ON KNAPSACKS, PARTITIONS, AND A NEW DYNAMIC
PROGRAMMING TECHNIQUE FOR TREES

by
D. S. Johnson and K. A. Niemi

Computer Sciences Technical Report #399

October 1980

R g

ON KNAPSACKS, PARTITIONS, AND A NEW DYNAMIC
PROGRAMMING TECHNIQUE FOR TREES

by
D. S. Johnson*
Bell Laboratories
Murray Hill, New Jersey 07974
K. A. Niemi

Bell Laboratories
Piscataway, New Jersey 08854

Abstract

Let G be an acyclic directed graph with weights and values assigned
to its vertices. In the Partially Ordered Knapsack problem we wish to find
a maximum-valued subset of vertices whose total weight does not exceed a
given knapsack capacity, and which contains every predecessor of a vertex
if it contains the vertex itself. We consider the special case where G
is an out-tree. Even though this special case is still NP-complete, we
observe how dynamic programming techniques can be used to construct pseudo-
polynomial time optimization algorithms and fully polynomial time approxi-
mation schemes for it. In particular, we show that a non-standard approach
we call "left-right" dynamic programming is better suited for this problem
than the standard "bottom-up" approach, and we show how this "left-right"
approach can also be adapted to the case of in-trees and to a related tree
partitioning problem arising in integrated circuit design. We conclude by
presenting complexity results which indicate that similar success cannot

be expected with either problem when the restriction to trees is lifted.

*Work of this author partially supported by the Computer Sciences
Department, University of Wisconsin, Madison, WI 53706.

1. Introduction

Suppose we are given an acyclic directed graph G = (V,A), a
function w: V +~Zg assigning a non-negative weight to each vertex,”
a function p: V » ZB assigning a value to each vertex, and an integer

knapsack capacity B > max {w(v): veV}. Let us say that a subset Vo Cy

is closed under predecessor if v e V' and (u,v) ¢ A imply that

u eV . In the Partially Ordered Knapsack problem we wish to find a

subset V' C V which is closed under predecessor, such that

w(V') = J w(v) <B and p(V') = } p(v) is maximized.
veV' veV'

In the Graph Partitioning problem we are given an undirected

graph G = (V,E) with weights w: V » Zg on its vertices and values

6 on its edges, and a knapsack capacity B > max {w(v): veV}.

p: E~> 2
We wish to find a partition V = V1 UV2 U...Uu Vm of V such that
w(Vi) < B, 1 <1 <m, and such that the total value of edges connecting
vertices in different sets, p({{u,v}ecE: {u,v}ff_vi, T<i<m}), is
minimized. See Figure 1 for a sample instance of both these problems.
The Partially Ordered Knapsack problem can be viewed as modelling
an investment situation in which the vertices represent potential
investments, their weights are costs and their values are expected
profits, and in which certain investments can be made only if other ones
have been made previously [4]. For example, in strip mining, the miner

must decide where to do his digging, knowing that upper strata must be

excavated before the ones beneath them can be reached. The Graph

*We denote by 7" the set of positive integers and by Zg the set of

non-negative integers.

Partitioning problem has application to the partitioning of networks or
electronic circuits to minimize delay or interconnections [7].

This paper follows [4,7] in concentrating on the interesting
special case of trees. We shall refer to the problems in this special

case as the Tree Knapsack problem and the Tree Partition problem. Even

these restricted problems are both NP-complete [2] and hence unlikely
to be solved by "efficient" (i.e., polynomial time) optimization
algorithms. However, the restriction to trees does open the door to a
number of promising alternatives, in particular, pseudo-polynomial time

optimization algorithms and polynomial time approximation schemes [1,2].

N
@ @

zz X TN

@D - @
& @

Figure 1 Sample instance of both the Partially Ordered Knapsack and

o Graph Partitioning problems, restricted to trees. (D1rect1ons
on edges and vertex values are irrelevant when the figure is
considered as a Graph Partitioning instance.) Can the reader
find the optimal solution values when B = 157

weight value

Let n=|V|], W=w(V), and P =p(V) [P=p(E) in the case
of Tree Partition]. The fact that these problems are NP-complete
means only that they are unlikely to be solved by optimization algo-
rithms that run in time bounded by a polynomial in n, log B, log W,
and log P. This still leaves open the possibility that they may be

solved by optimization algorithms that run in pseudo-polynomial time,

i.e., in time bounded by a polynomial in n, B, W, and P. Indeed,
Lukes [7] presents an algorithm for Tree Partition which finds an
optimal solution in time O(nBZ).*

One advantage of pseudo-polynomial time algorithms is that they
may turn out to be practical. Lukes' algorithm would clearly be quite
efficient if B 1is not too large. A second advantage is that pseudo-
polynomial optimization algorithms can often be turned into fully

polynomial time approximation schemes [1,2]: algorithms which, given a

problem instance and a proposed error bound e > 0, find a feasible

solution with error ratio e or less*, and have running times bounded by

a polynomial function of instance size and 1/e (for instance, O(nz/s)).
Pseudo-polynomial time algorithms are usually based on dynamic

programming techniques, and the standard approach to dynamic program-

ming on trees is what we shall call the "bottom-up" approach. This is

the approach taken by Lukes' algorithm for Tree Partition, and we

*nder the standard assumption that our computer's memory registers are
big enough to hold numbers as large as P and W.

**[f a solution has value S and the optimal solution value is s* > 0,
the error ratio is defined to be |S-S*|/S*.

observe in this paper that it is also applicable to the Tree Knapsack
problem (Ibarra and Kim, in their paper on this problem [4], seem not
to have noticed this fact, and hence derive approximation schemes which
are exponential in 1/e). Our primary contribution, however, is to
present a new approach to dynamic programming on trees, which we shall
call "left-right" dynamic programming, and which we shall show yields
improved algorithms for both the Tree Knapsack and Tree Partition
problems.

