NESTED ITERATORS AND
RECURSIVE BACKTRACKING

by

Raphael Finkel
Marvin Solomon

Computer Science Technical Report #388

June 1980

Nested Iterators and Recursive Backtracking

Raphael Finkel
Marvin Solomon

University of Wisconsin--Madison
Technical Report 388

Abstract

This paper introduces a new programming language construct

called the nested iterator, which is useful in coding iterative

solutions to backtracking problems that are usually attacked by
more complex recursive methods. We show how to generate code

from nested iterators and present several programs that employ

nested iterators.

s e
o N+

B D

TABLE OF CONTENTS
Introduction.cecocooocoscssssooss
Nested IteratoOrSeeecccssossssoocs
ImplementationN..ccecscccoacscscss
EXamplesS...cccoocosonccooossoncsces
Permutations and Combinations....
TreeS..ccococnooccoacascoccsooana
Partitions and Compositions......
Alpha-beta searChecececscoocccoes
Generating Code.coeecececoncennos
ConcluSioNSsecoossoascococosoccsa

Bibliography.eeeeeeeeooeooecennnns

FlgUreS.oeesoosooccosccosoncososa

Nested Iterators and Recursive Backtracking

1. Introduction

Consider the following elementary programming task:

Problem S: A is an n by n array of real numbers. Compute the
sum of its elements.

A reasonable program to accomplish this task 1is shown below:
(The syntactic details of the examples in this paper are not
meant to represent any particular existing programming language.)

Program Sl

sum := @;

for i from 1 to n do

for j from 1 to n do
sum := sum + A[i,j]

od

An extremely peculiar program employs recursion on the

number of dimensions:

Program S2
var i : arrayl[l..2] of integer;
procedure advance(k : integer):
if kK > 2 then
sum := sum + A[i[1],i[2]]
else
for i[k] from 1 to n do advance(k+l) od
fi
sum := §;
advance (1)

Although Program S2 seems strange, it might be used 1if the
number of dimensions of the array were quite large or not known
at compile time. Algorithms that search large spaces by back-
tracking often have exactly those properties: The number of di-
mensions of the search space is high, or the depth of the search
is not known at compile time. For this reason, backtracking is
almost always implemented by recursive procedures.

We will show how backtracking search and enumeration algo-
rithms wusually implemented with complex recursive procedures in
the style of Program S2 can be recast in the iterative style of
Program Sl with the aid of a new control structure. The transla-—
tion often yields a more perspicuous program, Moreover, since
recursive procedure calls are replaced by simple control flow,

the program is likely to be more efficient.

2. Nested Iterators

Let us begin with a standard example of backtracking. The
"eight queens" problem [1] was known to Gauss:

Problem Q: Find all placements of eight queens on a chess-
board so that no two share a row, column, or diagonal.

A first brute-force approach is to attempt all
(?f) = 4,426,165,368 placements of eight queens on 64 squares.
An enormous reduction in effort is derived from the fact that

there must be exactly one queen in each column; it suffices to

8

consider the 8~ = 16,777,216 choices of a row for each queen.

Usually, once this reduction has been made, a program is written

that uses recursion to achieve the backtrack. However, we may
restrict ourselves to iteration:

Program Q1
for qll] from 1 to 8 do
for q[2] from 1 to 8 do

°

for g[8] from 1 to 8 do

if ok(q[l..8]) then
yield ql[l..8] fi

od

Ok is a Boolean procedure that verifies that its argument
represents a non-attacking set of queens. We are using yield in
the CLU [2] sense; the program might print out the result at this
point or otherwise make it available to the caller.

If the first few queens have a conflict, no placement of the
remaining queens can lead to a solution. This observation leads

to a second dramatic reduction in the number of cases that must

be considered:

Program Q2
for q[l] from 1 to 8 do

if ok(q[l..1T7) then
for gf2] from 1 to 8 d
t

(o]

if ok(gl[l..2]) then

if ok(qll..8]) then
yield qll..8]

fi

£i

Program Q2 suffers from two defects: It is rather unwieldy,
and it does not readily extend to

Problem Q': Solve Problem Q with n queens on an n by n chess-
board, for n= 3, 4, 5, ..., 16.

