THE LENS INTERCONNECTION STRATEGY

by

Raphael A. Finkel
Marvin H. Solomon

Computer Science Technical Report #387

April 1980

The Lens Interconnection Strategy

by

Raphael A. Finkel

Marvin H. Solomon

ABSTRACT

In this paper we describe a new family of topologies for in-
terconnecting many identical processors to form an MIMD multipro-
cessor. It extends to arbitrarily many processors while keeping
the number of neighbors of any one processor fixed. We show that
this family behaves very well with respect to uniformity of bus
load, simplicity of routing algorithms, and distance between pro-

cessors.

19.

TABLE OF CONTENTS

Introducti()noo..uo..-coooo-00..-ooco-..t.couao-oa..oooooo

Backgroundaoaooo.oooooo-o-oooo.oeoocota..ou.o.co.ooo.oo-o

Definition Of the Lenso.DOG...'0..0-0’.0...00.0...0.00000

Routingoocouaoooooat'o.oo-oo.nooaoouooou.ooe-.o..ooo-u-.u

Routing in the Completed LenS..c..ceec..

Symmetry and LoadinNgececcscscoococoesos

The Lens and Multistage NetworkS......

ConclusionSoouooatooounoo.o‘.oeciouooa

ReferenCeS.cescoocccoscoocnonsosocsssos

FigUIreS.sccecooscoanooscococscoosooccsoes

6 060 00600600600 0

© 0000 0© 00006000

© 8 © 00060000600 0

© 6 0 0600060600060 0

© ® 0000000000680

®

19

12

15

16

17

20

The Lens Interconnection Strategy

l. Introduction

In this paper we describe a new family of topologies for in-
terconnecting many identical processors to form an MIMD multipro-
cessor. The purpose of the interconnection is to allow the indi-
vidual processors to communicate with each other as they
cooperate to perform tasks. Special topologies can be designed
for particular tasks, but general-purpose topologies are impor-
tant for networks like Cm* [Jones 77], Micronet [Wittie 78, 79]
and Arachne [Solomon 79, Finkel 8fa]. Such topologies may be

judged by five criteria:

l. The diameter of the network should grow slowly with the

number of processors.

2. The number of neighbors of any one processor should be in-

dependent of the size of the network.

3. Addresses should exist for each processor that permit effi-

cient algorithms for routing messages from any processor to

any other,

4, The traffic load on various parts of the network should be

uniform,

5. Message pathways should be redundant to provide robustness

in the event of‘component failure.
Previously reported interconnection strategies perform well
according to some of these criteria, but not others. For exam-
ple, the hypercube [Sullivan 77] performs excellently with

respect to criteria 1 (logarithmic relationship), 3, 4 (complete-

ly uniform), and 5 (very high redundancy). Unfortunately, cri-
terion 2 is wviolated: As the dimension rises, the number of
neighbors of each processor 1increases. The dense snowflake

[Finkel 808b] satisfies criteria 2 (fixed complexity), 3, and 5
(good redundancy), but it does less well with respect to criteria
1 and 4: The diameter grows as a root of the number of proces-
sors (rather than a logarithm) and traffic load varies widely.
The multi-tree~structured network [Arden 78] satisfies criteria 1
and 2, but is very poor with respect to criterion 3: There is no
general addressing and routing scheme. It is hard to evaluate
its performance on criteria 4 and 5.

This paper presents a new family of interconnection stra-

tegies called the lens. We show that lenses perform well with

respect to all the criteria.

2. Background

Many other authors have considered interconnection topolo~-
gies, although differing assumptions about the underlying tech-
nology often lead to solutions that are difficult to compare. A
recent survey [Siegel 79] distinguishes three main approaches:

multistage networks, in which processors are connected to

memories or to each other through a network of 1lines and

switches, dedicated path networks, in which processors are con-

nected to each other with (simplex or duplex) lines, and shared
path networks, in which sets of processors share a communications
medium such as a bus. The lens structure presented in this paper
is, strictly speaking, a shared path network, although its prin-
ciples may be applied to dedicated path networks, and it has
striking similarities to several proposed multistage schemes.

The work described here is descended from a shared path
scheme called the Mega-Micro-Computer network [Wittie 76]. 1In
such a network, a large number or processors are connected by
busses, with some small fixed number of processors (say p, where
P > 1) allowed on each bus, and at most two busses attached to
each processor. Any processor may send a message directly to all
neighboring processors, that is, all those connected by any bus
to the originating processor; messages may be relayed to more
distant destinations. Local connectivity (criterion 2 above) is
dependent only on p, not on the total number of processors.

