PARALLEL ALPHA-BETA SEARCH ON ARACHNE

by

John P. Fishburn
Raphael A. Finkel

Computer Sciences Technical Report #394

July 1980

Wb
-
W N~

co 00 0 NI
P « o
U > W N

.
DLW N -

10.

TABLE OF CONTENTS

INTRODUCTION“.BIO.GUD.O...G.O.Q'...O0.00....

THE ALPHA-BETA ALGORITHM.::.seccosoccoecnansas

PARALLEL ASPIRATION SEARCH. :eseeencvoscansssnoe

THE TREE-SPLITTING ALGORITHM:coovacoooossscnoss
The Sla\]e Algorithmugooouo'..onoooocuooo.st!u.
The Master AlgorithmM....eeseeeeeeocosoceasoness
Alpha RaiSing.oao-ooe-ooo.coo«w.-ooun-.oouooo

MEASUREMENTS OF THE ALGORITHM.:ceveoooccooaesss

OPTIMIZATIONS LEE SR A 2L 2K B R 2N BN 2R LR BRI I R N A A R R I

ANAIJYSIS OF SPEEDUP..cooo-.ooo.on.ceo‘.o.oo.a

Worst—-first ordering.eceeeececcececcceasosnsaes
Best-first ordering.ceeeeeeeecececeeeescosnse
DISCUSSION ..ttt eeseososssseosennconansoossss
Random OrQer...eieeeeccsecescceseenconsecosons

-

¢ o 0 0

* o 0 s e

© o 0 0 0

® e e 0 0

® o 8 0

® 00 00

LI

*« o8 0.

L

© e o 2 0

* s o0

Discussion O0f Theorem 6...veeeeoecocoececscecnsnssss

APPENDIX - SOME OPTIMIZATIONS OF SERIAL d-pP SEARCH.

Falphabetao.'o..“qocaooo-aooooo-;o.oo.-vn.oooooo.

Lalphabeta.oconoouu'.c00-oe-oo..otuhcoaoeooo.o'ootn
Palx)habeta-.oonqooooo‘.oo.oabonuooo--coo.-o.oootcooo

MeasureXHEntSoc.o.ooo-ooooouo.-o-sﬁttocoomo-.o-..ou

ACKNOWLEDG[%ENTS.00--.9."--00‘.oaouo.oc.uo.o.o.o.ou

REFERENCES.ovo.co-youoo.o-t-oc.-eoco-o.ooo-coocnooc

11
14

15

18

20

22
23
29
3¢
41

44
44
48
49
50

52

53

Parallel Alpha-Beta Search on Arachne

John P. Fishburn

Raphael A. Finkel

Computer Sciences Department
University of Wisconsin-Madison

AbstEEQt

We present a distributed algorithm for implementing q-3
search on a tree of processors. Each processor is an independent
computer with its own memory and is connected by communication
lines to each of 1its nearest neighbors. Measurements of the
algorithm's performance on the Arachne distributed operating sys-
tem are presented. A theoretical model 1is developed that

predicts speedup with arbitrarily many processors.

1. INTRODUCTION

The d-B search algorithm is central to most programs that
play games 1like chess. It is now well-known [1] that an impor-
tant component of the playing skill of such programs is the speed
at which the search is conducted. For a given amount of comput-
ing time, a faster search allows the program to "see" farther
into the future. 1In this paper we present and analyze a parallel
adaptation of the o-B algorithm. This adaptation, which we will

call the tree-splitting algorithm, speeds up the search of a

large tree of poteﬁtial continuations by dynamically assigning
subtree searches for parallel execution.

In section 2, we summarize the dq-B algorithm. Section 3 re-
views a parallel implementation of the d—ﬁ algorithm suggested by
Baudet [2]. Section 4 formally describes the tree-splitting al-
gorithm. Section 5 presents performance measurements for this
algorithm taken on & network of microprocessors. Section 6
discusses some possible optimizations and variations of the algo-
rithm. Section 7 derives the obtainable speedup with k proces—

sors as k tends towards oo.

2. THE ALPHA-BETA ALGORITHM

Consider a board position from a game like chess or check-
ers. All possible sequences of moves from this position may be

represented by a tree of positions called the 1lookahead tree.

The nodes of the tree represent positions; the children of a node
are moves from that node. The root node of the tree represents
the current position. Since lookahead trees for most games are
 often too large to be searched even by computer, they are usually
truncated at a certain level. Since we will later be referring
to a tree of processors, we resérve the following notation for
nodes of lookahead trees: A node is often called a position. A

node's child is its successor, and its parent is its predecessor.

If each non-terminal node has n successors, we say that the tree

has degree n. The level of a node or subtree is its distance

from the root.

The o-B algorithm is an optimization of the minimax algo-
rithm, which we will review first. The two players are called
max and min; at the root node, it is max's turn to move. The

minimax algorithm proceeds as follows: First, each leaf of the

lookahead tree is assigned a static wvalue that reflects that

position's desirability. (High values are desirable to max. In
a game like chess, the main component of the value is usually the
material balance between the two sides.)

The interior nodes of the Jlookahead tree may be given

minimax values recursively: If it is max's turn to move at node

A, the value of A is the maximum of A's successors' values. (If
the game were to proceed to node A, it would then be max's turn
to move. Max, being rational, would choosey the =successor with
the maximum value, say M. Therefore, the subtree rooted at A
must have M as its value, because M is the value of the leaf node
we would reach if the game reached A.) Similarly, if it is min's
turn to move ?t a node, then the wvalue of that node 1is the
minimum of these values.

We will use a version of the minimax procedure called
‘ negamax: When it is max's turn to move at a terminal node, the
node is assigned the same static value used in minimax. When it
is min's turn to move, the staﬁic value assigned is the negative
of what it would be in the minimax case. The value of a nonter-
minal node at any level is defined to be the maximum of the nega-

tives of the values of its successors.

The negamax algorithm can be cast into an ad hoc Pascal-like

language. The following program is adapted from Knuth [3]

function negamax(p:position):integer;
var m: integer;
i,d : 1..MAXCHILD;
succ : array[l..MAXCHILD] of position;
begin
determine the successor positions
succ[l],...,succ[d];
if d = ¢ then { terminal node }
negamax := staticvalue(p)
else
begin { find maximum of child values }
m := - 00;
for i := 1 to d do
m := max(m,- hegamax(succli]);
negamax := m;
end
end.

The d~-PB algorithm evaluates the lookahead tree without pur-
suing irrelevant branches. Suppose we are investigating the suc-
cessors in a game of chess, and the first move we look at is a
bishop move. After analyzing it, we decide that it will gain us
a pawn. Next we consider a queen move. In considering our
opponent's replies to the queen move, we discover one that can
irrefutably capture the queen; she has moved to a dangerous spot.
- We need not investigate our opponent's remaining replies; in
light of the worth of the bishop move, the queen move is already
discredited.

The d-P search algorithm [3] formalizes this notion:

function alphabeta(p : position; d,p : integer) : integer;
label DONE;
var i,d : 1..MAXCHILD;
succ : array[l..MAXCHILD] of position;
begin
determine the successor positions .
succ{l],...,succ[d];
if d = ¢ then
alphabeta := staticvalue(p)
else
begin
for i := 1 to d do
begin
q := max(d, - alphabeta(succli], -B,-d));
if > B then goto DONE { cutoff }
end;
DONE: alphabeta := ¢
end
end.

The function alphabeta obeys the accuracy property: For a

given position p, and for values of ¢ and B such that ¢ < B/

if negamax(p) < d, then alphabeta(p,q,p) < dq

if negamax(p) > B, then alphabeta(p,d,B) > B
if < negamax(p) < B, then alphabeta(p,d,p) = negamax (p)

The first and second cases above are called failing low and

failing high respectively. In the third case, success, alphabeta

accurately reports the negamax value of the tree. Success is as-
~sured if g = - o and B = . The pair (d,B) is called the window
for the search.

To return to our example: When alphabeta is called with P
representing the queen move, it is min's move. B is the cutoff
value generated by the bishop move. The better the bishop move
was for max, the lower is B. (Within the routine alphabeta, high

values for and B are good for the player whose move it is. A

high wvalue for d indicates that a good alternative for that

player exists somewhere in the tree. A low value for B indicates
that a good alternative exists for the other player somewhere
else in the tree.) When the successor that captures the queen is
evaluated, d becomes larger than B and a cutoff occurs.

d-B pruning serves to reduce the branching factor, which is

the ratio between the number of nodes searched in a tree of
height N and one of height N-1, as N tends to co. Both theory [3]
and practice [4] agree that with good move ordering (investigat-
ing best moves first), o-B pruning.reduces the branching factor
from the degree of the lookahead tree nearly to the square root
of that degree. For a given amount of computing time, this
reduction nearly doubles the depth of the lookahead tree.