In Section 2, we introduce this new approach and compare it with
the bottom-up approach, using the "Out-tree" Knapsack problem as an
illustration. The left-right algorithm is seen to yield a worst-case
running time 6(nP*) as opposed to e(n(P*)Z) for the bottom-up
algorithm.*

In Section 3, we show that the left-right approach can also be
applied to the "In-tree" Knapsack problem, although only the bottom-up
approach seems to be general enough to handle the case of arbitrarily
directed trees. In Section 4, we show that the left-right approach is
not Timited to knapsack-Tlike problems by adapting it to solve the Tree
Partition problem in time e(nZP), a running time one would normally
expect to dominate the e(nBZ) or e(an) obtainable by the bottom-up
approach.

In Section 5, we consider the approximation schemes deriveable

from our pseudo-polynomial time algorithms, and see that here the

(
(

(
(

)
)

nu

o(g(n)) if f(n) = 0(g(n)) and there is no function
o(g(n)) with f(n) = 0(h

g
g (n)).

left-right algorithms all dominate their bottom-up counterparts, even
when the running times of the corresponding pseudo-polynomial time
algorithms are not strictly comparable.

One drawback of all these algorithms is their rather Targe storage
requirements: as much as nP* for the optimization algorithms. In
Section 6 we show how this can be reduced to 6(log neP*) if we are
willing to spend more time in computation.

We conclude in Section 6 with a discussion of the complexity
issues that surround these problems and rule out the possibility of
extending our results for trees to similar results for general graphs.
In particular, we show that both the Partially Ordered Knapsack and
the Graph Partitioning problems are NP-complete in the strong sense

[1,2] for general graphs, and hence cannot be solved by pseudo-polynomial

time optimization algorithms unless P = NP.

2. Out-Tree Knapsacks and the Left-Right Approach

An out-tree T = (V,A) is a tree with a distinguished vertex
vy e V called the root, such that every arc is directed away from the
root. In this section we shall describe the left-right approach to
dynamic programming on out-trees and show how it can be applied to the
Tree Knapsack problem restricted to such trees.* For the sake of com-
parison, however, we first review the bottom-up approach. Dynamic
programming procedures on trees generally work by solving a set of
problems for each of a collection of subtrees. The solutions for a
given subtree are obtained by combining those for its subtrees. The
bottom-up approach can be implemented in terms of a collection of
subtrees T[v,i] of the given tree T = (V,A) as follows:

Let VisVpsaeesVy be a depth first ordering of the vertices of V,
starting with the root. For each v ¢ V, Tet d(v) be the number of
arcs in A that are directed out of v, where d(v) =0 if v is a
leaf. For each v ¢V and 1, 0 < i <d(v), T[v,i] 1is the subtree of
T induced by v, its first i children (in order of index), and all
their successors. See Figure 2a. Note that T[v],d(v])] =T and, for
each v ¢ V, T[v,0] 1is the subtree of consisting of the vector v alone.

For each subtree T[v,i], the bottom-up approach will normally
compute a solution i[v,i] = (X[v,1,07, X[v,i1,1],...,X[v,1,Q]) where Q
is some bound determined by the problem instance. In the Qut-tree

Knapsack problem, Q 1is taken to be some upper bound on the optimal

*Even this special case of Tree Knapsack is NP-complete, as can be proved
by a simple transformation from the PARTITION problem [2].

\
K
\
AL
Y
R
“
»
Y
"/ Q™
~ \
. @
\"
/
().
rd
P
A-’

N\
-
o5
b
e

@
—~(@)e

- = -

®
@
®

4/

L4
o, u@
\ \\

(@ () A%
[»:2,7."\ N

6
o2
4—@

\ﬁ-—-h

P
i
'R\
-
-
”~

\
N

P T I

~®

~

C—’l‘ LV, 2]} Ty, 2) K‘T’[Ve,?—‘)

(&) Bottem -up Sulbtrees (b) Left-right Solbtrees

Figure 2 Examples of Subtrees used in bottom-up and left-right
algorithms.

solution value, say P. The vector for this problem, which we shall
denote by io[v,i], is defined as follows:

A solution for a subtree T[v,i] = (V' ,A") will be a non-empty
subset V" C V' that is closed under predecessor (with respect to
T[v,i]) and has total weight B or less. Note that V', being non-
empty and closed under predecessor, must contain v. For each triple

[vsi,ql, veV, 0<i<d(v), 0<q<Q, wedefine

Xo[v,i,q] = MIN ({=} U {w(V"): V" 4s a solution for
Tlv,i] and p(V")>q}).

The optimal solution value P* 1s then seen to be

P* = MAX {q: 0<g<Q and Xo[v],d(v]),q] < w},

The bottom-up approach gets its name from the order in which the
vectors X[v,i] are computed. According to standard (if upside-down)
conventions of computer science, trees are drawn, as in Figure 1, with
the root on top and the leaves at the bottom. In the bottom-up approach,
the values of X[v,d(v)] depends only on v and the values X[w,d(w)]
for subtrees T[w,d(w)] where w is a successor of v, i.e., for
subtrees which are below v. The computation rule for the out-tree

Knapsack problem is typical. For each triple [v,i,q]

w(v) if q < plv)
If i

fl
o
v
><
(@)
[
<
-
-
£
i
i

» if q > p(v)

.th

If 1<1<d(v) and w is the i child of v

A

{Xo(v,1-1,q]} U

{XO[W,d(W) sq'] + Xo[va-i"l aq‘q’]:
XO[V,i,q] = MIN
0 < g <q and the sum does not

exceed B}

That (AO) and (BO) correctly define R[v,i] is straightforward to
verify. For (BO), we merely observe that a solution for T[v,i]
either does not contain w, in which case it is a solution for T[v,i-1],
or else it does contain w, in which case it is the union of a solution

for T[v,i-1] and one for T[w,d(w)].

