PARALLEL ALGORITHMS FOR THE EXECUTION
OF
RELATIONAL DATABASE OPERATIONS

by

Haran Boral
David J. DeWitt
Dina Friedland

W. Kevin Wilkinson

Computer Sciences Technical Report #402

October 1980

Parallel Algorithms for the Execution
of
Relational Database Operations

Haran Boral
David J. DeWitt
Dina Friedland

W. Kevin Wilkinson

Computer Sciences Department
University of Wisconsin
Madison, Wisconsin

This research was partially supported by the National Science
Foundation under grant MCS78-81721 and the United States Army
under contracts #DAAG29-79-C-@165 and #DAAG29-75-C-0@24.

ABSTRACT

This paper presents and analyzes algorithms for parallel
processing of relational database operations in a general mul-
tiprocessor framework. To analyze alternative algorithms, we in-
troduce an analysis methodology which incorporates I1I/0, CPU, and
message costs and which can be adjusted to fit different mul-
tiprocessor architectures. Algorithms are presented and analyzed
for sorting, projection, and - join operations. While ~some ~of
these algorithms which are presented and analyzed have been sug-
gested previously, we have generalized each in order to Thandle
the case where the number of pages is significantly larger than
the number of processors. In addition, we present (for the first
time) and analyze algorithms for the parallel execution of update
and aggregate operations.

1. INTRODUCTION

Research on algorithms for database machines which support
massive parallelism in tightly coupled multiprocessor systems
has, for the most part, been "architecture directed". That 1is,
database machine designers usually begin by designing what they
consider to be a good architecture and only afterwards develop
the algorithms to support database operations using the basic
primitives of their architecture. As an example consider associ-
ative disks (or logic-per-track devices) [Slot7@0] from which RAP
[0zka75], RARES [Lin76], CASSM [Su75], and to some extent, DBC
[Bane78] are derived. The basic design goal of the associative
disk design was the efficient execution of the selection opera-
tion to select records which satisfy a certain criterion. Given
this building block, other relational database operators such as
join, project, and update can be implemented with varying degrees

of success (see [Hawt8@]). In general, this is done by combining

the processing capabilities of the host with those of the back-
end database machine. The designers of RAP recognized the limita-
tions of the pure associative disk design and added interconnec-
tions between the processing elements to facilitate processing of
certain inter-relation operations such as Jjoin. On the other
hand, the designers of the DBC started with the recognition +that
an entire database could never be stored on logic-per-track dev-
ices in a cost effective manner. Consequently, they concentrated
on designing a machine to facilitate the use of indices so that
moving head disks with a processor per head instead of a proces-

sor per track could be utilized efficiently.

In this paper, we attempt to back up from the design of any
particular database machine (including DIRECT [DeWi79b]) and take
a fresh look, from a more general perspective, at algorithms for
relational algebra operations which can be executed by multiple
processors in parallel. For each operation (e.g. project) we
will present several algorithms and analyze the performance of
each in terms of general parameters. Since the different algo-
rithms may have different architectural regquirements for an effi-
cient execution, we hope that our results can be used to guide
the design of future database machines. We will not, however,
attempt to present such an ultimate design 1in this paper.
Indeed, the best algorithm for the project operation may require
a different architecture than the best algorithm for performing
update operations. The designer of future database machines may
very well have to weigh the importance of each of the different

operators before choosing an appropriate architecture.

A further intent of this paper is to introduce an analysis
methodology for parallel algorithms. We feel that despite their
theoretical importance, past complexity analyses of parallel
algorithms [Mull75], [Prep78], [Hirs78] have been unrealistic as
they concentrated on a particular aspect of execution (e.g.
number of record comparisons performed in a sorting algorithm).
In this paper, we attempt to provide a realistic analysis of the
algorithms for database operations which takes into account I/0,
CPU, and communications costs.

As the reader will notice, the results presented in this

paper concentrate on efficient parallel algorithms for "complex"

database operations including projection, updates (appends, modi-
fies, and deletions), sorting, joins, and aggregate operations
(both scalar aggregate and aggregate functions). Our results are
incomplete for a number of reasons. First, no parallel algorithms
which employ indices to enhance performance are presented. Up to
this point, we have avoided relying on indices for improving the
performance of database operations for two reasons. The first is
the overhead of maintaining these indices, which can be non-
trivial in a database machine environment. (This is true even in
DBC where special hardware is used [Hsia78]). The second reason
is that, even when parallel algorithms which utilize indices are
developed, occasionally a wuser will perform an operation for
which none of the available indices are useful (it is certainly
unrealistic to maintain a secondary index for each attribute of
each relation). We have thus concentrated on using other tech-

niques to develop efficient algorithms which can be used regard-

less of the query.

A second area not explored by this paper is that of effi- "
cient parallel algorithms for the selection operator. Recent
research [Hawt8@] has indicated that the best (in terms of per-
formance) way of doing selections is to have some sort of
processor-per-track ([Slot70], [0zka75], [Su75]) or processor-
per-head ([Bane78], [Leil78], [Banc8@g]) device. However,
[Hawt80] also demonstrates that a conventional database system
which wuses indices to support efficient processing of selections
sometimes performs as well as a selection-oriented database

machine. In our opinion it is still an open question whether a

parallel algorithm employing a combination of indices and general
purpose processors or logic-per-head devices is the fastest and
most cost-effective solution for processing selection operations.
In fact, just the problems of maintenance and use of indices in a
parallel processor environment is an important area of research.
It is impossible to completely divorce the execution of a
parallel algorithm for a multiprocessor from any architectural
assumptions. Therefore, in Section 2, we describe the properties
of the general multiprocessor organization on which our algo-
rithms are based. We have made our architectural assumptions as
general as possible in an attempt to avoid "architecture
directed" algorithms. In Section 3, we introduce the analysis
techniques and assumptions which we will use to evaluate the dif-
ferent parallel algorithms. Section 4 presents and evaluates
parallel algorithms for updates, sorting, projection, join, and

aggregate operations. Our conclusions and areas for future

research are discussed in Section 5.

2. A GENERAL MULTIPROCESSOR ORGANIZATION

The multiprocessor organization on which our parallel algo-
rithms are based consists of the following components:

1. A set of general purpose processors

2. A multi~-level memory hierarchy

3. An interconnection device connecting the processors with
the multi-level memory hierarchy.

The processors are responsible for executing user queries and
operate independently. Therefore, the processors form an MIMD

(multiple instruction stream, multiple data stream) machine.

Since the multiprocessor organization is intended to serve as a
back-end database machine, one of the processors is chosen to act
as an interface to a host processor (the processor with which a
user interacts). It is the responsibility of this processor to
also act as controller to coordinate the activities of the other
processors. (An alternative organization would be for each pro-
cessor to have its own interface to the host processor. In this
case, the host acts as the controller as well as dealing with
users) . After a user submits a query for execution, the host
will compile the query and send it to the controller for execu-
tion on the database machine.

The memory hierarchy we assume consists of three components.
The top 1level consists of the internal memories of all the pro-
cessors. Each processor's local memory is assumed to Dbe large
enough to hold both a compiled query and three blocks (or pages)

of data. At the bottom level of the memory hierarchy are the mass

storage devices used to hold the relations in the database. The
middle level of the hierarchy is a disk cache which is address-
able by pages. A page of a relation is the unit of transfer
between all levels of the memory hierarchy. The page size 1is
chosen so that a page will constitute both a convenient process-
ing unit and an efficient unit of data transfer. The larger a
page the more efficient communications will be (since larger mes-
sage size implies less overhead for control information). On the
other hand, the page size must remain small enough so that enough
processors, each examining one page, can participate in the

operation (i.e. increased parallelism). In addition, the page

size must be small enough so that a processor can internally
merge sort 2 pages.

The bottom two levels of the memory hierarchy are connected
together 1in a way that allows for data transfers between each
mass storage device and any page frame in the disk cache. The
top two levels of the hierarchy are connected together by an
interconnection device with the following two properties. The
first is that several processors can read or write a different
page of the disk cache simultaneously. The second is the ability
to Dbroadcast the contents of a page frame of the disk cache to
any number of processors.

Several proposed interconnection schemes seem to satisfy
these requirements. The first is the banyan [Goke73] or folded
banyan [Upch8@] switch. While not originally designed to provide
broadcast capabilities, it has recently been shown that this can

be done [Lipo8@]. A second suitable interconnection scheme which

can provide these properties is a cross-point switch, connecting
every page of the cache to every processor. This switch has been
traditionally avoided because of its O(nz) complexity. However,
recent research [Fran8¢] has indicated that for VLSI implementa-
tions the cross-point switch may be superior to the banyan switch
due to 1its regularity. [Dewi79b] discusses a method that
achieves broadcast capability using a cross-point switch.

A third alternative is a very high speed ring connecting
together each processor, each page frame of the cache, and each
mass storage device. To be feasible the bandwidth of the ring

must at least equal the total bandwidth of all processors and

mass storage devices. While probably not feasible with today's
technology, rings constructed with light-pipe technology may pro-
vide the necessary bandwidth.

There are several remaining points which should be men-
tioned. First, the disk cache described above is an integral and
important part of the architecture. The need for such a cache has
been demonstrated by [Hawt80] where it was shown that caching
systems outperform logic-per-track and logic-per-head systems for
"complex" non-linear time operations such as sorting and joins.
It should be noted, however, that the effect of a cache can be
achieved by cacheless systems with an adequate processor-to-
processor interconnection (e.g. XTREE [Desp78]). 1In this sort of
an organization both requirements (parallel transfers of data and
a broadcast facility) can be achieved (broadcasting might have to
be emulated using a store and forward approach). Therefore, our

algorithms appear also to be applicable for these architectures.