When the algorithm is performed on a serial computer, the
value of one successor can be used to save work in evaluating its
siblings later on. Nevertheless, greater speed can be obtained
by conducting d-B search in a parallel fashion. We define the
speedup of a parallel algorithm over a serial one to be the time
required by the serial algorithm divided by the time for the
parallel algorithm. We will restrict our attention to parallel
computers built as a tree of serial computers. A node in this
tree is a processor, a parent is a master, and a «child 1is a

slave.

3. PARALLEL ASPIRATION SEARCH

In order to introduce parallelism, Baudet [2] rejects decom-

position of the lookahead tree in favor of a parallel aspiration

search, in which all slave processors search the entire lookahead
tree, but with different initial q-B windows. These windows are
disjoint, and in the simplest wvariant their wunion covers the
range from - w to + . Since each window is considerably smaller
than (- co,+ o), each processor can conduct its search more quick-
ly. When the processor whose window contains the true minimax
value of the tree finishes, it reports this value, and move
selection 1is complete. Baudet analyzes several variants of this
algorithm under the assumption of randomly distributed terminal
values, and concludes that the obtainable speedup is limited by a
constant independent of the number of processors available. This
maximum is established to be approximately 5 or 6. Surprisingly,
for k equal to 2 or 3, Baudet's method vyields more than k-way
speedup with k processors. Baudet infers that the serial dq-B
search algorithm is not optimai, and estimates that a 15 to 25
percent speedup may be gained by starting the search with a nar-
row window. | |

Since a narrow window does not speed up a successful search
when moves are ordered best~first, Baudet's method yields no

speedup under best-first move ordering. -

4. THE TREE-SPLITTING ALGORITHM

Another natural way to implement tﬁe d-p algorithm on paral-
lel ©processors divides the lookahead tree into its subtrees at
the top level, and queues them for parallel assignment to a pool
of slave processors. The master processor, as in the serial al-
gorithm, maintains the variable o as the maximum of the negative
of all subtree values. Each slave processor computes the value
of its assigned subtree. The slave may use either serial q-B
search or parallel d-P search if it has slaves of its own. When
it finishes, it reports the value computed to its master. As the
master receives responses from slaves, it narrows its window, and
possibly tells working slaves about the improved window. When
all subtrees have been evaluated, the master is able to compute
the value of its position. A similar approach is discussed

in [5].

. 4.1 The slave Algorithm

The slave algorithm runs at terminal nodes of the processor
tree. We will describe its inte}actions with its master by means
of messages. The algorithm is equally easily eXpressed 1in a
shared-memory or call-return form. The slave receives EVALUATE
messages from its master, followed by any number of associated
UPDATE messages that narrow its window. When an UPDATE message

arrives, the slave adjusts its recursive values of d and B to

what they would have been had the search been started with the
smaller window. When the slave has performed the search speci-
fied by the EVALUATE command, it sends a VALUE message back to
its master and then waits for another EVALUATE message.
The algorithm calls five functions:
Staticvalue(position)
returns the static value of "position".
Send(message)
sends the data in buffer "message" to process
message.dest.
Receive(message)
receives a message sent to this process, and places it
in buffer "message".
Catch(kind,message,catcher)
arranges for all future messages with message.kind =
"kind" to be 1immediately routed to buffer "message",
bypassing any receive. Catch returns immediately, al-
lowing the caller to proceed. Thereafter, when a mes-
sage with the indicated kind arrives, the process is in-
terrupted, and the .routine "catcher" is called. When
"catcher" returns, the process resumes. Slaves use
catch to receive UPDATE messages without wasting time

polling for them.

Alphabeta(p)

was defined in section 2. The variables (

10

are

global arrays, not formal parameters, in order to facil-

itate updating their values in each recursive

alphabeta when an UPDATE message arrives.

variable "depth" represents the level of p.

The slave algorithm:

program slave();
label DONE;
var message,updatemessage :

record
pos : position;
d,B,value : integer;
kind : (EVALUATE,UPDATE,VALUE) ;
dest : process; .
end;
pos : position;
d,p : array[l..MAXDEPTH] of integer;
depth : 1..MAXDEPTH;
tmp : integer;
succ : array[l..MAXCHILD] of position;
i,d : 1..MAXCHILD;
mymaster : process;

procedure catcher; { called asynchronously by UPDATE }

var scald,scalp,tmp : integer;
k : 1..MAXDEPTH;

begin
scald := updatemessage.qd;
scalp = updatemessagevﬁ;
for k := 1 to MAXDEPTH do

begin { update d,B arrays }
d[k] := max(d[k],scald);
p[k] = min(ﬁ[k],scalﬁ);
tmp scald;
scald :

I oo »

end
end;

begin

catch(UPDATE,updatemessage,catcher);

while true do

begin { 1 iteration per EVALUATE }
receive(message); { receive EVALUATE }
pos := message.pos;

of

The global

11

depth := 1;

[depth] := message.d;

Bldepth] := message.p;

determine the children of pos
succ[l],...,succ[d];

if d = ¢ then { evaluate terminal position }
message.value := staticvalue(pos);

else begin
fer i := 1 to 4 do
begin { evaluate each successor }

d{depth+1l] := - pldepth];

Bldepth+1] := - d[depth];
depth := depth+l;
tmp := - alphabeta(succl[i]);

depth := depth-1;

if tmp > d[depth] then
d[depth] := tmp;

if o[depth] > Bldepth] then

begin message.value := ([depth];
goto DONE; { cutoff occurs }

end
end { for i :=1 to d do }
end;
DONE: message.kind := VALUE;
message.dest := mymaster;

send (message);
end { while TRUE do }
end. { program slave }

4,2 The Master Algorithm

The master algorithm runs on non-terminal nodes of the pro-
- cessor tree. It receives EVALUATE and UPDATE messages from its
master and VALUE messages from its slave nodes. After an EVALU-
ATE message 1is received, the master generates all successors of
the position to be evaluated. Each slave is requested to EVALU-
ATE one of these positions; the remaining positions are queued

for service by slaves. Any UPDATE messages are relayed to active

slaves.

12

The master may take various actions when it receives a VALUE
message from a slave. First, if the VALUE message causes the
current o value to increase, then - is sent as an updated B
value to all active slaves. Second, if o has been increased so
that it becomes greater than or equal to B, then an d-B cutoff
occurs., The nonpositive-width window 1is sent to all active
slaves, quickly terminating them. Meanwhile, the master‘ empties
its queue of waiting successor positions. Third, if the queue of
unevaluated successor positions is 'non-empty, the reporting slave
is assigned the next position from the quesue.

When all successors have been evaluated, the master sends a
VALUE message to its master. In a game situation, the algorithm
at the root node might serve as the user interface, and would

remember which move has the maximum value.
Here is the master algorithm:

program master();
label INIT;
var message :
record
pos : position;
d,B,value : integer;
kind : (EVALUATE,UPDATE,VALUE);
dest : process;
end;
pos : position;
succ : array[l..MAXCHILD] of position;
succstat : array{l..MAXCHILD] of (ASSIGNED,UNASSIGNED);
i,d : 1..MAXCHILD;
slave : array[l..MAXSLAVE] of process;
slavestat : array([l..MAXSLAVE] of (BUSY,FREE);
j ¢ 1..MAXSLAVE;
mymaster : process;
d,B,tmp : integer;
begin
while true do
begin { 1 iteration per EVALUATE }

INIT:

repeat { flush outdated UPDATEs }
receive(message) ;

until message.kind = EVALUATE;

pos := message.pos;

d := message.d;

B := message.B;

determine the successcr positions

succ[ll,...,succ[d];

if d = ¢ then

begin { terminal node }
message.value := staticvalue(pos);
message.kind := VALUE;
message.dest := mymaster;
send (message) ;
goto INIT;

o

end;
for j:= 1 to MAXSLAVE do -
slavestat{j]l := FREE;
for i := 1 to d do
succstat[i] := UNASSIGNED;
while there exists a FREE slave j
and an UNASSIGNED successor i do
begin { give initial assignments }
message.pos := succ[i];

message.q := -B;
message.E 1= =d;
message.kind := EVALUATE;

message.dest
send (message)

slavelj]l;