The major contribution to the running time of an algorithm based
on these rules is the time to carry out (BO), which is easily seen to
be 6(Q), yielding a time of e(QZ) for X[v,il, or e(an) overall,
since there are at least n-1 vectors of the form X[v,i] with i>0
which must be computed before we can determine P*. The quadratic con-
tribution of the bound Q is typical of the bottom-up approach.

The Teft-right approach avoids this factor, and attains a time
bound of 6(nQ). The key idea is a different way of subdividing the main
problem into subproblems. Given our depth-first ordering VisVosesesVy
of the vertices of T, let T[v,i] be the subtree of T induced by v,
the first i children of v and all their successors, and all vertices
in V with indices lower than that of v. See Figure 2b. We order the
subtrees so that T[v,i] precedes T[v,i+1] for all v eV and

i, 0 < i < d(v), and so that, if w 1is the 1th

child of v, then T[v,i-1]
precedes T'[w,0] and T'[w,d(w)] precedes T'[v,i]. Note that in this
ordering each subtree actually contains all the subtrees that precede it.
Starting with 'V[v],O], we can view the subtrees as gradually expanding:
first down the left edge of the tree and then across the tree to the

right. Hence the term "left-right". Note also that certain subtrees

will be identical as trees (T'[v,i] and T'[w,d(w)] for example, where

w 1is the ith

child of v), although we shall continue to consider them
as separate subproblems.

We shall denote by Y[v,i] the solution vector computed for the
subtree T'[v,i] 1in the left-right approach. In the case of the Out-

tree Knapsack problem, the vectors are defined as follows:

-10-

A solution for a subtree T[v,i] = (V',A") is any subset V' CV
which contains v, 1is closed under predecessor, and has total weight B
or less. (Thus, in the above example, although T'[v,i] and T'[w,d(w)]
are identical as trees, a solution for the second must contain w,

while a solution for the first need not.) For each triple [v,i,q], we

define

Y1[v,1,q] = MIN ({o} U {w(v"): V' is a solution for
T (v,i) and p(V')>q}).

Once again, note that P* = MAX {q: 0<q<Q and Y][v],d(v]),q]<<W},
so long as Q > P*.

The left-right approach computes the vectors ?1[v,1] in the order
specified above for the subtrees T[v,i], according to the following

easily verified rules

wiv) if q < p(v)
(A}) If i=0 and v=v1,Y1[V,”i,q]=

oo otherwise

.th

(B,) If i=0, v is the j" child of u, and r = MAX {0,q-p(v)}
1

Y][u,j-1,r]4-w(v) if the sum does not exceed B
Y1[v,i,q] =
= otherwise

(C]) If 1<1i<d(v) and w is the ith child of v

Y][Vaiaq] = MIN {Y][V:1‘—l sq]: Y'l[uad(u)aq]}-

-11-

Note that in no case is more than a constant amount of work required
to compute any particular value of Y][v,i,q]. We thus can compute P*
in time 6(nQ) with this left-right approach, as claimed, and as opposed
to the bottom-up e(nQZ), a quite significant speed-up if Q is large.

As originally specified, Q was supposed to be an upper bound on
P*, with P = p(V) a suggested value. This value could be considerably
larger than P*, and so a value of Q closer to P* would be desirable.
Such a value can be obtained by using the algorithm iteratively: For any
Q >0, define P, = MIN {P*,Q}. It is easy to see that both our algo-
rithms actually compute PQ, when the possibility of Q < P* s allowed.
By applying the algorithm iteratively, starting with the obvious lower
bound on P* provided by Q = MAX {p(v): veV} and doubling Q after
each iteration until PQ < Q, we will find P* 1in time o(nP*) using
the left-right approach (e(n(P*)Z) using bottom-up).

To actually construct an optimal solution, rather than merely compute
its value as we have done here, requires little additional effort. One
would store "unwinding variables" at the same time one was computing the
solution vectors, and then "unwind" the solution in a final, linear time
pass after P* was computed. The details are more or less standard -
see [3,5]. The standard techniques, however, are not very space effic-
jent, and we shall return to this question when we discuss storage

reduction techniques in Section 6.

-12-

3. In-Trees and Others

An in-tree T = (V,A) is a tree with a distinguished root v,,
such that every arc is directed toward the root. Although the left-right
approach seems restricted to out-trees, we can apply it to the In-tree
Knapsack problem by making a simple transformation.

If T=(V,A) 1is an in-tree, let TR = (V,AR) denote the out-tree
obtained by reversing the directions on all the arcs. See Figure 3.
Note that if V' C V is a Knapsack solution for T, then the set V - V'
has the following properties: (i) V - V' is closed under predecessor
with respect to TR, (i1) w(Vv-V") =W - w(V') > W - B, and (iii)
p(V-V') = P - p(V'). Thus the Tree Knapsack problem for the in-tree T
corresponds to the following dual problem on TR, Find a subset V' CV
which is closed under predecessor, has w(V") > W - B, and such that

p(V') is minimized. This is now a problem to which the lTeft-right

approach can be directly applied.

