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ABSTRACT

This paper presents an algorithm for the Traveling Salesman Problem in
k-dimensional FEuclidean space. For n points independently uniformly distributed
in a set B, we show that, for any choice of a function o of n inereasing to infinity
with »n more slowly than »n, we can adjust the algorithm so that, in probability,

the time taken by the algorithm will be of order less than # o(n) as n > =. The

algorithm puts the »n points in a cyclic order, and we also show that, with
probability one, the length of the corresponding tour (that is, the sum of the n
distances between adjacent points in the order given) will be asymptotic to the
minimal tour length as n - ». The latter is known (also with probability one) to be

asymptotic to g U(E)p n?, where B, is a constant depending only on the dimension k,

k
v(E) is the volume of the set E, p = 1/k, and ¢ = 1 - p. Our result is stronger, and

the algorithm is faster, than any other we have been able to find in the literature.



1. INTRODUCTION
Consider a set A of n points in the k-dimensional Euclidean space Bﬁ (with the

usual topology.) A tour of A is defined to be a cyeclically ordered set containing

A [that is, a set T such that A C T C Rk

, with an ordering relation T, such that, for
any finite subset of T -— e.g., {4, B, C, D, E, F} — a unique, complete cyclic order
exists —e.g., {4 1C, C Tt B, Bt F, FtD, Dt E, EtA}, which we shall abbreviate
toAd 1 CtBtF1DrtFET4d, or just to the string of point-symbols ACBFDE.] (Note
that a path, which may be intuitively viewed as a tour which crosses itself, can

always be described as a cyclically ordered set by removing the single point of
intersection from one of the branches. Similarly, a path which is traced more

than once may be cyclically ordered by suitably interlacing the points of each
passage.) If a metric d is defined in g? (not necessarily consistent with the topology

of g:k),,\ such a tour will have a (possibly infinite) length (T, v) [defined as the

supremum of the sum of the metric distances between successive points in any finite
sub-cycle in the tour --- e. g., d(4, ¢) + d(C, B) + d(B, F) + d(F, D) + d(D, E) +
d(E, A).] Since all tour-lengths are non-negative, they are bounded below by zero:
so that there will be an infimum for the lengths of all tours of a given set A: we
denote this by 2(4).

Given a tour (T, t) of A, it will uniquely determine a cyclic ordering of A
(since A is a finite subset of T), so that (4, T) is itself a tour of A. If we

label the points of A in such a manner that the tour (T, 1) imposes the cyclic order

AO T Al T A2 T oo T An = AO’ then the triangle inequality for the metric d
ensures that the length 2(A, ) = ZZ=1 d(Aiml’ Ai)’ and it is clear that this
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cannot exceed the length 2(T, 1). It follows that the infimum of the lengths of
all tours of A is the same as the infimum of the lengths of all tours (A, 1): and
this is the infimum of 2(A, 1) over all (n - 1)! cyclic orderings of A. Since this
last infimum is taken over a finite collection of lengths, it is certainly attained.
We thus see that there will always exist at least one cyclic ordering of A, which
we may denote by w, such that (A, 7) = inf‘T 2(A, ) = 2(A). Such a tour will be

termed a minimal tour of A. The search for minimal tour-lengths and for minimal

tours in 5? is called the Traveling Salesman Problem (k-TSP.)

In this paper, we shall limit ourselves to the problems in which the metric

d is the Buclidean (or Pythagovean or °) metric, for which dx, x) =llx - x”z =

/K 1 (x, - yi)g. This is called the Buclidean Traveling Salesman Problem (k-ETSP.)
The 2-TSP has been shown to be NP-hard (see Garey, Graham, and Johnson [1976],

Papadimitriou [197T], Garey and Johnson [1979]), and this strongly suggests that

there.is-neo-polynemial-—time alcorithm for-ebiaining the-exact—solution ofthig
problem --- and, by natural extension, we believe that the same is true for the
k-TSP with k » 3. Certainly, no such algorithm has been found, so far.
On the other hand, there has been some research on fast heuristic methods for
the solution of the 2-TSP: for example, computer programs to find near-optimal
solutions for sets of up to 300 points in an acceptable amount of time have been
described by Krolak, Felts, and Marble [1970], and by Lin and Kernighan [1973].
Their programs seem to give satisfactory results; but no rigorous analyses of the

algorithms are available.



Bellman [1962], and Held and Karp [1962] describe a dynamic programming
algorithm for the k-TSP, which determines an exactly minimal tour of a set of s
points in a time
to=24(s-1)[2°3 (s -2) +1] rfor sp1, (1.1)
where 4 is a computer-dependent constant (roughly, half the time needed for an
addition.) We subsume the use of this algorithm, which we shall refer-to as
Algorithm C, in constructing our own, and the estimate (1.1) yields our timing
estimate in Theorem 2. (Should a faster algorithm than the above become available,
it will lead to an increase in the speed of ours also.)

Since many important computational problems can only be solved by exponential-
time algorithms, interest has recently shifted to probabilistic algorithms, which,
with a high degree of probability, will yield accurate answers in acceptably short

times; but for which (with very low probability) either (i) accurate answers may

take very long times to obtain, or (ii) answers obtained may not be accurate.