.
I eo ~e w0

slavestat{j] := BUSY;
succstat[i] ASSIGNED;
end;
while there exist BUSY slaves do
begin

receive(message) ;
if message.kind = UPDATE then
begin { forward UPDATE message }
if (message.d > () or
(message.pB < B) then
begin
d := max{(d,message.qd);
:= min(ﬁ,message.ﬁ);

message.q := -B;
message.E i= —q;
message.kind := UPDATE;

send (message) to all slaves;
end
if > B then { cutoff }
for i:=1 to 4d do
succstat[i]

ASSIGNED;
end

else { message.kind = VALUE }

begin

13

14

j := answering slave;
slavestat[j] := FREE;
tmp := ~-message.value;
if tmp > d then
begin { send new (-B window }
d := tmp;
message.q := -B;
message.E 1= -d;
message.kind := UPDATE;
send (message) to all slaves;
end;
if o > B then { cutoff }
for i:=1 to d do
succstat[i] := ASSIGNED;
if there remains a successor,
i, yet to be evaluated then
begin { reassign slave }
slavestat{3j] := BUSY;
succstat[i] ASSIGNED;
message.pos succ[i];

message.q := -Bi
message.p := - ;
message.kind := EVALUATE;

message.dest := slave[j];
send (message) ;
end
end{ else message.kind = VALUE }
end; { while there are BUSY slaves }
message.value := (;
message.kind VALUE;
message.dest mymaster;
send (message) ;
end{ while TRUE do }
end. { program master }

nu

- 4.3 Alpha Raising

As an optimization of the master algorithm, the master run-
ning on the root node may seﬁd a special (-BP window to a slave
working on the 1last unevaluated successor. This window 1is
(-d-1,~) instead of the usual (-B,-d). If that successor is not
the best, then the slave's search will fail high as wusual, but
the minimal window speeds its search. If that successor is best,

then the smaller window causes the search to fail low, again ter-

15

minating faster. In either case, the root master determines
which successor is the best move, even though its value may not
be calculated. By speeding the search of the last successor, the
idle time of the other slaves is reducea. (This narrow window
given to the root's last subtree search can also be used in seri-
al d-B search, as discussed in the Appendix.)

We can generalize this technique 1in the following way,

called alpha raising: Suppose that, among slaves evaluating suc-

cessors of the root, Slavel's current d value, dl’ is lower than
any other, and that slave2 has the second lowest o value, say d2°
Update dl to dz—l, speeding up slavel. If this wupdate causes
slavel's otherwise successful search to fail low, then the re-
ported value is still lower than all others, and that move is

still discovered to be best.

5. MEASUREMENTS OF THE ALGORITHM

Measurements of the performance of the tree-splitting algo-
rithm have been taken on a network of LSI-11 microcomputers run-

A * ,
ning under the Arachne [6] operating system.

*

We have been forced to change the name of the Roscoe distributed
operating system, since Roscoe is a registered trademark of Ap-
plied Data Research, Incorporated. The new name we have chosen

is Arachne; the operating system and research continue unchanged.

16

The game of cﬁeckers was used to generate lookahead trees.
Static evaluation was based on the difference in a combination of
material, central board position for kings and advancement for
men. Moves were ordered best—firsthaccording to their static
values. General d-raising was not employed, except for the spe-
cial <case for the 1last successor. A single LSI-11 machine
searches lcokahead trees at a rate of about 10¢ unpruned nodes
per second. Inter-machine messages can be sent at a rate of
about 7@ per second.

Since only 5 processors are currently available in Arachne,
it was not possible to test processor trees of depth greater than
one directly. 1Instead, a depth-one processor tree was used to
measure the speedup gained by replacing all leaf processors with
depth-one processor trees. When these slaves are at level n, we
call the measured speedup Yn.)/G and yl were measured.

The procedure for measuring Yl made one simplifying assump-
tion: Both a slave processor and a master processor below level
zero can normally receive UPDATE messages from their masters.
Due to the difficulty of duplicating the arrival times of these
- messages, they were not included in either the slave or the
master—-and-slaves case. (The master still gave its terminal
slaves UPDATE messages.) |

Ten board positions, Bl’ ceuy Blﬂ' were chosen for wuse 1in
these experiments. These positions actually arose during a
human-machine game; they span the entire game. All lookahead

trees from these positions were expanded to a depth of 8.

17

Two sets of eiperiments were performed, The two differed
only in that the first set used one master and two slaves, while
the second set used one master and three slaves. Within each ex-
periment, Yg was measured directly forﬂeach B, by evaluating the
tree both serially and with the parallel algorithm running on a
depth-one processor tree. Table 1 summarizes measurements of yg.

The ten board positions gave rise to 84 successors, so 84
EVALUATE commands were given to slaves while V@ was being meas-
ured. Times for both parallel and serial evaluation were meas-

ured for each command. The aggregate speedup for a group of com-

mands is the total time required to execute them serially divided
by the total time required tc execute them in parallel. For each

B.

i the aggregate speedup yl for its subtree evaluations was com-

puted. Table 2 summarizes measurements of Yl.

Table 1: yﬂ for each Bi' i=l,...,10

2 slaves 3 slaves

minimum 1.37 1.37
average 1.81 2.34
max imum 2.36 3.15
standard

deviation g.31 @.56

Table 2: Yl for each Bi' i=1,...,10

2 slaves 3 slaves

minimum 1.93 1.38
average 1.46 1.96
max imum 1.77 2.60
standard

deviation g.22 g.38

18

Surprisingly, more than k-way speedup was occasionally
achieved with k slaves: Three out of the ten Bi were sped up by
more than 2 with 2 slaves, and two of those three were sped up by
more than 3 with 3 slaves. Of the 84 subtrees of the Bis, 4 were
sped up by more than 2 with 2 slaves, and 9 were sped up by more
than 3 with 3 slaves; 2 of those achieved 6-way speedup. In each
such case, subtree evaluations finished in a different order than
they were assigned. While one large subtree was being evaluated
by one slave, another smaller subtree was assigned and finished.
The large subtree's evaluation then received an UPDATE message
that sped it up or even terminated it. 1In fact, time-consuming
searches are more likely than short ones to receive these mes-
sages. In particular, the search that receives the final

(-d-1,-q) window is likely to be larger than average.

6. OPTIMIZATIONS

Since the tree-splitting algorithm can be optimized in
several ways, it should be considered the simplest variant of a
family of tree-decomposing algorithms for q-pB search. As a first
optimization, since most of a master's time is spent waiting for
messages, that time could be spent profitably doing subtree
searches. However, only the deepest masters could hope to com-
pete with their slaves in conducting searches. All other masters

are by themselves slower than their slaves because their slaves

19

have slaves below them to help. However, more than half of all
masters control terminal slaves, and greater speedup should be
achieved by running a slave algorithm along with these masters on
the same processors. We might expect an additional 1.5-way
speedup from this technique.

A second optimization groups several higher—level‘ masters
ocnto a single processor. For example, the 3 highest processors
in a binary processor tree could be replaced by 3 processes run-
ning on a single processor.

Third, a master might evaluate a position by assigning that
position's successor's successors to slaves, rather than that
position's successors. Although this technique 1involves more
message-passing, some advantage might result, because all of a
master's slaves would work on finishing the position's first sub-
tree before going on to the second. The evaluation of the second
subtree would then receive the full benefit of the beta value
generated by the first subtree. Furthermore, when slaves become
idle as one subtree is finished, they can immediately be set to
work on the next subtree.

Since most game-playing ﬁrograms must make their move within
a certain time 1limit, any speedup in tree search ability will
generally be used to search a déeper lookahead tree. 1If we have
an unlimited supply of processors to form into a binary tree, we
can obtain an unlimited speedup only if the search is not limited
in time. Otherwise we cannot, because we would eventually
violate our premise that the lookahead tree is at least as deep

as the processor tree. A new layer on the processor tree does

20

not buy another full ply in the lookahead tree. For example,
several speedups of 1.5 would be needed to search a 6-times
larger chess lookahead tree, or about one additional ply. The
depth of the processor tree would grow faster than the depth of
the tree it searches and eventually would catch up. The only way
to avoid this limit is to increase the fan-out of the processor
tree. If the fan-out is high enough that no successor need ever
be queued for evaluation by a slave, then the size of the maximum
lookahead tree that can be evaluated within the time 1limit Iis
limited only by the time required for EVALUATE commands to pro-
pagate from the root to the leaves. Leng before this limitation
is reached, we would run out of silicon for making the proces-

SOors.