In fact, since the disk cache can emulate arbitrary interconnec-
tion schemes such as the binary tree interconnection, a linear
interconnection, or a perfect shuffle interconnection, we feel
that our results can be generalized to any such architecture. It
should be noted, though, that in the analysis of the algorithms
for architectures with direct processor-to-processor interconnec-
tions, the parameters reflecting the cost of writing and reading
a page should be replaced by the cost of transferring a page
between two processors.

A final, very important, point is that both the total memory

of the processors and the size of the disk cache are generally

not large enough to contain a whole relation. Therefore, we can-
not assume that a whole relation can be read from mass storage to
either the processors' local memory or the disk cache before pro-
cessing begins. Consequently I/O costs become a significant fac-
tor in the evaluation of the various algorithms. One consequence
of this (very realistic) assumption 1is that all the sorting

schemes employed must be external sorting schemes.

3. ANALYSIS CRITERIA AND METHODS

After several preliminary attempts to analyze the perfor-
mance of our algorithms, we felt the need for a rigorous defini-
tion of some basic performance parameters. These parameters must
measure the I/0 cost, the processing cost, and the communication
cost for executing an algorithm on a given multiprocessor archi-
tecture. We have identified a number of basic tasks common to
all our algorithms (e.g. reading a page) and have associated a

cost with each. The execution time expression for each algorithm

will be expressed in terms of the costs of these basic steps.
For different architectures, the parameters may have different
values and may relate differently to each other; for example, the
I/0 cost may be more significant than the processing cost for
some architectures, but not for others. Our first basic assump-
tion is that data is moved and processed by page units. We
assume that a full page contains k tuples; C is the cost of a
simple operation such as comparing two attributes or performing
an addition; and the cost of moving a tuple inside a page 1is V

time units. We have chosen to represent fixed costs by capital

letters. Other parameters (for example, the number of pages to be
read) are represented Dby lower case letters. The basic tasks
used in evaluating the performance of our algorithms are:

(i) 1/0 cost: A read request moves a page into a processor's
memory from either the cache or one of the mass storage units. A
write request always moves a page residing in a processor's local
memory to the cache. We denote the cost of a mass storage to
cache transfer by Rm and the cost of a cache to processor
transfer by Rc‘ An upper bound for the read cost is achieved by
assuming that all read operations are from the mass storage dev-
ice (i.e the cost of any read is Rm+Rc). A lower bound results
from assuming that all read operations are from the cache, in
which case a read cost is R,. To simplify our analysis we assume
a certain hit ratio for the cache, denoted by H. To achieve a
good hit ratio, the cache manager should use an appropriate

replacement algorithm and a prefetching strategy. It should be

noted that one cannot expect a hit ratio as high as for a main
memory cache (.95 for many known implementations) since this is
achieved on the Dbasis of the program locality principle. How-
ever, since the entire relation is to be referenced in processing
a query (recall that there are no indices), the reference string
is known and pages can be prefetched from the mass storage dev-
ices to the disk cache. Given the values for R, R,» and H we
can calculate Cr’ the average cost of a read by a processor:
C.,=H *R_+ (1-H) * (R, + R)

Similarly, in order to calculate the average cost to write a

page, we assume that H' is a fraction describing the amount of

1@

time a free page frame will be available in the cache during a

write operation. Thus, C,s the average cost of writing a page
is:
= % ! *
c,6=H R, + (1-H') * (R, + R)
(ii). Scan cost: If a page 1is to be scanned, the scan 1is

sequential The number of tuples in the page is assumed to be k.
Thus, the scan cost CSc is computed as:
Cse =k * C

(iii). Merge cost: If two sorted pages are to be merged the
number of tuples in each page is assumed to be k. Since all our
operations require internally sorted pages (see Section 4.1) both
pages will already Dbe sorted and thus the worst case number of
comparisons required to perform the merge of two sorted lists of
length k is 2k [Knut75]. The number of tuples to be moved is

the same. Thus, C_, the cost of merging two pages is computed as:

Cm = 2k * (C + V)

(iv). Page reorganization cost: There are two cases when a page

must be reorganized to keep the tuples in sorted order. The
first case occurs after the application of an update operation
which modifies the attribute on which the page is sorted. We
assume that the reorganization consists of both tuple comparisons
and movements and expect that, on the average, half of the tuples
in the page will be affected. As before, a page 1is assumed to
have k tuples. We compute CO, the reorganization cost as follows:
Co=(k* (C+V)) /2

The second case occurs when a buffer containing new tuples

(e.g. the result of a projection or a page of an intermediate

11

relation) is to be used in a subsequent operation. Since all our
operations require internally sorted pages, the page must be
sorted before it is written to disk. We assume that the new page
has %k tuples (though in some cases this number may be smaller)
and that, on the average, internal sorting of a page would
require k 1log k comparisons and moves. Thus, cso’ the cost to
internally sort a page 1is:
Cio = k log k * (C + V)
For our analysis of project, sort, and join algorithms we

found it convenient to group some of the above parameters and to

define the following "2-page operation":

2
P

is the cost of a "2-page" operation, which consists of reading 2

C, =2C_ + C_ + 2C,
sorted pages, merging them, and writing the resulting sorted
block of 2 pages.

(v). Communication cost: Since transfers of pages are con-

sidered as I/0 operations, the cost of communication includes
only the page request and reply messages plus the control mes-
sages between the controlling processor and the other processors.
When a processor wants to read or to write a page, it sends a
request message to the controller specifying the relation name
and the page number. The controller replies by sending to the
processor a cache frame number. We shall include the cost of the
request and reply messages in our definition of page read and
write operations, 1.e we shall replace C. by Cr+c(request
message)+C(reply message). Therefore, the remaining communication

cost of an algorithm can be measured by the number of control

12

messages sent required by an algorithm. Examples of control mes-
sages are messages necessary to allocate processors to an opera-
tion, synchronization messages indicating the end of a phase, and
the initiation of a new phase during the execution of an algo-
rithm. Since the number of control messages is small compared to
the number of I/0 messages and since these messages are short
(they contain only a few words of information), we are neglecting
them when we compare the cost of several algorithms.

Another important evaluation measure of a parallel algorithm
is its efficiency. By efficiency we mean a measure of the effec-
tive processor utilization. For example, an algorithm may request
P processors at initiation time but some of these processors may
remain idle until the algorithm has reached a certain stage. An
algorithm may also require that a processor that has been active
for some time become idle for a short period. While total execu-

tion time is one measure of the cost of a parallel algorithm, we

are also concerned with the total amount of processing resources
consumed by the algorithm. The efficiency of an algorithm is
then defined as the ratio of the time the processors are busy
over the time the processors are reserved (i.e. busy plus idle
time). A high degree of efficiency is especially significant for
parallel algorithms for MIMD organizations since idle processors

can be used either by operations which do not have their optimal

allocation of processors or to initiate new operations.

13

4. PARALLEL ALGORITHMS FOR DATABASE OPERATIONS

In this section we present and evaluate parallel algorithms
for update operations, sorting, projection, join, and aggregate
operations using the analysis techniques described in the previ-

ous section. Each algorithm presented is intended to handle the

general case where the number of pages to be processed is signi-

ficantly larger than the number of processors available. We begin

with a presentation of a set of update algorithms which maintain
each page in sorted order. Since sorting will be used as a basic
step in the project, Jjoin, and aggregate operations, it 1is
presented second. Finally, the project, Jjoin, and aggregate

operations are presented.

4.1. Update Algorithms

Many of the retrieval algorithms presented in the following
sections rely on the property that each page is sorted on some

attribute or group of attributes. Permanent relation pages are

sorted on the relation key. It follows then that any update algo-
rithm must keep the pages sorted. A second property that must be
preserved is that no duplicates are introduced as a result of an
update. We show that our algorithms do indeed preserve these
properties. We shall also present an analysis of one algorithm's
complexity.

We consider three update operations: delete, append, and
modify. Each operation specifies a relation to be updated and a
qualification clause specifying which tuples of the relation are

to be affected. For example: Delete emp where emp.eno < 153.

14

However, there may be cases where the selection criteria for an
update operation 1s more complex than a simple selection. For
example, suppose we wanted to delete all employees whose employee
number 1is less than 153 and the department in which they work is
not the toy department. The query would be expressed as:

Delete emp where emp.eno < 153 and
emp.dno = dept.dno and dept.name l!= "toy".

Here we have to restrict both the employee and department rela-
tions according to the selection criteria, perform the join, and
then apply the delete operation to the employee relation using
the values produced by the join as the deletion criteria.

We term these two kinds of qualification clauses simple and
complex. A simple qualification is one that may be applied in a
single scan of the relation. A complex qualification is one
which requires us to perform some inter-relation operation(s),
(e.g. Join) in order to determine the tuples to be updated. The

algorithms presented below handle Dboth simple and complex

updates.

For consistency reasons, we assume that updates are atomic
operations. That 1s, an update either successfully terminates,
or in the event of a crash or abort, does not affect the stored
database. One reason for aborting update operations is the

introduction of duplicates into a relation.

4.1.1. Delete
A deletion operation is, in effect, the negation of a selec~
tion. If the qualification is simple, no pre-processing 1is

required. Each processor executing the deletion will request

15

pages of the source relation from the controller for examination.
Tuples satisfying the deletion criterion are removed from the
page and the page 1is compressed and flushed out to the buffer
memory. The controller is informed of the size of the new page
and stores it as a new page of the relation.