Beardwood, Halton, and Hammersley [1959] studied the statistical properties
of the solutions of k-ETSP: in particular, they showed that, if E is a bounded,
Lebesgue-measurable subset of Qﬁ, with k-dimensional Lebesgue measure (or volume)
v(g) >0, and if R is an infinite sequence of points independently uniformly
distributed in E, with Rn denoting the set consisting of the first »n points of g,
then there exists a constant Bk’ not dependent on E or P, such that, with probability
one, z(gn) v B, v(g)p n oas  n o> o, (1.2)
where p = 1/k and g = 1 - p. They also showed that, if the points of P are

instead independently distributed in E with any fixed probability-distribution
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and if the absolutely continuous component of this distribution is represented by
a probability-density function p (whatever the discrete and singular components of
the distribution may be):; then, again with probability one,

2({”) v By nd [ o as n o . (1.3)

0

1/v(E), (1.3) reverts to (1.2). We take our

When the density is constant, p
point of departure in the abhove paper. which we shall refer-to as BHH. In the course
of reviewing the proofs of various results in BHH, we found that the proof of their
Lemma, 7 had to be modified somewhat (the statement of the lemma remains correct.)
This is discussed in Appendix II of Halton and Terads [1978] --- hereinafter referred-
to as HT. The present paper is a revised version of HT.

Karp [1977] has described a probabilistic algorithm for the 2-TSP: it is a
recursive algorithm, for which he claims an expected running-time of the order of
n (log n)2 and an expected resulting tour-length asymptotic to 2(A) as n » e, It

will be seen below that the algorithm presented here is proved in probability to run

in a time which is o[n o(n)], for an arbitrarily chosen function o, satisfying
o(n) +o and oln)/m>0 as n-+>w (1.4)

(see Theorem 2), and it is also proved that the resulting tour-length is asymptotic
to 2(A), with probability one (see Theorem 3.) Some questions and discussion of
Karp's paper are given in Appendix III of HT: but anyway, our results are stronger.
We are not aware of the existence of any other algorithm comparable to ours.

We are grateful to referees for some helpful suggestions which have been
incorporated in the present version of HT. Our main results are the same; but we have
rearranged the material, made a few changes in the presentation, and, in reviewing the

paper, have taken the opportunity to refine and simplify both the algorithm and the

proofs of its speed and accuracy.



2. THE MATIN ALGORITHM
Given a set A of n points in 5?, our algorithm covers it with a cubic lattice
partial tours should be connected cell-to-cell to form a tour of A. The all-important
lattice is defined in such a way that the tour generated has the desirable properties

of speed and accuracy claimed in Theorems 2 and 3 below. These are both statistical
and asymptotic properties, derived by embedding the given problem in a large class
of similar problems in two ways: first, the set A is viewed as the first 7 points
of an infinite séquence of points; and secondly, the points of the sequence are
assumed to be independently uniformly distributed at random in a set E having the
properties:

(a) ©E is a Lebesgue-measurable set in g?, with positive volume »(E);

(b) E is bounded in BF: we can find a semi-open hypercube (more briefly,

a cube)

k. . :
c={x=(x xz””’xk)EB*' b;& @, <b,+ X, for 1=1,2, c.. kY, (2.2)

A = 7

with sides of length X, such that E & C;

——

k

(¢c) if the cube C defined in (b) is divided into a cubic lattice of M = m
similarly semi-open hypercubic cells Qj (7 =1, 2, oo, M), each with sides of length

x/m, and if V. of these cells contain points both of E and of its complement E?, then

2
the b i ' =

e boundary of E is such that, as M » «, n, = ow?), where g =1 - 1/k; so that,
in particular, NZ/M ~ 0. [We see that this property holds whenever the (k-1)-

dimensional Lebesgue measure of the boundary of E is finite. ]

It is clear that the given set A ¢ E ¢ C; but, beyond this, the choice of E

and C is free and will depend on our knowledge (or hunch) of the class of problems
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of which A is considered to be a sample. In the absence of more precise information,
we may take E = C and C to be the smallest cube (2.1) containing A: the determination
of C requires time of the order of kn, which is negligible, in view of Theorem 2.
Underlying the specification of the algorithm is the choice of a function ¢ of
n, satisfying (1.4), but otherwise at our disposal. Because of Theorem 2 and Karp's
claim of an expected running time of O[n (Jlog n)g], we will focus our attention on
o(n) increasing with 7 no faster than (log n)2. If p = 1/k and f...) denotes the
"roof" function [the least upper bound among the integers], we can define the even

integer

A 2n p
m=2 {é‘(v(gj log o(n)) ) (2.2)

From this, we can derive that, by (1.L4),

k N 2n Ak

M=m U(Fé) Jog O'(n) as n > o, (2.3)
We also observe that
m > o M > o Ml > 0, as 5 > o ) (2.4)

Algorithm A. [Al] Given a set A of »n points in 5?, choose the semi-open
hypercube C defined as in (2.1), the set E contained in € and containing A, having

properties (a), (b), and (c) above, and a function o satisfying (1.L). Hence,
%

determine the even integer m (by (2.2)), and M = m".
[a2] Divide each side of C into m equal parts, thus creating
a cubic lattice of M semi-open hypercubic cells gﬁ (i =1,2, ..., M.)
[A3] In each cell C;» by Algorithm C, find a minimal tour of A“_C_j
[the intersection of A and gj; i. e., the set of points of A falling in gj.] The
result is a cyclic ordering of the points of égj which may be written as a string of

point-symbols



_ ), 0 (7) _ A ) L) (J)
6&(7.—/11 a, ...Anj . wmere AC, = 14,70, 4577, ...,Anj 1,
and we note that '
M _
Zj=l = (2.6)

Of course, if égﬁ = ¢ [the empty set] for some j, the corresponding string d} will

be null.

