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SYNOPTIC ABSTRACT

The method of "antithetic variates' for Monte Carlo sampling

was invented and named by Hammersley and Morton (1956) and has

been generalized by Halton and Handscomb (1957) and Laurent (1961).
Given only that a Monte Carlo estimator possesses derivatives up to
a certain order, in the sample space, transformations of the esti-
mator are supplied (independent of the particular estimator used),
which reduce the variance of the resulting estimates in a very
marked degree. 1In the present paper, the explicit forms of these
transformations are derived. It is demonstrated that, contrary to
common belief, the transformations of Halton and Handscomb are more

efficient than those proposed by Laurent.
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tistical sampling; variance reduction; antithetic transformation.






1, INTRODUCTION.

We consider the evaluation of an integral of the form

1
0 = fo flz) dx (1)

by Monte Carlo sampling [see Halton (1970).] If £ denotes a cano-
nical random variable (that is, a random variable distributed with
uniform probability density in the unit interval U = [0, 1)), then
cerude Monte Carlo consists in sampling the (primary) estimator

f(€), which, by repeated independent trials, yields the (secondary)

estimate

k
1 .
l[/k(él, 22» ) Ek) = -E,LZ] f(E’I:)’ (2)

and, since the expectations are

E(¥,] = E[f] = 0, (3)

Kolmogorov's form of the Strong Law of Large Numbers [see, e.g.,
Gnedenko (1963) p. 245, or Kingman and Taylor (1966) p. 344] shows

that, i€ (as we shall suppose) 6 exists and is finite;
wk + 0 (almost surely) as k -+ =, (4)

If we further suppose that the integral

1 2 2
fo [f@)]° dz = 07 + var[f] (5)

exists and is finite, then the variance
var[¥,] = var[f]/k ~ 0 as k > =, ' (6)

Now Chebyshev's inequality [see, e.g., Feller (1968) p. 233, Gne-
denko (1963) p. 225, Kingman and Taylor (1966) p. 288, or Loéve
(1977) p. 11] shows us that, for any a > 0,

prob(|y, - 8] > a Mvarlg]) < = (7)
a

and the Central Limit Theorem [see, e.g., Feller (1968) p. 244,
Gnedenko (1963) p. 293, or Kingman and Taylor (1966) p. 348] says



that

1 © 2
Prob (|4 - 0] > a Mvarly,]) » )7 [ ¥/ )
a

as k > ». Both results indicate that the distribution of Wk about
¢ is scaled by the dimension /Var[wk] = Y/ (var[f]/k), which is
therefore used as a measure of the error |¢k - 0| to be expected.
The slow decrease of this quantity with increasing kX has spurred
much effort to reduce the variance var{f] of the primary estimator
f by transforming it in some way. The new primary estimator may
be any integrable function g on U = [0, 1], for which

1 1
fo g(x) dx = fo f(x) de = 0. (9)

Much ingenuity has been devoted to devising techniques for
transforming functions f into functions g so as to reduce var[d]
appreciably while preserving the integral . One approach seeks
an approximation ¥ to f on‘ﬁ, which is easy to integrate. One can

then either define

1
g(x) = f(x) - o(x) + [ 9(¥) dy (10)
0 .
and sample g(§) as before — this is called correlated sampling
—— or define 1
_ (=
9(2) = Gz fo ?(y) dy (11)
and sample g(m), where 7 is distributed with probability density
1
o(my/f  e(y) dy (12)
0

—— this is called importance sampling —— [for further discussion
and references, see Halton (1970).] The approach which we shall
consider here seeks instead to construct general transformations

applicable to a broad range of functions to reduce their variance.

It is clear that, if the problem is that of evaluating an
integral b

0 =[ n@ dy, (13)
a
then the simple transformation y = a + (b - a)x yields (1) with




f@) = (b -a) hla + (b - a)x]. (14)
In the case of an integral over an infinite range, it is easy to
transform the range into U; but it is not obvious that this can be
done without affecting the differentiability of the integrand at
the ends of the range: we shall see later that this is important

to the validity of the method presented here.

2. THE METHOD OF ANTITHETIC VARIATES.

This method was invented and named by Hammersley and Morton
(1956). The question of what general classes of antithetic trans-
formations are best was discussed by Hammersley and Mauldon (1956)
and Handscomb (1958). The extension of the method to multi-dimen-
sional integrals was examined by Morton (1957) and Halton and
Handscomb (1957). It is the one-dimensional treatment in Halton
and Handscomb (1957), with reference to the work of Laurent (1961)
and Handscomb (1964), which concerns us here.

Halton and Handscomb (1957) consider the class of transforma-

t1ions

9@ = 37t - ks PO+ B, (15)
J=1 ’

g(E) being sampled repeatedly and independently to yield secondary

estimates

k
T,y Ey e B = 1 gy, (16)
=]
In order that
7k + 0 (a.s.) as k > &, (17)
with @ finite, it is necessary and sufficient that
E[7,] = E[g] = E[Af] = 0; (18)
and this is achieved when
1 t K AJ+uJ
z .y f FO + p ) da = _2 = fx fly) dy = 6. (19)
= J .
dJ

In particular, these authors consider the transformations (which

satisfy (15) and (19))



-

@) = 3 [f@ + £ - )] (20)
and 1 () = -,ﬁ- Z rE=); 21

and they prove that

r
DA, 4 B
r+s+2

il

var[ﬁmf]
r, 520 (p+s+2)! n

2 2 2

B AT - 288 AT - 28 A+ 288 |

== s . v, (22)
12n 720m 30240n

where the Bt are Bernoulli numbers [see Abramowitz and Stegun
(1964) §23, whose notation we follows or Hardy and Wright (1962)
pp. 90 and 245, Jahnke and Emde (1945) p. 272, or Titchmarsh
(1951) p. 20: Abramowitz and Stegun (ibid., pp. 804 and 807)

have
2 o zt
— =1 B, I (23)
e -1
and By, = 2 (1P L r o), | (24)
(27")
(which agrees with Hardy and Wright's BZt); while all of the other
references use a positive "Bt”’ which is our (-l)t-1 BZt for ¢t =
1, 2, ... (note that our th+1 =0 fort=1, 2, ...) - the { in
(24) is the Riemann Zeta Function,
o0
$(8) = | — (25)
r=1 r

see, once again, any of the above references]. Also,

Aj = Ajf - f(j) (l) - f(j) (O), (26)

where f(J)(x) denotes the j-th derivative of f at x, with f(o) =f,
It is clear from (22) that

var[il f] = O(nOZM) (27)
if we can arrange that
A.=0 for G=0,1,2, ..., M - 2. (28)




The authors now observe that

0 if 4 is even
A Df = (29)
J Af if j is odd
. ,
and AN f = — A.f for all j 2 0; 30
g gl 7 / (30

so that condition (28) may be achieved by successive applications
of transformations of the forms Eﬁ [see Hammersley and Morton
(1956): this will not be pursued here], 1, and

7 p@) - F@)

) -
0:7’1 f(&') - j'*'l ) s (31)
n -
because of (29) and since, by (30),
. M)
() w1
OR[N ‘
A 52)
" -1
and, in particular,
sedly=o. (33)
[It is also true that ADEaf = 0.] We further have that ‘
Efgr] = Elaf) = Bl 71 = 5lc V) = E(7] = 0, (34)
so that the estimators will remain unbiased. For example, their
transformation
(1) ((3) (2h-1)
= 0f T (8
FM 1¢, LZ oeo Lz s (35)

where M = 2h + 2, satisfies (28) [we see that Aﬁny = 0, by (29),
for j =0, 2, «.., 2h, and, by (33), for j =1, 3, ..., 2h - 1:
(27) now foilows.] Thus, by (22) and (29) - (33), we see that, as

n—)'OO, IB l
2M 2
[ X ——————
Va‘[mhfkﬁﬂ " 7 (AM_liMf) , (36)
2m! n
and now, by (29), (32), and (35), since ¥ is even,

2-M 4-M -4 -
- L - D2 - Dooo(2 =12 ° -1
i - 7
%‘-1 Mf (22 - 1) (24 - 1) oo (ZM—4 -1 CZM"Z -1 %-f-l

2

B 2-M _4-M -4 _-2
("l) 2 2 6 a0 2 2 %_1.13

C (1t g2 (1% 24 A - )P 27D A,



and (36) yields that

2
Byl By 1D L2

var[it F ] ~
ad MM-2)/2

(37)
(2! 2
[Note: 1in reviewing earlier articles referred to here, some slips
and typographical errors were found and have been corrected here:
for example, the last denominator in (22) is given as 35280n6 by
Hammersley and Morton (1956), as was noted in Halton and Handscomb
(1957); but they in turn have ¥ = 2k + 1 in (35) - (37), rather
than M=2h + 2, and even so, the power of 2 is given incorrectly

as (M + 1)(M + 3)/2.]