Complex deletes require a pre~processing step to determine
the set of tuples to be removed. The set produced is a list of
database keys (henceforth referred to as Q) which must be distri-
buted to the processors which perform the deletion. One possi-
bility is to include Q with the compiled code for the deletion.
The controller could attach Q to the code segment as a data
structure. This approach would be feasible if the size of Q 1is
small (a page or less). If Q is large its pages can be broadcast
to all the processors that have pages of the source relation.
Each processor would perform a modified merge of its source page

with every page in Q. The modified merge would consist of delet-

ing a tuple from the source relation page if a key value in Q
matches the tuple's key. As in simple deletes, modified pages
are written out as new pages of the relation replacing the

corresponding source page.

4.1.2. Append

A simple append is one in which a small number of tuples are
to be appended to a relation. The simple append begins with the
controller deciding where to add the additional tuples, based on
the density of the pages in the relation. The processors first

search for duplicates of those tuples to be appended. If dupli-

16

cates are found by any of the processors, the controller is
informed, the operation aborted, and the relation restored to its
pre-operation state. If no duplicates are found, tuples are then
added to the pages designated by the controller. A page chosen
for appending will have to undergo reorganization to preserve its
sort order.

Complex appends are executed in a similar manner to complex
deletes. After the list of tuples to be appended has been gen-
erated, the processors search for duplicates using the modified
merge described above. If the number of new tuples is small they
are added to designated pages. Otherwise, the new pages are added

to the relation's page table at the end of the operation.

4.1.3. Modify
There are two cases to consider for the modify operation.
In the case that the modified attribute(s) does not contain the

relation key (or part of it) we are assured that no duplicate

tuples will result from the modify. In this case each processor
would execute the same code as the simple delete, applying the
modification to matching tuples rather than deleting them. The
same analogy holds for a complex, non-key modify. ©Note that no
page reorganization is required since the page is sorted on the
relation key which does not include the modified attribute(s).

In the case that the query modifies some part of the key,
the algorithm must check for duplicates. To do this we must have
a list of the new key values and check the source relation for

duplicates using this list before we apply the update. Our algo-

17

rithm works in a similar manner to the algorithm for non-key
modifies with one exception. When a tuple to be modified is found
the processor deletes that tuple from the page and writes the
modified tuple into a separate buffer. After all the pages of the
relation have been scanned, each page containing modified tuples
is sorted on the relation key. The new pages are then broadcast
to all processors that contain source relation pages to check for
duplicates. As in the other update operations, if duplicates are
found the operation is aborted. Otherwise, the new pages are
added to the source relation page table.

As the update algorithms are all quite similar we shall pro-
vide a performance analysis of only one of them. We chose to
analyze the simple key modify since it is one of the more compli-
cated algorithms and it has elements that appear in all the oth-
ers. The execution time of the simple key modify by p processors

is given by the following formula:

= * 1 2
T, = (n/p) * ([Ty1 + [T7D)
stagel stage2
where:
1 _ : *
Ty =C,. + Cgqo + Cy + C, + (3/k) (cSO + cw)
and

T2 =c_+ 1' * (Cp + Cp)

In stage; each processor examines (n/p) source relation
pages, looking for tuples matching the qualification (Cr + csc)'
We assume that on the average j such tuples exist in each source
relation page. Each page containing qualifying tuples needs to be

reorganized (CO) and written out (Cw) after the matching tuples

18

have Dbeen moved to the buffer. Finally, the new tuples need to
be SOrtéd ((3/k) * C.o) and written out ((3/k) * c,) -

In stage2 the processors search for the possible introduc-
tion of duplicates into the relation. Let 1' denote the number
of pages containing modified source tuples. Then each processor
reads a page of the source relation and all of the 1' pages. The
processor performs the modified merge described above. Finally,
if no duplicates are found, the 1' new pages are added to the
source relation page table.

We conclude this section by observing that all the update
algorithms operate in linear time. That is, given p processors,
each algorithm would be executed by the p processors in n/p
"basic" time units (Note that the basic time unit used in the
algorithm for one operation may differ from that wused by the

algorithm for another operator).

—4.2. Parallel Sorting Algorithms

In this section we present three parallel sorting algorithms
and analyze the performance of each. The algorithms, the "pipe-
lined merge" sort, the "parallel ©binary merge" sort, and the
"block Dbitonic" sort, were only three of a number examined. Our
analysis has shown that the performance of the last algorithm is
generally best. Although we will demonstrate that the performance
of the first algorithm is significantly inferior to the other
two, it is included because it has properties which make it use-
ful in the context of the execution of an entire query.

Unlike other analyses of parallel sorting algorithms

19

[Baud78], [Thom77], we do not assume that the relation to be
sorted initially resides in the processors' main memory, nor that
the algorithm may terminate when the sorted relation can be
obtained by gathering, in a specific order, the blocks of data
from these memories. We assume that the number of processors
allocated to the sorting operation, p, will, in general, be much
less than the number of pages in the relation, n, and that n is

larger than the total memory of the processors and the size of

the disk cachel. Therefore, we only consider external sorting
algorithms (i.e. algorithms where the relation is read in succes-
sive blocks and sorting is done in a number of phases each of
which terminate with their output in temporary buckets).

The relation to be sorted is stored as a set of pages each
of which is individually sorted with respect to a prespecified
key (see Section 4.1). Generally the relation resides on one or

more mass storage devices when the sort is initiated. However,

portions of it may be in the disk cache at that time due to the
relation's use 1in another, concurrent, operation. Similarly,
when the algorithm terminates the relation 1is returned to the
mass storage device. During intermediate phases of the algorithm,
temporary relations are created, and pages of these relations are
transferred to the processors under the controller's supervision.

For some of the sorting algorithms, sorted "runs" of several
pages are formed and a processor has to merge 2 runs of i pages

each and output a sorted run of 2i pages. Since we assume that

Lro simplify the analyses of all three algorithms, we have as-
sumed that n and p are both powers of 2

20

the size of each processor's main memory is only three pages,
this operation requires that for runs larger than one page (i>1)
that the processor must execute an external merge. For this
case, the controller must maintain control tables which enable it
to transfer entire runs, one page at a time, to a processor in
the order necessary for a 2-way merge of 2 runs. The controller
supervises and coordinates the reading and the writing of single
pages by the processors. Thus, at any time, a processor merges
two pages residing in its two input buffers into a single page
output buffer. When one of the input buffers has been completely
scanned, the processor reads into this same buffer the next page
of the appropriate run. When the output buffer fills up, the pro-
cessor requests from the controller a "new page" and transfers
the contents of the output buffer to the cache. The new page is
an appropriately numbered page of a temporary relation. This page

will serve either as an input relation for the next phase of the

sort or as a page of the result (sorted) relation. It follows
from the above argument that a processor can merge sort 2 runs of
i pages each in i*Cg operations (using the notation defined in

Section 3).

4.2.1. Pipelined Merge Sort

Description:

The processors assigned to the sort operation are 1labeled

Pl' Por eees P and are logically organized as a linear pipe-

pl
line. Each processor performs a 2-way merge operation of pairs of

sorted runs produced by its predecessor in the pipeline as shown

21

in Figure 1. During the first pass through the pipeline, proces-
sor Pi+l merges pairs of runs of size Zi pages produced by Pi
into runs of size pi+l, Therefore, if 2P=n the relation can be
sorted in one pass through the pipeline. Otherwise, (i.e. if
p<logn), additional phases are needed: each phase (except perhaps
the last) requires a pass through the entire pipeline and
increases the size of the sorted runs by a factor of 2P, In
order to achieve a maximum degree of overlap between stages of
the pipeline, processor Pi+1 can begin execution as soon as pro-
cessor Pi has written a first run and is ready to write the first
page of a second run. At this point, the writing of pages from
the second run by processor Pi can be overlapped with their read-
ing by processor P.+1 since the disk cache is used by all proces-
sors. This ability to overlap writing and reading of the same
run is what distinguishes our algorithm from Even's parallel tape

sorting algorithm [Even74]. Note that each processor, at any

stage in the pipeline, does the same amount of work: n/2 c?
operations. What changes from one processor to another (and from
one phase to another) is the time at which a processor can begin
execution. This algorithm also has the property that it can
accommodate a dynamic allocation of processors by the controller:
at the start of a new phase, additional processors can be
assigned to speed up termination of the sort, if they have become
available.
Analysis:

In the optimal case, i.e p=logn, the last processor on the

pipeline merges two runs of length n/2 pages. Processor Pi+l

£d

sabed g pue S10sSS8001d §

R A

3108 abisaw pauriadid

T sanbrtg

Ty
anTeA 9yl suiejuodo abed puooss
3yl pue ,e, oniea syl surel

-Uuo0d uni syl jo sbed 35113 9UL
*sebed | 7 30 uni e sjuassasidsa |ejqg

(rT) (11) (A1)
el lo vls] |18

7N\

(ed [td 2 [0] EE [
b _m AAREE

22

starts processing after Pi has written a whole run and is ready
to write the first page of a second run. Thus, Pi+l begins 21t~

1 2
+1/2 C
/ P

time units after P (getting a page ready for output
requires approximately one half a 2 _page operation). This implies
that the last processor Pp starts processing after time:

