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Abstract

Suppose we are given a set L of rectangular items and wish to
pack them into identical rectangular bins, so that no two items overlap
and so that the number of bins used is minimized. This generalization
of the standard one-dimensional bin packing problem models problems
arising in a variety of applications, from truck loading to the design
of VLSI chips. We propose a hybrid algorithm, based on algorithms for
simpler bin packing problems, and show that proof techniques developed
for the simpler cases can be combined to prove close bounds on the
worst case behavior of the new hybrid. These are the first such close

bounds obtained for this problem.

*Work of this author partially supported by the Computer Sciences
Department, University of Wisconsin, Madison, WI 53706.



1. Two-Dimensional Bin Packing

let L = {r],rz,...,rn} be a set of rectangles, each rectangie
v having height h(r) and width w(r). A packing P of L into
a collection {Bl’BZ""’Bm} of HxW rectangular bins is an
assignment of each rectangle to a bin and a position within that bin
such that (a) each rectangle is contained entirely within its bin,
with its sides parallel to the sides of the bin, and (b) no two
rectangles in a bin overlap. See Figure 1 for an example of such a
packing. In this paper we also assume that the orientations of the
rectangles cannot be changed — the width of a rectangle must be
aligned with the width of the bin. (The case when 90° rotations are
allowed will be discussed in the conclusion.) In what follows, we
shall assume that the bin dimensions H and W have been fixed and

hence all packings are into bins of that size.
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Figure 1. Examp1e of a packing P of a Tist L of rectangles

Shto 3 bins with H = 20, W = 16. Rectangle dimensions
are 11x4, 7x6, 4x3, 12x7, 13x10, 9x5, 3x14, and 10%5.



If P 1is a packing, let |P| denote the number of non-empty
bins in P. Given a Tist L, Tlet OPT(L) be defined to
be min {|P|: P 1is a packing of L}. We are interested in finding
packings P with |P| close to OPT(L). (Determining OPT(L), given
L, dis an NP-hard problem [1,7], and so it is uniikely that we can
find optimal packings efficiently.)

This problem is related to two simpler and well-studied packing
problems: one dimensional bin packing [9,10] and two dimensional
strip packing [2,3,4]. The first is equivalent to the special case
of our problem in which w(r) =W for all rel. In the second we
are once more given an arbitrary set of rectangles, but this time we
are asked to pack them into a strip of width W so as to minimize
the height of the strip used. Although considerable progress has
been made in analyzing the worst case behavior of algorithms for
these two simpler problems, until now there has been little success
in extending the results to the case of two dimensional bin packing.
In this paper we make a start in this direction by proposing an
appealing hybrid algorithm and obtaining close bounds on its

asymptotic worst case behavior.



2. Asymptotic Worst Case Analysis

We measure the asymptotic worst case behavior of an algorithm A
by the quantity RZ, defined as follows: Let A(L) be the value of
the packing obtained by applying A to L. (A(L) would be either
the number of bins or the strip height, depending on the problem.)

Let OPT(L) be the corresponding optimal value. We then define

RA(L) = A(L)/0PT(L), Rg = max {RA(L): L satisfies OPT(L) = n},

and finally RX = 112+iup RR. The closer RX is to one, the better is
the asymptotic worst case behavior of A.

Our hybrid algorithm is built from algorithms already developed for
the simpler cases. The FIRST FIT algorithm (FF) for the one dimensional
problem places the first item at the bottom of the first bin, and there-
after places each item in turn in the Towest indexed bin which has room
for it. In [9,10] it is shown that R:F = %%. The FIRST FIT DECREASING
algorithm (FFD) is the same as FF, except that the items to be packed

are initially reordered so that h(r]) h(rz) 3_...3_h(rn). For this

e
11
=g 1.222 ...

o

algorithm we have [9,10] that Rern
We shall be using FFD together with a strip packing algorithm based
on FF, which we call FIRST FIT BY DECREASING HEIGHT (FFDH). The FFDH
algorithm constructs a packing in which the strip is stratified into
blocks, each block running the full width of the strip and resting on
the top of the previous block (the first block rests on the bottom of
the strip). Within the blocks, rectangles are packed 1inearly, each
with its bottom edge resting on the bottom of the block. The height of

a block is the height of the tallest rectangle it contains.
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Figure 2. Example of an FFDH Packing of a Tist L of rectangles
with dimensions 13x10, 12x7, T1x4, 10x5, 9x5, 7x6,
4x3, and 3x14.

