ON PACKING TWO-DIMENSIONAL BINS by F. R. K. Chung, M. R. Garey and D. S. Johnson Computer Sciences Technical Report #398 March 1981 #### ON PACKING TWO-DIMENSIONAL BINS F. R. K. Chung M. R. Garey D. S. Johnson* Bell Laboratories Murray Hill, NJ 07974 #### Abstract Suppose we are given a set L of rectangular items and wish to pack them into identical rectangular bins, so that no two items overlap and so that the number of bins used is minimized. This generalization of the standard one-dimensional bin packing problem models problems arising in a variety of applications, from truck loading to the design of VLSI chips. We propose a hybrid algorithm, based on algorithms for simpler bin packing problems, and show that proof techniques developed for the simpler cases can be combined to prove close bounds on the worst case behavior of the new hybrid. These are the first such close bounds obtained for this problem. ^{*}Work of this author partially supported by the Computer Sciences Department, University of Wisconsin, Madison, WI 53706. # 1. Two-Dimensional Bin Packing Let $L = \{r_1, r_2, \dots, r_n\}$ be a set of rectangles, each rectangle r having height h(r) and width w(r). A <u>packing</u> P of L into a collection $\{B_1, B_2, \dots, B_m\}$ of $H \times W$ rectangular bins is an assignment of each rectangle to a bin and a position within that bin such that (a) each rectangle is contained entirely within its bin, with its sides parallel to the sides of the bin, and (b) no two rectangles in a bin overlap. See Figure 1 for an example of such a packing. In this paper we also assume that the orientations of the rectangles cannot be changed — the width of a rectangle must be aligned with the width of the bin. (The case when 90° rotations are allowed will be discussed in the conclusion.) In what follows, we shall assume that the bin dimensions H and W have been fixed and hence all packings are into bins of that size. Figure 1. Example of a packing P of a list L of rectangles into 3 bins with H = 20, W = 16. Rectangle dimensions are 11×4 , 7×6 , 4×3 , 12×7 , 13×10 , 9×5 , 3×14 , and 10×5 . If P is a packing, let |P| denote the number of non-empty bins in P. Given a list L, let OPT(L) be defined to be min {|P|: P is a packing of L}. We are interested in finding packings P with |P| close to OPT(L). (Determining OPT(L), given L, is an NP-hard problem [1,7], and so it is unlikely that we can find optimal packings efficiently.) This problem is related to two simpler and well-studied packing problems: one dimensional bin packing [9,10] and two dimensional strip packing [2,3,4]. The first is equivalent to the special case of our problem in which w(r) = W for all $r \in L$. In the second we are once more given an arbitrary set of rectangles, but this time we are asked to pack them into a strip of width W so as to minimize the height of the strip used. Although considerable progress has been made in analyzing the worst case behavior of algorithms for these two simpler problems, until now there has been little success in extending the results to the case of two dimensional bin packing. In this paper we make a start in this direction by proposing an appealing hybrid algorithm and obtaining close bounds on its asymptotic worst case behavior. ### 2. Asymptotic Worst Case Analysis We measure the asymptotic worst case behavior of an algorithm A by the quantity R_A^{∞} , defined as follows: Let A(L) be the value of the packing obtained by applying