\
. NN ® ® NN
‘ ~
¢ * N .
7 ~ \
’ s\ IS \
¢ ~ N \
“0 @) 5‘\ ° S 8 [9 ‘\. ‘
\ . v
‘ " V-’
\ -
A]
N .
AT ® @ e ®)

Figure 3 An in-tree T and its reversal TR, with sets closed under
predecessor.

-13-

Given an in-tree instance T of the Tree Knapsack problem, let

subtrees T[v,i] of R

be defined as in Section 2. A solution for
a subtree TT[v,i] = (V,A") will be a subset V' C V' which contains
v and is closed under predecessor in TR. Given a bound Q we define

solution vectors ?Z[V,i] as follows. For each triple [v,i,q],

Yz[v,i,q] = MAX ({-} U {w(V"): V" dis a solution for T'[v,i]
and p(V")=q}).

Note that this definition differs from that for V1[v,1] in that MIN
is replaced by MAX, and also that we require equality of p(V") and
q. If we let

Pq = MIN ({=} U {q: 0<q<Q and Y,[vy,d{vy),q]>W-B})

0 if Q<P-PpP*
then it should be clear that PQ =
P-P* otherwise

Thus computing the values of the ?Z[V,i] will enable us to compute
P*, as long as we choose Q>P-P*, For instance, once again Q =P
will do.
The values are computed in the same order as before, and the reader
may readily verify that the following rules will suffice:
w(v) if q = p(v)

(A2) If i=0 and v=yv, Y,[v.i,q]=
- otherwise

-14-

h

(BZ) If i=0 and v 1is the jt child of vertex u

, Yo[u,3-T,9-p(v)] + w(v) if q > p(v)
Y2[v,i,q] =
-co otherwise

.th

(CZ) If 1T<i<d(v) and w is the i*" child of v

Yz[vsiaq] = MAX {Yz[vsi—-] 3q]3 Yz[W’d(W)gq]} .

Once again, the running time is 6(nQ) and we can use this basic
procedure, suitably augmented and iterated, to find an optimal solution
to the in-tree problem in time 6(n(P-P*)). In this case the compari-
son to the bottom-up approach will depend on the value of P*, since
the latter can still be implemented to run in time e(n(P*)z). However,
as we shall see in Section 5, the superiority of the left-right approach
becomes clear-cut when we consider the approximation schemes derived
from these algorithms.

It should be pointed out, however, that the bottom-up approach can
be used to solve the Tree Knapsack problem for arbitrary directed trees
in time e(n(P*)Z), whereas the left-right approach seems Timited to
in-trees and out-trees. In an arbitrary directed tree, there need not
be any natural candidate for root, so we just pick an arbitrary vertex
as Vq» and define the bottom-up subtrees T[v,i] in terms of a depth-
first search from this choice. A solution for a subtree T[v,i] = (V',A’)
is a (possibly empty) subset V' C V' which is closed under prececessor
and has w(V") < B. Note that it need not contain wv. We proceed by

computing two solution vectors 23[v,1] and 23[v,i], defined as follows:

-15-

Xs[v,i,q] = MIN ({«} U {w(V"): V"’ s a solution for T[v,i]

which contains v, and p(V")>ql})

Z3[v,i,q] = MIN ({«} U {w(V"): V' 1is a solution for T[v,i]

which does not contain v, and p(V"')>ql)

We then define P, = MAX {q: MIN{Xg[vy,d(vy),als Z50vyad(vy),qld <)
and observe that PQ = MIN {Q,P*}. The actual computation rules for the
vectors 23[v,1] and 23[v,1], which Tead to the e(n(P*)z) algorithm,
are left as an exercise to the reader.

We conclude this section by noting that our results for the Tree
Knapsack problem can be extended to the case of forests by the standard
trick of combining a collection of trees into a single tree by use of a

new vertex vO as a common root.

-16-

4, The Tree Partition Problem

In this section we show that the left-right approach can be usefully
adapted to a problem that at first seems far afield from task of finding
sets of vertices which are closed under predecessor in an out-tree. Recall
from Section 1 that in the Tree Partition problem our goal is to find a
partition I = {V1,V2,...,Vm} of the vertices of an undirected tree T such
that no set Vi has total weight exceeding B and such that p(1), the
total value of the edges in the set {{u,v}eE: {u,v} gﬁvi, T<i<m}, fis
minimized. Note that we may assume that each set Vi is connected (i.e.,
induces a connected subgraph of T), since otherwise I can be replaced
by a finer partition with the same value, merely be replacing Vi by its
connected components.

The bottom-up approach to this problem, as applied by Lukes [7],
results in an algorithm with running time e(nBZ). A dual version of this
(which runs in time e(n(P*)Z)) is necessary if we are to construct
approximation schemes. Our left-right algorithm will actually share some
of the framework of this latter bottom-up algorithm, so Tet us discuss it
briefly.

We define subtrees T[v,i] by choosing an arbitrary vertex vy as
root and labelling the remaining vertices by depth-first search. A
solution for a subtree T[v,i] = (V', E') is a partition T = (V;,V5,...5V})

of V' such that no set V. has w(V,

1) > B. Given a bound Q, we define

vectors X4[v,1] by

X4[v,1,q] = MIN ({~} U {w: there is a solution 1 for T[v,i] with
p(ll) = q and such that the set of I

containing v has weight w}).

-17-

We then have P* = MIN {q: 0<q<Q and X4[v1,d(v1),q] < B}, so long
as Q z_P*. The reader should be able to fill in the computation rules
to obtain a e(n(P*)z) algorithm for finding an optimal partition.

The left-right approach is more complicated and yields a running
time of e(nzP*) which will nevertheless dominate the above so long as
the typical situation of P* >n holds. We start with a definition

based on the bottom-up approach. Let

P*(u) = MIN {p(m): I 1is a solution for T(u,d(u)]}.