142422+, . +2P7 24 p/2 = 2Pl 14 (p-1)/2
and then it has to merge the last 2 runs in n/2 time units.
Thus, for p = logn, we conclude that execution time of the algo~
rithm is:

n+(logn-1)/2 C; operations

For the case p<logn, we divide the execution into [(logn)/pl

phases. In phase j, processor Pi mimics the action of processor
P(j—l)p+i if logn processors were available. An important point
to realize 1is that Pl will be able to start execution of phase

j+1 as soon as it has finished the execution of phase j, regard-

less of the values of p and n. We prove this statement for j=1

as follows. For any j, Pj begins execution at time 23_1—1+(j~

1)/2. Suppose we had p+l rather than p processors, then Pp+l

would begin its execution at time 2p-l+p/2. Each processor, in
particular Pl, takes n/2 time units to execute its share in each
phase. Thus, Pl finishes execution of its share in phase 1 at
time n/2. Since p<logn, P, would have to mimic Pp+l in an optimal
pipeline, that is Pl should read the runs of size 2° produced by
Pp, and merge sort them by pairs. The first page of the second

run produced by P_ appears at time 2p—l+p/2, but Pl is not ready

P
for it Dbecause n/2>2P-1+p/2 for p<logn-2. Therefore the second

phase starts n/2 time units later than the first phase. our

23

argument can easily be extended to any phase, to show that phase
(i+l) starts n/2 time units after phase i has started. Thus, we
see that the cost of the algorithm with less than an optimal
allocation of processors is:

((logn/p)=-1)*(n/2) + Cost of last phase

Let k=logn/p.2 Then the size of the first run in the last phase
is 2{k"1)P 413 the cost of the last phase is:

o(k=1)p 5 (k-1)p+l, Lo (k-1)p+(p-2) , (p~1)/2 + n/2
which reduces to:

n + (p-1)/2 - n/(2F)
Thus, the total cost of the algorithm is:

(nlogn)/2p + n/2 - n/(2P) + (p-l)/z C; operations

4.2.2. Parallel Binary Merge Sort

Description:

In this section we describe a merge sort algorithm which

utilizes both parallelism during —each phase —and pipelining
between the phases to enhance performance. In [Bora8gal, a
binary merge sort without pipelining of the phases was analyzed.
The parallel binary sort algorithm presented below represents a
significant improvement.

Execution of this algorithm is divided into three stages as
shown in Figure 2. We assume that there are at least twice as
many pages as processors. The algorithm begins execution in a

suboptimal stage in which sorting is done by successively merging

2 We assume that n=2KP for some integer k. Otherwise, the last
phase may not require the use of all the processors.

12 15 2 5

8
SUBOPTIMAL
STAGE
OPTIMAL
STAGE

(0
9 \ POSTOPTIMAL

6 [STAGE

Pl

Figure 2

Parallel Binary Merge
with
4 Processors and 16 pages

24

pairs of longer and longer runs until the number of runs is equal
to twice the number of processors. First, each of the p proces-
sors reads 2 pages and merges them into a sorted run of 2 pages.
This step 1is repeated until all single pages have been read. If
the number of runs of 2 pages is greater than 2*p, each of the p
processors proceeds to the second phase of the suboptimal stage
in which it repeatedly merges 2 runs of 2 pages into sorted runs
of 4 pages until all runs of 2 pages have been processed. This
process continues with longer and longer runs until the number of
runs equals 2*p.

When the number of runs equals 2*p each processor will merge
exactly two runs of length n/2p. This phase is called the
optimal stage. At the beginning of the postoptimal stage the
controller releases one processor and logically arranges the
remainder as a binary tree (see Figure 2). During the postoptimal

stage parallelism is employed in two ways. First all processors

at the same level of the tree (Figure 2) execute concurrently.
Second, pipelining is used between levels in a manner similar to
the pipelined merge sort (described in the previous section)
except that each processor outputs a single run rather than two
or more. By pipelining data between levels of the tree, a parent
is able to start its execution a single time unit after both its
children (i.e. as soon as its children have produced one page).
Therefore, the cost of the postoptimal stage will be a 2-page
operation for each level of the tree plus the cost for the root

processor to merge two runs of length n/2.

25

Analzsis:

If p=n/2, there is no suboptimal stage and the processor at
the top of the binary tree waits log(n/2) units of time before it
starts merging 2 runs of size n/2. Therefore, the algorithm ter-
minates in log(n/2) + n/2 C; operations.

If p<n/2, then during each of the log(n/2p) phases of the
suboptimal stage each processor executes a total of n/p page
operations (i.e. n/2p Cg operations). In phase i the runs are
one half the size of the runs of phase i+l, but each of the p
processors performs twice as many merge operations in order to
exhaust the runs. During the optimal stage, each of the p pro-
cessors reads 2 runs of length n/2p. Therefore, there are n/2p
parallel 2-page operations. Finally, for the postoptimal phases,
the number of 2-page operations is equal to:

(logp - 1) + n/2

where (logp - 1) represents the time for the first page of Dboth

runs to reach the top processor. After this point the top pro-
cessor must process two runs of length n/2. Therefore, the total

execution time of the algorithm expressed in C;

units is:
(n/2p)*log(n/2p) + n/2p + logp - 1 + n/2
suboptimal optimal postoptimal

which can be expressed as:

(nlogn)/2p + n/2 - (n/2p - 1)*(logp) - 1

4.2.3. Block Bitonic Sort

Description:

Batcher's bitonic sort algorithm sorts n numbers with n/2

26

comparator modules in 1/2 logn(logn + 1) steps [Batc68]. Each
step consists of a parallel comparison-exchange and a transfer.
Execution of this algorithm requires that the comparison-exchange
units be interconnected with a perfect shuffle interconnection
scheme [Ston71].

As first suggested in [Baud78], if a comparator module is
replaced with a processor which can merge 2 pages of data and
then separately output the "lower" and the "higher" pages of the
sorted 2 page Dblock, then we have a block parallel algorithm
which can sort n pages with n/2 processors in 1/2 logn(logn + 1)
2-page operations. Execution of this algorithm using two proces-
sors 1is illustrated in Figure 3.

Because the block bitonic algorithm can process at most 2p
blocks (runs) with p processors, a preprocessing stage is neces-
sary when the number of pages to be sorted exceeds 2p. The func-

tion of this preprocessing stage is to produced 2p sorted blocks

of size n/2p pages each. We have identified two ways of perform-
ing this preprocessing stage. The first is to use a parallel
binary merge to create 2p sorted Dblocks (runs) of n/2p pages
each. The second is to execute a bitonic sort in several phases
with blocks of size 1, 2p, (2p)2, ... until blocks of size n/2p
pages are produced. We have analyzed both approaches and have
discovered that the first approach is approximately twice as fast
as the second for large n and relatively small p. Therefore, we
present below only an analysis of the first.

Analysis:

The first part of the algorithm is identical to the

Block Bitonic
with
2 Processors and 4 Runs

Sort

of 2 Pages each

512 412 211
- LO LO LO jer——
Pl Pl Pl
' HI HI
311 413
815 615
LO LO
P2 P2 P2 S
' LO HI HI
311 716 817
Step 1 Step 2 Step 3
Figure 3

27

suboptimal phase of the parallel binary merge and completes in

(n/2p)*log(n/2p)*cg time units. Then, the bitonic sort algorithm

is applied to the 2p blocks of size n/2p. This step requires:
(n/2p) * (log2p)/2 * (log2p + 1) CS operations

The total cost is thus:

n/2p [logn + 1/2 (10922p - log2p) 1] C;

4.2.4. Performance Comparison of the 3 Sorting Algorithms

Since all three algorithms presented in this section execute
essentially in nlogn/2p Cé time units when O(p)<0(logn), each
achieves the optimal speedup of p over a uniprocessor external
merge sort. Indeed, when O(p)<O(logn), the other factors in the
formulae established for the algorithms (4.2.1, 4.2.2, 4.2.3) are
linear in n. In Figure 4 we have plotted the performance of each
algorithm for a fixed number of processors and a varying number

of pages to be sorted. As established by these graphs, the fac-

by Y

tors—which—are—linear—in—n—are—such—that—thepipelined-merge—sort
does not perform as well as either the parallel binary merge or
the block bitonic sort. Also, our results show that when there
are more than 16 processors the block bitonic sort outperforms

the parallel binary merge (this fact can be proven analytically

by comparing formula 4.2.2 to formula 4.2.3).

4.3. The Project Operation

The projection of a relation with domains d1,d42,...,dn on a
subset of domains di,dj,...,dm requires the execution of two dis-
tinct operations. First the source relation must be reduced to a

"vertical" subrelation by discarding all domains other than

2

1092 Cp

Time Units

18

17

16

15

14

13

12

11

10

32 Processors

------- Pipelined MHerge

Parallel Binary Sort S

————— Block Bitonic Sort

b~
b~

1og2 pages
Figure 4

Comparison of the 3 Sorting Algorithms

28

di,dj,...,dm. Since discarding attributes may introduce dupli-
cate tuples, the duplicates must be removed in order to produce a
proper relation.

While the first operation can be performed very efficiently
on an associative~disk type database machine, the second is much
more complex and requires nonlinear (with respect to the number
of tuples) time. One could argue that if the result of the pro-
jection is going to only be used in a subsequent operation and
not become a permanent relation in the database it is unnecessary
to perform the duplicate removal. However, if there are a large
number of duplicates in the result relation (e.g. if the relation
is projected on a non-key attribute), the execution time of the
complete query could be considerably slower (possibly orders of
magnitude slower) without removal of the duplicates.