A to L. (A(L) would be either the number of bins or the strip height, depending on the problem.) Let OPT(L) be the corresponding optimal value. We then define $R_A(L) \equiv A(L)/OPT(L)$, $R_A^n \equiv \max\{R_A(L): L \text{ satisfies OPT}(L) = n\}$, and finally $R_A^{\infty} = \limsup R_A^n$. The closer R_A^{∞} is to one, the better is the asymptotic worst case behavior of A. Our hybrid algorithm is built from algorithms already developed for the simpler cases. The FIRST FIT algorithm (FF) for the one dimensional problem places the first item at the bottom of the first bin, and thereafter places each item in turn in the lowest indexed bin which has room for it. In [9,10] it is shown that $R_{FF}^{\infty} = \frac{17}{10}$. The FIRST FIT DECREASING algorithm (FFD) is the same as FF, except that the items to be packed are initially reordered so that $h(r_1) \geq h(r_2) \geq \ldots \geq h(r_n)$. For this algorithm we have [9,10] that $R_{FFD}^{\infty} = \frac{11}{9} = 1.222\ldots$ We shall be using FFD together with a strip packing algorithm based on FF, which we call FIRST FIT BY DECREASING HEIGHT (FFDH). The FFDH algorithm constructs a packing in which the strip is stratified into blocks, each block running the full width of the strip and resting on the top of the previous block (the first block rests on the bottom of the strip). Within the blocks, rectangles are packed linearly, each with its bottom edge resting on the bottom of the block. The height of a block is the height of the tallest rectangle it contains. Figure 2. Example of an FFDH Packing of a list L of rectangles with dimensions 13×10 , 12×7 , 11×4 , 10×5 , 9×5 , 7×6 , 4×3 , and 3×14 . Algorithm FFDH works by first reordering the set L of rectangles so that $h(r_1) \geq h(r_2) \geq \ldots \geq h(r_n)$ and then proceeding as follows: Place the first rectangle left-justified in the first block. Thereafter the rectangles are assigned in turn, each rectangle being placed as far to the left as possible in the lowest block which has room for it along its bottom edge. A new block is started on top of the current top block whenever the rectangle will not fit in any of the current blocks. See Figure 2 for the FFDH packing of the rectangles of Figure 1, appropriately re-indexed by height. Note that if all the rectangles were the same height, FFDH would be equivalent to FF, with the blocks playing the role of bins. In [4] it is shown that the fact that rectangles may have differing heights is not as damaging as one might think, for $R_{\text{FFDH}}^{\infty} = R_{\text{FF}}^{\infty} = \frac{17}{10}$. ### 3. A Hybrid Algorithm Our hybrid algorithm is now quite easily described. First create a strip packing for L using FFDH and strip width W, thereby obtaining a collection $\{b_1,b_2,\ldots,b_k\}$ of blocks of non-increasing heights $h_1 \geq h_2 \geq \ldots \geq h_k$ each containing a subset of the rectangles. If we view these blocks as a new collection of rectangles $L' = \{b_1,b_2,\ldots,b_k\}$ with $h(b_i) = h_i$ and $w(b_i) = W$, $1 \leq i \leq k$, we have an instance of the one-dimensional problem and can apply FFD to pack the blocks (and hence the rectangles they contain) into $H \times W$ bins. See Figure 3, where FFD has been applied to the blocks of the strip packing in Figure 2. We call this hybrid algorithm HYBRID FIRST FIT (HFF). Our main result is $$2.022 \le R_{HFF}^{\infty} \le 2.125$$ Figure 3. HFF Packing based on the FFDH packing of Figure 2. In Figure 4 we present a schematic for instances L of two-dimensional bin packing with arbitrarily large values of OPT(L) for which HFF(L) = $\frac{91}{45}$ (OPT(L) - 1). These instances will thus imply the lower bound $R_{HFF}^{\infty} \geq 2.0222...