An optimal partition for T[u,d(u)] will be one whose value equals
p*(u). We shall call a solution T for T[u,d(u)] = (V',A") a normal
solution if for each v, weV' with w a childof v and v and w
in different sets of I, 1 induces an optimal partition on T[w,d(w)].
Note that, although not all solutions need be normal, all optimal solu-
tions must be.

In particular, an optimal partition 1 for T[u,d(u)] = (V',E)
must consist of a set V1 containing u, together with optimal
partitions of T[w,d(w)] for each weV - V1 which is a child of a
vertex in V]. Suppose we knew p*(w) for all vertices weV' except
u. Then the value p*(u) for an optimal partition for T[u,d(u)]
would be the minimum, over all connected sets V, C V' which contain u
and have total weight B or less, of

, [p(v,wl) + p*(w)] .
VeV], wéV1, {v,wlekE

-18-

Moreover, note that V]’ being connected and containing u, must be
closed under predecessor with respect to the out-tree obtained from
T[u,d(u)] by choosing u as root and directing all edges away from
it. This suggests that the left-right approach could be used to compute
p*(u), given the values P*(w) for all weV - {u}. (Actually, we
compute quantities Pa(u) which equal P*(u) 1if Q > P*(u) and
otherwise are infinite).

If v is a descendant of u, define the subtree T[u,v,i,] to
be the intersection of T[u,d(u)] and T[v,i], i.e., the subtree of
T[u,d(u)] consisting of v, its first i children and all their
successors, and all vertices in T[u,d(u)] which have indices Tower

than that of v. For all relevant quadrupies [u,v,i,q] we then define

Ys[u,v,i,q] = MIN ({«} U {w<B: There is a normal solution T
for T[u,v,i] with p(I) = q and v
in a set of 1 which contains u and

has weight w}).

Note that Pa(u) = MIN ({«} U {q: Y5[u,u,d(u),q]§iB, 0<q<Ql).

The recurrence relations for computing the values of Vs[u,v,ij,
given the values for earlier subtrees of T[u,d(u)] and the values
Pa(w) for all descendants of u, are as follows:

w(v) ifgq=0

(Ag) If =0 and v=u, Y;[u,v,i,q] =
© otherwise

-19-

h

(85) If i =0 and v # u but is the jt child of some vertex u’

Y5[u,uﬁj—1,q]-kw(v) if this sum does not exceed B
Ys[u,v,i,q] =
’ © otherwise

(c5) If 1<1<d(v) and w is the ith

child of v

MIN {Y5[u,v,i—1,q—P6(w) - P({v,w})],
Yelu,v,i,a] = Yelu,w,d{w),ql} if g z_Pa(w) + P({v,w})
Y5[u,w,d(w),q] otherwise
Using these recurrences, we can compute Pa(u) in time 6(nQ). Using
them repeatedly in a bottom-up fashion (this is clearly a hybrid algorithm)
we can thus compute all the values Pa(u) for ueV, and hence PS’ in
time e(nZQ). From this basic procedure we can then, by the techniques

discussed in previous sections, construct an algorithm which finds optimal

solutions and has running time e(nzP*), as claimed.

-20-

5. Approximation Schemes

The methods for deriving fully polynomial time approximation schemes
from pseudo-polynomial time optimization algorithms are illustrated in
detail in [1,2,8], and can be applied in a straightforward way to the
algorithms we have been discussing. The basic trick involves a "rounding"
process. We start with an algorithm AO that finds an optimal solution
if the optimal solution value P* satisfies P* < Q, and otherwise
reports P* > Q. (A11 our algorithms can be viewed as behaving this way.)
From AO we construct a procedure A] that, given a problem instance,
a desired error ratio e, a lower bound Q1 < P* and an upper bound
Q, > Qy» will return a solution with value P_ satisfying |P_-P*[/P* <€,
or else report a reason for failure. In the case of our algorithms,

these reasons would be

(a) Q2 < P*, bottom-up Tree Knapsack or

left-right Out-tree Knapsack
(b) Q <P - P*(1-e), left-right In-tree Knapsack
(c) Qy < P*(1+e), bottom-up, left-right Tree Partition

In all three cases the algorithm A1 is obtained by constructing
a modified problem instance in which values are rounded to the next
multipie of Q]s/n and then divided by Qe/n, and applying AO to the

Q,n
modified instance with Q = Qgg"- If AO had running time e(naQB),
! not8 Q
the running time for A] will be 8- (

B

2\8
Q;ﬁ).

-21-

To derive a true approximation scheme, we must devise ways of choos-
ing Q2 so that A1 will find a solution. Assuming € < 1, Q2 = P
will suffice for Tree Knapsack and Q2 = 2P will do for Tree Partition.
In order for the approximation scheme to be "fully polynomial"”, we need
a value for Q] so that QZ/Q1 is bounded by a polynomial function of
n, 1/e, log P, lTog W, etc. In the case of Tree Knapsack this is not
difficult: Q] = max {p(v): veV} will suffice, since this yields
QZ/Q] < n. This, however, yields rather high running times: e(ns/e2
for the bottom-up approach, 6(n3/e) for the left-right. A considerable
speed-up for both algorithms is possible if we use A1 iteratively to
find better values for Q] and QZ' Moreover, such an iterative proce-
dure seems necessary if we are to get bounds that make the Tree Partition
scheme fully polynomial.