The first defect may be remedied by a macro preprocessor
(analogous to our use of ellipsis above, and suggested in [3],
section 4.1.4), but the second defect remains: If the number of
levels of nesting 1is not known at compile time, the macro ap-
proach is inadequate.

We introduce the nest programming language construct to ab-
breviate Program Q2 and simultaneously generalize to Problem Q':

Program Q3
for n from 3 to 16 do
nest i from 1 to n <<
for qli] from 1 to n do
if ok(qgll..i]) then
inner
fi

od
>> do yield q[l..n] od

od

This program yields all solutions to n-queens problems for n
in [3..16].
The general form of nest is:
nest <control variable> from <lower limit> to <upper limit>

<< <statement list> >>
do <statement list> od

The reserved word inner must appear as a statement exactly once
within the first statement list. It marks where that same state-
ment list should be inserted as the next level, If all 1levels
have been finished, then the second statement list (enclosed by
do and od) is inserted instead.

The eight queens problem is only one example of a large
class of algorithms that operate by extending a partial solution
in all possible ways until a solution is obtained. If the number
of steps 1in a direct path to a solution is bounded by the value
max (in the eight queens problem, max is 8), a general program
might look like this:

Program R1

initialize;

nest i from 1 to max <<

for state[i] in extensions to state[l..i-1]1 do

if state[l..i] is feasible then
inner

£i
od >>
do yield state[l..max] od
In some cases, primarily tree searches, the depth of search

has no a priori bound. Such cases might use an unbounded nest:

Program R2
initialize;
nest i from 1 <<
for statel[i] in extensions to state[l..i-1] do
T if state[l..i] is feasible then
~ if state[l..i] is a solution then
yield state[l..i]
else inner
fi

fi
od >>

This program consists of an infinite nest of loop-test
pairs. In any given execution, control should never penetrate
more than a finite number of levels before the inner if succeeds,
the outer if fails, or the for loop has an empty set of possible

extensions. Therefore, the unbounded nest has no do part.

3. Implementation

The implementation of nest is related to the implementation

of for, which we will consider first. The loop

for i from 1 to n do S od

may be considered an abbreviation for the sequence of statements

S 5

17 Sgi eeei Sn,

where Sk denotes a version of S in which the variable i (presum-
ably occurring in S) has the value k. Figure 1 shows a flow
chart for one standard interpretation of the for loop. (We do

not mean to imply that Figure 1 is the best way to implement the

for loop. This topic has been discussed elsewhere [4]. Our dis-

cussion 1is equally applicable to any of the proposed variants.)

We have grouped the actions dealing with 1loop control in the
dashed box. The two arcs entering the box are labelled i and n,
for initial and next, and the two exits are labelled s and £, for
successor and final. The box delimits what is sometimes called a

generator or iterator [2,5]. We will <call any such construct

with two inputs and two outputs an iterator. When iterators are
nested, the flow graph can be grouped as shown in Figure 2. Fig-
ure 3 shows a nest of k iterators schematically. The successor
exit from box j is connected to the initial entrance to box J+1
if J<k and to S otherwise. Similarly, the final exit of box j
goes to the next entrance of box j-1 if j>1 and to the final exit
of the nest otherwise. The initial entrance of the entire nest
is connected to the initial entrance of box 1; the next entrance
(the arc from S5) is connected to the next entrance of box k.

We can simulate Figure 3 with the flow graph of Figure 4.
The structure of Figure 4 has three parts: The center is the
body of the nested iterator, on the 1left is an iterator that
counts i upward from 1 to k, and on the right is an iterator that
counts i downward from k to 1. (We demand that the statements
within the nest body not modify its control variable i, just as
we demand that statements within a for loop not modify 1its con-
trol variable.)

One might conjecture that the flow graph of Figure 4 could
be expressed (perhaps more clearly) by the conventional control
constructs if, while, and exit. However, when Figure 1 is used
to expand the for loop, this flow graph has a subgraph equivalent

to one that has been shown impossible to represent using only if,

loop, and multi-level exit without changing its execution se-
quence or increasing its length [6]. This fact suggests that
nest should be included as a basic control structure in algo~-
rithmic languages, since it expresses a flow of control that
could not otherwise be expressed without resort to goto state-
ments. The nest structure may be translated 1into lower-level
tests and conditional branches; we discuss this translation
later.