$ The optimal packing is shown in 4(a) and consists of three types of bins: 42n bins containing items of types A, B, and E, packed as illustrated, followed by 48n bins containing items of types A, C, D, and E, packed as illustrated, followed by a single bin containing a single item of type A. The precise dimensions of the items are as follows (δ and ϵ to be specified later): A-item in Bin j: Height = $$\frac{1}{2} + \epsilon$$, Width = $$\begin{cases} \frac{1}{6} + 4^{j} \delta & \text{if j odd} \\ \frac{1}{6} - 4^{j} \delta & \text{if j even} \end{cases}$$ B-item in Bin j: Height = $$\frac{1}{4}$$ + 2 ϵ , Width = $$\begin{cases} \frac{1}{3} - (4^{j} + 1)\delta & \text{if j odd} \\ \frac{1}{3} + (4^{j} - 1)\delta & \text{if j even} \end{cases}$$ C-item in Bin j: Height = $$\frac{1}{2}$$ + ϵ , Width = $$\begin{cases} \frac{1}{3} - (4^{j}+1)\delta & \text{if j odd} \\ \frac{1}{3} + (4^{j}-1)\delta & \text{if j even} \end{cases}$$ All D-items have Height = $$\frac{1}{4}$$ + ϵ , Width = $\frac{1}{2}$ + δ All E-items have Height = $$\frac{1}{4}$$ - 2ϵ , Width = $\frac{1}{2}$ + δ The reader may readily verify that if we choose ϵ and δ so that $0<\epsilon<\frac{1}{16}$ and $0<\delta<4^{-50n}$, the items can be packed as claimed. Figure 4. Schematic of packings of lists L with HFF(L) = $\frac{91}{45}$ (OPT(L) - 1). For the application of HFF, these items must be ordered by decreasing height. We assume that ties among items of the same height are broken so that the items are ordered as follows: First come the A-items, in reverse order, with the first A-item from Bin 2i + 1 replaced by the first from Bin 2i + 3, $0 \le i \le 45n - 1$. To illustrate this, here is a list of the values for the first 20 A-items of w(r) $-\frac{1}{6}$ (we let m = 90n). $$-4^{m}\delta, -4^{m}\delta, +4^{m+1}\delta, +4^{m-1}\delta, -4^{m-2}\delta$$ $$-4^{m-2}\delta, +4^{m-1}\delta, +4^{m-3}\delta, -4^{m-4}\delta, -4^{m-4}\delta$$ $$+4^{m-3}\delta, +4^{m-5}\delta, -4^{m-6}\delta, -4^{m-6}\delta, +4^{m-5}\delta$$ $$+4^{m-7}\delta, -4^{m-8}\delta, -4^{m-8}\delta, +4^{m-7}\delta, +4^{m-9}\delta$$ Note that after each set of five items FFDH would start a new block: The sum of the first five exceeds $\frac{5}{6} + 4^m \delta$ and hence none of the remaining items will fit in the gap, and similar arguments hold for all remaining sets of five. Thus, since there are a total of 180n + 1 type A-items, FFDH will create 36n "A-blocks" of 5 A-items each (the last A-item, having width $\frac{1}{6} + 4\delta$, will be postponed until after the C-items, and can be ignored since it will just fall in the first C-block). The C-items follow the A-items, and are ordered so that they will go two per block. The values of $w(r) - \frac{1}{3}$ for the first eight are + $$(4^{m}-1)\delta$$, - $(4^{m-1}+1)\delta$, + $(4^{m}-1)\delta$, - $(4^{m-1}+1)\delta$, + $(4^{m-2}-1)\delta$, - $(4^{m-3}+1)\delta$, + $(4^{m-2}-1)\delta$, - $(4^{m-3}+1)\delta$ The reader should be able to see that this type of ordering will yield 48n blocks of 2 C-items each out of the total of 96n C-items. Similar tricks are played with the 168n B-items which follow next, yielding 84n blocks of two B-items each. (Note that sizes are arranged so that no B-item is narrow