Consider, in particular, the linear transformations 3, ﬂ%, GiJ),
and EM defined above, and define linear combinations and products
of transformations ¥ and @ by

AT + 2Q)f (£) = MIf(x) + ROf () }
and @) (@) = T (QF) (=).

[This was already tacitly assumed in (35); and, for example,

(38)

ng+l Hn - ﬁl
(39)

QiJ) - ng+1 -1 ?
by (31), and we note that Hl is the identity transformation, by
(21).] 1It is easy to verify the properties of closure and the
associative and distfibutive laws which make the set of all poly-
nomial expressions in 1 and ﬁn an algebra (that is, simultaneously
a vector space and a ring with unity), since there are null and
identity transformations, given respectively by

Nf(x) =0 and 3f(x) = ﬂlf(x) = f(x), (40)
and for which {# + N = and 3 ¥ = §, for all transformations Ii;
and each J has a negative defined by

-Mfx) = - [ @], (41)

for which # + (-3) = N. 1In addition, the algebra is commutative,
since, by (20) and (21),

1 b e J n-g-x . .
o f) =5 ] FED) « FEEL T = nafe),  (42)




n-1

AEEL L ym) = A 2 f(w*“sn

n mn

s LN
and ﬂmﬂnJ(x == .z =

I ~11

0
=1 F@) = 1A F@); (43)

J

and finally, the algebra contains all of the @ij) and EM’ by (35)
and (39).

We observe that the evaluation of U ?MJTE) takes 2n(2 - 1)
= Zn(ZM/Z - 1) evaluations of the function f at different points.

[This is because, by (20), @ multiplies the number of evaluations
by two; by (21), ﬂn multiplies it by »; and, by (35) and (39), F
is the result of applying @ to a linear combination of ﬁl, Hz, ..

A with g = Zh; so that the total number of evaluations is 2n(l +

2 + 4+ ..+ Zh = 2;'L(2h+1 - 1).] For example,

2 4
_ (1) (3) 2 312 - 311 20 -1
UFFE) = 8D C C7FE) = 1D — lf L pek)

27 -1 2 -1

= 1A (5 )[6411 - 201, +u]f(£)

“ 12 (o (etrdy + rdsh « rED L i)
- 10trdy + #EH] )
- 1, () (1617 + crdidy o pdid FE3)

crdshy e rEY LD - rdsh)

1 L rdsh - D)

- 1007 + £
+ [F5) + O - £)])
- o srrdy < b v rEED - rd)
EH e f(zoE )] - 100F(5) +
Edy ol f(£1+09) sy v &S

e 23 I I CE I

which has ZXS(ZS—I) = 70 terms.



3. LAURENT'S TRANSFORMATIONS.

Laurent (1961) discusses the papers of Hammersley and Morton
(1956) and Halton and Handscomb (1957), and makes the important
observation that the condition (28) may be obtained by using
transformations much simpler than those of the earlier authors,
He proposes transformations of the forms

M N
8 f = pzl apnpf and X, f = qzl ﬁqnqnf. (45)

The condition that

E[H,f] = E[X,,f] = E[f] = 6 (46)
entails, by (34), that

M it
¥ a, = 1 and Yy B, =1. (47)
=1 g=1
By analogy with (27) and (36), we seek to arrange that
1 - e =2M o =ANL
Var[ﬂhBMf] =0(n ) and var[ﬁnKZNf] =0mn ). (48)
These conditions are guaranteed if we can make
AB f=0 for <=0,1, 2, ..., ¥ -2,
vl (49)
ABKZNf =0 for F=0,1,2, ..., 20 - 2,

respectively [compare (28)]; and this reduces, by (29), (30), and

(45), to M a
] =Er=0 for r=2,3,4,..,H,
p=1p"

and (50)
B
] —rdisx=0 for s=2,3,4,..,0;
g=1 qZ(s—l)

where we have put » = ¢ + 2 and ¢ = (J + 3)/2 (taking j =1, 3, ...,
2N - 3 only, since even J are taken care of by the 1 operation.)

[In Laurent's paper, (18) is given incorrectly; and our index
notation varies from his (we have chosen to be internally consis-
tent); but no matter.] The importance of Laurent's contribution
lies in the fact that; while EZN yields a variance (37) which is

N

O(n-4N) at a cost of 2n(2° - 1) function-evaluations; the same




asymptotic behavior is achieved by his transformations BZN and KZN’
with only nN(2N + 1) and nN(¥N + 1) function-evaluations, respec-
tively, as is easily verified.

Laurent concludes his paper by exhibiting the first three or
four transformations of each type, with the corresponding numbers
of function-evaluations they require. His final remark, '"Le pro-
cédé s'étend facilement 4 1'évaluation d'intégrales multiples™
—— "The process is easily extended to the evaluation of multiple
integrals" —— is rather optimistic, in view of the discussion of
this very point by Halton and Handscomb (1957), but is literally

(if perhaps not computationally) correct.

4, EXPLICIT FORMULATION OF THE TRANSFORMATIONS.

Define the (# x H) matrix

A = (1 1 1 eeo 1)
a, a, as . Ay
a 2 2 a 2
2y 2 a3 H
H-1 H-1 H-1 a H-1
ay a, as cos Ay
= A (al, Uys Ggs +oes aH). (51)
Then the equations (47) and (50) for the aP take the form
Ax = e (52)

with @ the column-vector with elements 1, 0, 0, ..., 0 [that is,
(e)r = 6r1]’ with # = M and a, = 1/r (r =1, 2, ..., M), and with
X the column-vector with elements (X)r = ar; and similarly, the

equations for the 63 take the same form (52) with the same vector

e, with #=1anda,=1/8° (8 =1,2, ..., M), and with (x), =
B, .

s
The matrix A is well-known [see, e.g., Lang (1971) p. 179,
Mirsky (1955) p. 17, or Shilov (1971) p. 15], and its determinant

is the Vandermonde determinant:



-10-

H r-1
det A‘(al, Qys vees Gp) = n i (@, - a.); (53)
r=2 g=1

and by Cramer's Rule [see, e.g., Lang (1971) p. 192, Mirsky (1955)

P. 134 —— he points out that Cramer's 1750 rule was known fifty
years earlier to Leibnitz! — or Shilov (1971) p. 18], the solu-
tion of (52) takes the form
x), = det A (ag, @y, woes @y ps 05 @ys eees ap)
t .
det A (al, Aoy aoes Ay 15 Qus Ay g oees aH)
H »n-1 A r-1
= O 0 @@ -a) I I (a -a). (54)
r=2 g=1 © 8 at=0 r=2 g=1 * s

By collecting and cancelling factors, we obtain from (54) that

t-1 H t-1 il
®),= {1 (a) O a, 0 (@ -a) I (a,-a)r

s=1 r=t+l s=1 r=t+]
(55)

We now return to the equations determining the ap and the ﬁso
For the former, we take a, = /2 (» = 1, 2, ..., M), to yield from

(55), after we multiply the numerator and denominator by the factor

£(28) (38) .. [(E-1)E] [(£+1) ] ... (ME), (56)
that
a, = DA e E0" aen g,
or
M-r M-1
= =1 r
b T DT W - (57)

For the latter coefficients, we take a, = l/s2 (s =1, 2, cou, M),
to yield similarly [by multiplying by the square of (56)] that
. -1 - -1 2, .2 42 2 N2
6, = (-0 ANt @b etah L P -n P
] - )
« (-7 [ 222, PPy
D=1 (ge1)... (26-1) (-2 !
x (2¢+1) .o (B2 ],

it 2a-
or

g -2 -1y~ 2N
s W -s)t (N +s)!