[Ah]  Using Algorithm B (defined below), determine a cyclic

ordering of the ¥ cells, which may, by suitable renumbering, be written as

R = S8 v Gy (2.7)

[A5] Applying the ordering (2.7) to the stringstﬁi, form a

string $ = (51@?2 dM" (2.8)

This represents a cyclic ordering of all the points of A (see Theorem 1 below), to

which corresponds a tour, (A, w), say, of length
n

_ M ] ) L)
2,(8) = Licy Iim dlA;" s 477D, (2.9)
where Aﬁg) = Agﬂnl) and A(O) = A<M).
L) ’Lj-—l fLO ,LM

3. THE CELL-TOUR ALGORITHM

The following algorithm obtains the ordering (2.7) of the cells gﬁ in a time of

the order of M. Denote the set {0, 1, 2, ..., m - 1} by L and define a lattice of

vectors a= (al, Aps eovs ak) with each a; € L. Then it is easily seen that there

is a one-to-one correspondence between the M vectors 2 and the ¥ cells gj’ defined
by cla) = {x ¢ Rk- b, + Aa. £x.< b, + l~(a. + 1) for 2 =1, 2
AT oo 7 9 mi Y T m 1 T

.» K}



Thus, an ordering of the cells will correspond uniquely to an ordering of the lattice
vectors a. We write 8z for the unit vector in the Z-th coordinate direction, and

we associate with each o) the numbers

J.+al+a2+...+a7:_l

P, = ri(%) = (-1) (3.2)

T

for 2 =2, 3, ..., k. We note that the r, take the values *1 only, and that, for
any &, a, + ri ¢ L, unless either a, = 0 and r, = -1, or a, = m - 1 and Pi = +]1,
Therefore, for any 2> there is at most one value of £ such that

a; +r, €L for 1=k, k-1, ..., ¢+]1,

a, +r € L, and t3 3. (3.3)

t
Algorithm B. [Bl] If there exists an index ¢ satisfying (3.3), then the

algorithm identifies the successor of a as the vector

l=+
g =gt

s 840 (3.1)

that is, the wvector with a'i =a, for all 7 # ¢ and with a't =a, *tr,.

[B2] If (3.3) does not hold for any %, then the successor of

2 is determined as follows:

. . - - . . Ve o
(1) if a, =1 end a, =0, or if a > 1 and a, is even, & 2 -85
(ii) ifa, =0eanda,=m=-21, or if 0 < g, <m -1 and a, is odd,
1 2 1 2
- .
B SR Y&
‘as - - . . I .
(iii) if al 1, a2 # 0, and a2 is even, or if al m 1 and a2 1s odd,
| B .
& TR - 8¢
1 5 = - ' =
(iv) if a; = 0 and a, <m 1, a 2+ ey

In order to apply Algorithms A and B, we need to show that (1) the algorithms
do indeed generate a uniquely-defined tour of A, (2) the algorithms are fast, and
(3) the tour produced is minimal, or nearly so. These assertions are the burden of

Theorems 1, 2, and 3, respectively.



b, THE ALGORITHMS YIELD A TOUR

~ Theorem 1. Algorithms A and B define a tour of the set A. The length of

. . | M :
this tour is less than Zj=l 2(§§j) + A M Ak + 3).
Proof. (i) It is clear from (2.1) and (3.1) that

are disjoint. (4.1)

4o

_M
Q—u#l%f and all

Since A& C, it follows that each point of

=

occurs in one and only one of the C.,

e,

M cells gj, as is asserted in step [A4], and if the corresponding strings é} are
combined as in step [A5] and (2.8) into a final string ; then this string will
mention each point of A exactly once, and so will define a tour of A.

(i)  In Algorithm B, either step [Bl] or step [B2] will be executed, in

finding the successor of any vector in the lattice LF, and the choice is always

well-defined. If step [B2] is executed, then it is easily verified that every

possible combination of ¢ -end-g,-in g? oceurs—in-exasetly-one—of the-ecases—{i)—{iv)
of [B2]. It is also clear that, in every case,
if p€ L, theng'€ L and g' =a ¢ g; for some 7; (h.2)

and the corresponding cells C(a) and C(a') meet in a face [the face defined by

. X : .
v, = + o, ', : " i ) j . i
. bt 5 m(“z +tal, ot 11 that is, they are adjacent. Thus, any point of gj%)
may be joined to any point of gj%') by a step of length less than (A/m) V(k + 3) [since
two adjacent cubes form a rectangular brick with (k - 1) sides of length A/m and one

2

1
of length 2\/m, vhose diameter is (A/m) [(k - 1).1° + 1.22] /2, and by (2.1).]

We have demonstrated that every cell has a well-defined successor cell to which it
is adjacent; and it remains to be shown that this relationship defines a single

eyelic ordering of the lattice é?. We proceed inductively.



~10~

(i13i) TFirst, let k = 2. Then (3.3) is impossible, and [B2] is always executed.
The rules of succession embodied in cases (i) - (iv) of [B2] generate a tour: this

can be described as follows. Begin at (0, 0); by case (iv), move in +g, direction

until (0, m - 1) is reached; by case (ii), move in +e. direction wntil (m - 1, m - 1)

R1

is reached; thereafter, if a,. is even, we move in the direction of &1 from (m - 1, ag)

2

) (or to (0, 0), when a, = 0) (this is case (i)), and if a

5 is odd, we move

to (1, a

2 2

in the direction of +e. from (1, ae) to (m - 1, a.) (this is case (ii)): whenever the

1 2)
end of a segment parallel to the first axis is reached, the tour descends to the

next one, by moving in the -g, direction from (1, a.) to (1, a, - 1) or from (m - 1, ag)

2 2 2

to (m - 1, a, - 1). Because m is even, whet we have described is indeed a tour of
L?, [If m were to be odd, the point (L, m - 1) would be the successor of both
(0, m - 1) and (2, m - 1), while (m - 1, m - 1) would have no predecessor, and the

algorithm would not yield a tour.] Figures 1 and 2 illustrate these concepts for

the cases of m = 8 and 5, respectively.

(Figures are at end of report)

Figure 1. Tour of Q? by [B2] Figure 2. Path generated by

for the case m = 8 (EVEN), [B2] for the (forbidden) case
when m = 5 (opDp).