enough to fit in a block of C-items). Finally, the list concludes with the 96n D-items, each going in a block by itself, followed by the 264n E-items, each going in a block by itself. The reader may now verify that when HFF applies FFD to the blocks thus created, the packing of Figure 4(b) will result, using 182n bins or $\frac{91}{45}$ (OPT(L)-1) as claimed. Note also that the bad behavior illustrated here is not dependent on our ability to order items of the same height in the worst possible way, since by appropriately shaving the height of the items we can insure that the given order is <u>forced</u> by the decreasing height rule, without changing the natures of the optimal and HFF packings. The upper bound on $R_{\mathsf{HFF}}^{\infty}$ comes from the following Theorem: Theorem: For any list L of rectangles, $HFF(L) < \frac{17}{8} OPT(L) + 5$. <u>Proof</u>: Suppose that L is a counter-example. By normalizing widths and heights, we may assume without loss of generality that W = H = 1 and $0 \le w(r)$, $h(r) \le 1$ for all $r \in L$. Let us further assume that L is a counter-example containing the minimum possible number of rectangles. We rely on three results about the one-dimensional bin packing and two-dimensional strip packing problems. Let $f: L \to [0, \frac{8}{5}]$ be a weighting function defined as follows: $$f(r) = \begin{cases} (\frac{6}{5}) \cdot w(r) & \text{if } 0 \leq w(r) \leq \frac{1}{6} \\ (\frac{9}{5}) \cdot w(r) - \frac{1}{10} & \text{if } \frac{1}{6} < w(r) \leq \frac{1}{3} \\ (\frac{6}{5}) \cdot w(r) + \frac{1}{10} & \text{if } \frac{1}{3} < w(r) \leq \frac{1}{2} \\ (\frac{6}{5}) \cdot w(r) + \frac{4}{10} & \text{if } \frac{1}{2} < w(r) \leq 1 \end{cases}$$ <u>Lemma 1</u> [6] If $R \subseteq L$ and $w(R) \equiv \sum_{r \in R} w(r) \le 1$, then $f(R) \equiv \sum_{r \in R} f(r) \le \frac{17}{10}$. <u>Lemma 2</u> [6] Suppose $R \subseteq L$ and $\{R_1, R_2, \ldots, R_m\}$ is a partition of R into disjoint non-empty sets such that for all integers i and j with $1 \le i < j \le m$, $r \in R_j$ implies $w(r) > 1 - w(R_j)$. Then $f(R) \ge m - 1$. <u>Lemma 3</u> [4] Suppose $OPT_S(L)$ is the minimum possible strip height H' such that L can be packed into a strip of width 1 and height H'. Then $FFDH(L) \leq \frac{17}{10} OPT_S(L) + 1$. Given L = $\{r_1, r_2, \ldots, r_n\}$, we now show that HFF(L) < $\frac{17}{8}$ OPT(L) + 5, in contradiction to our assumption that L was a counter-example. Let P_{HFF} be the HFF packing of L and P_{OPT} be an optimal packing. Let x denote the height of the tallest block in the last bin of P_{HFF} . Since L is a minimum counter-example, we may assume that all rectangles $r_i \in L$ have height at least x: The number and heights of blocks of height x or greater would not be affected by deleting all rectangles shorter than x, so that the number of bins required by HFF would not decrease, whereas the number of bins required by an optimal packing could not increase. Thus if L contained any rectangle shorter than x, a counter example with fewer items would exist, contradicting the minimality of L. Our proof divides into four cases, depending on the value of x. We shall treat the cases in order of difficulty. Case 1. $$x \leq \frac{1}{5}$$. In this case all but the last bin of P_{HFF} must contain blocks whose total height is at least $\frac{4}{5}$. Thus, by Lemma 3, $$\frac{4}{5}$$ (HFF(L) - 1) \leq FFDH(L) $\leq \frac{17}{10}$ OPT_S(L) + 1 $\leq \frac{17}{10}$ OPT(L) + 1, where