The formulae (57) and (58) give us explicit means of compu-

(58)

ting the transformations ﬂM and KZ of Laurent, as needed. [It

N
should be mentioned that these formulae agree with Laurent's few




-11~

computed cases —— in our notation, these are ﬁz, H,H , and KZ,

3Ty
X, K6, and KSD]

Computer implementation of (57) and (58) readily yields the fol-
lowing values: we write @y for the coefficient a, when the
transformation is ﬂM, and similarly, B

mation ¥ [see (45).]

for 8 in the transfor-
Ns s

2
all = 1 M = 1
@y = -1 Moo= 2
Gpyg = 2
ag, = 1/2 = .5 M = 3
a32 = -4
i3 = 9/2 = 4.5
a,, = -1/6 = -.16666666666667 M o= 4
Gy, = 4
a,, = -27/2 = -13.5
a,, = 32/3 = 10.666666666667
a, = 1/24 = 4.1666666666667 x 1072 M = 5
a, = -8/3 = -2.6666666666667
a.. = 81/4 = 20.25
a., = -128/3 = -42.666666666667
a. = 625/24 = 26.041666666667
a,, = -1/120 = -8.3333333333333 x 1073 M o= 6
a,, = 4/3 = 1.3333333333333
a,, = -81/4 = -20.25
a,, = 256/3 = B85.333333333333
a . = -3125/24 = -130.20833333333
a = 324/5 = 64.8
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a,, = 1/720 = 1.3888888888889 x 107
a,, = -8/15 = -.53333333333333

a,, = 243/16 = 15.1875

a,, = -1024/9 = -113.77777777778

a,. = 15625/48 = 325.52083333333

a,, = -1944/5 = -388.8

a,, = 117649/720 = 163.40138888889

ag, = -1/5040 = -1.984126984127 x 107
ag, = 8/45 = .17777777777778

ag, = -729/80 = -9.1125

ag, = 1024/9 = 113.77777777778

Qg = -78125/144 = -542.53472222222
ag, = 5832/5 = 1166.4

ag, = -823543/720 = -1145.8097222222
agg = 131072/315 = 416.10158730159

ag, = 1/40320 = 2.4801587301587 10“52
Gy, = -16/315 = -5,0793650793651 x 10~
ag, = 729/160 = 4.55625

ag, = -4096/45 = -91.022222222222

ag. = 390625/576 = 678.16840277778
ag, = -11664/5 = -2332.8

ay, = 5764801/1440 = 4003.3340277778
agy = -1048576/315 = -3328.8126984127
ag, = 4782969/4480 = 1067.6270089286

and similarly:

B, = 1

B,y = -1/3 = -.33333333333333

B, = 4/3 = 1.3333333333333

By = 1/24 = 4.1666666666667 X 107>
Bi, = -16/15 = -1.0666666666667
Bz = 81740 = 2.025




T O L T Y ™ T T O ™
(S BT BT, BT BT E N N
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=
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o)
[«) SN @)
[ B

o)
[e))

-~
N e

~N NN N
RS T« S 5 B N

T OO YT D T,y ™ ™ O Ty Ty Ty ™ W ™
o 0 o 0 W 00 ®
e R I T 2

e c]
(o ¢]

-1/360 = -2,7777777777778 x 10—3

16/45 = ,35555555555556
-729/280 -2.6035714285714
1024/315 3.2507936507937

1/8640 = 1.1574074074074 x 107% n
-64/945 = -6.7724867724868 x 1072

6561/4480 = 1.4645089285714

-16384/2835 = -5.779188712522

390625/72576 = 5.3822889109347

-1/302400 = -3.3068783068783 x 10"6

8/945 = 8.4656084656085 x 1073
-2187/4480 = -.48816964285714
65536/14175 = 4.6233509700176
-9765625/798336 = -12.232474797579
17496/1925 9.0888311688312

[

8

1/14515200 6.8893298059965 x 10~
-32/42525 = -7,5249853027631 x 10"4
19683/179200 = .10983816964286

-1048576/467775 = -2.2416247127358
244140625/19160064 = 12,742161247478
-629856/25025 = -25.169070925071
13841287201/889574400 = 15.559448654323

9 i

-1/914457600 = -1.0935444136502 x 10
32/637875 = 5.0166568685087 x 107>
177147/9856000 = -1.7973518668831 x 10
1048576/1403325 = .74720823757861
-6103515625/747242496 = -8.1680520817167
5668704/175175 = 32.360234051663
_678223072849/13343616000 = -50.827532270788

17179869184/638512875 = 26.906065416457

2
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Bgy = 1/73156608000 = 1.3669305170628 x 10711 5 - o
By, = -128/49116375 = -2.6060555161084 x 107°

Bys = 177147/78848000 = 2.2466898336039 x 107°

Bgy = -16777216/91216125 = -,18392818155781

Bys = 152587890625/41845579776 = 3.646451822195

By = -22674816/875875 = -25.88818724133

By, = 33232930569601/426995712000 = 77.829658789644

Bgg = -1099511627776/10854718875 = -101.29342274431

Byg = 22876792454961/487911424000 = 46.887183471566

[The numerators and denominators listed above are integers, and
care has been taken that they are precisely correct. The resulting
values of the coefficients have been obtained by a single division,
correct to 14 significant decimal digits, minimizing round-off er-
rors. As M and (even more so) N increase beyond this point, the
numerators and denominators tend to increasing size (310,9 and
610,10 have numerators of more than 14 decimal digits) and the
floating-point calculations of the coefficients tend to accumulate
increasing round-off errors —— so the reader is advised to proceed
with caution, if meaningful results are to be obtained. The under-
lying equations (47) and (50) were checked for the coefficients
listed above, yielding sums departing from the correct right-hand
-12

sides by no more than 4 x 10’11 for the a 2 x 10 for the 8 .]
Mp’® Ns

As in obtaining (37) from (35) and (36), we now take (22) with

(49) to yield that B I
M 2
var[iL 8 f] v ———g (4, B (59)
(2Nt n
and
MK, f] Py @, X A% (60)
var[% V... S— ) :
w20 @ A -1 o
and then use (29), (30), and (45) to show that, by (57),
M M O_LE M (__UM-p
= I = = .
BBl = L % At pzl Y pzl ST OryT A1l

M-1
1 M M _ (-1 £ :
m [(1-1) - ("1) ] AM_lf - M1 %-IJ’ (61)
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and by (58),
N
- = -—-—g—
AQN-lKZNf Z Bq AZN-lanf qz qZN A?N-lf
N

N-q
2 (-1
qzl W-g) T (W+q)! ot
1 1 . ; -
oTemT - T Tt T DT ED
(-1)¥ 1 1

+

T DT Tt T (2n-1)Tt ¥ (ZN)!O!]