Nesting can easily be extended beyond for statements to any
iterator. For example, in Program Q3, the iterator includes an
if statement. It is, nonetheless, a two-input/two-output frag-
ment. Figure 5 shows the flow chart of the nest in Program Q3.

A bounded nested iterator, not including its do part, is it-
self an iterator. An unbounded nest, on the other hand, is a
compound statement rather than an iterator; its flow graph has a

single entrance and exit, as shown in Figure 6.

4, Examples

We now present some examples of generation and search tech-

niques that are easy to express using nested iterators.

10

4.1 Permutations and Combinations

Here is a program that generates, 1in lexicographic order,

all (E) combinations of k integers chosen from {1, ..., n}:

program Choose

var Choices : arrayl[0..k] of 1..n;

Choices[0] := 0; { dummy for initialization }

nest i from 1 to k

<<
for Choices[i] := Choicesl[i-1] + 1 to n+k-i
~ do inner od

>> do yield Choices[1..k] od

This algorithm is identical to the one given in [3] in section
5.2, but our program is easier to read.

A similar method may be used to generate all permutations in
lexicographic order on a set of numbers. The overall structure
of the program is as follows:

program Permutations(S : sorted set of integer);
nest i from 1 to size(S)
<<
forall P[i] in S - {P[1],
do inner od =
>> T T
do yield P[1..size(3)] od

.., PLi-11}

A doubly-linked list may be used to implement the sorted set, and
P[i] may be deleted and then restored around the inner statement.

A more efficient program [7] can be derived from some facts about

the sequence of permutations produced. If S = {al, - an}’
where a; < a, < ...« a,, then the sequence of permutations of n
in lexicographic order is 98915 @989n, ++ey @159, 85859, e
A5Sops +e+y 8,81, Wwherem = (n-1)! and S5 +y Sy, ls the se-
quence of permutations of S - {ai} in lexicographic order. Now

#i%im ¥ 338ndnoq -+ 35418309 +-- gy and ay 485, g = Ay, qay

11

.a, i o - i i ept
ai—la1a1+2 cee Ap. Therefore, if the current permutation is kep

in an array P, the translation from a;Sim

to ai+lsi+l,l can be
achieved by swapping the first element of P with the element in
position n-i+l to obtain 3418, e+ @498y ... a; and then rev-
ersing position 2 through n. These observations allow us to re-
place the forall loop by a loop on i = rank(j), the rank of P[]l
among P[j..n]l:

program Permutations

for j from 1 to n do P[j] := J od;
nest j from 1 to n

<<
for rank[j] from 1 to n-j+l
do
inner;
if rank[]j] < n-j+1 then
swap(j,n-rank[j]+1);
reverse (j+1l,n)
fi
od

>> do yield P[l..n] od
"Swap" interchanges two elements of P, and "reverse" reverses all

elements of P between the indicated positions.
4.2 Trees

The set of all directed d-ary trees on n nodes can be gen-
erated in many ways. One, given by [8] for d=2, may be general-
ized in the following way: The set of d-ary trees 1is in 1-1
correspondence with the set of sequences of n red markers and
(d-1)n black markers having the property that the ratio between
the numbers of black and red markers in any initial segment is at
most d-1. (Therefore, the first position is never black and the
last position 1is never red.) Generation of legal marker se-

quences 1is similar to the solution of the 8-queens problem:

12

program Marker Positions

~ Countlred] := 0;
Countlblack] := 0;
nest i from 1 to d*n

<<

for Marker[i] := black to red

do

" Count[Marker[il]] := Count[Marker[i]] + 1;
if (Count[black] <= Count[red]*(d-1)) and