Now, consider the application of @;gggjjgglgifx);f, and suppose that the

algorithm has already been shown to generate a tour‘g'of éﬁ~l.

Denote the vector,
vhose first (k¥ - 1) coordinates are the same as those of 2, by a = (al, Ups wens akml)'
Then we see that, if a, + r, € L, by (3.3), the successor of a is a + », e, ; that is,

k k N ~ k ~k ’

the path generated by Algorithm B moves parallel to the k-th axis., in the T R
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direction. Indeed, since Pk depends only on the coordinates of %'(which do not
change when the path moves parallel to %k), we deduce that, when Pk = +1, the path
crosses the cube &F from (%} 0) to (%} m - 1), and when r, = -1, the path crosses

é? from (%} m- 1) to (%} 0). On reaching the end of such a segment parallel to the

L, so that (3.3) cannot hold for t = k. On perusal

k-th axis, we find that @, + ¢

of [B1] for ¢ < k and of [B2], we see that the rules of succession in QF are identical

with those in the tour & of Qﬁnl. Observing further that, if %' -2 is perpendicular
. . . +

to g1 then r, changes sign [since just one of Ays Gys vvvs O g changes by *1], we

can infer that the new ak + Pk € L and the path forthwith proceeds to cross L~ again

in the reversed direction rk %k'
Summing-up, we see that, if a tour congruent to & is drawn on each of the faces
ay, = 0 and a, = m - 1 of ;F perpendicular to £k> then the path generated by Algorithm

B in g? zlg-zags alternately between the two tours, passing from a "zig" whose first

(k - 1) coordinates are given by é'to a "zag' whose first (kK - 1) coordinates are

given by the successor of é'in the tour &. Since 3.passes through every point of
éﬁml, the path passes through every point of Q?; and since the number of segments
parallel to £k equals the number of points in ;F'l, namely mk*l, which is even
[because m is even], it follows that the number of "zigs" equals the number of "zags'",
and the path defined by Algorithm B in X dimensions is a tour too.

The form of the inductive step is illustrated in Figure 3 for the case of k = 3
and m = 6. The two extreme tours in two dimensions, congruent to @; are seen as
alternating double and dotted line-segments. The "zigs' and "zags" parallel to the

third axis are single lines (most of the interior points of Q? are omitted to make

the path easier to see.)
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(Figure 3 is at end of report)

Figure 3. Tour of g? generated by Algorithm B. Follow the

arrows on single and double line-segments. ITllustrates the

inductive process described in part (iii) of the proof of
Theorem 1.

(iv) Having shown that Algorithm B does generate a tour of ;ﬁ (in (ii) and
(iii) above), and that therefore Algorithm A does generate a tour of A (in (i)),

we are left with the bound on the length Zo(é) of this tour. The tour generated

is described by the string (2.8). Fach "piece" Jf of & is shorter by d(A;J), Aiﬂ))
‘ J

than Q(ggﬁ); because, by the definition of the tour-length and (2.5),

=% ‘1=2 i-1* 71 ne A :
——————————6n‘the*nther—hanﬁffsee—fﬁt9&#—the—“piéces”—ofﬂﬂ—aré“j6iﬁé6fby—§égméﬁt@“ﬂéilﬁﬁll:——“_——_——__
éJ—l)Aéa)
2,7.""1 i
Jg=1,2, ..., M); and we have shown (in (ii) above) that any such segment cannot

2(

» Joining a point of C

C;_; to a point of C; (for each of

or more properly 4

be longer than (A/m) V(k + 3). Thus, by (2.3), if g = 1 - 1/k,

2o(8) < T 2(ag)) + M (A/m) V(K + 3)
M
=23Q’Mg%)+xﬂﬂv«k+3), (b.k)

() 4 4(9)

Note that the inequality in (4.h) is gstriet, both because Al [and d is a

J
metric] and because the cubes gﬁ are semi-open. §. E. D.

€.

(Figure 4 is at end of report)

Figure %, Example of a tour of 53 points in 5? generated by Algorithm A
with E as shown and m = 6, M = 36,
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5. THE ALGORITHMS ARE FAST

Theorem 2. In probability, the time taken to execute Algorithms A and B will

be asymptotic to A n Vo(n) log vo(n) as n + »; that is, the time will be o[n o(n)].
Proof. The execution time of our algorithm may be divided into several parts:

T‘1 is the time required to determine E, C, A, m, and M; T2 is the time required to
determine which points of A are in each of the cells gj (j =1,2, ..., M); .’Z’3 is
the time required to determine the succession of cells (by Algorithm B); T), is the
time required to obtain the cyclic order of the points in each individual cell (by

Algorithm C); and T_. is the time required to compute the tour-length Qo(é). We must

5
prove that each of these five times is of the order of n Vo(n) log Yo(n) or less.
(i) We have already mentioned that E, C, and X will either be known a priori,

or will be determined in time of the order of n. Now, A and v(E) will be obtained

in time independent of n., and generally. we would say that o(n), and hence m and M,

will also be computed (by (2.2) and (2.3)) in constant time. However, if n is really
large, it will run to multiple precision, and o(n) may take a time 0(log %) to

compute., Nevertheless, we see that, at worst,

T, = on) = oln Yo(n) log Vo(n)]. (5.1)
It is clear, also, that, given the tour (A, w) generated by our algorithm, its
length %,(A) can be computed in time of the order of n (see (2.9), with (2.6).)