Algorithm FFDH works by first reordering the set L of rectangles so
that h(r;) > h(r,) >...>h(r ) and then proceeding as follows:
Place the first rectangle Teft-justified in the first block. There-
after the rectangles are assigned in turn, each rectangle being placed
as far to the left as possible in the Towest block which has room for
it along its bottom edge. A new block is started on top of the current
top block whenever the rectangie will not fit in any of the current
blocks. See Figure 2 for the FFDH packing of the rectangles of Figure 1,
appropriately re-indexed by height.

Note that if all the rectangles were the same height, FFDH would
be equivalent to FF, with the blocks playing the role of bins. In [4]
it is shown that the fact that rectangles may have differing heights is

not as damaging as one might think, for R?FDH = R?F = %%w



3. A Hybrid Algorithm

Our hybrid algorithm is now quite easily described. First create

a strip packing for L wusing FFDH and strip width W, thereby obtaining

a collection {b

h

1° 2, . ,bk} of blocks of non-increasing heights

120y >...>h  each containing a subset of the rectangles. If we

view these blocks as a new collection of rectangles L' = {b

with h(b;) = hy and w(by) =W, 1 <1 <k,

TELTYRE -sby }
we have an instance of the
one-dimensional problem and can apply FFD to pack the blocks (and hence
the rectangles they contain) into HxW bins. See Figure 3, where FFD
has been applied to the blocks of the strip packing in Figure 2. We
call this hybrid algorithm HYBRID FIRST FIT (HFF). Our main result is

2.022 < Rice < 2.125
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Figure 3. HFF Packing based on the FFDH packing of Figure 2.



In Figure 4 we present a schematic for instances L of two-
dimensional bin packing with arbitrarily large values of OPT(L) for

=-%%(OPT(L)— 1). These instances will thus imply the Tower

which HFF(L)
bound RﬁFF > 2.0222... The optimal packing is shown in 4(a) and
consists of three types of bins: 42n bins containing items of types A,
B, and E, packed as illustrated, followed by 48n bins containing items
of types A, C, D, and E, packed as illustrated, followed by a single bin

containing a single item of type A. The precise dimensions of the items

are as follows (8 and e to be specified later):

g+ 495 if j odd

A-item in Bin j: Height = 5 + €, Width =4 _
L»—- 436 if j even

%m- (49+1)s if j odd

B-item in Bin j: Height = ++ 2¢, Width =4

+ (41-1)8 if j even

%—— (49+1)s if j odd
C-item in Bin J: Height

N~

+ g, Width =4

3t (4j-1)6 if j even

A11 D-items have Height

t

%~+ e, Width = + + §

1
2

1 R
7 - 2, Width = 5 + 8

A1l E~items have Height

The reader may readily verify that if we choose ¢ and & so that

0<ecx< f%- and 0 < § < 4-50n’ the items can be packed as claimed.
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For the application of HFF, these items must be ordered by decreas-
ing height. We assume that ties among items of the same height are broken
so that the items are ordered as follows: First come the A-items, in
reverse order, with the first A-item from Bin 2i + 1 vreplaced by the
first from Bin 27 + 3, 0 < i < 4bn - 1. To illustrate this, here is a

1ist of the values for the first 20 A-items of w(r) - %— (we Tet m = 90n).