the last inequality results from the fact that one way to pack a strip of width 1 with L is to pack L into OPT(L) bins of width and height 1 and then pile them one on top of another. From this we conclude that HFF(L) $$\leq \frac{5}{4} \cdot \frac{17}{10}$$ OPT(L) $+ \frac{9}{4} < \frac{17}{8}$ OPT(L) $+ 5$, as desired. □ In the remaining cases we assume that $x > \frac{1}{5}$ and so can divide the items of L into the following classes: $$X_{1} = \{r_{i}: h(r_{i}) > 1 - x\}$$ $$X_{2} = \{r_{i}: 1 - x \ge h(r_{i}) > \frac{1}{2}\}$$ $$X_{3} = \{r_{i}: \frac{1}{2} \ge h(r_{i}) > \frac{1 - x}{2}\}$$ $$X_{4} = \{r_{i}: \frac{1 - x}{2} \ge h(r_{i}) > \frac{1}{4}\}$$ $$X_{5} = \{r_{i}: \frac{1}{4} \ge h(r_{i}) \ge x\}$$ We shall say a block is of "type X_i " if its tallest item is from X_i . Let B_1, B_2, \ldots, B_k denote the bins of P_{HFF} in order, where $\ell = HFF(L)$. For $1 \le i \le 5$, let β_i denote the set of bins whose tallest block is of type X_i , and let $N_i = |\beta_i|$. Note that all bins from β_i precede all bins from β_{i+1} , $1 \le i \le 4$. Case 2. $x > \frac{1}{3}$. If $x>\frac{1}{3}$ then $\frac{1-x}{2}<\frac{1}{3}$ and so $N_4=N_5=0$. Let us look at an arbitrary bin B in P_{OPT} and imagine lines drawn through it at heights $\frac{1}{3}$ and $\frac{2}{3}$. Let $S_1(B)$ be the set of items from X_1 in B. Let $S_{23}(B,1)$ be the set of items from X_2 and X_3 in B whose interiors are traversed by the line at height $\frac{1}{3}$, and let $S_{23}(B,2)$ be the set of items from X_2 and X_3 in B whose interiors are traversed by the line at height $\frac{2}{3}$ but not by the line at $\frac{1}{3}$. Note that since all items in L are of height exceeding $\frac{1}{3}$, every item in B must be in precisely one of these three sets. Now observe that, since every item in X_1 has height exceeding 1-x, no vertical line through B can traverse the interiors of both an item from $S_1(B)$ and one from $S_{23}(B,1) \cup S_{23}(B,2)$. We thus have $$w(S_1(B)) + w(S_{23}(B,1)) \le 1$$ (2.1) and $$w(S_1(B)) + w(S_{23}(B,2)) \le 1.$$ (2.2) Using Lemma 1 and summing over all bins B of $P_{\mbox{\scriptsize OPT}}$ we conclude that $$2f(X_1) + f(X_2) + f(X_3) \le 2 \cdot \frac{17}{10} OPT(L) \le \frac{17}{5} OPT(L).$$ (2.3) We now turn to the HFF packing. The bins of β_1 each contain one block, that block having height exceeding 1-x, and these blocks induce a partition on X_1 which obeys the hypotheses of Lemma 2. Thus $$f(X_1) \ge N_1 - 1.$$ (2.4) None of the remaining bins contains a block of type X_1 and so the fact that a block of height x went in the last bin means that all except that last bin must contain at least (and hence exactly) two blocks. Letting X'_{23} denote the subset of $X_2 \cup X_3$ which is contained in these bins, and ordering the blocks in the same order as they were created by FFDH, we see that these $2(N_2+N_3)-1$ blocks induce a partition of X'_{23} which obeys the hypotheses of Lemma 2. Therefore $$f(X_2) + f(X_3) \ge f(X'_{23}) \ge 2(N_2 + N_3) - 2.