On a single processor, the complexity of eliminating dupli-

cates 1is essentially the same as the complexity of sorting the

relation. However, in a multiprocessor organization, we may
either sort, or make use of parallelism to eliminate duplicates
without sorting. Since sorting was considered in the previous
section, in this section we present and analyze a method to elim-
inate duplicates which does not require sorting. The method
relies heavily on a hardware broadcast facility.

We assume that pages have already been reduced to a vertical
form by the previous operation and there are no intra-page dupli-
cates. Each processor reads one page. Let a processor be labeled
according to the page number of the page it read (that is, the

processor that read page i is known as Pi)' Starting with P and

pl

29

continuing with Pp~l""'P2’ each processor, in turn, broadcasts
its page and then exits. If processor Pj receives page 1, then
j<i. Pj compares the two pages and eliminates any duplicates
found from its page. Note that Pj will not see page i if i<j.
Consequently it 1is guaranteed that only one copy of each tuple
will remain in the relation (that copy will reside in the highest
numbered page of all the pages that had a copy of it). The broad-
cast step is shown in Figure 5.

In the general case when p, the number of processors, is
smaller than n, the number or pages, our algorithm works in a
number of distinct phases. Each phase produces p projected pages
and sees p less pages than the previous phase. In phase i there
are (i-1)*p pages that already been projected, p pages in the
processors' memories, and n-(i*p) nonprojected pages. The phase
begins by broadcasting the n-(i*p) nonprojected pages to the p

processors for duplicate removal. After this step has completed,

Pp broadcasts its page and exits. The remaining processors follow
suit. The cost of phase i is thus:
-1k * — *
C, + (n-i*p)*(C+C_) + (p-1) (C+C_+C) + Cy
If n = p*m, there are m phases and the total cost of the algo-
rithm is:
* - * ~1)*
m*C_ + m(m-1)p/2 (C+C) + m(p-1)*(C+C_+C) + mC,
This may be rewritten as:
2 * *
(n“/2p+n/2) (Cr+cm) - (n/p) C, + nC,
which is of the order of n2/2p page operations. Note that if n

is not an exact multiple of p, the last phase would use only n

mod p processors and thus terminate faster.

Broadcast step 1

----- Broadcast step 2

sosaraserisine Broadcast step p~l1

Figure 5

Projection by Broadcast

30

One may think of reducing the number of pages, before start-
ing the Dbroadcast steps. For this modified version of the algo-
rithm, each processor reads as many pages as it can, eliminating
duplicates as it goes along. This modification may considerably
improve the performance of the algorithm in the case of a high
duplication factor. For example, if a tuple is duplicated 10
times on the average and the duplicates are uniformly distributed
among the pages, up to 18 pages may be merged by each processor
before the sequential broadcast algorithm is initiated. A second
improvement to the algorithm would be to perform such a compres-
sion, at least once, of all the source relation pages before the
broadcast step is initiated. Thus, when the number of duplicates
is expected to be large, a Dbroadcast method with "a priori”
compression would perform much more efficiently than the analyti-
cal upper bound of O(n2/2p) page operations. On the other hand,

if the number of duplicates is expected to be small, and if n >>

P . it is probably more efficient to use one of the sorting algo-
rithms which perform in O(nlogn/2p) page operations rather than
o(n?/2p).

A comparison of the performance of these two algorithms is
unfortunately beyond the scope of this paper. An accurate evalua-
tion of these two algorithms requires the application of statist-
ical tools since the distribution of the duplicates will have a
significant effect both on the number of compression steps of the
modified broadcast algorithm and the lengths of runs in the sort-
ing algorithms.

Several elegant methods for the removal of duplicates appear

31

in a recent publication [Good8@a]. However, each of these methods
requires a prespecified architecture and assumes that the rela-
tion fits into the processors' memory. Furthermore, the analysis
presented only includes the case where there are no duplicates
and the case 1in which all tuples are identical. Our broadcast
algorithm, for the case that p=n, is similar to the method

described in [Good8@a] for the common bus architecture.

4.4. Join Algorithms

In this section we present two parallel algorithms for the
relational Jjoin operation: a parallel "nested-loops" algorithm
and a parallel “sort-merge" algorithm. The "nested loops" join
algorithm relies heavily on a Dbroadcast facility, while the
"sort-merge" algorithm requires sorting of the two source rela-
tions with respect to the join attribute. A third strategy based
on hashing techniques has been recently investigated by [Babb79],

[Good8aDb]. A performance comparison of the hashing strategy

with either the nested loops or the sort-merge joins is beyond
the scope of this paper, but we plan to incorporate it in future
work. Also, as mentioned in the introduction, we have not vyet

examined parallel join algorithms which use indices.

4.4.1. The Parallel Nested Loops Join Algorithm

Given two relations R and T, the ‘"smaller" relation (i.e.
the one with fewer pages) is chosen as the inner relation, and
the larger (say R) becomes the outer relation. The first step is
for the processors to each read a different page of the outer

relation. Next all pages of the inner relation, T, are

32

sequentially Dbroadcast to the processors. As each page of T is
received by a processor it joins the page with its page from R.
Clearly, this algorithm is a block parallel version of the most
inefficient uniprocessor join algorithm since each tuple of rela-
tion R 1is compared to each tuple of relation T. However, since
it achieves a high degree of parallelism for the duration of its
execution (limited only by the number of pages in R), it may out-
perform more sophisticated join algorithms.

Let n and m be the sizes, in pages, of the relations R and
T, and suppose n>m. Let p be the number of processors assigned to
perform the join of R and T. S is the join selectivity factor
and indicates the average number of pages produced by the join of
a single page of R with a single page of T. If p = n, the execu-
tion time of this algorithm is:
T(read a page of R)

m*T(broadcast a page of T)
m*T(join 2 pages)

Tnested loops

+ + 1

It is important to notice that joining two pages consists of the
following operations. The two pages are joined by merging, then
the result page is sorted on the join attribute of the subsequent
join (if there is one), and finally the result page is written
out. The number of result pages written depends on the join
selectivity factor S defined by:

S = size(R join T)/(m*n)
If p<n, the same process must to be repeated n/p times yielding:

Tnested loops = n/p(Cr + m*(Cr + cm + S*(Cso + cw)))

In the case that either the subsequent Jjoin is to wuse the

same Jjoin attribute or when the result of the join is to be

33

displayed on a screen, the result pages need not be sorted.

4.4.2. Sort-Merge Join

This algorithm is performed by first doing a parallel sort
on both relations to be joined (assuming that they are not both
already sorted on the join attribute). After both relations have
been sorted, they are joined, and the result relation pages are
sorted on the subsequent Jjoin's join attribute. The merge and
the sort operations are executed by a single processor. Since
the relations have been sorted, the complexity of the join step
is the cost of merging two sorted files and sequentially sorting

the result pages. The time to perform the join is equal to:

T T(sort R) + T(sort T)
T(merge 2 sorted files)

T(sequential sort of pages of result file))

+ + 1

(n) + T £ (m)
(n mF*C + maxfn m)* Ch

m*n*S* (so ¥ C,)

+ 4+ 0

If the sort steps are performed using our block Dbitonic algo-
rithm, the join cost is:
= [(n/2p)logn + (m/2p)logm + l/4p(log2p-logZP)(n+m)]C§

+ (n+m)*C_ + max(n, m)*C
+ m*n*S*(+ C,)

so
We have identified a number of ways in which the execution
time of this algorithm can be improved. The first is to somehow
overlap sorting of the two files. This can significantly improve
the performance of the join, if a "pipelined type" algorithm is
employed. To illustrate this assumption, let us consider the

simplified case where R and T both contain n pages and the number

of processors 1is also n. In this case half of the time to sort R

34

using the pipeline merge algorithm is for propagating the last
page of R through the pipeline; now, as soon as the first proces-
sor has processed the nth page of R, it can start reading and
processing pages of T. By reusing the pipeline, we are able to
replace 2T__ .(n) by 3/2Tsort(n) in the execution time for the
join. Furthermore, since pages of T emerge one at a time from the
pipeline, we may begin merging the 2 sorted relations as soon as
the first page of the sorted T relation is produced.

A second improvement is to leave the pages of the result
relation unsorted. Then, the p processors participating in the
subsequent operation can perform the internal sort in parallel
rather than the sequential sort done now.

It should be noted that by using a merge sort algorithm to
perform the join, we obtain a relation sorted with respect to the
join attribute. This property might be desirable if the result

relation 1s the final result of a query, or if it becomes the

source relation for a subsequent join using the same Jjoining

attribute.

4.4.3. Comparison

Using the formulas developed in the previous two sections,
we have compared the performance of these two join algorithms.
Our results are presented in Figures 6 to 9. Each figure contains
three curves, each showing the ratio of the nested loops execu-
tion time to the sort merge execution time for three different
joins. In order to illustrate the variation in the relative per-

formance of the algorithms we divided the Y-axis in each figure

35

into two parts, each using a different scale. The bottom part of
the axis shows the region in which the nested loops algorithm
outperforms. the sort merge (ratio < 1) and the higher part shows
the other case. For reasons of clarity the X-axis shows the log-
arithm (base 2) of the number of processors used rather than the
actual number. Our assumptions about the processors' capabili-
ties are specified in appendix A.