7. ANALYSIS OF SPEEDUP

We will now formally analyze the speedup that can be gained
in searching large lookahead trees as the number of available
processors grows without bound. For this purpose we introduce

‘ Palphabeta, a simplified versibn of the tree-splitting algorithm.

This algorithm is less efficient than the version already dis-
cussed, but is more amenable to analysis. Much of the analysis
in this section is a "parallelization" of results of Knuth [3].
Indeed, when q = § and £ = 1, Theorem 1 and Corollary 1 reduce to

Knuth's results.

As
tree.
for all
for all
tree, wh
form deg
is > 2.
function
var i :
function
begin

det
beg

21

before, the processors will be arranged in a uniform
Let £ > 1 be the fan-out of the processor tree (uniform
non-terminal nodes), and let g > 1 be its depth (uniform
terminal nodes). Let g + s be the depth of the lookahead
ere s » 1. We assume that the lookahead tree has a uni-
ree and that this degree, df, is a multiple of £, where d

Here is Palphabeta:

Palphabeta(p : position ; d, B : integer) : integer ;
integer;
g : integer;

ermine the successors p
in
if depth(p,) < g then
g := &alphabeta
else g := alphabeta;
for i := 1 to d do
begin
q:=max (d, max. -g(pj,—ﬁ;—d));
(i-1)f<iit
if o > P then go to DONE;

l, s s 0 ppdf-

end;

DONE: Palphabeta:= (;

end
end;

The
for-loop
" existing

gorithm,

-
14

f function calls specified in the first 1line of the
are intended to occur in parallel, activating functions
on each of the f slaves. Unlike the tree-splitting al-

Palphabeta waits until all slaves finish before assign-

ing additional tasks. Serial d-B search 1is activated on leaf

slaves;

Palphabeta is activated on all others.

22

7.1 Worst-first ordering

d-B search produces no cutoffs if, whenever the call
alphabeta(p,d,p) is made, the following relation holds among the

SUCCessors Py, ... ,Pg:

q < ~negamax(pl) < o0e < ~negamax(pd) < B-

We call this ordering worst first. 1If no cutoffs occur, it is

easy to calculate the time necessary for Palphabeta to finish.
Assume that a processor can generate f successors, send messages
to all of its f slaves and receive replies in time p- (This fig-
ure counts message overhead time but does not include computation
time at the slaves.) Assume also that the serial d-P algorithm
takes time n to search a lookahead tree with n terminal posi-
tions. Let a, be the time necessary for a processor at distance
n from the leaves to evaluate its assigned position. A leaf pro-
cessor executes the serial algorithm to depth s. Thus we have
ay = (df)®. An interior processor gives d batches of assignments
to its slaves, and each batch takes time P plus the time for the
_ slave processor to complete its calculation. Thus we have a =

n+1

d(P+an). The solution to this recurrence relation is

which is the total time for Palphabeta to complete. Since the
time for the serial algorithm to examine the same tree is
(df)q+s, the speedup for large s is £9, There are (fq+l«l)/(f~l)

processors, roughly fq, so when no pruning occurs the parallel

23

algorithm yields speedup that is roughly equal to the number of

processors used.

7.2 Best-first ordering

We will now investigate what happens when the lookahead tree

is ordered best~first.

Definition: We will use the Dewey decimal system to name nodes

in both processor trees and lookahead trees. The root is named
by the null string. The j successors of a node whose name is

ay...a, are named by ay...a,1 through al...akj.

Definition: We say that the successors of a position aj...8, are

in best-first order if

negamax(al...an) = —negamax(al...anl).

Definition: We say a position aj...a, in the lookahead tree |is

(g,f)~critical if a.

i is (g,f)-restricted for all even values of i

or for all odd values of i. An entry & is (g,f)~restricted if
1 <ig<g and 1 < a; £ f
or q< i and a; = 1.
Theorem 1: Consider a lookahead tree for which the value of the
root position is not + co and for which the successors of every
position are in best-first order. The parallel d-pP procedure
Palphabeta examines exactly the (q,f)-critical positions of this

lookahead tree.

Proof: We will call a (q,f)-critical position aj...a, a type 1

position 1if all the a; are (g;f)-restricted; it is of type 2 if

24

aj is its first entry not (q,f)-restricted and n-j is even; oth-
erwise (that is, when n-j is odd), it is of type 3. Type 3 nodes
have a, (q,f)-restricted. The following statements can be esta-
blished by induction on the depth of the position p. (Text in
brackets refers to positions of depth < qg.)

(1) A type 1 position is examined by calling
[Plalphabeta{p,+ oo,—-). If it 1is not terminal, its successor
position|[s] pl[, p2,.a.,pf] is [are] of type 1, and F(p) = —F(pl)
+ oo. This [These] successor position[s] is [are] examined by
calling [P]alphabeta(pi,~ o,+ o). The other successor positions
pz, -+« 1Pgg [pf+l’ o ,pdf] are of type 2, and are all examined
by calling [P]alphabeta(pi,~ auF(pl)).

(2) A type 2 position p is examined by calling
[Plalphabeta{p,- ©,B), where - 00 < B < F(p). If it is not termi-
nal, its successor([s] pl[, P2, coey pf] is [are] c¢f type 3, and
F(p) = —F(pl). This [These] successor position{s] is [are] exam-
ined by calliing [P]alphabeta(pi,—ﬁ,+ o). Since F(p) = —F(pl) >
B, cutoff occurs, and [Plalphabeta does not examine the other
successors Pore««sPyr [pf+1"”'pdf]'

(3) A type 3 position p is examined by calling
[Plalphabeta(p,d,+ ®w) where F(p) < d < + co. If it is not termi-
nal, each of its successors Py is of type 2, and they are all ex-
amined by calling [P]alphabeta(pi,— o©,~d). All of these searches

fail high.

25

It follows byAinduction on the depth of p that the (q,f)-

critical positions, and no others, are examined.
0.E.D.

Corollary 1: If every position onﬂlevels B,1,...,9+s-1 of a
lookahead tree of depth g+s satisfying the conditions of Theorem
1 has exactly df successors, for d some fixed constant, and for f
the constant appearing in Palphabeta, then the parallel procedure
Palphabeta (along with alphabeta, which it calls), running on a
processor tree of fan-out f£f and height g, examines exactly

fLa/2] 45T (a+s) /27, Fa/27 gg Lla+s) /20 _ cq
terminal positions.

Proof: There are qu/zJ(df)r(q+S)/27 sequences al...a with

g+s’

lgaigdf for all i, such that a.

i is (q,f)-restricted for all even

values of i; there are frq/ZW(df)L(q+s)/2J such sequences with ai
(g,f)-restricted for all odd values of i; and we subtract £f9 for
the sequences {1,...,f}qls, that we counted twice.

0.E.D.

Lemma 1: Given positive constants a, b, ¢, d, and Pr the rela-

tions
ag = a; A = pd + a, + (d-l)bn;
by = b; boyy =p + oy
cg = C; Chel = d(P + bn).

are satisfied by the sequences

a + h(n)[d(3p+b+c)+P—b~c]—np, if n is even,

o]
]

a + h(n—l)[d(3p+b+c)+P~b—c]—np

+ d(“”l)/z(d(p+b)+P_b), if n is odd;

26

P + 2Pg(n) + (P+b)dn/2, if n is even,
bp = (n-1)/2 .. .
P + ZPg(n+l) + cd , 1f n is odd;
ZPg(n+2) + cdn/z, if n is even,
C =
n 2pg(n+1) + (p+b)d (™12, if 1 is odq;

where the function g is defined by
g(n) = (@2 - ay/@ - 1),

and the function h is defined by

n/2

h(n) = (4 -1)/(a - 1).

Proof: It is easily seen that a,=a, b,=b, and c,=c.