S LY L R L S L L

_ 4m—2 ‘m-16 m-3 4

5, + 4 45,

R L F S TR Lk P

4m—3

b 43 ¢ gD L gm0 M6 M5

s g, o g8 g8y s, 4 4™

Note that after each set of fijve items FFDH would start a new block: The
sum of the first five exceeds %—+ 4"s and hence none of the remaining
items will fit in the gap, and similar arguments hold for all remaining
sets of five. Thus, since there are a total of 180n + 1 type A-items,
FFDH will create 36n "A-blocks" of 5 A-items each (the last A-item, hav-

ing width %—+ 46, will be postponed until after the C-items, and can be

ignored since it will just fall in the first C-block).
The C-items follow the A-items, and are ordered so that they will go

two per block. The values of w(r) - %mfor the first eight are

+ (8"1)s, - (4™ Te)s, + (A™1)s, - (4™ 141)s,

£ (4™20)s, - (A" 341)s, + (A™2o1)s, - (4™ 3418

The reader should be able to see that this type of ordering will yield

48n blocks of 2 C-items each out of the total of 96n C-items. Similar



tricks are played with the 168n B-items which follow next, yielding
84n blocks of two B-items each. (Note that sizes are arranged so that
no B-item is narrow enough to fit in a block of C-items).

Finally, the Tist concludes with the 96n D-items, each going in a
block by itself, followed by the 264n E-items, each going in a block by
itself.

The reader may now verify that when HFF applies FFD to the blocks
thus created, the packing of Figure 4(b) will result, using 182n bins or
%%I(OPT(L)—]) as claimed. Note also that the bad behavior illustrated
here is not dependent on our ability to order items of the same height
in the worst possible way, since by appropriately shaving the height of
the items we can insure that the given order is forced by the decreasing

height rule, without changing the natures of the optimal and HFF packings.

The upper bound on R:FF comes from the following Theorem:

Theorem: For any 1ist L of rectangles, HFF(L) < lz-OPT(L) + 5,

8

Proof: Suppose that L 1is a counter-example. By normalizing widths and
heights, we may assume without loss of generality that W =H =1 and
0 <w(r), h(r) <1 for all rel. Let us further assume that L is a
counter-example containing the minimum possible number of rectangles.

We rely on three results about the one-dimensional bin packing and
two-dimensional strip packing problems. Let f: L -+ [O,-%] be a weighting

function defined as follows:
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(&) eu(r) if 0 <wlr) <
o Q)ew(r) - 5 i g<ulr) <1
Gyew(r) + 15 i L <ulr) <5
L(—g—)-w(r) fAF L <ulr) <

Lemma 1 [6] If RcL and w(R) = J w(r) <1, then f(R) = } f(r) 51—1

reR reR 10

Lemma 2 [6] Suppose Rcl and {Rl’RZ""’Rm} is a partition of R
into disjoint non-empty sets such that for all integers i and Jj with

1<i<j<m, re:Rj implies w(r) > 1 - w(Ri). Then f(R) >m - 1.

Lemma 3 [4] Suppose OPTS(L) is the minimum possible strip height H
such that L can be packed into a strip of width 1 and height H'.
17

Then FFDH(L) E-TE'OPTS(L) + 1.

Given L = {r1,r2,...,rn}, we now show that HFF(L) <.%;OPT(L) + 5,
in contradiction to our assumption that L was a counter-example. Let
PHFF be the HFF packing of L and POPT be an optimal packing. Let x
denote the height of the tallest block in the last bin of PHFF‘ Since L
is a minimum counter-example, we may assume that all rectangles rye L
have height at least x: The number and heights of blocks of height x
or greater would not be affected by deleting all rectangies shorter than

X, so that the number of bins required by HFF would not decrease, whereas

the number of bins required by an optimal packing could not increase.
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Thus if L contained any rectangle shorter than x, a counter example
with fewer items would exist, contradicting the minimality of L.
Our proof divides into four cases, depending on the value of x.

We shall treat the cases in order of difficulty.

o1 —

Case 1. x <

In this case all but the last bin of PHFF must contain blocks whose

total height is at least é~. Thus, by Lemma 3,

~J

& (HFF(L)-1) < FFDH(L) < A

T OPT(L) + 1 < 17 op7(1y + 1,

— 10

[aw)

where the Tast inequality results from the fact that one way to pack a strip
of width 1 with L is to pack L into OPT(L) bins of width and height 1 and

then pile them one on top of another. From this we conclude that

5 17 9 17
HFF (L) f_a;-]O~OPT(L) < 3?-OPT(L) + 5,

as desired. a

In the remaining cases we assume that x > %~ and so can divide the

items of L 1into the following classes:

Xy = {riz h(r1)> 1-x}
Ko = {ry: 1- xgih(r1)> %&
Xy = {ri: Jgih(riblz’l(—}
Xg = ﬁ}:lgiihhg)>%}
g = {rs: zll-_>_h(r1.)_>_x}
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We shall say a block is of "type Xi" if its tallest item is from Xi‘
Let B],Bz,...,Bz denote the bins of PHFF in order, where

2 = HFF(L). For 1 <1 <5, Tlet B; denote the set of bins whose

tallest block is of type Xi’ and let Ni = |511- Note that all bins

from B, precede all bins from Bipps 121 <44

1
Case 2. x > 3"
If x> %' then léé-< %- and so N4 = N5 = 0. Let us Took at an
arbitrary bin B in POPT and imagine lines drawn through it at heights
-% and -%. Let S](B) be the set of items from X, in B. Let 323(8,1)

be the set of items from X2 and X3 in B whose interiors aré traversed

by the line at height %3 and Tet 323(8,2) be the set of items from X

2
and X3 in B whose interiors are traversed by the line at height g-but

3

not by the line at %u Note that since all items in L are of height
exceeding %3 every item in B must be in precisely one of these three sets.
Now observe that, since every item in X] has height exceeding 1 - x,
no vertical line through B can traverse the interiors of both an item from

S](B) and one from 523(8,1) u 823(8,2). We thus have

W(S1(B)) + w(S,5(B,1)) <1 (2.1)

A
—
—~

™y

no
~

and w(S](B)) + w(823(8,2)),_

Using Lemma 1 and summing over all bins B of POPT’ we conclude that

26(X;) + F(X,) + F(Xy) < 2-3LopT(L) < LopT(L). (2.3)
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We now turn to the HFF packing. The bins of B1 each contain one
block, that block having height exceeding 1-x, and these blocks induce

a partition on X] which obeys the hypotheses of Lemma 2. Thus
f(X]) 3“N] - 1. (2.4)

None of the remaining bins contains a block of type X] and so the fact
that a block of height x went in the last bin means that all except that
last bin must contain at least (and hence exactly) two blocks. Letting
Xé3 denote the subset of X2 y X3 which is contained in these bins, and
ordering the blocks in the same order as they were created by FFDH, we see

that these 2(N24-N3) - 1 blocks induce a partition of XéB which obeys

the hypotheses of Lemma 2. Therefore
f(Xz) + f(X3).3 f(Xé3)_3 2(N24-N3) - 2. (2.5)
Substituting (2.4) and (2.5) into (2.3) we obtain

2(N) = 1) + 2N, + Ny - 1) < A 0PT(L)

—

LNy N < 17 gp1(Ly + 2 < L opT(L) + 5

or HFF(L) = N 357 3

as desired. 0

1 1
Case 3. 7<x<s3.

In this case N5 = 0. Let us once again consider a bin B in the
optimal packing. This time we imagine 7 horizontal lines drawn through
B: two (identical) lines at height x, one at height 1553 one at %3
one at 1%53 and two (identical) lines at 1-x. It is easy to verify
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that, given these Tines, each rectangle from X] in B will have its
interior traversed by all 7 lines. Similarly, rectangles from XZ’ X3
and X4 will have their interiors traversed by at least 4, 3, and 2
1ines respectively. Let Si(B,j) be the set of rectangles from Xi
whose interiors are traversed by the jth Tine, 1 < i <4, 1<j<7. We

then have, for each j, 1 <J <7,

1P

W(s;(B,3)) < 1

i=1

Lemma 1 then yields for each j, 1 <Jj <7

. 17
f(si(B,J)) <70

o~

i=1

Summing over all bins B of POPT we thus conclude

7E(X)) * 4F(X,) + 3F(Xy) + 2F(X,) < 7 1LopT(L). (3.1)

Turning to the HFF packing, let 62,3 be the set of bins from 62
that, in addition to containing a block of type X2’ also contain a
block of type X3. Since a block of type X2 has height at most 1-x
and since the block of height x 1in the last bin did not fit in any
earlier bin, every bin in 62’4 = 62 - 82’3 must contain a block of
type X, Let NZ,i = lBZ,il for e {3,4}.