Figures 6 and 7 present the results for selectivity factors
of @.01 and @.001 with no sorting of result pages. We assumed
that each page contained three hundred, 55 byte tuples but found
very similar results for pages composed of one hundred, 165 byte
tuples. The results indicate that when two relations of a similar
size are Jjoined, the sort merge algorithm should be eﬁployed,
unless the number of processors available is close to the larger
relation size. However, if the ratio between the relation sizes

is significantly different from 1, the nested loops algorithm

outperforms the sort merge (except for small numbers of proces-
sors). It should be noted that for lower selectivity factor
values the sort merge algorithm performs better than the nested
loops. This is because the merge step (handled by a single pro-
cessor) has to output less pages. Since in the nested loops
algorithm, the result relation is divided among all the proces-
sors, a reduction in its size has very little effect on the total
execution time.

Figure 8 shows a similar result for the same joins with
selectivity factor of g.991 with sorting of result pages {(this is

the case analyzed above). Finally, Figure 9 (surprisingly) shows

Nested Loops

Sort Merge

50

45 +

40

35T

30 ¢t

25

20 t

15

10

1

———— 16384 Pages Join 1024 Pages
———— 1024 Pages Join 1024 Pages
—_——— 1024 Pages Join 128 Pages
Unsorted Output Pages

Selectivity Factor = 0.0]

1092 processors

Figure 6

Comparison of the 2 Join Algorithms

Nested Loops
Sort Merge

50 ¢

45

40 t

35

30

25

20

15

10
5
1

~—————— 16384 Pages Join 1024 Pages
L —_——— 1024 Pages Join 1024 Pages
...... 1024 Pages dJoin 128 Pages