$$ (2.5) Substituting (2.4) and (2.5) into (2.3) we obtain $$2(N_1 - 1) + 2(N_2 + N_3 - 1) \le \frac{17}{5} OPT(L)$$ or $$HFF(L) = N_1 + N_2 + N_3 \le \frac{17}{10} OPT(L) + 2 < \frac{17}{8} OPT(L) + 5$$ as desired. □ Case 3. $$\frac{1}{4} < x \le \frac{1}{3}$$. In this case $N_5=0$. Let us once again consider a bin B in the optimal packing. This time we imagine 7 horizontal lines drawn through B: two (identical) lines at height x, one at height $\frac{1-x}{2}$, one at $\frac{1}{2}$, one at $\frac{1+x}{2}$, and two (identical) lines at 1-x. It is easy to verify that, given these lines, each rectangle from X_1 in B will have its interior traversed by all 7 lines. Similarly, rectangles from X_2 , X_3 and X_4 will have their interiors traversed by at least 4, 3, and 2 lines respectively. Let $S_i(B,j)$ be the set of rectangles from X_i whose interiors are traversed by the jth line, $1 \le i \le 4$, $1 \le j \le 7$. We then have, for each j, $1 \le j \le 7$, $$\sum_{i=1}^{4} w(S_i(B,j)) \leq 1$$ Lemma 1 then yields for each j, $1 \le j \le 7$ $$\sum_{i=1}^{4} f(S_i(B,j)) \leq \frac{17}{10}$$ Summing over all bins B of $P_{\mbox{OPT}}$ we thus conclude $$7f(X_1) + 4f(X_2) + 3f(X_3) + 2f(X_4) \le 7 \cdot \frac{17}{10} OPT(L).$$ (3.1) Turning to the HFF packing, let $\beta_{2,3}$ be the set of bins from β_2 that, in addition to containing a block of type X_2 , also contain a block of type X_3 . Since a block of type X_2 has height at most 1-x and since the block of height x in the last bin did not fit in any earlier bin, every bin in $\beta_{2,4} = \beta_2 - \beta_{2,3}$ must contain a block of type X_4 . Let $N_{2,i} = |\beta_{2,i}|$ for $i \in \{3,4\}$. Applying Lemma 2 to the partitions of $\rm X_1$ and $\rm X_2$ induced by the bins of $\rm \beta_1$ and $\rm \beta_2$ respectively, we obtain $$f(X_1) \ge N_1 - 1.$$ (3.2) $$f(X_2) \ge N_2 - 1.$$ (3.3) There are at least $N_{2,3} + 2N_3 - 1$ blocks of type X_3 : one in each bin of $\beta_{2,3}$ and two in all but possibly the last bin of β_3 . If we let X_3' be the subset of X_3 contained in these blocks and apply Lemma 2 to the partition of X_3' induced by these blocks, we obtain $$f(X_3) \ge f(X_3') \ge N_{2,3} + 2N_3 - 2.$$ (3.4) Finally, consider the blocks of type X_4 . There are at least $N_{2,4} + 3N_4 - 2$ of these: one in each bin of $\beta_{2,4}$ and three in each bin of β_4 except the last. (A non-final bin from β_4 cannot have height less than 1-x, and since no block of type X_4 has height exceeding $\frac{1-x}{2}$, each such bin must contain at least three blocks). Lemma 2 thus yields $$f(X_4) \ge N_{2,4} + 3N_4 - 3. \tag{3.5}$$ Substituting (3.2) through (3.5) in (3.1) yields $$7N_1 + 6N_2 + 6N_3 + 6N_4 - 23 \le 7 \cdot \frac{17}{10} OPT(L)$$ or $$HFF(L) = N_1 + N_2 + N_3 + N_4 \le \frac{7}{6} \cdot \frac{17}{10} OPT(L) + \frac{23}{6} < \frac{17}{8} OPT(L) + 5$$ as desired. Case 4. $$\frac{1}{5} < x \le \frac{1}{4}$$. We divide this case into two subcases, depending on the value of N_4 . <u>Subcase 4.1.</u> $N_4 = 0$. The total height of all blocks in P_{HFF} is bounded by $(1-x)(N_1+N_2+N_3) + 4x(N_5-1) \quad \text{since all bins except the last must}$ have total block height at least 1-x, and all bins of β_5 except the last must contain four blocks. By Lemma 3 we thus have $$(1-x)(N_1+N_2+N_3) + 4x(N_5-1) \le \frac{17}{10}OPT(L) + 1.$$ (4.1) Furthermore, by the argument used in Case 2, we have $$N_1 + N_2 + N_3 \le \frac{17}{10} OPT(L) + 2.