Thus,

T5 = 0(n) = oln VYo(n) log Vo(n)]. (5.2)
(ii) Let us suppose that the coordinates of the »n points of A are each
directly-addressable in an arrang, occupying some kn locations. Define lists
11,052, ""OCM’ corresponding to the M cells: for instance, the M vectors 2 e:;k

may be lexically ordered to identify the corresponding cells gj%) and lists JK%).
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In a time of order n, one may make a single pass through\ﬁﬂ determining for each point
the cell gj%) in which it lies and entering its address in the corresponding listéf(%).
For each a, the list<Z(%) of points in AC(a) will have a length 2 n(a) [vhere n(a) is
the number of points in AC(a)]: each entry in the list will consist of an address in
J& and a pointer to the next entry in the list. By (2.6), this will add-up to some
2n locations in all. Thus, with moderate storage capacity., we get
T, = 0(n) = oln Yo(n) log Vo(n)]. (5.3)

The procedure is thus to begin with one cell, say C(Q), compute a minimal tour
of the points of AC(Q), using the list L(Q) and Algorithm C, and begin a new list ef,

giving the ordering of the tour (A; w) as a string of addresses in ﬁﬁ by entering
the stringaﬁ(g) of addresses generated by Algorithm C. We now use Algorithm B to
determine the successor cell C(Q') to C(Q). and use L(Q') and Algorithm C to
generate the next piece %«Q') of H. Ve repeat, from cell to cell, until all

pieceSak(Q(J)) have been constructed and entered in «f. The total time needed to

compute the cell-succession is then Té, while the time needed to determine all the

L L3} e b ey S 2 m
I LVIGUAL CCLi=L0uUls 15 -Lh-

It is clear that Algorithm B is independent of #n (except through (2.2) and (2.3)),

and that its execution for each cell does not depend on the number of cells. Thus,

T, = o) = 0[n/log o(n)] = oln Vo(n) log Vo(n)]. (5.4)

(iii)  All that now remains to be estimated is the time T),, and this will be
shown to constitute the major part of the total time, in probability. We know that,
if s points of A lie in gﬁ, then, by (1.1), the time needed by Algorithm C to

o t

construct a minimal tour of égﬁ will be

n.-3
) - J .
t(ggﬂ) t”i 24 (nj - 1) [2 (nj -2) + 1] irf n; >0,

0 if n, = 0;

il

(5.5)

and

Ty =250 £ (5.6)
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At this stage, we introduce the probabilistic structure of our problem. Since
the points of A are supposed to be independently uniformly distributed at random in
the set E, it follows that the probability that exactly s points of A fall into the

cell gj will be

n s Y]
) o (-0, (5.7)
where
s = v(EQ;)/(E) < 0(L;)/0(B) = 0y = XM v(B), (5.8)
with equality if and only if u(gcgj) = (O, Similarly, the probability that exactly
r points of A will fall into C. and exactly s points into gj, with ©7 # J, will be
n r + s r s N=r=—3
Gy o) Oy ) o o (1-a, - uj) . (5.9)

Now partition the index set {1, 2, ..., M} of the cells into

. c
- : . C
By =14 & CE
= {j: C. C L1C
L =14 g ckh (5.10)
H ={j: CE#¢ & C.E # ¢}.
Denote the eqrdinality of any set F by N(F); and let

T 1.3
. L

(37— -
=W H)—="W 5 )

\ =
20 0> 'H
Then property (c) postulated for the set E tells us that N2 = 0(M1) as n > «; and

since, by (2.3), M = 0[n/8(n)] as n + =, where we write

§(n) = log /otn) or oln) = 280
58(n) (5.12)
so that, by (1.k4), e /n >0 and &(n)/m >0 as n > o
then N, = 0{[n/s(n)19}  ana Ny/M >0 as n>e. (5.13)
We also observe that, by (2.2) and (2.3),
= [P = 3 [ P §(n)p
m = A[U(g) 6(7’1)] +0(1) = }\[U(E) (S(}’l)] {1+ 0] 7 173
(5.1h)

k ;
and M=mk=;®[6(};)] {1+0[6(};’1)]p} as o> oo,
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Further, it is clear that

JEH & EE2Y JEHE, VH, & (5.15)
whence
N Ak/M < v(E) < (N, +I.) Ak/M. (5.16)
1 = 1 2
It now follows from (5.13) that
_n S(n)p -
Nl =500 {1 + 0[—7;—4 1 as n > », (5.17)

(iv) We now seek to obtain asymptotic forms for the expected value %[Th] and

variance Var[Th] of the time Th' By (5.6),

BI7,] = 1oy Elt(ac)] (5.18)
and  ver(m,] = g[(zf | (elac) - gLt (égj)]}>21
M M
= 5| P BlCslag,) - BLE(AC,)DY TH(AC) - BlH(AC) D). (5.19)

Thus %[Tu] consists of terms E[t(égj)], and var[Tu} consists of products of such terms,

together with @[{t(égy)} ] and E[t(égi) t(égj)] with 7 # j. If we adopt the usual

notation, for integers n and positive integers ¢, that

(n), = 1, (n)¢ =n (n=1) (n=2) ... (n—¢+1) [=0 for ¢ > n > 0], (5.20)
we see that. by (1.1),
=4 [2°7 (s), - 2°7 () + 2 (s) + 527 (), - 2 (s)]
ana ¢ 2 = 42 11657 (o) + 8x2°73 (o), + 278 (a), - W2® (o), + 1 (), (5.21)
_ st (8), + b2 1 (8), - & (s), + %~u8 (8) - 2x2% (), + b (5)]

so that we may write

L

=4 )° 5= 2 _ 2k 5=y
by =4 Dy Tomy Py 057 (e), ena £° =47 [ To g 877 (8), (5.22)
= = = = L = = = =
where P22 =1, Pl2 = -1, Pll =2, PO2 =5 POl = -2, th =16, @ 3 = 8, QEM =0
QQQ = -, QQl =L, th = =1, ng =L, Qll = =L, Qoh u, Q02 Q h’ and all

other coefficients vanish., It follows from (5.7), (5.8), and (5.9) that

_ 2 2
1 =4 Zw:o Zezl Pwe J(n, 0, ¥, aj):