) 0 Y/

For the inductive step, first assume that n is odd. Then

iy = Pd +oa + (d—-l)bn (by definition)

= Pd + a + h(n-1) [d(3Pd+b+C)+P"b"c] - pn + d(n—l)/Z

(d(p+b) +p-b)
+ (d-1) [p+2pg (n+1)+ed (M71)/2)

Simplifying, we get

]

a + h(n-1) [d(3pdtbtc) +p-b-c] - p(n+l) + d(n+1)/2(3p+b+c)

+ dgn—l)/z(P—b—c)

a + h(n—l)[d(BPd+b+c)+P—b-c] - P(n+l)
+ d‘“‘l)/z[d(3pd+b+c)+P—b—c]
= a + h(n+l)[d(3Pd+b+c)+P—b—c] - P(n+l),

which is the closed form we gave for a when n+l 1is even.

n+1
Furthermore,

bn+l =pt+c (by definition)

= p + 2pg(n+l) + (P+b)d(n+l)/2,

n

which is the closed form we gave for bn+l for n+l even. Finally,

27

Crye1 = d(P+bn) (by definition)

= 2pd + 2pdg(n+l) + cq (nF1)/2
= 29g(n+3) + cd(n+l)/2,

which is the closed form we gave for c when n+l1 is even.

n+1

Now consider the case when n is even.

]

a pd + a_ + (d—l)bn (by definition)

n+l
= Pd + a + h(n)[d(39+b+c)+P—b—c] - pn

n

-+

(d-1) [p+2pg (n) + (p+b) a2

a + h(n)[d(39+b+c)+P—b~c] —p(n+l)
+ 2Pd“/2 + dn/z(d(P+b)—P—b)

a + h(n) [d(3p+bre)+p=b-c] - p(n+l) + a2 (d(p+b)+p-b),
which is the closed form we gave for a1 with n+l odd. Further-

more,

b 1 =P + cC

n+ (by definition)

nl
=p+ ZPg(n+2) + cdn/z'
which is the closed form we gave for b with n+l odd. Finally,
n+l

Chil = d(P+bn)' (by definition)
n/2]

d[P + p o+ 2Pg(n) + (P+b)d

2pld + dg(n)] + (ptb)a™/ 2+
n/2+1 -

i

2Pg(n+2) + (P+b)d

which is the closed form we gave for ¢ with n+1 odd.

n+1l
Q.E.D.

Theorem 2: Under the conditions of Corollary 1, and assuming

also that (1) serial d-P search is performed in time equal to the
number of leaves visited, and (2) in P units of time, a processor

can generate f successors of a position, send a message to each

28

of its £ slaves, and receive the f replies, then the total time
for Palphabeta to complete is

@nls/2d 4 @anls/21 -1 4 h(q) taGper@nl™/2dians/20)4p

—apyks/2d_ 46 s/27

- P4, if q is even

(apks/2d 4 apls/27 1 4 h(q—l)[d(3p+(df)LS/2J+(df)rs/27)+P
-ants/2danls/2h) - pq

+ d(q_l)/z[d(P+(df)LS/2J)+P'“(df)LS/ZJ)I if g is odd

Proof: Let a b and ¢, represent the time required for a pro-

nl

cessor at distance n from the leaves of the processor tree to
search type 1, 2, and 3 positions, respectively. Then these se-

quences satisfy the relations

a@ = an+l = Pd + an + (d—l)bn;
- Ls/2] -
by = (df) v bpyp = potocni
- [s/27] -
ca (df) ' cn+l = d(P + bn)'

By substituting the constant expressions for Ay bg, and Cy to
fing aq by the formulas given by Lemma 1, we obtain the desired

formula.
Q.E.D.

Under conditions of best-first search, the parallel q-p al-
O(kl/z)

gorithm gives speedup with k processors for searching

large lookahead trees. Theorem 3 formalizes this result:

Theorem 3: Suppose that Palphabeta runs on a processor tree of

depth q > 1 and fan-out £ > 1. Suppose that the lookahead tree
to be searched is arranged in best-first order and is of degree

df and depth g+s, where d > 1. Denote by R the time for alphabe-

29

ta to search this tree, and by P the time for Palphabeta to
search the tree. Then

LM R/p = £V/2
s ->
Proof: The time for the serial algorithm is

14
from Corollary 1. 1If we divide this quantity by the expression
given by Theorem 2 for P, and take the limit as s goes to oo, we

obtain the desired result.

7.3 Discussion

The measurements presented in section 5 fall within the
range bounded by the theoretically predicted best-first and
worst—-first speedups. If we take yﬂyl to be the speedup that
would be given by a processor tree of depth two, then the meas-
ured speedup for two, three, four, and nine terminal processors
is 1.81, 2.34, 2.64, and 4.59 respectively. Theory predicts
speedup equal to the number of terminal processors for worst-
~first ordering. Best-first speedup is predicted to be the square
root of the number of terminal processors, or 1.41, 1.73, 2, and

3 respectively.

30

7.4 Random Order

Under best-first and worst-first ordering of uniform looka-
head trees, sibling slaves £finish sﬁmultaneously because each
slave's pruned lookahead tree has the same size and shape. This
fact makes it possible to calculate, for a given processor tree
and lookahead tree, the exact finishing time for the algorithm
Palphabeta. In this section, we analyze the behavior of the
slightly weaker algorithm Pbound (no deep cutoffs) under the as-
sumption that terminal values are independent, identically dis-
tributed random variables. Restated, this assumption says that
no two terminal values are equal, and that any one of the n! ord-
erings of the terminal values 1is as 1likely as any other.
Although the expected finishing times for sibling slaves are
identical, the finishing times themselves may be unequal. Pbound
must therefore wait for the last buéy slave to finish before as-
signing the next batch of tasks. For this reason, we will not
attempt to calculate the expected finishing time for the parallel
algorithm under conditions of random ordering of terminal nodes.
. We will, however, present é "parallel" version of Knuth's [3]
analysis of the serial algorithm under conditions of random ord-
er. The analyses of the parallel and serial cases both yield es-
timates of the expected number of terminal positions examined.
Only in the serial case, however, does this estimate yield a

direct estimate of the finishing time of the algorithm.

31

Here is parallel q-pP search without deep cutoffs:

integer procedure Pbound(position p; integer limit):
begin integer m,i,t,d;
determine the successors Pir «eo« /Pggi
m := - o0; :
if depth(pl) < g then fn := Pbound else fn := bound;
for i := 1 step 1 until d do
begin t := max ~-fn(p.,-m);
(i-1) f<3<iE J
if t > m then m = t;
if m > limit then goto done;
end;
done: Pbound := m;
end;

On terminal slaves, Pbound activates the serial algorithm
without deep cutoffs:
integer procedure bound(position p; integer limit):
begin integer m,i,t,d;

determine the successors p,, ... ,Pai;
if d = g then bound = statlcvalue(p? else

begin m := - o;
for i := 1 step 1 until 4 do
begin t := - bound(pi,—m);

if £t > m thenm = t;
if m > limit then goto done;
end;
done: bound := m;
end;
end;
Let T(d;h) be the number of terminal positions examined by
bound in a tree of depth h and degree d with randomly distributed
terminal values. Knuth [3] esfablishes that T(d,h) satisfies

h h
cp(d)r) < T(d,h) < cy(d)ry,

where cq and c, depend on d but not h, and ry and r, satisfy
ch/ln d g‘rl and r, < c4d/ln d, for certain constants Cs and Cpe

As part of the proof of this result, the inequality

32

W () () aTHOmN/2) g8/t /s g g
1<i<d 1<3<d

is established for a certain choice of s, t satisfying 1/s + 1/t
= 1.

We begin.by presenting a lemma due to Knuth and then adapt-
ing it to our own use.

Lemma 2: Suppose that Yl,l’ ceoy Yi—l,d and Zl' ceoy Zj—l are

independent sequences of (i-1)d and (j-1) independent identically
distributed random variables.

Then 1

.<i—l + (j—l)/d)
i-1
is the probability that

(2) max (min(Y, ., «ee, Y })) < min 2
1<k<i kil ked™h Ty ke K

Proof: 1If i = 1, the left hand side is - o. If j = 1, the right

hand side is + . In both cases, the probability that the rela-

tion holds is 1.

Assume then that i,j > 1. Consider the minimum element
Y » over all 1<k,<i and 1<t,<d. The probability that it is
kl,tl 1 1
. less than min 2, is
1<k<j
(i-1)d

———— - ————- 2 " —. T ok ot S e

((i-1)d + j-1)

Removing the elements Y q from consideration,

* & @ Y
klll' ! kll
we consider the minimum of the remaining Ys on the left of (2),
say Y, . The probability that Y, is less than the right-

2rty 2ty
hand side of (2) is

33

((i-2)d + 3j-1)
and so on. Hence (2) happens exactly when Yk < RHS and

17t

Yk < RHS and ... and Yk < RHS, so (2) has probability

2 i-17%i-1
(i-1)d(i-2)d ... 1d

((i-1)d + j=1) ((i-2)d + j=1)...(d + j - 1)

(i-1) 1 ((3-1)/d) !