A?N—lf

]

1 20 2N N

N-1
_ 1) .
- (N')2 A?N-lf’ (62)
whence we finally obtain that 2
!BZM‘ (AM-lf) -2M
5= 1
(2mt MY 5
B4yl PCopr$” _an
T
(4amt (H

var[iL 8 £] v (63)

and

var[IL X, . f] ~ ; (64)

asymptotically as n + =,

S. HANDSCOMB'S BOUND.

We see from (63) and (64) that there exist constants ﬁM(f)
and ﬁZN(f), such that, if the function f is differentiable w times
[with w = ¥ - 1 for (65) and w = 2V - 1 for (66)], then

~ -2M
var[ﬂhﬁMf] < HM(f) n (65)

var[d X, f1 < Byp(F) 0™ (66)

Handscomb (1964) discovered an upper bound for the variance

and

of ﬂhg: if we write . v
Z (=1 (67)

4
c == ,
™ j%0 (24 + 1Y

J
and if the integral
1
‘ -1 2
2= 1gP" P @))? a (68)
0



015;’

exists and is finite, while Ayg==0 for =0, 1, ..., w -1 (which

entails that g is differentiable w ~ 1 times); then
2 2 2w=2
<
var[ﬂng] Cw Jb /(2mn) . (69)

Just as we got (65) and (66) from (63) and (64), we may derive from
(22) that there is a constant 5(9), such that

var(ll g] < T(g) n-2w-2, (70)
provided that g is differentiable w times. Thus the addition of
one more degree of differentiability to g yields a bound for the

variance which behaves as 7~ 2“~% rather than n 2

Unfortunately, while it was an easy matter to relate the
factors AM¥1£Mf and AQN—IKZNf occurring in (59) and (60) to Abf;
it is not clear how one may relate the integrals (68) for g = BMf
f to the corresponding integrals for g = f. Thus we

N
can only deduce from (69) that, if f is differentiable only w - 1

and g = KZ

times, then there will be constants ﬁM(f) and EZN(fj, such that

- -2M%4
var[iL 8,1 < B,(f) = * (71)
and
o v =4[j+4
var{ﬂnKZNJ] < KZN(fU n . (72)

[Perhaps this is all that can be obtained from (69), in any case;
since sz may well be harder to compute than the original integral
8 in (1)!]

6. EFFICIENCY.

Comparing (63) with (64), we see that, as n + o,
4 2
var(fL 8, fl/var[L K, f1 ~ @07/ [@m% (73)
and we know that the ratio of the number of required function-
evaluations is A
work[ﬂﬁHZNf]/work[ﬁhKZij = (2M+1)/(W+1): (74)

so B_, is clearly preferable to X

20 for any ¥, at least if n is large.

2N’
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Comparing (37) with (63), we get similarly that
var[4 2, f]/var 1 F, f] A1) romy?, (75)
while work [ H_ ] /work[#L ¥, f] = H(20+1) /22711, 76

so that, contrarily to the impression which has prevailed since
Laurent published his paper (1961), the transformation of Halton
and Handscomb (1957) appears to be more efficient, if we measure
efficiency by 1/(var x work). [The argument runs as follows: we
measure efficiency as the reciprocal of the work required to
achieve a given variance. If the variance of the estimator from
a single random sample is 'var' and the variance we wish to
achieve is ¥, then we must average the estimator over var/V inde-
pendent samples; and if the work required to compute one sample
value of the estimator is 'work', then var/V samples use var x
work/V; so the efficiency can be measured by 1/(var x work), since

V is merely an arbitrary scale-factor. Now, from (75) and (76),

l/{var[ﬂnFZNf] work[HnFZNf]} N (20+1) JV-1)
v

5 . (77)

N
1/{var[ﬂn£2Nf] work[ﬂnHZNf]} 2(27-1) [(2n 1]
Stirling's formula [see, e.g., Abramowitz and Stegun (1964) §6,

Jahnke and Emde (1945) p. 10, or Whittaker and Watson (1927)
p. 251] states that, as 3 + =,

:
2l {%] /(2mz). (78)
It now follows that, for large enough N, the ratio (77) behaves
like 2
4N N—4N+1 (e4/27)N (4w)"1 > o (79)

since the logarithms of the first two (dominant) factors are res-
pectively NZ log 4 and (-4N+1) log N, and the first outweighs the
second. Thus, at least for sufficiently large N, the transforma-
tion FZN is more efficient than HZN']

7. HALTON AND HANDSCOMB'S TRANSFORMATIONS,

On the basis of the last result, it is clearly of value to

re-examine the transformations of Halton and Handscomb (1957).
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Let us write, by analogy with (45),

N
E Z A u f and F _f= ) 4 DAFf. (80)
Mf p=1 2p~1 2 g=1 q 2q-1
Impose conditions analogous to (46) and (49):
E[E,f] = E[F,,f] = E[f] = 0, (81)
AEf=0 for 12 =0,1, 2, coo, M - 2,
i En 52)
A3$2Nf =0 for JF=0,1, 2, ..., 28 - 2.
Then we obtain the equations [analogous to (47) and (50)]
A
—_ =
pzl RISy 5?1 for » =1, 2, ..., M,
and v u (83)
Z SN SUN—— for s =1, 2, ,
g=1 4(q—1)(s—1) sl

Comparison of (83) with (51) shows that the first set of equations
~r+l1

corresponds to H = M and a, = 2 (r =1, 2, ..., M), with X the
column vector with elements (x) = hr; while the second set corres-
ponds to A = N and a, = 478*1 (s=1, 2, ..., ), with (x)s =K.
In both cases, (e)r = 6?1' Since the solution of (51) is given by
(55), we may apply the same technique as in obtaining (57); but,
now, factors of the form 1/t are replaced by 2-7’:+1 or by 4-t+1.
We may simplify the results by defining the notation
-0y Ly ey = k. (84)
Then the products (277 1-1) (28 12y 2t 12%y ... 2P 12t7?) 2
(Zt t- 1)(2t+1 ¢- 1)...(2M— t- 1) become respectively 20,1 2
gt-2 (¢-1),+ and o (£-1) (M-£) (M-t),¥; and we get that
N - (~1)MLP zr(r-l)/Z ; (55)
r (=154 (M-7) 4
and, similarly,
S L i el 56
8 (s-l)4+ (N—s)4¢ :

One interesting consequence of (84) in (85) and (86) is that,
while (57) and (58) had a considerable cancellation of factors in
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reducing the integer numerators and denominators to their lowest
terms, the numerators of the fractions (85) and (86) are all pure
powers of 2, while the denominators are all odd.

It is clear that the solutions (85) and (86) of the equations
o defined in (35) is
easily seen, by (39) and (43), to be of the form defined in the

(83) are unique. Now, the transformation ¥F

second equation of (80); and it also satisfies (81) and the second
condition (82) [by (34), (29), and (33).] By uniqueness, the for-
mulae (86) give the expansion (80) of (35), for M = 2N.

A similar argument shows that the formulae (85) give the ex-

pansion (80) of the transformation defined by

_ ¢ (0) (1) ,(2) (M-2)
= ¢2 62 mz veo ¢2 . (87)

EM
[Note that, while Halton and Handscomb's ¥ transformations are
defined exactly as in (35) —— with an index defined smaller by 1
than ours — their £ transformations are defined with the factor

¢§0) replaced by E&, which would be inconvenient for us here.]