We illustrate this procedure in terms of our Tree Partition algo-
rithms (the same technique carries over with minor modifications to all
the other algorithms except the left-right In-tree Knapsack algorithm).
Our goal is to find a Q; and Q, such that 0Q <P¥<Q, and Qy/Q;<2.
We may assume that P* > 1, since P* =0 is trivial to detect. We

perform the following loop until it halts:
1. Set Q<1

2. Perform A] with € <« 1, Q1 < Q, Q2 < 4Q and Tet P€ be

the solution value returned, if any

3. If a solution is returned, halt and return Q1= [Q?/21, Q2 = PE

4, Otherwise, set Q< 2Q and go to 2

-292-

First note that Q is always a Tower bound on P*. It is only doubled when
no solution is returned, in which case, by (¢), 4Q = 02 < P*¥(1+e) = 2P*
and hence P* > 2Q. Thus algorithm A1 is always applied correctly, and
moreover will be applied at most [log P*] times before it returns a
solution. When this happens we must have P_ > P* since this is a
minimization problem, and |P€~P*]/P* <e=1 dimplies P*>P_/2. Since
P* 4is an integer, we thus have Q1 = [P€/21 < px < PE = QZ’ and

QZ/Q1 < 2, as claimed.

The total time required for iterating the Toop will be e(na+8 Tog P*),
since the e and Q2/Q1 contributions are here limited to a constant fac-
tor (we always have ¢ =1 and QZ/Q1 = 4). Adding to this the time
required to do a final pass with A], using the computed bounds
Qp =P <0, and the desired value of e, we obtain an overall running

time of (an(]/sB + Tog P*)).

For Tree Partition, we thus obtain a left-right approximation scheme
with running time 6(n3(1/e + log P*)), as opposed to the bottom-up
running time of 6(n3(1/a2 + Tog P*)): a distinct improvement despite the

fact that the corresponding optimization algorithms had, strictly speaking,
incomparable running times.

In the case of Out-tree Knapsack, the left-right approximation scheme
devised using the above speed-up techniques has running time e(n2(1/e + Tog P*))
as opposed to a bottom-up running time of e(n?’('l/s2 + log P*)): a much
more substantial improvement. Even in the case of In-tree Knapsack, where

the speed-up techniques cannot be applied in the left-right approach

because of the different nature of condition (b) from that of (a) and (c),

-23-~

the original left-right time of 6(n3/e), obtained by using Q] = max {p(v)}

and Q, = P, still beats the sped-up bottom-up time of e(n3(1/e2-+1og P*)).
Thus the value of the left-right approach is more clear-cut in

the case of approximation schemes than it was in the pseudo-polynomial

time optimization algorithms of previous sections. (We note in con-

cluding this section that the "log P*" in the running time for the

sped-up Tree Knapsack algorithms can be replaced by "log n", since the

bound computation can in this case start with Q = max {p(v)} vrather

than Q = 1. This, however, will not affect the relative merits of the

algorithms).

-24-

6. Reducing Storage Requirements

A drawback shared by all algorithms so far discussed is their Targe
storage requirements. The optimization algorithms for Tree Knapsack and
Tree Partition all explicitly use at Teast ©(nP*) space to store the
solution vectors for the various subtrees, and the approximation schemes
use at least e(nz/e). Since space is often the 1imiting factor in com-
putations, it may well be worthwhile to try to reduce these requirements,
even if this means an increase in running time. In this section we
describe methods for reducing storage requirements to 6(log n/n) times
those previously specified, at a cost of increasing the running time by a
factor of n/log n. (Actually, these need be no increase in running time
if all we want is the optimal solution value, rather than an actual
solution.)

Our methods are based on similar ideas developed for code optimization
in [9], although their application, at Teast in the case of the left-right
approach, involves a certain amount of cleverness. To introduce them, Tet
us first take a quick look at the bottom-up case. The basic bottom-up
subroutine, with parameter Q, stores 2n - 1 vectors i[v,i], each
requiring space 6(Q). However, it is not really necessary to remember
all of these simultaneously. For instance, once X[v,d(v)] ds computed,
we can forget X[w,i] for all proper descendents w of v. Hence the storage
Jocations in which these values were stored can be re-used. In order to
make possible maximum re-use of storage, however, we must properly
organize our computation. This requires being more careful about our

initial depth-first ordering VisVoseeesVy of the vertices.

-25~

For each v ¢ V, Tlet V[v] be the set of vertices consisting of
v and all its successors (V[v] 1is the vertex set for the subtree
T[v,d(v)]). Define for each v ¢ V the following cost function

Clvl=) (d(u)+1)

ueV[v]

observing that this is precisely the number of subproblems that must be
solved if we are to compute X[v,d(v)]. We direct the depth-first
ordering of V, starting at the root Vys SO that the following
property is satisfied. If v and Vj are children of the same vertex
and i < j, then C[vi] z_C[vj]. The computation of solution vectors
is best described recursively. Let M[v] be the maximum number of
solution vectors that have to be remembered to compute X[v,d(v)]. We
do the computation as follows:

If d(v) = 0, compute X[v,d(v)] = X[v,0] and halt.
No other vectors are needed, so M[v] = 1. Otherwise compute X[u,d(u)]
for u the first child of v, at a cost of M[u], forget everything
but X[u,d(u)], and then compute X[V,O] and X[v,1], after which both
X[u,d(u)] and X[v,0] are forgotten. The remaining X[v,i] are
computed inductively. Given X[v,i], i < d(v), compute X[u,d(u)] for
u the 14-15t child of v, wusing M[u] additional vector storage
locations, then forget everything but X[v,i] and X[u,d(u)], use these
to compute X[v,i+1], and then forget all but this last vector.

It is easy to see that this way of computing X[v,d(v)] yields the

following recurrences:

-26-

1 if d(v) =0
MIv] =
MAX {3, M[u]],'l+M[uj]: 2<j<d(v)} when d(v) >0

th

and uy is the j° child of v, 1 <j <d(v).