‘(i-l +i££-l)/d>

Q.E.D.
Lemma 3 (Corollary to Lemma 2): If Yl,l’ ceey Y(iwl)f,df and Zl'
ceey Z(j—l)f are independent sequences of ((i-1)f)df and (j-1)f

independent identically distributed random variables, then the

probability pij that

max min Yk m < min Zk
1<k< (i-1)f 1<m<df ! 1<k< (-1) £
is ‘
1
p.. T e e o o o o o S it St 1o e e s
t ((i-l)f + (j—l)/d>
(i-1)f

Proof: This Lemma is simply Lemma 2 with a change of variables.,

Substitute: df for 4,
(i-1)f + 1 for i,

34

Since the simple formula k¥ is always within 12% of

< k-1 + x)
k_l 7
for # < x <1 and k a positive integer [3], we will approximate

p;. by

ij
(3) pij

Theorem 4: Let T(d,f,h) be the expected number of terminal posi-

= ((i-1)f + 1)~ (371)/d

tions examined by the parallel d-PB procedure without deep cutoffs
on a processor tree of degree f and height h in a random uniform
lookahead tree of degree df and height h. Then

T(d,£,h) < £ c(d,£) r(d,£)",
where r(d,f) is the largest eigenvalue of the matrix

vp vP .« . . VP
11 12 1d

Vg, Vg - - - VEus
and c(d,f) is a constant. The quantities pij in Md,f were de=~
fined in Lemma 3.
Proof: As before, assign Dewey decimal names to the positions of

the lockahead tree. Define the functions

il

G(n) L(n-1)/£] + 1

and

H(n) L{(n-1)/f]f + 1.
The nth successor position is a member of the G(n)th batch of
successor positions to be assigned to slaves. The first member

of that batch is the H(n)th successor position.

35

When Pbound examines position aj...a "limit" is

m—17

min negamax(al,..a
l§k<H(am_l)

so its successor ay...ay is examined if and only if aj...a

m—2k)’

m-1 18

examined and
-min negamax(a,...a__.k)
1<k<H (a_) 1 m-1

< min negamax(al...a k)

1<k<H (A1)

Abbreviate this inequality by P, .Then CERRRT-IN is examined if

m-2

and only if Pl P,y <.., and P, hold. P holds with probability

P where 1-= G(am—l) and j = G(am). Furthermore, Pm is a func-

iy’

tion of the terminal values

staticvalue(al.,.am_zjkbm+l...bn)
for

l$j<H(am_1) and all ¢ < k, b £ df
or

j = H(am_l) and lgk(H(am) and all g < b £ df.

Therefore Pm is independent of P,,...,P Let x be the proba-

1

h is examined. Then we have (assuming, without

m-2°

bility that a,...a
loss of generality, that h is odd)

X < PG(a))G(a,) Pe(agG(ay) * "P(a,_,)G(ay ;)
and

x < PG (a,)6(a3)P6(a,)G (ag) " *PGla,)G (ay)"
Thus

X < VpG(al)G(a2) "‘VPG(a

(for even or odd h).

VPG(az)G(aB) o106 (ay)

Hence the expected number of terminal positions examined is 1less

than

36

VP vp eo VP
l_<_all"~'lah.<_df G(al)G(az) G(az)G(a3) G(ah_l)G(ah)

e E: Jpa a Jp ...Vpa a
lgal,.,.,ahgd 172 a3 h-1"h
= b E: E: VP4 4 2: .. E: VPa, a,
1<a;<d 1<a,<d 172 1<a 3 1<a,<d h-1%h
which is fhcl,h' where the sequences €i,n’ 1 <i< d, are defined
by
ci =1 for 1 <igd
(4) c1 ntl = 1;%Zd Vplj j,n’ for.l < i< d.
Now define generating functions Cir for 1 < i< d, as fol-
lows:
Ci(z) = 2;; ci,nzn
Then (4) is equivalent to
C;(z) - 1 = >,—_ vP;32C5(2z) for 1 < i< d.
1<3<4d

Set C(z) = (C,(z)...C4(z))", and define the matrix

2VP1] ZVP1p - . . . ZVPg
z szi Z szz e e o o Z sza \
z = | . . .
z Vpdl z Vpdz e e e . 2 VPaq !+
T

Then (-1 -1 ... -1) (2-I)C, where I is the identity matrix.
By Cramer's rule, Cl(z) = U(z)/V(z), where U and V are polynomi-

als defined by

37

"'l Z \/p . . . V4 \/p
-1 p Vpég -1 . .z Vp;g
U(z) = det . . R
and vV (z) = det(Z - I).

Note that r is an eigenvalue of My ¢ if and only if 1/r is a root
4
of V(z). Since Cl(z) is a quotient of polynomials, it can be

represented [7] as

C,(z) = z: G (1/(z-B,)) «
1 1<k<n k k

where Bl’ ooy Bn are the distinct roots of Vv, and Gl’ ceny Gn

are polynomials such that the degree of G; is the multiplicity of

Bi‘

Every matrix of real, positive elements possesses one posi-
tive eigenvalue of multiplicity one that is strictly larger, in
absolute value, than all the other eigenvalues [8]. Md £ is po-

14

sitive; let Lis i=1, ..., n, be its eigenvalues, with ry the

largest. 1If the eigenvalues ry = l/Bl' ceey I = l/Bn of Md,f

are distinct, we have

E + E: ei/(z-l/ri) = B + 2: -e.r.

C,(z) = /(1-zr.)
1 1<i<d 1<i<a ! 1
= E + Z Z —e.r.rl:l Zn.
n>p 1<i<d * * !

Since r, is the largest of the r., c, = O(rh). If the -eigen-

1 i 1,h 1

values of Md g are not distinct, the representation of Cl(z) in-
14

volves polynomials of degree higher than one. Even so, the

linear term containing ry still dominates.

Lemma 4: Suppose the real-valued sequence 815 A5y A3, ... obeys

38

the rule

£ a + a m,n=1,2,3,...

am+n m n

Then the sequence al/l, a2/2, a$/3, ... either diverges to - o or
converges.

Proof: It suffices to consider the case where the lim inf, o, of
the second sequence is finite. Let € > @, and choose m such that
am/m < d + €. Since every integer n can be expressed as n = gm +

r with 8 < r < m, we have

n T %gm+r £ 9ap + ap.
hence
an _ agm+r qam+ar en am ar
— T e e o ool m e e o e _<_ o it s e o o e i e o o D mm e e s e 4 e
n gm+r gm+r m gm+r n
hence

a gm a
=B < (q+e)< —————) + -k

n gm+r n
hence lim sup a_/n = ¢
n
n -> + o
and so lim an/n = .
n ->+ o

Q.E.D.

Definition: Let T(d,h) be the number of terminal positions exam-

ined by a given algorithm in a lookahead tree of degree d and

height h. The branching factor of T is
1/h
I

lim T(d,h)
h -> w

if the limit exists.

Theorem 5: Let T(d,f,h) be as defined in Theorenm 4. Then the

branching factor of T,

39

(5) B = lim T(d,h,f)/h,
h -> o
satisfies
dfc dfc
R < B £ 4.
log df log d

for certain constants C3/Cy > ¢ independent of d and f.

Proof: Since T(d,hl,f)T(d,hz,f) is the number of positions that
would be examined by Pbound if "limit" were set to + co for all
positions at height hl in a lookahead tree of depth hl + h2, we

have T(d,h +h2,f) < T(d,hl,f)T(d,hz,f). Hence by Lemma 4 applied

1
to log T(d,h,f), the limit in (5) exists.

Lower bound: The parallel d-B routine without deep cutoffs,

Pbound, examines at least as many nodes as its serial counter-
part, bound, since each "limit" in the parallel case 1is greater
than 1its counterpart 1in the serial case. As mentioned above,
Knuth has proven that the branching factor of the number of ter-
minal positiops examined by bound in a tree of depth h and degree

df is greater than or equal to dfc3/log(df).

