheme it s

fairly easy for the programmer to specify such code sequences.

(4) Certain compiler generated temporaries need not be allocated memory space
since they can reside in registers for the entire duration of a procedure
activation. In our implementation, although memory space is allocated for
such temporaries, this storage space 1is never used because redundant

stores are never emitted. Thus, code quality is not affectéd.
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The following contributions of our technique are noteworthy:

(1) Conventionally, it has been an extremely difficult task to organize the
different phases of a compiler. Our design of a flexible (attributed)
Polish-prefix intermediate representation and attributed parsing framework
seems to have solved this problem. Almost all machine-dependent aspects
of compiler code generation have been isolated to a single software pack-
age.

(2) Attributes in the intermediate representation have provided a convenient
interface between the machine-independent and the machine-dependent parts
of a compiler. They have helped in solving the difficult problem of
operand binding (an issue not addressed by other researchers in the area
of automatic code generation).

(3) Machine-dependent and peephole optimizations have been incorporated in a
routine, cheap and reliable manner within the attributed parsing framework
of code generation. Our attempt seems to be the first to organize optimi-
zation within any framework.

The important point to note is that an amazingly wide variety of code genera-

tion optimizations can be realized in a highly modular manner. In particular,

a simple (but unoptimized) code generator can be implemented for a machine

easily and rapidly. Then, as time permits, and the need arises, improvements

can be added by simply including new rules to the machine description (and au-
tomatically regenerating the code generator). In effect, the chief difference
between an optimized and an unoptimized code generator is how carefully and
thoroughly the attributed production rules used reflect the details and com-

plexities of the target machine.
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