{Count[red] <= n)

then inner fi;
Count[Marker[i]l] := Count[Marker[il] - 1;

od

>> do yield Marker[l..d*n] od
A tree can be generated from a legal marker sequence by calling
MakeTree(l):

program MakeTree(var Pos : integer) : tree;
{ Generate a tree from a subsequence of Marker, starting in
position Pos. Leave Pos set to the first unused position in
Marker. }
var Answer : tree;
begin
assert Marker|[Pos]
Pos := Pos + 1;
new(Answer) ;
for ¢ := 1 to d

red;

do
~ if Marker[Pos] = black then
Answer” ,child{c] := nil;
Pos := Pos + 1
else Answer” ,child[c] := MakeTree(Pos)
fi
od;

MakeTree := Answer;
end; { MakeTree }

4.3 Partitions and Compositions

Partitions of an integer n are multisets of positive in-

tegers that sum to n [3]. We will represent each partition by a
sequence sorted in non-decreasing order. An unbounded nest can

be used to generate all partitions of n in lexicographic order:

13

program Partitions

Remainder := n;

P[@] :=1; { dummy to start off }
nest i from 1

<<
for P[i] := P[i-1] to Remainder
do
~ Remainder := Remainder - P[i]l;
if Remainder = @ then
yield P[1..1i]
else inner fi;
Remainder := Remainder + P[i];
od
>>

Compositions of n are sequences of positive integers that sum to
n. They differ from partitions in that the order of the integers
is significant. Changing the lower limit of the for loop above
to 1 yields the compositions of n instead of the partitions. The
k-part compositions are sequences of k non-negative integers that
sum to n. They are generated by a similar program:

Program Compositions

Remainder := n;
nest i from 1 to k-1
<< T
for C[i] := 0 to Remainder
do
" Remainder := Remainder - C[i];
inner;
Remainder := Remainder + C[1i]
od
>>
do
C[k] := Remainder;
yield CI[1l..k]
od

A more compact representation of a partition lists each dis~
tinct integer together with its multiplicity. The following pro-
gram represents a partition by a strictly decreasing sequence P
of integers together with a corresponding sequence M of their

multiplicities. It also uses an array Remainder with the proper-

14

ty that Remainder[i] = n - sum{P[j]*M[]] \ j < i}. The algorithm

is similar to one presented in [3].

program Compressed Partitions
Remainder[1l] := n; { full value }

P[@] := n+ 1; { dummy for consistency }
nest i from 1

<L
P[i] := 1;
M[i] := Remainder[il]:;
yield P[1..i], M[l..i];
for P[i] := 2 to min(Remainder[i],P[i-1]-1)
do
" Remainder[i+l] := Remainder[il;
for M[i] := 1 to Remainder[i] div P[i]
do
" Remainder[i+l] :=
Remainder[i+1] - P[i];
if Remainder[i+l] =0
then yield Permut[l..i],M[1..1]
else inner
fi
od
od
>>

4,4 Alpha-beta search

Alpha-beta search is a technique for evaluating positions in
two-player games [9]. The alpha-beta search algorithm can be

described easily with an unbounded nest:

program Alpha Beta Search

var path : sequence of node;

path[@].alpha := -INFINITY; path[@].beta := INFINITY;
path[@].pos := InitialPosition;

15

nest depth from 0

<<
if path[depth].pos is a terminal position then
path[depth] .value :=
StaticEvaluation(path[depth] .pos)
else
for NextPos[depth] in
T SuccessorPositions(path[depth].pos)
do
" path[depth+l]l.alpha := -path[depth].beta;
path[depth+l].beta := -path[depth].alpha;
path[depth+l].pos := NextPos[depth];
inner;
path[depth] .alpha :=
max (-path[depth+l].value,path[depth].alpha);
if path[depth].alpha >= beta
then exitloop fi
od
i
>>

5. Generating Code

This section presents a method for generating efficient code
for nested iterators. Code is generated for each statement in
two segments. For iterators, the first code segment starts with
the initial entry and ends with the successor exit; the second
starts with the next entry and ends with the final exit. We al-
low Jjumps between the segments. The code for other statement
types is divided somewhat arbitrarily into two segments for con-
sistency in the translation algorithm.