Upper bound: Let s and t be positive real numbers with 1/s + 1/t

= 1, and let E be an eigenvalue of the matrix A = (a,.). Suppose

ij
Ex. Then

|E| Zl y1/s =<Z|§_l” s)1/s
< | Zf(%:lagjl)S/t)l/s(EZjlx§|)1/5' by Holder's inequality;
J

hence]El‘g (E:(Z: lagj)S/t)l/s.
1 J

49

We will use this inequality to show that r(d,f) < c4d/log d,
for a certain constant Cy and for r(d,f) as defined in Theorem 4.
Let aij
For all s and t such that 1/s + 1/t = 1, we have

= Vpij' E = r(d,f), and use approximation (3) for Pj;-

F@E) < () () (el ee1)"t((-1)/2d) ys/t (1/s
1<ikd 1<32d

< | Z (Z i~t((3-1)/2d) ys/t y1/s
1<i<d 1<ji<d

I

c4d/ln d, for a suitable s, t, and Cyr by (1).

Theorem 4 and this upper bound for r(d,f) give us the desired
upper bound on the branching factor.
Q.E.D.

Theorem 5 deals with lookahead trees that are the same depth
as the processor tree that searches them. In Theorem 6, we ex-—
tend the analysis to the more general situation in which the
lookahead tree can be deeper than the processor tree.

Theorem 6: The expected number of terminal positions exam-
ined by Pbound in a random uniform game tree of degree df and
height g+s, evaluated by a processor tree of degree d and height
q, where d > 2, g > # and £ > 1, is asymptotically less than

cg(d,f) £ r(a,6)9 r (an) %,
where r(d,f) was given upper and lower bounds in Theorem 5, and

rl satisfies

41

for the constants Cy and Cy appearing in Theorem 5, and where
cS(d,f) is a constant independent of g and s.

Proof: Since the values of the positions assigned for evaluation

to leaf processors have random values, Theorem 4 implies that the
number of these positions P satisfies
P < c(d,f) £9 r(a,f)

Theorem 5 tells us that r(d,f) satisfies

If we set "limit" at level g of the lookahead tree to + oo,
then each leaf processor evaluating one position at level g would
examine less than cz(df)rl(df)S terminal positions [3], where

rl(df) satisfies

and cz(df) is a constant independent of s.

The result follows with cS(d,f) set to c(d,f)cz(df).

7.5 Discussion g£ Theorem 6

In searching a lookahead tree of degree df and height g + s,

the serial algorithm examines, on the average, at least

42

terminal nodes, where c, depends only on df and cy is a constant.

The parallel algorithm examines less than

ac, \4 dfc, \S
(6) cy £9 (—--4_._> _____ 4_
log d log (df)

terminal nodes on the average.

Under best-first and worst-first ordering, the finishing
time for Palphabeta can be accurately estimated by dividing the
amount of work to be done by the number of workers (terminal pro-
cessors) . This method of estimation is somewhat optimistic when
applied to Pbound or the Tree-Splitting Algorithm under random
ordering, because in Pbound a master waits until all successors
in a batch of £ have been evaluated before assigning the next
batch, and in both Pbound and the Tree-Splitting Algorithm a mas-
ter waits until the last successor is evaluated before receiving
another position.

While we await more powerful methods, let us make the esti-
mate anyway. Dividing (6) by the number of terminal processors,

fq, gives us

as the finishing time, and so the speedup would be at least

43

s+q e
1 (S ,qf 1099
c 04/ log (df) R
s+q

5

The factor (c3/c4) appears in this expression because we
used an optimistic bound for the serial algorithm and a pessimis-
tic bound for the parallel algorithm. We can most likely remove

it. The resulting expression is of order

(£ log d £

log d + log £/

Recall that speedup under worst-first ordering is of order

a
f.‘,

and by Theorem 3, speedup under best-first ordering is of order

£9/2,

Speedup under both random and best-first ordering is clearly less
than speedup under worst-first ordering. Speedup under random
ordering is asymptotically greater than speedup under best-first

ordering whenever

log d + log f

i.e. whenever

44

8. APPENDIX -~ SOME OPTIMIZATIONS OF SERIAL ALPHA-BETA SEARCH

In this appendix we propose three optimizations of the seri-

al d-B algorithm.

8.1 Palphabeta

The first optimization, called falphabeta for "fail-soft alpha-
beta search", 1is completely riskless in the sense that it never
searches more nodes than alphabeta. Although it requires a
slight conétant overhead, it results in a slight expected speedup
whenever an initial window other than (- co,+ o) is used. Here is

falphabeta:

integer procedure falphabeta(position p,integer d,integer B):
begin integer m,i,t,d;
determine the successor positions p reeesPgi
if d = § then falphabeta := staticvalue(p) else
begin
m := - oo;
for i := 1 to d do

begin t : —-falphabeta(p;,-B,-max(m,q));
if £t > m thenm := %;
if m > B then go to done;
end;
done: falphabeta := m;
end;
end;
Falphabeta differs from alphabeta only in that m has been
initialized to =~ oo instead of . 1In order to keep this change

from affecting the third actual parameter to the recursive call
to falphabeta, "-m" is changed to "-max(m,q)". The computational
overhead of repeatedly computing the maximum of m and o is the

only added expense of falphabeta. The value returned by the call

to the original (-p procedure, alphabeta(p,d,B), obeys the

lowing relation with respect to the true negamax value
search tree:

If alphabeta < d, then negamax(p) < d,

if alphabeta > B, then negamax(p) > B,

p) = alphabeta.

Falphabeta obeys a stronger relation:

Theorem 1: If p is the root node of a lookahead tree, and

45

fol-

of a

if o

and B are integers satisfying < B, then the value falphabeta

returned by falphabeta(p,d,p) satisfies:

If falphabeta £ d, then negamax(p) < falphabeta,

if falphabeta > B, then negamax(p) > falphabeta,

if < falphabeta < B then negamax(p) = falphabeta.
Proof: The relations clearly hold if p is a terminal node.
sume for the induction step that the relations hold for any
of height k or less. Let p be the root of a tree of height
1. Let Pis -«e1r Py be the successors of p. Each P; is the

of a tree of height k or less.

1) If
falphabeta(p,d,ﬁ) < dq,

then for all 1 < i < 4, we have
falphabeta(pi,—p,-d) > ~q.

By the induction hypothesis, we have
negamax(pi) > falphabeta(pi,—ﬁ,—d).

Hence

As—

tree

k +

root

46

max; -negamax(p;) < max; -falphabeta(p;,-B,-d).

Hence negamax(p) < falphabeta(p,d,p).

2) 1f falphabeta(p,d,ﬁ) 2 B, then there exists i such that
~falphabeta(pi,—§,—d') = falphabeta(p,q,p) 2 By
for some ' such that < '. By the induction hypothesis, we
may conclude that
negamax(pi) < falphabeta(pi,—p,—d').

Hence negamax(p) = max ; —negamax(pi) > falpbabeta(p,d,ﬁ).

3) If < falphabeta(p,q,B) < B, then let i be the smallest in-
teger such that

-falphabeta(pi,-p,—q') = falphabeta(p,d,p),
for some (' such that falphabeta(p,d,ﬁ) > d' > d. Hence

-B < falphabeta(p;,-B,~q') < -q'.

Therefore, by the induction hypothesis,

negamax(pi) falphabeta(pi,-p,~d') = —falphabeta(p,d,p).

|

Since negamax(p) = negamax(pi), we have
negamax(p) = falphabeta(p,d,ﬁ);
Q.E.D.
Theorem 1 implies that falphabeta can give a tighter bound
than alphabeta on the true value of the tree when it fails high
or low. Falphabeta "fails softer" than alphabeta. The extra in-
formation that falphabeta gives can be used in two ways. First,
this information is useful whenever the common wisdom "start with
a tight window" is followed. If the tight window (d,p) causes
the search to fail, the penalty of doing the entire search over

again must be paid. With normal d-p search, this second search

47

must be done with the window (- o0,d) (if the original search
failed 1low) or (Bs+ o0 (if the original search failed high).
Falphabeta reduces this penalty: A low fail will sometimes re-
turn a number k < , and the second search can be started with
the tighter window (- oo,k). We can expect a similar saving when
a high fail occurs.