Computer implementation of (85) and (86) is again straightforward

[though the same warnings about the accumulation of round-off er-
rors in the naive programming of the formulae must be heeded.] We

write A for XP in £ , and By for g in EZN’ much as we did ear-

Mr M’
lier with aMr and BNS'
A = o=l
11 1
Ay o= -l o= 2
A =
22 2
x31 = 1/3 = .33333333333333 M = 3
A = .
32 2
k33 = 8/3 = 2.6666666666667
_ -2
A41 = -1/21 = -4.7619047619048 x 10 M = 4
k42 = 2/3 = ,66666666666667
k43 = -8/3 = -2.6666666666667
A = 64/21 = 3,047619047619

~
A
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1/315 = 3.1746031746032 x 107°
22/21 = -9.5238095238095 x 102
8/9 = .88888888888889

~64/21 = -3.047619047619

1024/315 = 3.2507936507937
1/9765 = -1.0240655401946 x 10™%
2/315 = 6.3492063492063 x 107>
-8/63 = -.12698412698413

64/63 = 1.015873015873

1024/315 = -3.2507936507937
32768/9765 = 3.3556579621096
1/615195 = 1.6255008574517 x 107°
-2/9765 = -2.0481310803891 x 10™%
8/945 = 8.4656084656085 x 107>
-64/441 = -.14512471655329
1024/945 = 1.0835978835979
-32768/9765 = -3.3556579621096
2097152/615195 = 3.4089223742066

and similarly:

H1q

K’
73

21
22
i
i
i

31
32
33

Haq

Y

M3

Haa

1

-1/3 = -.33333333333333

4/3 = 1.3333333333333

1/45 = 2.2222222222222 x 1072
-4/9 = -.A4444444444444

64/45 = 1.4222222222222

-1/2835 = -3.5273368606702 x 10~
4/135 = .02962962962963

-64/135 = -.47407407407407
4096/2835 = 1.4447971781305

i
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6

pg, = 1/722025 = 1.3832693571256 x 10° N o= s
B, = -4/8505 = -4.7031158142269 x 1074

Mo, = 64/2025 = 3.1604938271605 x 107°

Mg, = -4096/8505 = -.48159905937684

Moo = 1048576/72295 = 1.4504630494173

Mg, = -1/739552275 = -1.3521694595558 x 1070 ¥ o= 6
B, = 4/2168775 = 1.8443591428341 107°

Bgs = -64/127575 = -5.0166568685087 1074

Mg, = 4096/127575 = 3.2106603958456 x 1072

Mo = -1048576/2168775 = -.4834876831391

mg, = 1073741824/739552275 = 1.4518809018605

w, = 1/3028466566125 = 3.3020011222363 107w o= 7
By, = -4/2218656825 = -1.802892612741 x 107°

Mo, = 64/32531625 = 1.967316419023 107°

w,, = -4096/8037225 = -5.096286342612 x 1074

woo = 1048576/32531625 = 3.2232512209273 X 1072

ko, = -1073741824/2218656825 = -.48396030062017

4, = 4398046511104/3028466566125 = 1.4522354515313

[Again, numerators and denominators above are precisely-determined

integers, and the coefficients have been obtained by a single

division, correct to 14 significant decimal digits. Here, “81 and

Keg have denominators of more than 14 digits; so we terminated the

listing at ¥ = N = 7. The equations (83) were checked for these

coefficients, yielding sums departing from the correct right-hand
-14

. -13
sides by no more than 10 for the pr’ 2 x 10 for the “Ns']

We may now proceed for the transformations EM and EZN just as
we did for BM and KZN in §4 and §6. First, we note that (22), (33),
and (87) yield [like (36), (59), and (60)]
P 2
var[ﬂnEMf] " ——~—~——§H-(AM_1£Mf) (88)
(2! n
as n > »=; and then that (32) and (87) yield
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l 2-M_

- o (2 -1)(2 1). (2 -1)
AM-,:LIMJG‘ Byrt

(2-1)(2 -l)a.,( —1)

- (_UM-—I 2—[1f2+...+(M—1) %\4_1f.

(LML M1y /2 A, F

so that (88) becomes [like (37), (63), and (64)]
2
|Boyl By 1 D° oy

1]

var[M E, f] ~ n (89)
M 20 QT
Thus, by (37) and (89) [like (73)], we have that, as n - =,
2N (N-1) 2

. .2 _ =207,
var[HnEZNf]/var[ﬁnFZNf] v ;Eﬁfiﬁffi = 2 ; (90)

and clearly [like (74)], since 2. 1 = 2% - 2" + 13,

work [ £, f]/work([% ¥ f] = 2"+ 1y/2. (91)

Thus, the efficiency-ratio of the two transformations is

1/{var [ ¥, f] work[H ¥, 1} 2

N 20 +1
1/{Var[ﬂ E Nf] work[ﬂ £ Nf]} nv(2Y o+ 1)/2 , (92)

and we may conclude that, at least if n is large, E,, is preferable

2N
to F2N for any N¥. [This result is analogous to that for HZN and

[ G
2N ]
To summarize these comparisons, we have seen that

18 more efficient
for all N;

(a) For sufficiently large n, U EZN

than L F and ﬂnﬁz i8 more efficient than H X

2 2
and (b) For sufficiently large n and sufficiently large N,

.. n
nn?ZN i8 more efficient than ﬁnnzﬁ .

[See (90) and (91), (73) and (74), and (75) and (76), respectively;
noting that the result (b) holds only asymptotically, for large N,
by virtue of (77) - (79). Indeed, if we write p (&) for the right-
hand side of (77), it is easy to verify that p(1) = .375, p(2) =
.046, p(3) ~ ,01185, p(4) =~ .01238, p(5) =~ .074, p(6) =~ 3.11, and
p(7) =~ 1052.1.]
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Finally, a third comparison results from these considerations.

If we divide the efficiency-ratio (77) by that in (92), we obtain

1/{var [ E . f] work[® £, .f] by oF + 1y D )
T/{var (X A, F] work[% & 71} ™ AT p((;;)

and we see that A(1) =1, A(2) = 4.74, p(3) =~ 690.42, and (V) > 1
for all ¥ 2 2. Thus,

(c) For sufficiently large n, nnEZN is more efficient

than Hnﬂzwu for all N 2 2, with equal efficiency for N = 1.

[The proof that p(N) and A (N) are monotone-non-decreasing beyond

the stated values of N is straightforward but tedious.]

The efficiency considerations summarized above, in (a), (b),
and (c), would lead us to conclude that, for sufficiently large n,
we should always apply the transformation nnEZN’ where £2N is
defined as in (80) and (87), rather than the ¥, #H, or X transfor-
mations. However, the situation is somewhat complicated by two

further considerations. First, the computation of the coefficients

Ar,and M tends (as has already been pointed out) to be somewhat
(though not enormously) more complicated than that of the a, and

ﬁs , and thus greater round-off errors may be anticipated.

Secondly, for each random sample HnEZNf(E), we need n(4N-1) func-
tion-evaluations; while the comparable number of function-evalua-
tions for the simplest transformation, HnKZN’ is nW{¥+1). Thus,
when we derive efficiency as 1/(var x work) [see the remarks between
(76) and (77) in §6], we should really use V/([var/f}x work), where
(x} denotes the roof function [the integer-supremum; i.e., the least
integer not less than ,] This means that, if V is small, the ef-
ficiency decreases markedly, in reality. [Another way of demons-
trating this is to point out that, if var[1 EZNJ] = vl and
var[nhgszﬂ > v, and if we wish to achleve a variance V = Vys
then the E transformatlon requires work n(4 -1) (yielding more accu-
racy than we require), while the X transformation requires only

nl(N+1) of work to achieve our aim.]
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8. EXAMPLES.

To illustrate and gauge the behavior of the various transfor-
mations described above, a number of examples have been run. The
functions integrated are the following. (In each case, they were
scaled, so that 6 = 1.)

f1=732°% ]
£y =20 2",
f} - 03 eZOzy
L (94)

fﬁ =y cos(4 =),

_ 2 3
f% =cg 2 cos (20 z27)

3
2 2 =z
f% = ¢ {22 [1+log(l+27)] +33% ¢ 1}; |
where
-8
ez = 20/(e20 - 1) = 4,1223072533738 x 10 -, )
ey = 4/sin 4 ~ -5,2853948352436,
r (95)

eg = 60/sin 20 = 65.721356184479,

Cg = 2 log 2 +e -1 ,32210515668989. )

Each of these functions was integrated by crude Monte Carlo, using

an estimator of the form ¢k [see (2)], namely,

k
- =1 .
‘Ifj’ - \pjk(sls EZ» 900y Ek) - k rZ]_ fj(EZ’)’ (96)
and with the use of the antithetic transformations
= = = " =
M = BBy By = By Bgy = BBy Ay = BE,  O7)
using an estimator of the form 73 [see (15) and (16)], namely,
X hixgmw
T.. =T.. (.,&,, ..., £,) = A, ((E.), (98)
TJknM 1jknM =1 72 h hikru‘l pol anf,y r
where
no=h - max {2, |—=% +ll} (99)
TknM W, 207°
M
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with WinM denoting the number of function-evaluations entailed in
Aian’ namely, u w2
W =n(2 - 1), W = 2n(2 - 1),
1nM 2nM
1 1 HW (100)
Wy = UM+ 1)y Wy = MG+ D,

and li denoting the floor function [the integer infimum; i.e., the

greatest integer not greater than x.]