We present the generated code by means of an S-attributed
translation [18]. Each non-terminal symbol representing a state-
ment has three synthesized attributes: Tl and T2 are the two
segments of the generated code and I is a Boolean attribute that

is true only for iterators. The translation of the corresponding

16

code fragment 1is the concatenation of Tl with T2. Each other
non-terminal symbol (for example, <var>) has one attribute
representing 1its translation. 1In this case, we omit the grammar
and attribute rules and use the symbol itself to represent its
translation. The source language is the ad hoc language used in
all the examples in this paper. The only control structures in
the target language are conditional and unconditional goto state-
ments,

For clarity, we will display the target language in a high-
level syntax, although a practical translator would produce some
form of intermediate code or machine language. We also assume
that Genlabel is a procedure that assigns a new label to its ar-
gument.

{statement> ::= inner

<statement>.I = true

<statement>.Tl = {empty translation}
<{statement>,T2 = {empty translation}

<statement> ::= nest <var> from <exprl> to <expr2>
'<<' <statement 1listl> ">>7 do <statement list2> od

if not <statement listl>.I then error
Genlabel(L1l); Genlabel(L2); Genlabel(L3); Genlabel(L4);

17

<statement>,I = <statement list2>.I
<statement>.Tl
<var>

|

<exprl>
L1
IF <var> > <expr2> THEN GOTO L2
<{statement listl>.T1
<var> := <var> + 1
GOTO L1
L2 :
<{statement list2>.T1
<statement>.T2 =
<statement list2>.T2
<var> := <expr2>

L3 :
IF <var> < <exprl> THEN GOTO L4
<statement listl>.T2
var> := <var> - 1
GOTO L3
L4 :

{statement> ::= nest <var> from <expr> '<<' <statement list> ">>°
Genlabel (L1); Genlabel(L2); Genlabel (L3);

<statement>.I = false
<statement>.T1

[

var> <expr>
L1 :
<statement list>.Tl
<var> := <var> + 1
GOTO L1
<statement>.T2 =
L2 :

IF <var> < <expr> THEN GOTO L3
<statement 1list>.T2
<var> := <Kvar> - 1
GOTO L2
L3 :

<statement listl> ::= <statement> ; <statement list2>

if <statement>.I then
if <statement 1list2>.I then error
else
<statement listl>.I = true
<statement listl>.Tl =
<statement>.Tl
<statement listl>.T2 =
<{statement>.T2
<statement list2>.Tl
<statement list2>.T2
fi
elif <statement 1ist2>.I then
{statement listl>.I = true;
<statement listl>.Tl =
<statement>.Tl
<statement>.T2
<statement list2>.T1
<statement listl>,T2 =
{statement list2>.T2

else
{statement listl>.I = false;
<statement listl>.Tl =
<statement>.T1l
<statement>.T2
<statement 1listl>,T2 =
<statement 1list2>.Tl

<statement list2>.T2
£i

<statement> ::= while <bool> do <statement list> od

Genlabel(Ll); Genlabel(L2);
<statement>.I = <statement list>.I
<statement>.Tl =

L1l

IF NOT (<bool>) THEN GOTO L2
<statement list>.Tl
<statement>.T2 =
<{statement list>.T2
GOTO L1
L2 :

<statement> ::= if <bool> then <statement listl>
else <statement list2> fi

18

if <statement listl>.I then
" if <statement 1ist2>.T then error
else
Genlabel(Ll) Genlabel(L2);
{statement>.I = true
<statement>.Tl =
IF <bool> THEN GOTO L1
<statement list2>.Tl
<statement list2>.T2
GOTO L2
L1
<statement listl>.Tl
<statement>.T2 =
{statement listl>.T2
L2
fi
else
Genlabel(L1l) Genlabel(L2);
{statement>.I = <statement list2>.1
<statement>.Tl =
IF NOT (<bool>) THEN GOTO L1
<statement listl>.T1
<statement 1listl>.T2
GOTO L2
L1l :
<statement 1list2>.Tl
<statement>.T2 =
<statement list2>.T2
L2
fi

<statement> ::= for <var> from <exprl> to <expr2>
do <statement list> od

Genlabel(L1l); Genlabel(L2);