We need two definitions to explain the second use of fal-

phabeta. Staged iteration evaluates a lookahead tree to depth N

by first searching to depths 2, 3, ..., N-1. After each stage,
the principal 1line (the path the game would take if each player
played optiﬁally) is saved. The next stage begins 1its depth-
first search by descending to the end of this path; whenever a
node on the principal line is visited, its principal child is ex-
amined first. Staged iteration provides very reliable best-first
move ordering at type-one nodes, so it actually decreases the
number of nodes searched in chess programs.

Forward pruning, as opposed to d-B pruning, which is a form

of backward pruning, cuts off a node of a tree before fully in-
vestigating any of its siblings. It is obvious that forward
pruning can provide enormous savings 1in tree search. Unfor-
tunately, forward pruning 1is very risky. No one has vyet
discovered how to perform forward pruning without occasionally
pruning away the best move. (The very best chess programs do not
perform forward pruning.) One of the reasons that forward prun-
ing has not been successfully implemented is that when a pocr
move is evaluated after a better move, alphabeta assigns both the

same score (except when the poor move is with two moves of the

48

terminal node that produces the poor score). Falphabeta some-
times gives the poor move a more appropriate value, so it may
provide a basis for reliably pruning the move during the next

stage of a staged iteration.

8.2 Lalphabeta

When alphabeta is recursively called on the last successor
Pqr of the root of the entire tree, p, the current value -B (-)
is passed as formal parameter (. ‘Suppose that -m-1 is passed in-
stead. If Pg is not the best move, then negamax(pd) > =-m, and
alphabeta(pd,—m—l,—m) fails high as before. If Pg is the best
move, then negamax(pd) £ -m-1, and so alphabeta(pd,-m~l,~m) fails
low instead of succeeding. Nevertheless, the algorithm can still
conclude that Pg is the best move, since its negamax value has
been established to be lower than any other. The modified algo-
rithm does not discover the value of the best move when that move
is evaluated last. However, it still determines which move isg
best. This slight reduction in information can buy a time sav-
ings, since the evaluation of P; has a very narrow window.
The new algorithm will be called lalphabeta, short for
"last-move-with-minimal-window alpha-beta search".
integer procedure lalphabeta (position p,
integer o, integer B):
begin integer m,i,t,d;
determine the successor positions Pyre«esPgi
if d = ¢ then lalphabeta := staticvalue(p) else
begin m := (;
for i := 1 to d-1 do
= —alphabeta(pi,—p,-m);

> m thenm :="t;
2 B then go to done;

49

t o= —alphabeta(pd,—m~l,~m);
if £t > m then m := t;
done: lalphabeta := m;
end;

end;

Lalphabeta provides an elegant solution to the forced-move
problem: Programmers writing their first game-playing program
often find to their amusement that alphabeta conducts a full-
scale search even though only one move is available to the com-
puter. Lalphabeta searches the one available move with the win-

dow (o - 1,00). Besides greatly speeding up the search, lalphabe-

ta actually performs useful work in this case: It decides if it

should resign!

8.3 Palphabeta

The third optimization, called palphabeta because it is
called only on nodes along the principal line, is a generaliza-
tion of lalphabeta, and profits from falphabeta, but carries with
it the risk that in certain cases more nodes will be examined.

integer procedure palphabeta(position p)
begin integer m,i,t,d;
generate the successors p reserPg-
if d = ¢ then palphabeta i= staticvalue(p) else
begin
m = —palphabeta(pl);
for i := 2 to d do
begin t = —~falphabeta(p;,-m-1,-m);
if t > m thenm := —falphabeta(pi,— oo, -t)
end;
palphabeta := m;
end;
end.

50

If palphabeta evaluates the best move first at type one
nodes, then all of the other subtrees are searched with a minimal
window. On the other hand, every subtree that is better than its
older siblings must be searched twice, resulting in more work.
The first search, conducted with the minimal window, discovers
that the subtree is the new best one, and really should not have
been searched with the minimal window after all. The second
search discovers the true value. It is important that the best
move be evaluated first with high enough probability that the
savings outweigh the ©penalties. Staged iteration can generate
the best move first with high probability. 1If the principal line
established for the (N-1)th stage is a prefix of the principal
line for the Nth stage, then at the Nth stage virtually the en-

tire tree is searched with a minimal window.

8.4 Measurements

To measure the improvement due to lalphabeta and palphabeta,
four checkers games were played, during which the program made 46
moves. Each move selection was repeated six times, one for each
of the six algorithms: alphabeta, lalphabeta, palphabeta, sal-
phabeta, slalphabeta, and spalphabeta. Alphabeta, 1lalphabeta,
and palphabeta have already been defined, and were done without
staging. Salphabeta, slalphabeta, and spalphabeta are the staged
versions of these three algorithms. During each of the 46*6 move
selections, the number of nodes visited was counted, providing 46
values for alphabeta, lalphabeta, palphabeta, salphabeta, slal-

phabeta, and spalphabeta, and hence 46 values for the five

51

derived quantities alphabeta/salphabeta, lalphabeta/alphabeta,
palphabeta/alphabeta, slalphabeta/salphabeta, and spalpha-
beta/salphabeta.

Table 1 shows statistics for alphabeta/salphabeta. Check~-
ers, unlike chess, does not profit from staging, possibly due to
checker's smaller branching factor. On the average, ab searched
only 81% as many nodes as salphabeta.

Table 1: alphabeta/salphabeta

Minimum 3.019
Maximum 2.768
Average ?.808
Standard

Deviation g.462

Table 2 gives statistics for lalphabeta/alphabeta,
palphabeta/alphabeta, slalphabeta/salphabeta, and spalpha-

beta/salphabeta.

Table 2:
lalphabeta/alphabeta palphabeta/alphabeta
Minimum g.881 §.666
Maximum 1.000 5.750
Average 9.987 1.163
Standard
Deviation g.024 7.868
slalphabeta/salphabeta spalphabeta/salphabeta
Minimum .899 #.696
Maximum 1.000 2.174
Average #.988 8.960
Standard

Deviation 3.823 g.227

52

As expected,'staged iteration was crucial to making pal-
phabeta work at all; without staging, palphabeta actually
searched more nodes than alphabeta. However, the measurements of
spalphabeta (palphabeta with staginé) are disappointing. Spal-
phabeta searched only four percent fewer nodes than salphabeta.
Since savings from starting with a narrow window (an optimization
that could be used in place of palphabeta or spalphabeta) are on
the order of 20 percent [2], palphabeta and spalphabeta are prob-
ably not to be recommended.

Lalphabeta and slalphabeta, on the other hand, are unquali-
fied (albeit small) successes. On the average, each searches
about one percent fewer nodes than the corresponding standard al-
gorithm, Although this improvement is not great, the optimiza-
tion is clearly a good bargain, since its space overhead is in-
significant and its time overhead is zero. Lalphabeta is never
slower than alphabeta and slalphabeta is never slower than sal-
phabeta. Therefore, every game-playing program that uses o-B

search should use some form of lalphabeta.

9. ACKNOWLEDGMENTS

The authors gratefully acknowledge the help and 1ideas of-
fered by Karl Anderson, Sharon Lawless, Will Leland, Marvin Solo-

mon, and Larry Travis.

10.

[1]

[2]

(3]

[4]

[51]

(6]

(7]

53

REFERENCES

H. J. Berliner, "A chronology of computer chess and its

literature," Artificial Intelligence 10, pp. 201-214 (April

1978).

G. M. Baudet, The Design and Analysis of Algorithms for

Asynchronous Multiprocessors, Department of Computer Sci-

ence, Carnegie-dMellon University (April 1978).

D. E. Knuth and R. W. Moore, "An Analysis of Alpha-Beta

Pruning," Artificial Intelligence 6, 4, pp. 293-326 (Winter

1975).

A.L. Samuel, "Some Studies in Machine Learning Using the

Game of Checkers, 1II - Recent Progress," IBM Journal of

Research and Development, pp. 681-617 (November 1967).

S.G. Akl, D.T. Barnard, and R.J. Doran, "Searching Game
Trees in Parallel," Technical Report No. 79-87, Queen's
University Department of Computing and Information Science

(November 1979).

M. Solomon and R. Finkel, "The Roscoe Distributed Operating

System," Proceedings of the Seventh Symposium on Operating

Systems Principles, pp. 198-114 (December 1279).

R. Nevanlinna and V. Paatero, Introduction to Complex

54

Analysis, Addison-Wesley (1969).

[8] Oskar Perron, "Zur Theorie der Matrices," Math. Ann. 64, pp.

248-263 (1907).