_ 2 oh L
g[{t<§gj)} 1 =4 szo 2@:1 Qwe J(n, 6, ¥, uj),

_ 22 2 2 2 i ) . .
ﬁ[t(AC') t(AC')] =4 Z¢=O ZW=O Zel=l E92=l P¢el Pweg K(na ela 623 ¢: W» ui: uj))
(5.23)
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where we write

J(n, 8, ¢, x) = ZZ=1 (Z) 25 (1 = 2)"8 g5V (), (5.20)
and Km0, 055 05 03 @ y) = T BT 0 ) (TN @y - w - )T
r=0¢ 8=y
x0T )y 0,77 (8] (5.25)

[The sums are over indices from 1 to n because the time for index O is zero, not to

(compare (5.5).] We may evaluate these sums as follows:

(m, &’ 1y (D) e e

P =y
(n)w x {1 +x (8 -1)} - 5wo

where dij is the Kronecker delta (= 1 if © = j; = 0 if 7 # )3 and similarly;

J(nﬂ e) l!"’ x)

n

(1 -2), (5.26)

. . . = IR, n-¢ -1 n-u
K(nﬂ 619 623 (1)3 1!)3 x) y) - (n>¢+ll}x y Zu___g (7,{, - d) - 11)> (l - XL - y)
u-1 ,u - ¢ - ¢ U~8—¢ s~y
<oy (PN ey (y 8,)

) (”)¢+w $¢ yw ZZ:Q (Z : i : $> (1-x- y)n—u {(x 61 ty 62)u~¢—¢

5 (xe )t S50 (¥ eg)“’w}

e 1
= (n)¢+w o yw {f1+x (e, -1) +y (o, - 1)1
-8y [1 @ (8 - 1) - y1" % 330 [1 =@ +y (8, - 1)
* 8,0 0y (L - - )"y (5.27)

[We note that (g)

Now, by a simple inductive argument on m, we observe that, for all non-negative

= 0 whenever b < 0 or b > a.]

integers m, n, and ¢ with n 2 g,

m m—-1 1

os<n - (n- c)m <Kmn [z + 5-(m - 1)]. (5.28)
Thus, since Pl (1 g)TE = Z;=1 ;%'[nm - (n - g)m] 4", (5.29)
we have, for all z 2 0, that
R A e e N G D I
whence g (1 -¢2- _l‘n 22> < (1 + g)n—t < enz (5.30)
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Thus, for all those J-terms and K-terms in the sums (5.23) for which ¢ 2 1 and ¢y 2 1,

(n)w ajw e”aj(e“l) {1~ wuj(e - 1) - % najg(S - 1)2}
< J(n, 6, ¥, aj) < (n) a.wenaj(e—l) (5.31)
6 ¥ nos(89-1)+na;(6,-1)

and (n)¢+w TP RAR] R AR~ (1 - (¢ + ¢) [ai (el - 1) + @ (e2 - 1)]

- %-n o, (8, = 1) + o (8, - 1)1%3

) ) ) o v noaz(8y-1)+na:(6o-1) .
< K(ng 615 855 ¢ U5 0, aj) < (n)¢+w TR \Y1 A
(5.32)
and since 5( ) < .
oy = §%§l-{1 + 0[—7%~ip} as n >, and 0; %05 (5.33)
(n), = a1+ o), a; = 0[8(n)/n], and n ajg = 0{[8(n)]°/n}; whence
I(n, 8, ¥, ) = (naj)w 15(0=1) (1 L or18(n)12/n)) (5.34)

and similarly,

K(ns 8, 8,3 6, 5 oy, o) = (na)? (nuj)w 01 (81-1)4n05(62-1) (1 | or1s(n)12/n})

(5.35)

We note, further, that the correction terms for ¢ = 0 and $ = O in (5.26) and (5.27)

are always of lower asymptotic order than the main terms, found in (5.34) and (5.35).

In calculating @[Tu], we may distribute the sum over the cells (. among the

€

several J~terms. of the corresponding expression of (5.23). For J € H_, there is no

contribution; for J € Ei’ each term equals J(n, 6, ¥, ao) and there are Nl such terms;

and for J € H,, when 7 is sufficiently large, we see by (5.34) that the contributions

are somewhat smaller, since the J-terms are monotonically inecreasing with aj, and o .

¢

< %g» bY (5.33). Thus, by (5.13) and (5.17),

M
Y. J(n, 8, ¥, o,

= )= I, 8,0, 0

O) + zj€£2 J(}’L’ ea 1!)9 OLJ)
n [(n) 9L 0180 (4 or s ()P PY),  (5.36)

(6-1)meg _ (6-1)8(n) 01[8(m)IP™/nPY _ (0-1)s(n)

since e (1 + 0{[6(n)3p+1/np})

and [S(H)]g/n = 0{[5(n)jp+l/np}, and since g = 1 - p and [§(n)/nlF = o{[d(n)]p+l/np},
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Tt follows at once from (5.18), (5.23), and (5.36) that

M
22 zj=1

An §n) e

g[Th] AP J(n, 2, 2, aj) {1 +0[1/6(n)]}

§(n)

{1+ o0[1/8(n)]}, (5.37)
since [6(n)]p+l/np = ol1/8(n)] [because [6(n)]p+2/np + 0 as n > o, by (1.4) and (5.12)]
and similarly, by (5.19) and (5.23),

var[7,] = T (Bli(ac )12 - {Elt(ac.)11®) + 2 Tt 9

J=1 =] ] 1=1 bj=1+1 == =]
M 2 (vh i
- %[t(égi)} %[t(égj)}) - Ej:l A (Zw:o Ze:l Qwe J(ﬂ, 65 wa aj)
2 \ 2 M-1 oM 2
- {2¢=o Lo=1 Pg J(ns 85 0, aj)} ) + 02 Loy Xj=i+1 4