Applying Lemma 2 to the partitions of X] and X2 induced by the

bins of B and Bo respectively, we obtain
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There are at least N2 3 + 2N3 - 1 blocks of type X3: one in each bin
of 82 3 and two in all but possibly the last bin of 33. If we Tet

?
X3
the partition of X% induced by these blocks, we obtain

be the subset of X3 contained in these blocks and apply Lemma 2 to

' N -
F(Xg) > FOKG) > Ny 5o+ 2Ny - 2. (3.4)

Finally, consider the blocks of type X4. There are at least N2’4-+3N4-'2
of these: one in each bin of 62’4 and three in each bin of By except
the last. (A non-final bin from 64 cannot have height less than 1-Xx,
and since no block of type X4 has height exceeding 1:53 each such bin

2
must contain at least three blocks). Lemma 2 thus yields

F(Xy) > Ny 4 *+ 3N, - 3. (3.5)

Substituting (3.2) through (3.5) in (3.1) yields

w 17
TNy + BN, + 6Ny + 6N, - 23 < 7+ 55 OPT(L)
_ 7.1 23 17
or HFF(L) = Ny + Ny + Ny + Ny < 5 ]OOPT(L) i OPT(L) + 5

as desired. O

1 1
Case 4. ¢ <X<7-

We divide this case into two subcases, depending on the value of N4.
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The total height of all blocks in PHFF is bounded by

(1- x)(N]+-N24-N3) + 4x(N5- 1) since all bins except the last must
have total block height at least 1 - x, and all bins of 85 except

the Tast must contain four blocks. By Lemma 3 we thus have

(1= x) (N + Ny #N5) + Ax(Ng - 1) < <« opt(L) + 1. (4.1)

2

Furthermore, by the argument used in Case 2, we have

17
N] + N2 + N3 <'TOOPT(L) 2. (4.2)

Using (4.7) and (4.2) we then can derive the following:

4x8 = 4X(N]+N +N +N5)

2 3

< Ax(Ny 0, Ng) + TEOPT(L) + 1 = (1-x)(Ny + N, +Ny) + dx

< (5x-1)(FGOPT(L) +2) + 1LOPT(L) + 1 + 4x

< (5x )~~OPT( ) + 14x - 1

%OPT(L) + Lo WopT(L) + 5

and hence 2 = HFF(L) < 5 <8

4>10'1

as desired. O

Subcase 4.2. N4 > 0.

Consider a bin B 1in POPT and this time imagine seven horizontal
Tines drawn through it, at heights %3 1 <3< 7. Then rectangles from
classes X], XZ’ X3. X4, and X5 have their interiors traversed by at
least 6, 4, 3, 2, and 1 Tines respectively, since 1 - x 3_%— and

T-x
Tié‘



-17-

Letting Si(B,j) be the set of rectangles from Xi whose 1interiors

are traversed by the jth Tine, 1 <1 <5, 1 <73 <7, we then have for

each j, 1 <j<7

Ho~101

W(s;(8,3)) < 1

i=1

5
Lemma 1 thus yields ) f(Si(B,j)) f’%%-, and summing over all bins B of
i=1

POPT we obtain

6f(X]) + 4f(X2) + 3f(X3) + Zf(X4) + f(X5) < 7+50PT(L). (4.3)

JR ) )
O~

We now turn to the HFF packing. Since N4 > 0, there is a block of
type X4 which did not fit in any bin from 82 or any bin from 84
except the last. Thus any bin from class 82 or any bin (except the
last) from class 64 that contains a block of type X5 must contain
blocks whose total height is at least 1 - (155) X = Jj%ﬁi. Let us
partition the bins in By and 84 as follows:

Any bin in By must contain at least one block in addition to its
block of type X2' Let Bz,j’ 3 <Jj <5, be the subset of bins from
82 whose second block is of type Xj (there may be a third block, but
we ignore it in forming the partition). Similarly, any bin in 64 must
contain at least three blocks. Let 84’5 be the set of bins in By>
other than the last, for which the third block is of type X5, and et