Unsorted Output Pages
Selectivity Factor = 0.001

padt
-
T — .
——— 8,

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tog, processors

Figure 7

Comparison of the 2 Join Algorithms

Nested Loops

50 ¢

45 +

40

35 ¢

30

25

20

15

10

5 e

16384 Pages Join 1024 Pages
—.—.—-— 1024 Pages Join 1024 Pages
— - — — — 1024 Pages Join 128 Pages
Sorted OQutput Pages

Selectivity Factor = 0.001

Sort Merge

1

0.9
0.8

0.7 t

0.6

0.5

0.4 t

0.3

Q.2

0.1

4 5 6 7 8 9 10 11 12 13 14
1092 processors

Figure 8

Comparison of the 2 Join Algorithms

Nested Loops

Sort Merge

50 ¢

45 ¢

40

35

30

25 ¢

20 r

15 T

10

16384 Pages Join 1024 Pages
~~~~~ — 1024 Pages Join 1024 Pages
————— 1024 Pages Join 128 Pages
Nested Loops Outputs Sorted Pages
Sort Merge Begins And Ends With

Unsorted Pages

Selectivity Factor = 0.001

log, processors
Figure 9

Comparison of the 2 Join Algorithms



36

only a slight improvement for the case that the sort merge algo-
rithm sorts pages in the beginning (and outputs unsorted result
pages) and the nested loops algorithm sorts its result pages at
the end (this is the second improvement suggested in the previous

section).

4.5. Aggregate Operations

In contrast with the relational operations 7join, project,
select, etc., there 1is no commonly accepted set of aggregate
operations among existing relational database systems. For our
purposes, we will adopt the facilities provided by INGRES
[Yous77] as being representative and develop algorithms to pro-
cess them (see [Epst79] for a presentation of algorithms for pro-
cessing aggregates in a uniprocessor environment). We distin-
guish Dbetween "scalar" aggregates and aggregate "functions”.

Scalar aggregates are aggregations (average, max, etc.) over an

entire relation. Aggregate functions first divide a relation
into non-intersecting partitions (based on some attribute value,
e.g. sex) and then compute scalar aggregates on the individual
partitions. Thus, given a source relation, scalar aggregates
compute a single result while aggregate functions produce a set
of results (i.e. a result relation). The two types of aggregates

have the following form:



37

scalar: agg_op ( agg_att where qual )

function: agg_op ( agg_att by list where by qual )
where src_qual

by list: by att-l1 by att-2 by ... Dby att-n

agg_op: sum, avg, count, max, min, sumu, avgu, countu

The agg_att is the attribute over which the aggregate 1is being

computed. The aggregate operators (agg op above) are self-
explanatory except for those with the "u" suffix. The "u"
denotes "unique" and implies that duplicates (tuples which match

on the agg_att) will be eliminated before the aggregate is com-
puted (see Figure 14).

Qualifications may be added ("where qual") to compute an
aggregate over a subset of tuples in a relation. For aggregate
functions, the partitioning attributes are specified with the

by list. Note that relations may be partitioned on more than one

attribute (e.g. partitioning employees by department and task

within department). Also note that the result of an aggregate
Employee Name Dept Task Salary Manager
Relation: = =  =eceeeeee e

Smith Toys Clerk 300.99 Johnson

Miller Shoes Buyer 650.99 Bergman

Jones Books Acct 550.98 Harris

Brown Shoes Clerk 400 .80 Conners
countu ( Emp.Dept ) = 3

Figure 10: Example of a "unique" scalar aggregate




38

function may depend on qualifications outside the aggregate
(src_qual) (this will be discussed in more detail later). In
contrast, scalar aggregates are "self-contained" and are not
affected by the rest of the query. Finally, as with update
operations, we distinguish "simple" qualifications from "complex"
qualifications. Simple qualifications can be processed in a sin-
gle scan of the relation and may be applied at the same time that
the aggregate is being computed. Complex qualifications require
inter-relation operations so the relation must be pre-processed
before computing the aggregate. To compute a scalar aggregate, a
processor maintains two fields: a count field and the aggregate
value itself. The count field specifies the number of tuples
contributing to the aggregate value and is used in averaging and
initialization. When processing aggregate functions, a third

field is also required to identify the partition (since a proces-

sor may be accumulating aggregate values for more than one parti-

tion at the same time). For aggregate functions, we want to
account for the space required to maintain these fields ("result
tuples") and that is the purpose of parameter 'r' below. In the

following discussion, we assume these parameters:

# of pages in source relation

# of processors to process aggregate

for agg functions, # of partitions

for agg functions, # of result tuples per page
# of operations to apply for a simple
gqualification (if query has one), else 0

rola I =R o o]



39

4.5.1. Scalar Aggregates

Scalar aggregates may be processed in a single pass over a
relation. We consider only the obvious algorithm. The p proces-
sors request pages of the source relation from the controller and
compute an aggregate value for the pages they see. When the
pages are exhausted, we have p partial results and a single pro-
cessor must combine them to produce the final value. A simple
qualification is applied at the same time the processors are
accumulating their partial results. Complex qualifications
require pre-processing of the source relation since inter-
relation operations are involved. If the aggregate operator is a
"unique" operator, the source relation must be projected on the
agg_att so that duplicate tuples are eliminated. The cost of the
algorithm is then:

Tsc_agg T(exec qual) (if complex qual)

+ T(sort,project) (if unique agg_op)
+ T(partial results)
+

T(combine p partials)

We are concerned with the time needed to produce and combine the
partial results since the time required to execute the qualifica-
tion and project the source relation have been covered by other
sections of this paper.

T(partial results) = (n/p) * (Cr + (g+l)*C_ ) + Cmsg
Each processor sees (n/p) pages. To process the page it must
read it, apply a qualification to it (if simple) and update the
partial result. Thus, each tuple requires a number of comparis-

ons for the qualification plus an additional operation (e.g. add)

to process the aggregate. The time to send the partial result is



49

just the cost of a message. The processor which combines the
partial results simply reads p messages and performs p arithmetic
operations (note, the cost of the message is accounted for by the
partial results formula). Thus, T(combine partials) = p*C. The

final formula is thus:

Tsc_agg = T(exec qual) (if qualification)
+ T(sort,project) (if unique aggregate)
+ (n/p) * (C_ + (g+l)*C_ ) + C
+ prC r sc msg

4.5.2. Aggregate Functions

In this section we describe and analyze the performance of
two algorithms for processing aggregate functions. Recall that
we must consider two types of qualifications. To see why, con-
sider the following example:

count (emp.name by emp.mgr) where emp.sal > 500
This query requests a count of the number of employees under each

manager making more than $580@. However, even if a manager does

not have any employees making more than $50@, he should not be
excluded from the 1list and his count should be set to . If we
applied the qualification first and then computed the aggregate
function on the result we would miss those managers since all his
employees were removed by the qualification. As another example,
consider:

count (emp.name by emp.mgr where emp.mgrl="Smith")
where emp.sal > 500

Clearly, in this case we want to include the count for all
managers other than Smith. Thus, we need to distinguish between

restrictions on the source tuples and restrictions on the set of



41

possible partitions. This is why we allow for two different types
of gqualifications in aggregate functions. Qualifications inside
the aggregate (the "by qual"), in addition to selecting a subset
of the source relation, have the effect of eliminating unwanted
partitions (e.g. manager Smith above). While qualifications out-
side the aggregate (the "src_qual") primarily affect the source
relation they may have the undesirable side effect of removing
desired partitions (e.g. managers for whom no employees earn more
than 50@) and we must correct for this.

When an aggregate function contains a src_qual, any algo-
rithm for processing the aggregate must begin by determining the
set of desired partitions so that any partitions which are
removed by applying the src_gual (e.g. managers with zero counts,
above) can be included in the result of the query. Determining
the set of desired partitions occurs in one or two steps depend-

ing on whether the query contains a by qual. 1If the query does

contain a by gual (whether simple or complex), it is applied to
the source relation in order to eliminate "unwanted" partitions.
Then, the resulting relation (or the source relation if the rela-
tion did not contain a by qual), is projected on the by list

attributes to determine the "names" of the desired partitions.

4.5.2.1. Algorithm 1l: Sub-gqueries with a Parallel Merge

Our first algorithm is similar to the scalar aggregate algo-
rithm and works Dbest when the number of partitions is small (m
less than r, the number of result tuples in a page). In the

first stage, each processor reads its source relation pages, but



42

instead of accumulating a single aggregate value, it produces one
aggregate value for each partition it sees (at most m). This
results in a number of pages containing partial results which
must be combined. The second stage is a parallel "merge" of the
pages produced in the first stage. If m, the number of parti-
tions, is less than r, the number of result tuples per page, we
have at most p pages to merge (since each processor produces one
page) . If m is larger than r the processors may produce several
result pages each. In the extreme case (m = k*n, e.g. partition-
ing on a relation key) the algorithm could conceivably produce as
many result pages as input pages.

The cost of this algorithm (assuming no qualifications and a
non-unique aggregate) may be computed as:

Talgl = T(produce partial result pages) + T(parallel merge)

Each processor will read (n/p) source relation pages. Each tuple

in the page must be placed in the correct partition and the

aggregate value for that partition must be updated. If we assume
X = min(m,r) partitions and use a binary search, then for each of
the k tuples in a source page, log x comparisons are required to
locate the correct partition. After the correct partition is
located the aggregate value must be updated. Thus, the cost to
process the source relation pages is:
(n/p) (C. + k*((log x)+1)*C)

We need to estimate the number of result pages produced by
one processor. An upper bound of ((n/p)*k)/r pages occurs when
the relation is partitioned on a key. This 1is a pathological

case. A lower bound is [(m/p)/r] which occurs when the tuples



43

from each partition are seen by only one processor (an equally
unlikely event). We feel that t = [m/r]| is a plausible estimate
of the number of result pages produced by each processor 1f one
assumes that the partitions uniformly distributed in the relation
and so each processor sees all the partitions. Therefore, the
cost for a processor to output its partial result pages is t*Cw.
In addition to accounting for the cost of writing each of
the t pages, we must also account for the cost of putting each
page in sorted order (so that a binary search can be utilized).
Each time a new by list value is encountered (i.e. a new parti-
tion) the processor must create a new result tuple and add it to
the sorted page. For each new partition this step requires, on
the average, that 1/2 the result tuples be moved down. For x =
min(m,r) partitions, x(x+1)/4 +tuples moves will be required
(x(x+1)/4 is equal to the summation of i/2 for i=1 to x). Thus,

the cost to process each of the t pages produced by a processor

is:
t*[x(x+1)vV/4 + C,J

The parallel "merge" we use in the second stage is not a
true merge since two partial result pages are combined to form a
single result page. First, each processor must form a sorted run
of the t pages it has produced. Using a merge sort this step
requires (t/2)log(t/2) Cé operations. Next a pipelined parallel
binary merge (see Section 4.2.2) is used to combine the p runs of
t pages into one run of t pages. The number of stages used is
log p. Each processor will read two runs of t pages, merge them,

and write a run of length t. Let Cm‘ = 2r(2C+V) denote the cost



44

of a merge of two result pages. Then the cost of the parallel
"merge" is:
(t + log p)(2Cr + Cov + C)

The total cost of the basic algorithm is then:

Talgl (n/p)(C_ + k*((log x)+1)*C)
t* (x(x+1)v/4 + Su)
(t/2)1log(t/2) C

(t+ log p)(2cC_ R Cye + C,)

++ + 1l

When gqualifications are included in a query, several addi-
tional steps are needed to extract the correct partitions.
First, the by gual (if the query has one) must be applied to
eliminate unwanted partitions. If the query has a src_qual, three
additional steps must be performed. First, the set of desired
partitions must be determined by projecting the source relation
(or the relation produced by executing the by qual) on the
by list. This step will produce a temporary result relation

(denoted R') with the result and count values for each partition

initialized to @. The size of this R' will be [m/r] pages, i.e.
t. Next, the src_qual must be applied. If the query has a sim-
ple src_qual, it may be processed at the same time the aggregate
is computed; otherwise, it is performed as a separate operation
before the aggregate is computed. The final stage required when
a src_qual is specified is for one processor to "merge" R' with
its run of t pages before the parallel "merge" is initiated.
Finally, note that unique aggregates require a separate
pre-processing step in which the source relation is sorted on the
by list in order to eliminate duplicates. We must account for

this cost also. The final formula for Algorithm 1 is thus:



45

Talgl = T(execute by qual) /* if by qual */
+ T(project on by list) /* if src_qual */
+ T(execute src qual) /* if complex src_qual */