2 12 w2 (2
* Ly=o Ly=o Xel=1 Xeg=1 Foo, Tve, (K(ns 815 055 05 45 0ps o))
j)). (5.38)

By breaking up this expression into a single sum Zj and a double sum Zi Zj>i’ and

- J(na 61: b, ui) J(n, 625 v, o

calculating the asymptotic form of each term, we can obtain the form of var[Th]. By

(5.34), we see that the sum representing %[{t(égj)}z] is dominated by the term with

Y Bna

coefficient @)): 16 (nu ) J (1 + 0{[6(n)]2/n}), the term of next-highest order

2 Bnm

being in (na ) J (from QEM') The sum representing m[t(AC )]} is dominated by

the term with coefficient P 2: (na.)h eQna

oo J (1 + o{[&(n)] /n}), which is therefore

asymptotically negligible. In the double sum, we observe that, by (5.26) and (5.27),

K(T’Z; elb 62; ¢9 ‘PB 0‘7:: OLJ-) - J(VZ, elb ¢)9 0(47:) J(”: 6250 ‘Pa 0(")

= (1) yy og" 0¥ (11 ae-1) + (e, P00 awOJ{l +ay8y-1) - o177
- 80 11 - al J(eg—l)}” L S50 Sy [1 = o uj]”)
- (m)y )y ag® ot (1 e (o)) 2 s 1 - T
< (1 + ayl0,-1)71" TIPS SR I (5.39)
We now note again that (n), . = n¢+w [1+ 0(1/n)], (n), = w1+ 0(1/n)], and (n),,

= nw [1+ 0(1/n)]; and {1 + 0[5(n)/n]p}c =1+ 0ls(n)/nlP, for any r; while
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[+ +y)/(A+a) 1+ =1 -2y +ayle+y)-...7"
=1 - namy + 0{[8(n)13/n°Y, if x = 0[8(n)/n] and y = O[6(n)/n]. (5.%0)
Thus K(n; 015 655 &5 3 o, aj) - J(n, 0,5 ¢ ui) J(n, 0,5 Us aj)
= nt (no )P (naj)w+l ((el_1>(ez_l)e”“i(el‘l)*”“j<62'1> (1 + ol[8(n)1%/m1)),
(5.41)
so long as ¢ = 1 and ¥ = 1; and the dominant term in the sum representing %[t(égi) t(égj)]
. \ . - 2, -1 3 3 nogtnoag
- %[t(égi)] %[t(égﬁ)l is again that with coefficient ng T - n (nai) {(no.)” &1 "0

x (1 + O{[é(n)}g/n}). It follows that the total contribution of the double sum Zi Zi>i

in any case cannot exceed M times this, or, by (5.14) and (5.33), O{n [G(n)]h eQG(n)}.
L Y

Now, the single sum Zj is dominated by 25;1 16 Ag (naj) J, and, arguing as 1in

obtaining (5.36) and (5.37), we see that this is 16 42 n [8(n)]3 &%) {1 + ol1/6(n)1).
Since this overshadows the contribution of Zi Zj>i’ we obtain, finally, that

var(7,] = 16 4% n [5(n)]3 38 11 4 or1/s(n) 3. (5.42)

(v) We may now complete the proof of Theorem 2. First, we note that, for any

e > 0 and all sufficiently large n, by (5.37), say n = n.(e),

0
B, - 4 n sln) V) < Eam s(n) 1), (5.13)
Next, we use Chebyshev's inequality with (5.42) and (5.43) to obtain that
T 7, - E[T ] El7, ]
L L L !
Prob (] 560 " l! < e) 2 Prob H i 6(7’1)! <—;— and ] - 5G0) " 1[<%)
A n 6(n) e An 8n) e A n §n) e
7, - E[7, ]
YT RN £
= Prob < ~J for all n = n (¢)
(IA n sin) S0P 2 0
S var [Th]

[(4e/2) n 8(n) 012 [Chebyshev]

§(n)
. -G?Qéﬁfgif-“““*l- R (5.44)
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Thus, Tu/And(n)es(n) + 1 in probability as n + @3 or

TLL v A4 n §(n) eé(n) in probability as n > =, (5.45)
Now, we have already shown that Tl, T2, TS, and T5 are all o[n /5?57 log /ETZY] with
certainty as n + @ (see (5.1) - (5.4).) Therefore, since 6(n) = log Yo(n) and eG(n)
= /5(£7; by (5.12), it follows that the total time taken by the algorithms to compute
a tour of A will be

o, 7, ~4n /5ln) log Voln), (5.46)

in probability, as n > *. Q. E. D.

6. THE ALGORITHMS ARE ACCURATE

Theorem 3. With probability one [that is, almost surely: a. s.], the length

Ro(é) of the tour of the n points of A generated by Algorithms A and B is asymptotic
to the minimal tour length £(4) ~ 8, v(E}Y nf.

Proof. (i) Since 2(A) is defined to be minimal, and since (by Theorem 1) the

algorithms define a tour of the set A, we have that its length,

2,(4) > 2(8). (6.1)

(i1) By (5.1h),
k
A V(K o+ 3) A =2 (T V(k + 3) = o(n?) as n > (6.2)

v(B)? S(n)
so that, by (L.h),
. M q
X )+ n > . .
zo(é) < 2J=l R(égy) on?t) as n > (6.3)
Now consider a minimal tour (4, w) of A and let P denote the polygonal path AlAQ"’Aj
[that is, let X € P iff (3 € {1, 2, ..., n}) (Ix) 0SSl and X =2 AJ. Lt (1 - x) Aj],

where the points of A are so numbered that AO'HA1 nA2'n...'nAn =4 Let Eﬁ be the union

0°
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of the closures of all connected pieces of ggj containing at least one point of A.