<statement>.I = <statement list>.I
<statement>.Tl =
<var> := <exprl>
L1 :
IF <var> > <expr2> THEN GOTO L2
<statement list>.Tl
<statement>,T2 =
<{statement list>,T2
<var> := <var> + 1
GOTO L1
L2 :

For example, consider the following code:

nest 1 from 1 to n

<<
if qli]
then sl
else
S2;
inner;
s3
£i
>> do s4

The translation is:

L21

Ll12

L13

L22

L14

IF i > n THEN GOTO L12;
IF NOT (g[i]) THEN GOTO L21;

sl;
GOTO

s2;

6. Conclusions

Iterative solutions to problems are often

cursive solutions for several reasons:

L22;

n;

< 1 THEN GOTO L14;

i-1;
L13;

preferable to

29

re—

1) They correspond directly to a natural description of the

problem. An iterative solution is usually shorter and easier to

understand than a recursive solution.

21

2) They do not hide information in a recursion stack. For
example, a successful search 1is represented by a path to the
goal. In a recursive implementation, the path is on the recur-
sion stack; it must be duplicated in a separate array to make it
accessible to a printing routine. TIterative solutions have no
recursion stack and therefore do not duplicate this information.

3) The code generated by a compiler for a nested iterator
solution is 1likely to be substantially faster than the code for
the best recursive solution. Moreover, more compiler optimiza-
tions are possible without inter-procedural data flow analysis.

An obstacle to using iterative techniques is the fact that
the iterative program corresponding to a backtracking algorithm
cannot be easily expressed in traditional high-level control con-

structs. The nesting constructs introduced in this paper remove

that obstacle.

7. Bibliography

[1] N. Wirth, Algorithms + Data Structures
Prentice~Hall (1976).

Programs,

[2] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert,
"Abstraction mechanisms in CLU," Communications of the ACM
20, 8, pp. 564-576 (August 1977).

[3] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Al-
gorithms: Theory and Practice, Prentice-Hall (1977).

[4] F. Baskett, "The best simple code generation technique for

WHILE, FOR, and DO loops," Sigplan Notices 13, 4, pp. 31-32
(April 1978).

[5]

(6]

(7]

(81

[91]

[10]

22

M. Shaw, W. Wulf, and R. London, "“Abstraction and Verifica-
tion in Alphard: Iteration and Generators," Technical Re-
port, Carnegie-Mellon University Department of Computer
Science (August 1976).

W. W. Peterson, T. Kasami, and N. Tokura, "On the capabili-
ties of while, repeat, and exit statements," Communications
of the ACM 16, 8, pp. 503-512 (August 1973).

R. J. Ord-smith, "Algorithm 323: Generation of Permutations
in Lexicographic Order," Communications of the ACM 11, p.
117 (1968).

A. Proskurowski, "On the generation of binary trees," Jour-
nal of the ACM 27, 1, pp. 1-2 (January 1980).
D. E. Knuth and R. W. Moore, "An Analysis of Alpha-Beta

Pruning," Artificial Intelligence 6, 4, pp. 293-326 (Winter
1975) .

P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns, "Attri-
buted translations," Journal of Computer and System Sciences
9, pp. 279-307 (1974).

23

8 Figures
| !
. y

>I L= :+1

|

|

g» LN

Le > =

i \\\//’

L - - - - — —

Figure 1: for i from 1 to n do S od
I
| ! | || |
N P L= s)= - K.z n
l"i LH\ lji I+ lK-i K-\-\I
| S S
< {n A i K s
| | || |
L

Figure 2:
for i from 1 to n do
for j from 1 to n do
for k from ton do S o

od
od

24

S
Lli S ¢ S c

V\cqc 1y %?Il 7"TIK N
s S e <

L - - o |
Figure 3: k nested iterators

r— - - - - - - - - = 7 7

Figure 4
nest i from 1 to k

<Kfor v[il ... >> do S od

25

S, sjie\o(%D * m?j

Figure 5
nest i from 1 to n
<<
for g[i] from 1 to n do
if ok(gll..i]) then inner fi
od
>>

do yield ql[l..n] od

| ‘ o [reict I

Figure 6: nest i from 1 << for v[il]l ... >>