+ T(project,sort) /*if unique aggregate, eliminate duplicates*/
/* process partitions */
+ (n/p)(Cr + k*((log x)+1)*C) /* x = min(r,m) */
+ (n/p) (g * C_ ) /* if simple src qual */
+ e (x(x+1)v/E%+ c ) /* t = [m/r] %) T
/* perform paraﬁ el merge */
+ (t/2)log(t/2) C
+ t * (2Cr + C_. C,) /* if src _qual */
+ (t + log p)(QCr + ?fm. + C,)
4.5.2.2. Algorithm 2: Project by-list and Broadcast Source
Relation

This algorithm exploits the ability of an architecture to
broadcast pages to multiple processors. The idea is to first
project the source relation on the by list domains to determine
the partitions. This gives us a list of m partitions which we
will distribute among p processors. The pages of the source
relation are then broadcast to all processors and each processor

computes the aggregate value for (m/p) partitions. If the number

of partitions is greater than r (the number of result tuples per
page), the source relation may have to be broadcast more than
once. The cost of this algorithm (assuming no qualifications and
non-unique aggregates) may be summarized as:
Talg2 = T(project by list) + T(process partitions)

A processor sees every page of the source relation (n pages).
Each tuple must be placed in the correct partition (depending on
the number of passes over the source relation, there are either
m/p or r possible partitions) and we assume that the partitions

are sorted so a binary search may be used. When the broadcast is



46

complete, the processor must write its result. Let b = [(m/r)/pl
denote the number of complete broadcasts of the source relation.

The cost to process partitions is:

T(process partitions) = Db(n(C_ + (log x)C_.) + C.)
; r sc w
where x = min (r,m/p)

If the query has a simple src_qual, it may be processed the same
time as the aggregate 1is computed. This adds an additional g
comparisons per tuple (see parameters defined above). If a
unique aggregate is specified, the source relation must be sorted
on its by list (as the major field) and the agg_att (as the minor
field). Then, duplicates will be eliminated by the processors
which will compare tuples with the previous tuple received for
that partition. This requires an additional comparison per

tuple. Thus, the total cost for this algorithm is:

Talg2 = T(exec by qual) /* if by qual */
+ T(project by list) /* determine list of partitions */
+ T(exec src qual) /* if complex src qual */
+ T(sort source) + bn(Csc) /* if unique aggregate */
+ b(n(C_ + (log x)Cg.) +C,) /* process partitions */
+ bn(q * C_) /* if simple src _qual */
4.5.2.3. Comparison

In order to compare the performance of these two algorithms
we selected +two queries, one without a src_qual and one with a
src_qual. In Figures 1l and 12 we have plotted the execution time
for both algorithms for 32 processors, 10@¢ partitions, and vary-
ing relation sizes. (The assumptions made with regard to 1I/0
costs and processor speeds are described in Appendix A). Figure

11 shows that Algorithm 1 is significantly superior to Algorithm



Time in

Seconds

1000

900

300

700

600

500

400

Algorithm 1
¢ —+—.— Algorithm 2 P
32 Processors

No Source Qualification !

300

200

100

o — o
oo —

5 6 7 8 9 10 11 12

1092 pages
Figure 11

Comparison of the 2 Aggregate Algorithms



10007
Algorithm 1

+—+—.~ Algorithm 2
900} /
32 Processors

1 Source Qualification !

300T /”

700

600

500 ¢
Time in

Seconds
400 ¢

300t

200 ¢+

100 +

e
—
o —
- i - —_

N s 3 3 1.

5 6 7 8 9 10 11 12

1092 pages
Figure 12

Comparison of the 2 Aggregate Algorithms



47

2 (up to two orders of magnitude) when the gquery does not contain
a src_qual. However, as shown in Figure 12, when the query con-
tains a src_qual, Algorithm 2 is superior except when the rela-
tion is very large. Furthermore, the performance of Algorithm 1
is sensitive to the value of t (the number of result pages pro-
duced by each processor). Since both algorithms process
by qualifications in the same way, the results presented are
representative whether or not the query contains a by qual.
Similar results were obtained with both different numbers of pro~
cessors and processors of varying speeds.

In addition to the two parallel aggregate function algo~
rithms which we have presented, we also developed and evaluated
another algorithm which employed a parallel binary merge sort to
divide the source relation into one sub-relation for each parti-
tion. As each sub-relation was produced by the sort, another

processor immediately read the sub-relation and computed its

aggregate value. While this algorithm initially 1looked promis-
ing, our analysis showed that 1is was always inferior to the other
two algorithms except when the relation was partitioned on a key

(an unlikely event).

5. CONCLUSIONS AND FUTURE RESEARCH

This paper has presented and analyzed algorithms for paral-
lel processing of relational database operations. We have con-
centrated on those operations (e.g. project) which cannot be pro-
cessed in a single pass over the relation. To analyze alterna-

tive algorithms, we have introduced an analysis methodology which



48

incorporates I/0, CPU, and message costs and which can be
adjusted to fit different multiprocessor architectures. We have
compared not only existing parallel algorithms, but other algo-
rithms which we generalized to fit in a multiprocessor environ-
ment. In addition, we introduced (for the first time) algorithms
for the parallel execution of update and aggregate operations.
Sorting can be used as a basic building block in the design
of algorithms for parallel processing of relation database opera-
tions. This paper discussed three parallel sorting algorithms:
the pipelined merge sort, the block-bitonic sort, and the paral-
lel binary merge sort. While the first two algorithms have been
suggested previously, we generalized them to external sorting
algorithms in order to handle the case where the number of pages
is significantly larger than the number of processors. The
parallel binary merge algorithm with pipelining between stages is

a new algorithm. Although the block bitonic sort is, in general,

superior (see Figure 4), the other two algorithms perform rela-
tively well. One conclusion that might be drawn from these
results is that when I/0 costs are included in the analysis of a
parallel sorting algorithm (as we have done), they dominate its
execution time.

Our analysis of algorithms for parallel join operations
indicates that when the sizes of the two relations to be joined
are approximately the same, the parallel sort merge algorithm 1is
superior to the parallel nested loops algorithm. However, when
one relation is larger than the other (as is frequently the case

when Jjoining a relation describing an entity set with a relation



49

describing a relationship), the parallel nested loops algorithm
is faster.

We have presented two algorithms for the project operation:
one based on sorting and the other based on broadcasting. The
results presented are inconclusive since the analyses do not
incorporate the effect of duplicate tuples on the performance of
the two algorithms. Our feeling is that elimination of dupli-
cates through sorting is probably faster except when there is a
high duplication factor. The extension of these analyses to han-
dle the effect of duplicates 1is one possible area for future
research.

This paper leaves open several other areas for future
research. First the addition of "logic-per-track" deviceé to the
multiprocessor organization would permit the development of addi-
tional algorithms for join, projection, and aggregate operations.

A second area for future research that we have mentioned earlier

7

is the design and analysis of parallel algorithms for database
operations which employ indices. If algorithms can be developed
that allow the effiéient processing of indices in a multiprocess-
ing environment, these algorithms could also be utilized to
develop parallel algorithms for the selection operation whose
performance can then be compared with the performance of "logic-
per-~-head" devices. Another area that needs further exploration
is to develop techniques for evaluating the cost of controlling
multiple processors on complex algorithms (such as the parallel
sort merge join). While it may be the case that the control cost

is dominated by the I/0 cost (and hence the relative performance



59

of the algorithms is unchanged), this topic merits further inves-
tigation. Finally, the performance of each of these algorithms
in the context of a complete query should be analyzed since the

choice of an algorithm for each operation may be affected by the

other operations in the query.




51

6. References

[Babb79] Babb E., "Implementing a Relational Database by Means of
Specialized Hardware," ACM TODS, Vol. 4, No. 1, Mar. 1979.

[Banc8@] Bancilhon F. and M. Scholl, "Design of a Backend Proces-
sor for a Data Base Machine," Proc. of the ACM SIGMOD 19884
Int'l Conf. of Management of Data, May 1980.

[Bane78] Banerjee J., R.I. Baum, and D.K. Hsiao, "Concepts and
Capabilities of a Database Computer," ACM TODS, Vol. 3, No.
4, Dec. 1978.

[Batc68] Batcher K.E., "Sorting Networks and Their Applications,"
1968 Spring Joint Computer Conf., AFIPS Proc., Vol. 32,
1968.

[Baud78] Baudet G. and D. Stevenson, "Optimal Sorting Algorithms
for Parallel Computers," IEEE-TC, Vol.c-27, ©No. 1, Jan.
1978.

[Bora8@ga] Boral H. and D.J. DeWitt, "Design Considerations for
Data-flow Database Machines," Proc. of the ACM SIGMOD 19809
Int'l Conf. of Management of Data, May 1980.

[Bora8¢b] Boral H. and D.J. DeWitt, "Processor Allocation Stra-
tegies for Multiprocessor Database Machines," To Appear in
ACM TODS. Also Comp. Sci. Tech. Rep. No. 368, University
of Wisconsin Oct. 1979.

[Desp78] Despain A.M., and D.A. Patterson, "X-TREE: A Tree Struc-
tured Multi-processor Computer Architecture," Conf. Proc. of
the 5th Annual Symp. on Computer Architecture, 1978.

[DeWi79%9a] DeWitt D.J., "Query Execution in DIRECT," Proc. of the
ACM SIGMOD 1979 Int'l Conf. of Management of Data, May 1979.

[DeWi79b] DeWitt D.J., "DIRECT - A Multiprocessor Organization
for Supporting Relational Database Management Systems,"
IEEE-TC, Vol. c-28, No. 6, June 1979.

[Epst79] Epstein R., "Techniques for Processing of Aggregates in
Relational Database Systems," Memo. No. UCB/ERL M79/8, Elec.
Research Lab., Coll. of Eng., UCB, Feb. 1979.

[Even74] Even S., "Parallelism in Tape Sorting," CACM, Vol. 17,
No. 4, Apr. 1974.

[Fran8@¢] Franklin M.A., "VLSI Performance Comparison of Banyan
and Crossbar Communications Networks," Proc. of the Workshop
on Interconnection Networks for Parallel and Distributed



52

Processing, Apr. 19884.

[Gavr75] Gavril F., "Merging with Parallel Processors," CACM,
Vol. 18, No. 14, Oct. 1975.

LGoke73] Goke, G.R., and G.J. Lipovski, "Banyan Networks for Par-
titioning Multiprocessor Systems," Conf. Proc. of the lst
Symp. on Computer Architecture, Dec. 1973.

[Good8@a] Goodman J.R. and A.M. Despain, "A Study of the Inter-
connection of Multiple Processors 1in a Database Environ-
ment," Proc. of the 1980 Int'l Conf. on Parallel Processing.

[Good8Pb] Goodman J.R. - Personal Communication.

[Hawt80] Hawthorn P. and D.J. DeWitt, "Performance Evaluation of
Database Machines," Submitted to IEEE-TC.

[Hirs78] Hirschberg D.S., "Fast Parallel Sorting Algorithms,"
CACM Vol. 21, No. 8, Aug. 1978.

[Hsia78] Hsiao D.K. and K. Kannan, "Simulation Studies of the
Database Computer (DBC)," Technical Report OSU~-CISRC-TR-78-
1, Computer & Information Science Research Center, The Ohio
State University, Feb. 1978.

[Knut75] Knuth D.E., The Art of Computer Programming - Sorting
and Searching Addison-Wesley, 1975, p. 160.

[Leil78] Leilich H.O0., G. Stiege, and H.Ch. Zeidler, "A Search
_Processor—for—Data—Base—Management—Systems+ L Proec+—4th—Conf—m———
on Very Large Databases, 1978.

[Lin76] Lin C.S., D.C.P. Smith, and J.M. Smith, "The Design of a
Rotating Associative Memory for Relational Database Applica-
tions," ACM TODS, Vol. 1, No. 1, Mar. 1976.

[Lipo8@] Lipovski, J. ~ Personal Communication, 1984.

[Mull75] Muller D.E. and F.P. Preparata, "Bounds for Complexity
of Networks for Sorting and for Switching," JACM Apr. 1975.

[0zka75] Ozkarahan E.A., S.A. Schuster, and K.C. Smith, "RAP - An
Associative Processor for Data Base Management," Proc. 1975
NCC, Vol. 45, AFIPS Press, Montvale N.J.

[Prep78] Preparata F.P., "New Parallel Sorting Schemes," IEEE-TC,
Vol. ¢-27, No. 7, July 1978.

[Slot70] Slotnick D.L., "Logic Per Track Device," in Advances in
Computers, Vol 14, J. Tou, ed., Academic Press, N.Y., 1974.

[Ston71] Stone H.S., "Parallel Processing with the Perfect



53

Shuffle," IEEE-TC, Vol. c-20, No. 2, Feb. 1971.

[Su75] su S.Y.W. and G.J. Lipovski, "CASSM: A Cellular System for
Very Large Data Bases," Proc. Int'l Conf. Very Large Data
Bases, Sept. 1975.

[Thom77] Thompson C.D. and H.T. Kung, “Sorting on a Mesh Con-
nected Parallel Computer," CACM, Vol. 20, No. 4, Apr. 1977.

LUpch8@] Upchurch E. - Personal Communication.

[Yous77] Youssefi K. et. al., "INGRES Version 6.8 Reference
Manual,".




Appendix A

Processor Capabilities Assumptions

In this appendix we outline our assumptions about the capa~
bilities of processors used in our evaluation of the join and ag-
gregate algorithms (see Sections 4.4 and 4.5). We assumed that:
Page size of 16K bytes.

C - the time to compare two attributes, is 1@ microseconds.

V. - the time to move a tuple, is based on the cost of 1.5 mi-
croseconds to move a single word. Thus, for a tuple length
of 150 bytes, V is 225 microseconds.

R - the time to transfer a page between mass storage and the

cache, was assumed to be 28 milliseconds. This is based on a

transfer time of 2@ milliseconds, latency time of 8 mil-

liseconds, and negligible track seek time.

R, - the time to transfer a page from the cache to the

processor's memory, was assumed to be 16 milliseconds, based

on a processor bus bandwidth of approximately 1 megabyte per

second.

The cache hit ratios, H and H', were assigned the values .85 and
.35 respectively.

The cost to process a message, C including the sending,

transfer time, and receiving?g was picked to be 15 mil-

liseconds.
It should be noted that the each experiment was performed
with slower processor speeds (about half as fast) and that simi-

lar results were obtained.