We have investigated several such structures in detail

[Finkel 8@b], deriving exact formulas for average and worst—case
interprocessor distances and bus traffic, and presenting distri-
buted algorithms for message routing. One of these structures,

the dense snowflake, 1s a direct generalization of Wittie's

structure. It is constructed recursively, starting with a clus-
ter of p processors on one bus and building a larger cluster from
p smaller ones, connecting processors from the edges of sub-
clusters with p~l1 new busses. The diameter of the snowflake
grows in proportion to a root of the number of processors. We
presented the star as an attempt to decrease the diameter. Its
construction 1is similar to the snowflakes, but processors near
the centers of the sub-clusters are used to connect them togeth-
er. The diameter is improved (proportional to the logarithm of
the number of processors), but the problem of uneven bus traffic
is worse. For example, if a random pair of processors exchange
messages, the central bus will be used with probability (p-1)/p,
whereas the outermost busses will only be used with probability
about 2(p—1)/N2 (where N is the total number of processors).
Moreover, the star has only one path between any pair of proces-
sors, so any component failure splits the network into unconnect-
ed regions.

In the current paper, we improve on these previous results.
We also consider the more general situation in which each proces-

sor connects to q or fewer busses (for some fixed q > 1).

3. Definition of the Lens

Roughly speaking, the lens is constructed of subclusters,
g-1 of which are joined by their edges to form a multi-layered
structure. The thickening at the center, which gives the lens
its name, is intended to add extra busses at the center where
they are needed to share the greater message traffic.

More precisely, assuming at most p processors per bus and ¢
busses per processor, a level-l cluster consists of g-1 busses
sharing each of p-1 processors. The situation in which p = q = 3
is shown in Figure la, in which processors and busses are
represented as "P" and "B", respectively. Each of the shared
processors is deficient in that it is connected to only g-1 of
the ¢ busses allowed. The busses are also deficient, since each
has only p-1 processors. To create a level-n cluster, take g-1
level-(n-1) clusters, add a bus to each deficient processor, and
cement the clusters together by allowing corresponding new busses
from the g-1 level-1 subclusters to share p-1 new processors
(Figures 1lb and lcg).

The lens has a natural addressing scheme. We give a proces-
sor an address of the form "w.v" where w is a sequence of base
p-1 digits and v is a sequence of base g-1 digits. In a 1level-n
lens, all addresses have n digits. We may define the addresses
recursively according to the level of the lens. When a cluster

is formed from g-1 sub-clusters, each address in the ith sub-

cluster is extended by adding the digit i to its right end. None

of these new addresses ends with a dot. Each new processor is
connected by new busses to g-l1 previously deficient processors,
one from each sub-cluster. Those o0ld processors have new ad-
dresses of the form "w.a", where w is an n-1 digit string (their
old address) and a is one digit (the new digit). All old proces-
sors connected to a single new processor agree on w, and disagree
on a. We give the new processor an address "wb.", choosing a
different digit b for each new processor connected to the same
group of old ones. Since each new bus is connected to p-1 new
processors, all the possible digits b will be chosen. Figure 1
shows the addresses of processors.

In the special case p = g, the number of deficient proces-
sors at the border of a cluster is the same as the number of de-
ficient busses at the center. Such a lens may be completed by
connecting these deficient processors and busses together. A
processor with address "aw." is connected to any deficient bus
adjacent to processor "@#.w". (Our discussion of routing will ex-
plain this decision.) Figure lc shows a completed level-3 lens
in which the added connections are indicated by dotted lines.

If p = q, counting addresses shows that a level-n lens has
n(p—l)n processors. Each processor except for the (p-—l)n ones on
the edge was given a unique bus during the construction at some
level; those last ones may be connected to unique busses in the
center. Thus, the number of busses equals the number of proces-

SOrSe.

4., Routing

Processors are adjacent (that is, they share a bus) if their
addresses follow either of these patterns:

A. One address is "wa.u" and the other is "w.bu".

B, One address is "wa.u" and the other is "wb.u".
In order to find a direct neighbor of any processor, start with
its address. Pattern A implies that the dot may be moved one po-
sition to the right or the left; the position that is passed over
may be set to any digit. Pattern B implies that the digit before
the dot may be changed to any digit. In both cases, the new ad-
dress names a processor adjacent to the old one.

These patterns lead to an algorithm for determining a path
between arbitrary processors. For example, a legal path from

$21.10 to 99.220 (here, n=5 and p=3) is:

g 21.10
g 21 0.9
g 21.290
g 2.2 20
6 0.2 20

Pattern A has been used for the first three steps, and pattern B
for the 1last one. If we restrict ourselves to pattern A alone,

that last step requires two:

g 2.2 20
g.1 2 2 0
g 8.2 290

Given two addresses, which we may call the source and desti-
nation, we wish to find all minimal paths between them. First,

define a region of difference as the minimal set of digit posi-

tions that satisfies these properties:

l. The positions are contiguous in the range [1l..n].