$$ (4.2) Using (4.1) and (4.2) we then can derive the following: $$4x\ell = 4x(N_1 + N_2 + N_3 + N_5)$$ $$\leq 4x(N_1 + N_2 + N_3) + \frac{17}{10}OPT(L) + 1 - (1 - x)(N_1 + N_2 + N_3) + 4x$$ $$\leq (5x - 1)(\frac{17}{10}OPT(L) + 2) + \frac{17}{10}OPT(L) + 1 + 4x$$ $$\leq (5x)\frac{17}{10}OPT(L) + 14x - 1$$ and hence $\ell = HFF(L) \le \frac{5}{4} \cdot \frac{17}{10} OPT(L) + \frac{7}{2} < \frac{17}{8} OPT(L) + 5$ as desired. # Subcase 4.2. $N_4 > 0$. Consider a bin B in P_{OPT} and this time imagine seven horizontal lines drawn through it, at heights $\frac{j}{8}$, $1 \le j \le 7$. Then rectangles from classes X_1 , X_2 , X_3 . X_4 , and X_5 have their interiors traversed by at least 6, 4, 3, 2, and 1 lines respectively, since $1 - x \ge \frac{3}{4}$ and $\frac{1-x}{2} \ge \frac{3}{8}$. Letting $S_{\bf i}(B,{\bf j})$ be the set of rectangles from $X_{\bf i}$ whose interiors are traversed by the jth line, $1\leq {\bf i}\leq 5$, $1\leq {\bf j}\leq 7$, we then have for each ${\bf j}$, $1\leq {\bf j}\leq 7$ $$\sum_{i=1}^{5} w(S_i(B,j)) \leq 1$$ Lemma 1 thus yields $\sum_{j=1}^{5} f(S_j(B,j)) \leq \frac{17}{10}$, and summing over all bins B of P_{OPT} we obtain $$6f(X_1) + 4f(X_2) + 3f(X_3) + 2f(X_4) + f(X_5) \le 7\frac{17}{10}OPT(L).$$ (4.3) We now turn to the HFF packing. Since $N_4>0$, there is a block of type X_4 which did not fit in any bin from β_2 or any bin from β_4 except the last. Thus any bin from class β_2 or any bin (except the last) from class β_4 that contains a block of type X_5 must contain blocks whose total height is at least $1-(\frac{1-x}{2})+x=\frac{1+3x}{2}$. Let us partition the bins in β_2 and β_4 as follows: Any bin in β_2 must contain at least one block in addition to its block of type X_2 . Let $\beta_{2,j}$, $3 \le j \le 5$, be the subset of bins from β_2 whose second block is of type X_j (there may be a third block, but we ignore it in forming the partition). Similarly, any bin in β_4 must contain at least three blocks. Let $\beta_{4,5}$ be the set of bins in β_4 , other than the last, for which the third block is of type X_5 , and let $\beta_{4,4} = \beta_4 - \beta_{4,5}$. Letting $N_{i,j} = |\beta_{i,j}|$, we then have $$(1-x)(N_1 + N_{2,3} + N_{2,4} + N_3 + N_{4,4}) + (\frac{1+3x}{2})(N_{2,5} + N_{4,5}) + 4x(N_5 - 1)$$ $$\leq FFDH(L) \leq \frac{17}{10}OPT(L) + 1.$$ $$(4.4)$$ Our next inequalities are obtained by applying Lemma 1 to the blocks of type X_1 , $1 \le i \le 5$, as in previous cases, using the facts that all but the last bin in β_3 contain 2 blocks of type X_3 , all but the last bin in β_4 contain either 3 blocks of type X_4 (if in $\beta_{4,4}$) or two (if in $\beta_{4,5}$), and all but the last bin in β_5 contain 4 blocks of type X_5 : $$f(X_1) \ge N_1 - 1 \tag{4.5}$$ $$f(X_2) \ge N_2 - 1$$ (4.6) $$f(X_3) \ge N_{2,3} + 2N_3 - 2 \tag{4.7}$$ $$f(X_4) \ge N_{2,4} + 3N_{4,4} + 2N_{4,5} - 3$$ (4.8) $$f(X_5) \ge N_{2,5} + N_{4,5} + 4N_5 - 4 \tag{4.9}$$ Now a final dose of symbol manipulation yields the desired result. Combining (4.3) and (4.5) through (4.9) we obtain $$6(N_1) + 6(N_{2,3} + N_{2,4}) + 5N_{2,5} + 6N_3 + 6N_{4,4} + 5N_{4,5} + 4N_5$$ $$\leq 7 \cdot \frac{17}{10} OPT(L) + 26. \tag{4.10}$$ Multiplying (4.4) by 2 and (4.10) by (5x-1) and then adding we obtain $$(2(1-x) + 6(5x-1))(N_1 + N_2, 3 + N_2, 4 + N_3 + N_4, 4)$$ $$+ ((1+3x) + 5(5x-1))(N_2, 5 + N_4, 5)$$ $$+ (8x + 4(5x-1))(N_5) \le \frac{17}{10} OPT(L)(7(5x-1) + 2) + 26(5x-1) + 8x + 2$$ that is, $$(28x-4)(N_1+N_2,3+N_2,4+N_2,5+N_3+N_4,4+N_4,5+N_5)$$ $$\leq \frac{17}{10}OPT(L)(35x-5) + 138x - 24$$ or $$HFF(L) < \frac{5}{4} \cdot \frac{17}{10}OPT(L) + 5$$ $$= \frac{17}{8}OPT(L) + 5$$ as desired. \Box Thus in all cases $HFF(L)<\frac{17}{8}OPT(L)+5$, in contradiction to our assumption that a counter-example exists. The theorem has been proved. #### 4. Directions for Further Research By showing that close bounds can be obtained on the asymptotic worst case behavior of two-dimensional bin