It is not difficult to see that this recurrence implies
M[v] < [Tog C[v]] + 1 since by our depth-first ordering C[u]] §3%C[v]
for all i > 2, and C[v] can never equal 2 by definition. We thus
can conclude that, since C[v]] = 2n-1, the total number of vector
storage locations needed for calculating X[v1,d(v1)] is at most
[Tog n] + 2, for a total storage requirement of 6(log n-Q). Using
the basic algorithm iteratively, we can thus find the optimal solution
value P* in storage 6(log n-+P*), 1in the same basic running time
as before.

The corresponding technique for saving storage in the left-right
approach is not as straightforward. Here, a vector Y[u, i-1] must be

computed before we can compute Y[v,0] for v is the ith

child of wu,
and is needed again after Y(v,d(v)] has been calculated. This would
make it appear that we would need to allocate enough storage to hold a
number of vectors equal to the height of the tree, which for some trees
is linear, not logarithmic, in n. Fortunately, there is a way around
this obstacle.
Recall that, in the Teft-right approach, the calculation of

?[v,O], while not independent of the values of other vectors, is a
very straightforward affair, given ?[u,i-]], where v s the ith

child of u. In fact, it is so straightforward it is reversible.

Given Y[v,0] we can easily regenerate Y[u, i-1]. This suggests the

-27-

following organization for our left-right computation (we assume the
vertices are ordered as in the bottom-up storage reduction method).

The basic unit of computation will be viewed as that of computing
Y[v,i] from Y[v, i-1] in such a way that both values are available
at the end of the computation. Let M[v,i] denote the maximum number
of vector storage locations needed at any one time during this computa-
tion. We first compute Y[w,0] from Y[v, i-1], where w is the ith
child of v. If d(w) = 0 we then can compute Y[v,i] and M[v,i] = 3.
Otherwise, temporarily forget Y[v, i-1] and compute Y[u,1] using the
basic computation recursively. Regenerate Y[v,i-1] from Y[u,0] and
forget the latter. Then compute ?[u,Z],...,?[u,d(u)] in turn, forget-
ting each (and all intermediate vectors) as soon as the next is desired.
Finally, use Y[v,i-1] and Y[u,d(u)] to compute Y[v,i], and forget
Ylu,d(u)].

It is easy to verify from this description that

M[v,i] = MAX {3, M[u,1], 1 + M[u,j]: 2<j<d(u)}

where u is the ith

child of v. From this we can derive the fact that
MLv,i] < [log C[v]] + 1 for all i, 1 < i <d(v). The total number of
vector storage locations needed for computing V[v1, d(v1)] is thus
bounded by M[v],lj < [log nT + 2, as before for a total storage
requirement of 6(log n+Q). Hence the optimal solution value can again
be found using storage 6(log n-+P*) with no appreciable increase in
running time over the straightforward approach.

Unfortunately, although the above techniques allow us to compute

solution values using reduced storage, they do not save enough information

-28-

to enable us to construct optimal solutions once we know their values.
This would normally be done by saving an auxiliary "unwinding vector"
§[v,i] for each solution vector computed, whose entries would indicate
how the corresponding solution vector entries were derived [3,5]. Given
the optimal solution value and these vectors, an optimal solution can
then be "unwound" in a single, linear-time pass. Unfortunately, storing
all the vectors would require 6(nP*) space, thus negating most of the
effect of our space savings for the solution vectors.

Our answer to this problem is to store only the "last few" of the
unwinding vectors §[v,1]. Once the optimal value is found, we can
unwind a solution as far as the remembered values go, and then recompute
the rest of them as needed. If at each stage we remember Tog n unwind-
ing vectors, the process may in the worst case require n/log n recom-
putations, and hence we will have reduced storage by a factor of n/log n
at the cost of increasing running time by the same factor. Other trade-
offs are possible, and these results all carry over to the approximation
schemes based on our algorithms. Details are left to the interested

reader.

-29-

7. Concluding Remarks

In this paper we have considered the Partially Ordered Knapsack
problem and the Graph Partitioning problem. We showed how to design
pseudo-polynomial time optimization algorithms and fully polynomial
time approximation schemes for these problems in the case when the
underlying graph was a tree. If P # NP, this is about the best we
can hope to do, since the problem is NP-complete for trees and hence
cannot be solved by a polynomial time optimization algorithms unless
P = NP. One might ask, however, whether our results for trees can be
extended to the case of general graphs, perhaps be new techniques more
sophisticated than bottom-up or left-right dynamic programming. Again
assuming that P # NP, the answer is no.

This follows from the fact that both problems are NP-complete "in
the strong sense" when general graphs are allowed as input. For a
complete discussion of this concept and its implications, see [1,2].
Here it 1is enough to note that one of our problems will be NP-complete
in the strong sense if there is a polynomial g such that the problem
remains NP-complete even when restricted to instances in which no weight
or value exceeds q(n), where n 1is the number of vertices. The strong
NP-completeness proofs for our problem are fairly short, so we shall
sketch them here.

Recall that for NP-completeness results, we actually deal with
problems stated as decision problems, rather than optimization problems.

Thus the two problems under consideration become:

-30-

PARTIALLY ORDERED KNAPSACK (POK)

INSTANCE Directed acyclic graph G = (V,A), a weight w(v) ¢ Zg and a
value p(v) e Zg for each vertex v ¢ V, a knapsack capacity B ¢ Z+,

and a bound C ¢ Z+.

QUESTION Is there a subset V' CV, closed under predecessor, such that

w(V') <B and p(V') > C?