Two computational experiments were performed. Each consisted
of a number of runs; and in each run, all the estimates were obtained
with the same sequence of pseudo-random numbers. In the first
experiment, the efficiencies of the transformations were compared.
The actual errors of the estimates were computed by subtracting
6 =1 from them, and the corresponding efficiencies were measured
by

effE[estimate] = 1/{(error)2 x work}. (101)

In addition, the sample variances of the estimates were computed by

the formula
t t s
1 _ 1 s 1 2
svar[;— x ] = ¥ P = ) x, - xs) , (102)

p=1 T t{t.=.1) g8=2 S p=1

t
r=1
independent, identically distributed random varlables . [It is

for the sample variance of an querage 1—2 <, of statistically

easily verified that, if

E[mr] =@ <o and var[xp] - 0% < ®, (103)
then Bzl 2] = & (104)
and - s
ot 1 s 1 2
Elsvar(z %, 7)) < £y R A
. (Bl I oesa-Los, | 2
= - 2 L E o) + Efx }
t(E-1) L, 5-1 P21t s L x,] + E[z "]
t
.1 1.2 2 2 2 .2 2 2 s
Z(t-1) SZZ {8-1 (67 +u™) +u” - a1 (7 + u™) - 2u° + ™) (0° + u )}
t 2 t
1 2
T T Z ¢ = 97;' N Var['if AT (105)

8=2 r=1
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Indeed, it is easy to see that

* Eg_*ﬂf} = t(gtl) 352 {sil(iii xf)z B é{ §1 wp)z * xsz}
) f(tl‘”l) {x12 ) %(rél xl”)z ' siz xSZ}
t(t i) § Lp T %’Pil ”r)z}’ (106)

the usual formula for the unbiased estimator of the sample mean
variance.] The advantage of the formula (102) over (106) is compu-
tational: the latter accumulates two large sums and then subtracts
them, losing many significant digits of accuracy in the process;
while the former adds together many contributions (all positive),
whose accuracy is much less impaired. In computing either formula,

one accumulates the sum

¢
R, = } x; (107)

then, for (106), one also accumulates

s, = 3 xfz, (108)

while, for (102) one accumulates

g 2
T, = Z — ( -x )" (109)
A second measure of efficiency was computed by
effv[estimate] = 1/{ svar x work}. (110)

In each run of either experiment, a particular pseudo-random
sequence is selected and the values of the parameters k and n are
chosen. For ever ., the estimates ¥, a 1 of T

Yy fb, stimates Tk nd a selection ki
are then computed; and, for each of these estimates, the error, the
sample variance, svar, and the two efficiency measures,effE and effv,

are obtained.
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The routines central to the programs used are listed in §9

below, -in an algorithmic language similar to BASIC or FORTRAN.

In the first experiment, the efficiencies of the four trans-
formations were compared, using the parameters k = 600, n = 10,
and ¥ = 2, 4, 6, and 8, for each of the six test-functions. The

logarithmic efficiency-ratios,

¢ 3
££_[T. .
z4) - 1og eff | kanM] (i =1, 2,3 )
B jknM 1005 v s 25 3)s
et Ly s
r' 3\
GO T R L a3
Kijrom = 1°810 o =129,
efE, [T, 0 1)
f T > (111)
k= log £ e [Ty o]
07k 10 g
| effE[ﬂbk]
r 4
k) og fE [Ty i)
VOjknM 10| oer v, ] | J
L ety M

are given in Table 1, below. We note that the coefficients kSr

(for the £ transformation) were not available; so the ES transfor-

mation was omitted. We observe, also, that

£2 = ﬂz, 52 = KZ’ and I4 = K4; (112)
so that
(4) ) 4 - _ -
Ketjmnz = %asjinzs 204 Kagjpomy = 0 @ = 2, 40, (113)

for ¥ = E, V,

TABLE 1: Comparison of the transformations.

: (4 4) (4) (4) 4 4) 4 4)
Mg Kgg Ky Kgy Ky Kgy Kyt Kgg' Kys
2 1 2.99 2.76 1.32 .47 0 0 1.32 .47

1.71  2.71 .52 .46 0O 0 52 .46

2 1.28 1.43 1.42 .47 0 0 1.42 .47

2.26 1.45 .37 .47 0 0 37 .47
3 1.25 1.40 1.43 .47 0 0 1.43 .47
2.20 1.41 .37 .47 0 0 37 .47
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4 4 (4) -(4) 4) (4 4 €]
Kro o fm 1 Ko 20 Kgz Ky
5.35 4.28 1.36 .46 0 0 1.36 .46
5.12  4.21 .46 .45 0 0 46 .45
2.03 1.03 .29 -.90 0 0 .29 -.90
2.08 .92 -.87 -.78 0 0 -.87 -.78
3.87 3.21 1.32 .47 0 0 1.32 .47
3.00 3.15 .52 .46 0 0 52 .46
7.42 8.15 1.58 2.63 0 0 1.17  1.30
7.18 8.04 1.32 1.83 0 0 77 1.30
3.34  4.46  1.59 2.77 0 0 1.37  1.28
5.38  4.42 1.45 1.89 0 0 90 1.44
3.09 4.21 1.61 2.65 0 0 1.48  1.28
5.14 4.17 1.52 1.92 0 0 99 1.50
9.97 9.87 1.56 2.77 0 0 1.21  1.27

10.77 9.73 1.33 1.83 0 0 78 1.32
3.03 3.11 .45 -.83 0 0 -1.32 -1.61
3.83 2.93 -.48 -.10 0 0  -1.26 -1.50
7.81 8.11 1.58 2.76 0 0 1.22  1.30
7.98 7.98 1.35 1.85 0 0 .80 1.34

14.67 15.28 4.83 7.28 .02 1.16 2.32 4.19

13.48 15.24 5.01 7.56 .58  .31° 2.35 2.10
7.37  8.37 4.88 6.40 .01 1.15 2.09 3.07
8.47 8.41 5.00 7.63 .58 .31 3.00 2.16
6.70 7.70 4.93 6.05 .01 1.15 2.29 2.85
7.79 7.74 5.05 7.26 .58 .31 3.09 2.27

16.37 16.14 4.82 6.51 .02 1.16 1.81 3.13

16.22 16.08 4.73 7.98 .58 .31 3.18 2.08
3.16 3.05 4.02 4.75 .07 . 1.27 .36 1.85
3.37  2.96 4.20 5.87 .64 .38 1.59 .70

13.05 13.22 4.87 6.90 .02 1.16 2.02 3.36

12.26 13.17 4.99 8.17 .58 .31 2.90 2.12

21.50 23.27 2.29 .33 -7.36 -5.75

20.48 23.52 m ©  -7.36 -4.68

11.76  15.12 1.65 2.28 1.42 1.04

13.80 13.00 .73 5.23 .73 7.24

10.42 13.78 1.65 2.27 2.58  5.03

12.55 11.66 .72 5.22 2.39 5.57

23.32 24,97 .19 -1.20 -6.53 -7.14

22.97 22.71 1.77  2.72 -6.06 -4.36
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. (4) (4) 4y - (4 (4) 4) 4) (4)
Mg Kgy  Kygo EKpp Kyt K Kyt Kpyt Kz
8 5 4.51 6.77 1.75  2.37 2.24 2.14