packing algorithms, we hope to encourage researchers to design other algorithms and investigate their behavior. Algorithms based on the "bottom-left" strip packing rule introduced in [3] are particularly attractive candidates for analysis. Although the bottom-left algorithms are all asymptotically worse than FFDH in the strip packing environment, they may well be more competitive for two-dimensional bin packing. There is also the possibility of constructing better hybrid algorithms. FFDH is not the best heuristic known for strip packing. An algorithm is presented in [2] with $R_{\rm A}^{\infty} \leq \frac{5}{4}$ (although the structure of its packings is much more complicated than that for FFDH). Similarly, FFD has recently been improved on in the one-dimensional case by a modified algorithm [8] with $R_{\rm A}^{\infty} = 1.18333...$ A second line of attack would be to design and analyze algorithms which could make use of the fact that, in some applications, 90° rotations of rectangles might be allowable. Algorithm HFF would still be applicable in such situations, assuming all rectangles were presented in such a way that they would fit in a bin without rotation. However, the performance guarantee of Theorem 1 would not necessarily hold. Algorithms which consider the possibility of rotations might well yield improvements. Can one prove worst case bounds that reflect these improvements? Finally, there is of course the problem of further narrowing the gap between upper and lower bounds on R_{HFF}^{∞} . We suspect that the upper bound can be lowered further, although we fear that a considerable blow-up in proof length might be necessary. As to the actual value of R_{HFF}^{∞} , we hesitate to conjecture. It is amusing to note that one possibility still left open by our bounds is $(\frac{17}{10})(\frac{11}{9})=2.07777...$, the product of the values of R_A^{∞} for the two algorithms whose combination yields the algorithm HFF, although we suspect that the actual value may be somewhat less than this. #### References - 1. Aho, A. V., Hopcroft, J. E., and Ullman, J. D., "The design and analysis of computer algorithms", Addison-Wesley, Reading, MA (1974), Chapter 10. - 2. Baker, B. S., Brown, D. J., and Katseff, H. P., "A 5/4 algorithm for two-dimensional packing", (to appear). - 3. Baker, B. S., Coffman, E. G., Jr., and Rivest, R. L., "Orthogonal packings in two dimensions", SIAM J. Comput., 9 (1980), 846-855. - 4. Coffman, E. G., Jr., Garey, M. R., Johnson, D. S., and Tarjan, R. E., "Performance bounds for level-oriented two-dimensional packing algorithms", SIAM J. Comput., 9 (1980), 808-826. - 5. Garey, M. R., Graham, R. L., and Johnson, D. S., "On a number-theoretic bin packing conjecture", Proc. 5th Hungarian Combinatorics Colloquium, North-Holland, Amsterdam (1978), 377-392. - Garey, M. R., Graham, R. L., Johnson, D. S., and Yao, A. C., "Resource constrained scheduling as generalized bin packing", J. Combinatorial Theory Ser. A 21 (1976), 257-298. - 7. Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., San Francisco (1979). - 8. Garey, M. R. and Johnson, D. S., in preparation. - 9. Johnson, D. S., "Near-optimal bin packing algorithms", Technical Report MAC TR-109 (1973), Project MAC, Massachusetts Institute of Technology, Cambridge, MA. - Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., and Graham, R. L, "Worst-case performance bounds for simple onedimensional packing algorithms", SIAM J. Comput. 3 (1974), 299-325.