GRAPH PARTITIONING (GP)

INSTANCE Graph G = (V,E), a weight w(v) e Zg for each v ¢ V, a value
+

p(e) « ZO for each e ¢ E, a knapsack capacity B « Z+, and a bound C e Z'.

QUESTION Is there a partition I = (V1,V2,...,Vm) of V into disjoint

subsets such that w(V;) <B, 1 <1 <m, and such that p(T) < C?

Theorem 1. PARTIALLY ORDERED KNAPSACK 1is NP-complete in the strong sense,

even if p(v) = w(v) for all v e V.

Proof. The proof is by a polynomial transformation from the CLIQUE problem
[2]. In CLIQUE, we are given a graph G = (V,E) and an integer K < |V|
and ask whether G contains a complete subgraph on K vertices. Given an
instance of CLIQUE, our transformations constructs an instance I of POK
5,

as follows (we assume |E| 3_(2 else the desired complete subgraph could

not possible exist).

=
il

VUE

=
1]

I {(v,e): veV,ecE, v 1is an endpoint of e}

wI(v) = pI(v) = |E| +1 for all velV
wI(e) = pI(e) =1 for all eceE
K K+1
By = Cp = K(JE[+1) + (5) = K(|E] + =)

-31-

Note that GI = (VI,AI) is acyclic since all arcs are from elements of
V to elements of A. Note also that all weights and values are bounded
by the polynomial q(n) = n = (|V|+|E|]). The instance I can clearly
be constructed in polynomial time. Thus all that we need show to prove
that we do indeed have a polynomial transformation, and hence strong NP-
completeness for POK, is that I has a solution of value C or greater
if and only if G has a complete subgraph of size K.

Suppose the latter. Let (V',E') be the complete subgraph. Then
IV'| = K and |F'| = (g) = K(K-1)/2. The reader may readily verify that
VU E" s the desired solution for I. Conversely, suppose I has a
solution of value C or greater. Since BI = CI and each vertex of VI
has the same value as its weight, this means that our solution V&
has value and weight exactly B. However, this can only happen if

c v
V& NV =K and V} NE= (g). Since V& must be closed under predecessor,

this means that (V&fWV, V&fWE) is the desired complete subgraph of G. 0
Theorem 2. GRAPH PARTITIONING is NP-complete in the strong sense.

Proof. This proof is by polynomial transformation from PARTITION INTO
TRIANGLES [2], in which we are given a graph G = (V,E) and ask if there
is a partition 1 = (V1,V2,...,Vm) of V into disjoint subsets such that
|Vi] =3, 1 <1i<m and the subgraph of G induced by V, is a triangle,
1 <i<m. Given an instance of this problem, our transformation con-
structs an instance of GP as follows. (We may assume that |E| > |V],

else the desired partition could not possibly exist.)

-32-

VI =V

EI = E
w(v) =1 forall velV
p(e) =1 forall eckE

B=3

o
1]

[E] - V]

Note that this transformation can clearly be performed in polynomial
time, and all weights and values are bounded by the polynomial gq(n) = 1.
Thus all we need show to complete our proof is that G has a partition
into triangles if and only if it has a partition into sets of size 3 or
less with total value C or less. But, as the reader may readily
verify, any partition meeting one of these criteria must also meet the
other, so we are done. [

An interesting sidelight on these results concerns Theorem 1.
Ibarra and Kim [4] have developed a polynomial (but nor fully polynomial)
time approximation scheme for the PARTIALLY ORDERED KNAPSACK problem in
the case when p(v) = w(v) for all v ¢ V. Our result shows that no
fully polynomial time approximation scheme can exist for this special
case unless P = NP. Thus this special case is one of the few examples
known of problems which cannot be solved by fully polynomial time approx-
imation schemes (unless P = NP) but can be solved by polynomial time
approximation schemes (another example is the INDEPENDENT SET problem for

planar graphs, as can be deduced from the results in [6]).

-33-

In conclusion, we note that although our results do not extend to
general graphs unless P = NP, there still may be hope for classes
between forests and general graphs, such as the class of series-parallel
graphs. There may also be more applications for our algorithmic
techniques on trees. The bottom-up approach is well-known, but there
may still be new worlds for it to conquer, and even in the already
subjugated domains, there may be many places where a clever transforma-
tion can yield a problem to which the more efficient left-right approach
is applicable. We leave the further investigation of these questions,

as we have left so much of this paper, to the reader.

-34-

BIBLIOGRAPHY

M. R. Garey and D. S. Johnson, "Strong NP-completeness results:
motivation, examples, and implications", J. Assoc. Comput. Mach.
25 (1978), 499-508.

M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and Co.,
San Francisco, 1979.

0. H. Ibarra and C. E. Kim, "Fast approximation algorithms for
the knapsack and sum of subsets problems", J. Assoc. Comput. Mach.
22 (1975), 463-468.

0. H. Ibarra and C. E. Kim, "Approximation algorithms for certain
scheduling problems", Math. of 0.R. 3 (1978), 197-204.

E. L. Lawler, "Fast approximation algorithms for knapsack problems",
Math. of 0.R. 4 (1979), 339-356.

R. J. Lipton and R. E. Tarjan, "Applications of a planar separator
theorem”, SIAM J. Comput. 9 (1980), 615-627.

J. A. Lukes, "Efficient algorithm for the partitioning of trees",
IBM J. Res. Develop. 18 (1974), 217-224.

S. Sahni, "General techniques for combinatorial approximation",
Operations Res. 25 (1977), 920-936.

R. Sethi and J. D. Ullman, "The generation of optimal code for
arithmetic expressions", J. Assoc. Comput. Mach. 17 (1970), 715-728.