5.78 4,52 .83  5.30 1.32 5.64

6 18.12 20.61 1.67 1.36 -=3.35 =3.07

18.39 18.45 .73 6.76 -4.18 .68

Each entry in Table 1 is double, corresponding to two runs of the

experiment, with different pseudo-random sequences. Table 2 gives

the values of % , computed according to (99), and the correspon-

TknM
ding numbers of function-evaluations, hianWinM'
TABLE 2: Number of function-evaluations.
= 1 2 3 4 1 2 3 4
u P s knit "skmt Vi
2 20 30 20 30 600 600 600 600
4 4 10 6 10 600 600 600 600
6 2 4 3 5 1260 560 630 600
8 2 2 3 600 720 600

Since, on the one hand, actual errors may not reflect the standard
deviation of a random variable; and, on the other hand, when % is
small (e.g., 2, 3, 4, 5, 6, above), the sample variances may be
quite inaccurately estimated; it is clear that considerable vari-
ations may be expected, as was observed. Using the asymptotic
formulae (73), (74), (77), and (92), we may compute theoretical

values for the logarithmic efficiency-ratios: these are listed

in Table 3.
TABLE 3: Theoretical logarithmic efficiency-ratios.

4) (4) (4)

M Kl K2 K3

2 .426 0 .426

4 2.010 0 1.334

6 5.198 .433 2.359

8 1.528 3.435
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It will be observed that agreement is really quite good; and it is
clearly indicated that the relative efficiencies of the four anti-
thetic transformations £, ¥, #, and X are as asserted in rules (a),
(b); and (c) of §7. The entries under Kig) clearly confirm the
superiority of all four antithetic transformations; as compared
with crude Monte Carlo., It is a relatively easy matter to compute

the theoretical logarithmic efficiency-ratios X for j =1, 2,

0 knM
3, and 4 (it was not attempted for j = 5 and 6!) The results are

given in Table 4 below.,

TABLE 4: Theoretical logarithmic efficiency-ratios,

v fl f2 fS fﬁ

2 1.867 -.570 -.602 1.981
4 7.218 2.411 2.146 7.525
6 14.463 6.453 5.744 13.913
8 o 11.312 9.919 20.890

Again, agreement is as good as can be expected, and the general

trends are clear.

We reiterate that a X-value of, say, 5 means that the anti-
thetic transformation yields an efficiency 100,000 times bigger
than does crude Monte Carlo: that is, the same standard deviation

is obtainable with 1/100,000 of the number of function-evaluations!

In the second experiment, consideration was restricted to the
transformations EM (for¥ =1, 2, 3, 4, 5, 6, and 7.) Only the
functions fl’ f}, fé, and fﬁ were tested; because of the relative
simplicity of their theoretical properties, with which the experi-
mental results could be compared. In this experiment, the values
of the parameters k and n, and the pseudo-random sequence, were
varied. First, as we already observe in Table 1, the clear
superiority of Tajan
the ratio of the efficiencies, both effE and effv, increasing

over ﬂ?k is seen in all the results, with
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sharply with increasing M. (The efficiency of the antithetic
estimate exceeded that of the crude estimate in 430 comparisons,
out of 448 made. All exceptions occurred among the 224 cases with
k = 100 — in the other 224 cases, k 2 250 —— 13 times for ¥ = 1,
4 times for ¥ = 2, and once for ¥ = 3. This is clearly a matter of
random fluctuation.) Since Table 1 already illustrates this, the
additional results are omitted hére, for brevity [the author will

be glad to supply them in detail to any interested reader.]

The principal purpose of the second experiment was to test
the accuracy of the asymptotic formula (89) and of the efficiency
measures used. By (89) and (100}, we see that

-1 21
ofE[LE,F.] { }

5.
A, 17

Now, we know that |le = 1/6, |B,] = 1/30, |B¢| = 1/42, |Bg| = 1/30,

[Blo| = 5/66, lBlzl = 691/2730, and |B14l = 7/6 [see Abramowitz

and Stegun (1964) p. 810, or Jahnke and Emde (1945) p. 272 ——

@n! 2
13, @ -1

(114)

the reader is reminded of the notational remarks in relation to
(23) and (24).] Thus we may compute the coefficients in the curly
bracket {-} of (114): these are given in Table 5,

TABLE 5: Coefficients in relation (114).

E

coefficient

12

960

276480

330301440
1620224457166,5*
32253799671384000*
2587722246048300000000*

NOYUT B RN e

* Note: these numbers are not integers,

For the functions f3 (d =1, 2, 3, 4), we may directly calculate
the differences AM~1° Using (94) and (95), it is easy to verify
that
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7LD (2) = 7x6 x5k x @) 277V, \

fzowal)(z) = 20x19x ... x (21-4) 207,

fzuwal)(z) - 20M eZOz/(eZO - 1), Fo(115)
. (-1) W/2 M s az)/sin 4 if M is odd,

fa (2) =(L~1)M/2 M sin(4z)/sin 4 if M is even; |

whence we see that
AM-lfl = T7%xX6%X,,.x(8-M) ifM<< 6, =0 ifM=7,

%‘1-»13&2 = 20x19x%x ... x (21-M),

A, fs = 207, L (116)
(1) #1/2 M oo 4 - 1y/sin 4 if M is odd,

Aty = M/2 M
(-1 4

Using this information, it is possible to compute the right-hand

]

if ¥ is even. |

side of (114); while the Monte Carlo estimates obtained in the
experiment yield values of effE and effv° Table 6 presents the

logarithmic ratio of the efficiencies to the asymptotic formula.

TABLE 6: Logarithmic ratios of estimates of

efficiency to formula on right of (114).

Mok n h F=1 J=2 j=3 j=4
E v E- V E v E v

1 100 4 25 -,11 .19 -,15 .31 -,13 .33 .25 151
17 -.08 12 -.02 .13 -.01 .33 -.062
2,60 .00 2.36 .11 2,40 .12 3,69 -.02°

10 10 17 -.15 .05 -.14 04 -.14 29 =.14

250 4 63 2.84 .05 1.33 .17 1,34 .18 1.07 .03
10 25 2,93 -,00 2.52 .02 2.51 .02 3.40 -.01

5000 10 500 -.06 .01 .09 .02 .11 .03 -.14 .02
10000 20 500 -.09 .01  -.02 .01  -.02 02 =-.13 .02

2 100 4 8 .07 .02 -,17 .30 -.,12 .37 -.,28 -,15!
.79 -.21 .50 .21 .54 .28 .63 =-,292
-.03 .04 1,46 .15 1,93 .20 =-.07 -.13%

10 3 -.68 .83 =-.51 .49 -.47 .46  -.68 .71
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k n h J=1 j=2 J=3 j=4
E v E ' E v E v