84’4 = 64 - 84,5- Letting Ni,' = |8 we then have

57 18450

] T+3x
(1= x)(Ny+ Ny g4 Ny gt Ng+ Ny )+ (F57) (N g+ Ny )+ 4x(Ng - T)

< FFDH(L) 5%0PT(L) + 1. (4.4)
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Our next inequalities are obtained by applying Lemma 1 to the blocks
of type Xi’ 1 <1<5, as in previous cases, using the facts that all
but the last bin in 63 contain 2 blocks of type X3, all but the last
bin 1in Bg contain either 3 blocks of type X4 (if 1in 84’4) or two

(if in 84 5), and all but the Tast bin in 85 contain 4 blocks of

type XS:
F(Xy) > Ny -1 (4.5)
f(X,) > Ny = 1 (4.6)
F(Xg) > Ny 5+ 2Ny - 2 (4.7)
f(X4) 3ﬁN2’4 + 3N4’4 + 2N4’5 -3 (4.8)
F(Xg) 2 Ny 5+ Ny g+ 4Ny - 4 (4.9)

Now a final dose of symbol manipulation yields the desired result.

Combining (4.3) and (4.5) through (4.9) we obtain

G(N]) + 6( N + 5N + BN, + 6N4 4 + 5N + 4N

Ny 3+ Ny 4) 2.5 3 4,5 5

< 7+ 150PT(L) + 26. (4.10)

et} et

Multiplying (4.4) by 2 and (4.10) by (5x-1) and then adding we obtain

(2(1—x)+6(5x—1))(N]+N N, ,+N,+N

2,3 Np gt N3+ Ny )

+ ((1+3x) + 5(5x-1))(N

2,5 4,5)

1
1

~

|

+ (8x+ 4(5x - 1))(N5)_i OPT(L)(7(5x -1) +2) + 26(5x-1) + 8x + 2

O

that 1is,
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(28x = 4)(Ny +Ny 34Ny Ny g4 Ngt Ny g+ Ny o+ Ng)

< J]—%OPT(L)(SEX— 5) + 138x - 24

. 5 ,
or HFF (L) <7 ]OOPT(L) +5

as desired. D

Thus in all cases HFF(L) <.%%OPT(L) + 5, 1in contradiction to our

assumption that a counter-exampie exists. The theorem has been proved.
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4. Directions for Further Research

By showing that close bounds can be obtained on the asymptotic
worst case behavior of two-dimensional bin packing algorithms, we hope
to encourage researchers to design other algorithms and investigate
their behévior. Algorithms based on the "bottom-left" strip packing
rule introduced in [3] are particularly attractive candidates for analy-
sis. Although the bottom-left algorithms are all asymptotically worse than
FFDH in the strip packing environment, they may well be more competitive
for two-dimensional bin packing. There is also the possibility of con-
structing better hybrid algorithms. FFDH is not the best heuristic
known for strip packing. An algorithm is presented in [2] with
RZ 5_%- (aTthough the structure of its packings is much more complicated
than that for FFDH). Similarly, FFD has recently been improved on in
the one-dimensional case by a modified algorithm [8] with R: = 1,18333...

A second Tine of attack would be to design and analyze algorithms
which could make use of the fact that, in some applications, 90°
rotations of rectangles might be allowable. Algorithm HFF would still
be applicable in such situations, assuming all rectangles were presented
in such a way that they would fit in a bin without rotation. However, the
performance guarantee of Theorem 1 would not necessarily hold. Algo-
rithms which consider the possibility of rotations might well yield
improvements. Can one prove worst case bounds that reflect these
improvements?

Finally, there is of course the problem of further narrowing the

gap between upper and lower bounds on RﬁFF' We suspect that the upper
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bound can be Towered further, although we fear that a considerable blow-up
in proof length might be necessary. As to the actual value of R:FF’ we
hesitate to conjecture. It is amusing to note that one possibility still
left open by our bounds is (%%J(%;J = 2.07777 ..., the product of the
values of RX for the two algorithms whose combination yields the algorithm

HFF, although we suspect that the actual value may be somewhat less than

this.
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