Then the number of such pieces will be

h,<n,=1N(AC. .
s <ny = mag)), (6.4)
and the sum of the lengths of these pieces, Zj, will satisfy
M
. R L.S (A). .
iy %5 < 2(2) (6.5)

The end-points of the pieces of Ej all lie in the boundary of gj, which consists of 2k

faces Eﬁf (f=0, 1, eo.y 2k = 13 with gjagk = gjo): let Eﬁf be the set of end-points
in Eﬁf‘ We shall form a tour (gj, Uj) of all the end-points, consisting of a tour

(ij, ij) of gﬁf, for each f, each connected to the next tour Xﬁ(f#l) by a chord, whose
length cannot exceed the diameter of gﬁ,

Ag.) = A NP Yk, 6.6

() (6.6)

It is proved in BHH, by a non-trivial combinatorial argument, that a tour (Iﬁ’ Tj) of

égﬁ may be constructed by alternately traversing parts of gj and pieces of gﬁ, in such

a way that gﬁ is traversed only once and gj not more than twice. This means that

p{Ac.) S A(T., 1) S 2.+ 2 & v.). (6.7)

=9 U::{a
h44

e L7}

[The interested reader may find the abovementioned proof under Lemma 2 in the Appendix

of BHH.] We note that

ok ,
WU.. v.) S (Y. v.a) + 2 k AcC.). .
(L, v5) < Yoy Mg vip) *+ 2 K AC) (6.8)
(iii) To construct (V,f, V,f), we proceed as follows., First, we dissect the face
= dJ

Ejf Of'gj’ which is a (k-1)-dimensional hypercube of side A M_p, into I equal cells of
= = :
side » M P L—p: where p'= 1/(k - 1), just as in applying our algorithms, taking P to ve

!
an even integer; so that we may construct a tour of the cell-centers of length L A uP L-p,
using Algorithm B. Then, in each cell, we insert any point of gﬁf therein into the tour,

by connecting it to-and-fro to the nearest point of the tour, thereby increasing the

]
length of the path by no more than A M P 7P J(k - 1) for each point of gjp' Then
o

<P P . n P ik
Moy Vip) SAMT D70 4 e L /(k - 1)], (6.9)
where ok

Pip= NEBip)s thl hip=2 (6.10)
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We now observe that

1- o <0 if L < LO
aL [z p+hpr/(k—1)] =0 if L=1IL0, (6.11)
>0 if L > L
0
where
L.o=[V/(k=1)/(k-2)] h.,n .12
o = (k= 1)/(k - 2)] hyp (6.12)
so that the minimum for [ a multiple of Qk_l occurs when
6.0) L=2k_l (zl'k{/(k~l)/(k—2)} hj]; (6.13)
whence, by (6.9), Jk -p' 'k 3/2
[} V. . N < )\M_p ___..__.:_;].‘...)_] . _p .(_._._:._];.2___-— . - k~l .
Lip> Vi) [k—E it o et e L (6
or, more simply, (V. v SAMP (R, . q'+ S, h. ~p3 (6.15)
= ir kgr kogr v
where q'= 1 - pg and Rk and Sk are constants depending only on k.

(iv) We may now combine the foregoing results to yield the following results [the
subscripts attached to € and < signs refer to the justifying assertion; e.g., the first

< refers to (6.1) and the first <z refers to (6.3).]

0 <i24(4) - 2(4) <,,z :c_j>+o<n(n-ug_:><7y‘41 y QZJ L 2T, v+ o)
- 2(8) 2 Tl 2T, v)) + o) Sz ZJ . Ec_l Lo )
P2k J1 Mg+ olnd) =2 [T §5 g(ljf, v+ 2 132
+o(n?) <s 22w R, XJ 1Zf—1 » +Sk2 2]@_1 pr’]
+2k3/gxz\ﬂ+0nq), (6.16)

We must remark that the bound (6.15) becomes infinite if hjf = 0; but if there are no
end-points in F. , then there is no need to tour that face, and l(lﬁf’ vjf) becomes zero.

Thus not only hjfg'but also hjffp should be interpreted as 0 in (6.15) and (6.16), when
ant

hjf = 0. Therefore,sincehjf must be a non-negative integer, we may replace hjffp in
(6.16) by 1 without decreasing the bound. Further, when 0 < ¢ < 1, we may apply
!

HOlder's inequality to the sum of h-fg to yield that, because ﬁ + d =
L d M Yok (oM \1/p\p 1
T T Lim Ly 2 0 (2 o I p}p [2 i Loy (hy a /q]

(2 & m)P [Z ] Zf_l Jf] Si0,4 (2 & M)/p (2 n)qc (6.17)
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(When ¥ = 2 and so p'= 1 and ¢’ = 0, then the sum on the left of (6.17) becomes 2 k M,
and the bound on the right becomes 2 k M also; so that (6.17) still holds.) Applying
these results to (6.16), we obtain that

0< 2. (a) - 2(8) <2 M (R, (K wP a4 8, (2 k)] +2 1372 31+ o(n?); (6.18)
and since, by (5.14), M = 0[n/s(n)] = o(n), we have that M = o(n?) and Mpr nq'=
o(anp an = o(n?). Thus, finally,

0 < 2,(a) - 2(a) < on?) as n > . (6.19)

(v) To complete the proof of our theorem, we observe that BHH have proved that

(1.2) holds with probability one, when the set A is taken to be zn, the first »n points

of the infinite sequence P, distributed independently and uniformly in the set E. Since,

under these circumstances,
2(a) = 0(n?) as n >, (6.20)

we may conclude that 2 (A) v 2(4) as 1 > =, (6.21)

— &. E. D.
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Figure 3
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