2. The source and destination addresses agree in all posi-

tions outside the region of difference.

3. The dot is within the region of difference or on its

borders.

In the example above, the region of difference is those positions
marked here with 1:

21110
The source and destination may agree in places within the region
of difference, but they must disagree on the borders of that re-
gion (at least with respect to the position of the dot).

To move from the source to the destination, it is necessary
to change all the digits in the region of difference and end up
with the dot in the correct place. The algorithm has four steps:

1. The dot moves from its position in the source address
to one end of the region of difference; all digits are re-
placed with arbitrary ones.

2. The dot moves back to the correct position in the des-
tination address; all digits are replaced with correct ones
for the destination.

3. The dot continues to the other end of the region of

difference; all digits are replaced with arbitrary ones.

4. The dot moves back to the correct position in the des-
tination address; all digits are replaced with correct ones
for the destination.

Any of these steps may be trivial if the source or destination
address has its dot at the end of the region of difference.

Moving the dot by one position corresponds to traversing one
bus on the path. Let k be the number of positions in the region
of difference, and let i and j be the distance of the dot from
the left end of the region of difference in the source and desti-
nation addresses, respectively. If step 1 moves towards the
right end of the region of difference, then the path length will
be k-i for step 1, k for steps 2 and 3, and j for step 4; a total
of 2k + j - i steps. Similarly, if step 1 moves left first, the
total distance is 2k + 1 - j. Therefore, a shortest path begins
by moving the dot right if and only if j < i. If j = i, both
directions yield minimal paths.

The maximum distance between two processors occurs when
i =13; 1in this case, the path length is 2k. Since k < n, the
maximum distance between two processors is 2n.

This routing algorithm uses pattern A exclusively. Pattern
B is only wuseful when the dot changes direction from left to
right, and this situation only occurs at most once in any path,
so using pattern B could only decrease the length of any path

that we form by one step.

1o

5. Routing in the Completed Lens

The routing algorithm is somewhat complicated by completion.
We still have the two adjacency patterns shown earlier, but now
an address of the form "w." is considered to be equivalent to the
address ".w"; the two ends of the address have been joined. It
is easiest to view an address as a circular list of digits with a
dot between some two adjacent digits.

Suppose source and destination addresses have been chosen
and we want to find all shortest paths. The dot positions in the
source and destination divide the circle of digits into two arcs;
let A be one of the arcs, and let a denote its length (see Figure
2b) . Let B be a maximal sequence of contiguous positions within
A where the source and destination digits are equal. (If there
is more than one maximal sequence choose any one as B; different
choices may yield different minimal paths. In Figures 2a through
2f, zero denotes a position in which the source and destination
agree, and one denotes a position of difference.) Let b be the
length of B.

One way to find a path from the source to the destination is
to move the dot from its initial position to one end of B, then
back around to the other end of B, and finally to its destination
position (see Figure 2c). Call paths formed this way class-1
paths. The total length of each of these paths is n+a-2b. As in
the routing algorithm for the uncompleted lens, when the dot

moves past the same position twice, the digit at that position is

11

set to an arbitrary value the first time and to the value from
the destination address the second time. Different choices of B
and of the arbitrary values vyield different paths within the
class.

Paths in class 2 move the dot from the source position,
through A to the destination position, and then make another com-
plete circuit (Figure 2d). Each of these paths has 1length n+a,
so paths in <class 2 are only minimal if b = ¢ (that is, the
source and destination addresses differ at all positions within
A). In an analogous manner, letting C be a maximal region of
agreement outside of A, and letting ¢ be 1its 1length, we get
classes 3 and 4 of lengths 2n-a-2c and 2n-a, respectively (Fig-
ures 2e and 2f) .

Minimal paths are found as follows: Find regions A, B, and
C and their lengths a, b, and c. (Several choices may be possi-
ble.) Compute the lengths of paths in classes 1, 2, 3, and 4 by
the formulas given above and eliminate classes that yield non-
minimal lengths. Each remaining class yields one or more minimal
paths according to the choices of regions B and C and of "arbi-
trary" digits. If we are only interested in finding one minimal
path, not all of them, we may use a simpler algorithm: Choose
class 1 whenever 2b - 2c > 2a - n; otherwise, choose class 3. If
A is chosen as the longer of the two "halves" of the circle,
2a - n > 0.

The worst-case path length occurs when n = 2a and b = c = 0
(that 1is, the source differs from the destination in all posi-

tions). 1In that case, all four paths have the same length:

12

3n/2.