250 4 21 .99 -.02 1.40 .23 1,53 .29 .87 -.15
10 8 -.13 .06 .09 .05 JA5 .06 -.12 .02
5000 10 167 .27 .01 -,04 .03 -.05 .05 13 -,02
10000 20 167 .37 .01 15,01 12 .02 .29 .00
100 4 4 -.29 .43 .92 .45  1.43 .45 -.46 03!
.60 .69 13,01 .23 ,06 2.78 822
1.00 -,17 -,31 .22 -.28 .38 .52 -,153
10 2 2,37 -,01 .29 .06 .17 .10 1.20 -.01
250 4 9 .97 -.10 .22 .12 27 .22 2.09 -.14
10 4 3.00 -.16 .34 -,14 .19 -.11 .86 -.13
5000 10 71 1.56 -.01 .65 .03 .57 .06 4,16 -.03
10000 20 71 1,91 -,02 1.10 -.00 1.00 .01 2.97 ~-.02
100 4 2 -,46 .91 -.34 1,80 -.13 1.51 =-.77 1.43!
-.54 3,12 .27 1,67 .84 1.73 -,66 1,85%2
-.57 1,96 19 .49 .68 .52  -.67 693
10 2 -,58 6,11 -,49 1,09 -.41 .91 -.60 1.75
250 4 4 -,64 .79 .05 .34 .50 .34 -.77 .56
102 .58 6,11 -,49 1,09  -,41 .91 -.,60 1,75
5000 10 33 .32 -.01 .16 .02 .16 .05 .18 -.05
10000 20 33 .35 -,01 .23 -.00 .21 .01 .28 -.02
100 4 2 -,08 .63 .46 .68 .18 .95 -.42  .81!
2.00 1.36 -.29 2,12 -.25 2,93 .60 1.332
1.63 .20 -,28 .90 -.23 1,55 .75 173
100 10 2 3,37 .21 .32 .30 .09 .38 1.22 .21
250 4 2 1,63 ,20 -.28 .90 -.23 1,55 .75 .17
10 2 3.37 .21 .32 .30 09 .38 1.22 .21
5000 10 16 2.63 -.04 2.44 .00 2.05 .04 2.17 -.06
10000 20 16 2,50 -.04 5.91 -,03 3,41 -.02 2.24 -.05
00 4 2 -.32 .8 -,39 1,63 -.05 1,21 -.78 1.88!
-.58 3.33 .04 1.63 .95 1,67 -.70 1.802
-.55 2.52 .10 .53 1,03 .57 -.64  .65°
10 2 -,58 2.00 -.47 1.17 -.36 .89 =-.59 1.22
250 4 2 -,55 2,52 .10 .53 1,03 .57 -.64 .65
10 2 -,58 2,00 -.47 1,17 -.36 .89 -.59 1,22



M k n h F=1 J=2 §=3 j=4
E Vv E Vv E A% E Vv

6 500010 8 -.30 .05 -.,10 -,01 09 -.,00 -.07 =-.06
10000 20 8 -1,50 -1.54 -.24 02 -.18 01 =-2.80 ~2.49

7 100 4 2 0 0 .65 .63 11 1,02 -.33 74!
0 0 -.28 1.86 =.27 2.91 1.30 o 2

0 1 -.25 .81 -,23 1.87 45 -.063

10 2 1 0 42 .33 .07 .45 -4.67 -3.80

250 4 2 0 1 -.25 .81 -.23 1,87 .45 -.06

10 2 1 0 42 .33 .07 .45 -4.67 -3.80

5000 10 4 1 0 .60 -,05 14,02 -4.22 -4,13
10000 20 4 0 0 -.35 .30 .93 .10 -11.11 -9.34

23 Note: These three lines represent runs made with different
pseudo-random sequences., All other runs were made with the same
sequence as lines marked (%).

These results show generally good agreement. The ideal entry
would be log10 1 = 0. It will be observed that effv tends to be
worse than effE when A is small, and better when % is large. As
might be expected, the ratios improve as k, n, and M increase; since
both the statistical estimates and the asymptotics improve. How-
ever, for large k and M, especially for odd values of ¥ and for fﬁ’
the effect of cumulative round-off errors is seen to worsen the
ratios. It may be noted that only 145/448 =~ 32% of the entries are
negative: this is a slight indication that actual efficiencies may

tend to be better than the formula (114) suggests.

9. PROGRAMS.

We conclude this paper with a listing of the routines which
compute the Monte Carlo estimates and which generate the various

antithetic transformations.

The language used below is rather like BASIC or FORTRAN: the
usual arithmetic operations are used, and variables are denoted by

strings of (lower-case or capital) Roman letters. We use < for
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assignment [the instruction ‘V <« expression’ copies into the memory
location denoted by the variable ‘V’ the value computed for the
‘expression’ givenl; ‘+°, ‘=’ ‘*° ¢/’ and ‘4’ for additiom,
subtraction, multiplication, division, and expomentiation, respec-
tiVeiy; and we adopt the usual hierarchy of precedence of these
operations, with 4+ first, then * and /, then + and -, overridden,
as usual, by parentheses (). MAX(x,y) computes the (algebraically)
greater of the expressions denoted by x and y; FL(z) computes the
floor function of z; SQRT(u) computes the (non-negative) square
root of the expression u; f(j,v) computes the value of f;(v) for
0O<vs<landyj =1, 2, 3, 4, 5, 6, as required; and RND computes

the next number in a pseudo-random sequence.

The Monte Carlo routine follows:

value « correct value 0 [if known]
_ h « number of random samples to be taken

R+«0 [sum for estimate]
T+«0 [sum for variance]
FOR s =1 T0 h
X < RND
g « estimator(i,x)
R-<-R-+-g
IF s>1 THEN T« T+ (s/(s-1))*(R/s - g)42
NEXT s
estimate « R/h [estimate of value 0]
error « estimate - value [Zf value is known]
svar < T/(h*(h-1)) lestimate of variance of estimate]

stdev « SQRT(svar) [standard deviation]

IF error # 0 THEN effE « 1/(h*error+2) ELSE effE « 0

IF svar > 0 THEN effV « 1/(h*svar) ELSE effV « 0
[estimates of efficiency]

Comments are given in brackets []. In the case of c¢crude Monte Carlo,
i = 0 and estimator(i,x) = f(j,x). For the E transformation, i = 1

and the corresponding estimator routine is:

h < MAX(2,FL((k/(n*(24M - 1))) + (1/2)))
and estimator « 0
FORr=1T0M
sum + 0
step « 1/(n*24(r-1))
y * x*step
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FOR s = 1 TO 1/step
sum + sum + f(j,y)

y <y + step
NEXT s
estimator « estimator + sum*step*lambda(M,r)
NEXT r
Here, lambda(M,r) computes the coefficient XMTD We note that, by
(43), we have that nﬁﬁzp~l = ﬂ%zpﬂl, and the terms of ﬂhEM are

computed accordingly, from (80). For the ¥ transformation, i = 2

and the corresponding estimator routine is:
h <« MAX(2,FL((k/(2*n*(2¢(M/2) - 1))) + (1/2)))

and estimator <« 0
FOR r = 1 TO M/2
sum < 0
step « 1/(n*24(r-1))
y <« x*step
FOR s = 1 TO 1/step
sum < sum + f(j,y) + f(j,1-y)
y <yt step
NEXT s
estimator « estimator + sum*step*mu(M,r)
NEXT r
estimator <« estimator/2

Here, mu(M,r) computes the coefficient Hype Again, we use the fact

that L X = 3 . For the ® transformation, 1 = 3 and the
Pt ppt

estimator routine is:

h < MAX(2,FL{(2%k/(n*M*(M + 1))) + (1/2)))

and estimator « 0O
FORr =1TOM
sum <« 0
step « 1/(n*r)
Yy < x*step
FOR s = 1 TO 1/step
sum <« sum + f(j,y)
y <yt step
NEXT s
estimator « estimator + sum*step*alpha(M,r)
NEXT r

Here alpha(M,r) computes the coefficient @

that ﬁnﬁp = ﬂnp“ The same identity also applies to the case of the

; and we use the fact
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X transformation, when i = 4 and the estimator routine is:

h < MAX(2,FL((2%k/(n*M*(M/2 + 1))) + (1/2)))

and estimator <0
FOR r = 1 TO M/2
sum< 0 -
step « 1/(n*r)
y <= x*step
FOR s = 1 TO 1/step
sum « sum + f(j,y) + f(j,1-y)
y <y + step
NEXT s
estimator « estimator + sum*step*beta(M,r)
NEXT r
estimator « estimator/2

Here, beta(M,r) computes the coefficient BMro We observe that,
as is indicated by (45) and (80), when i is even (for the F and X

transformations), M must be even too,
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