All paths described above rely exclusively on pattern A.
Once again, pattern B can only decrease the path length by one
(for paths of classes 1 and 3), since the dot only changes direc-
tion from counter-clockwise to clockwise at most once in these

paths.

6. Symmetry and Loading

In a completed lens, all processors are equivalent in the

following sense:

Theorem 1 For any two processors in a completed lens, there ex-
ists a graph automorphism on the lens that maps one onto the oth-

er.

Proof We build the necessary automorphism out of the following
two operations on addresses:

H(x): shift x cyclically to the right.

G(x): increase the rightmost digit of x by 1 (mod p-1).
Each operation corresponds to a graph automorphism. Given two
addresses s; and Sy, transform S, to s, as follows: First, re-
peatedly apply H to bring each digit of $71 to the right end. If
the digit differs from the corresponding digit of S, (that is,
the digit at the same distance from the dot position), then make
it equal by repeated applications of G. Finally, apply H as

necessary to make the dot position agree with Soe

13

Definitions We say that message traffic is uniform in a network

if (source, destination) pairs for messages are randomly and uni-
formly distributed. We say a routing strategy is regular if the
path chosen for a message is always chosen at random from the set
of minimal paths, with all minimal paths equally 1likely. The
loading of a processor is the probability that it is used to re-

lay a message between a random (source, destination) pair.

Corollary 1If message traffic in a completed lens is balanced and

routing is regular, then all processors have equal loading.

Proof Given two processors S and D, there is an automorphism f
that maps S onto D. Since f extends to a bijection on the set of
minimal paths, and since path p goes through s 1iff £(p) goes

through D, the result follows.

Note The hypothesis of regular routing is stronger than neces-
sary 1in the corollary above. However, the routing strategy must
be sufficiently "fair" that automorphisms preserve path probabil-
ities. The routing algorithm given above satisfies this condi-

tion.

Definition The dual of a processor graph G is a processor graph

G' formed by relabelling the graph, interchanging busses and pro-

cessors. (p(G') = q(G), and g(G') = p(G)).

14

Theorem 2 A completed lens is isomorphic to its dual.

Proof Let G be the completed lens. Label the busses of G as
follows: Each bus 1is adjacent to a set of g-1 processors la-
belled wi.v (i =0 ... g=2) and one processor labelled w.av, for
some strings w and v and digit a. Assign the label w.av to this
bus. Let f be the mapping from G to G' that assigns a processor
to the bus whose label is the reversal of the processor's label,

and vice versa. Clearly, f is one-one and onto. The busses ad-

jacent to processor wa.v are wa.v and w.iv for i = g...p-2, and
the processors adjacent to bus w.av are w.av and wi.v, for

i=0...9-2, Hence if p = g, f is an automorphism interchanging

processors and busses.

Corollary For any two busses in a completed lens, there exists a

graph automorphism on the lens that maps one onto the other.

Proof Let b; and b, be busses, let f be the isomorphism of
Theorem 2, and let g be the automorphism of Theorem 1 that maps

1

f(bl) onto £(b,). Then £ o go f is an automorphism mapping

bl onto b2,

Corollary 1If message traffic in the completed lens 1is balanced
and routing is regular, then bus loading is uniform. (Bus load-

ing is defined analogously to processor loading.)

15

7. The Lens and Multistage Networks

An alternate picture of the lens indicates a correspondence
between shared-path and dedicated-path topologies and also sug-
gests a striking similarity between the lens and several multis-
tage schemes previously proposed. Figure 3 represents the same
interconnection schemes as Figure 1 but with the processors and
busses arranged differently on the page. Drawn this way, a
level-k lens is formed of k rows of "exchange groups", with each
row connected to the next by a perfect shuffle interconnection
[Stone 71]. Each exchange group consists of p-1 processors and
d-1 busses, connected in a complete bipartite graph. Figure 4
shows Figure 3c with each exchange group replaced by a box. The
extra connections to complete the lens are shown as dotted lines.
For clarity, the bottom row of boxes is repeated at the top.

The graph structure of Figure 4 has been proposed several
times as a multistage network, but only in the case where
P =g = 3. It has been variously called the flip network [Batch-
er 74], the indirect binary n-cube [Pease 77], the Omega network
[Lawrie 75], and the Banyan [Goke 73]. In each <case the 1in-
terpretation of the graph as an interconnection network has been
slightly different, and hence different properties of the graph
have been of interest.

To the best of our knowledge, all previous papers mentioning
the graph of Figure 4 interpret boxes in the interior of the

graph as switching elements of some sort. The boxes at the top

16

and bottom are interpreted as processors, processors and
memories, or processors and busses. The results of this paper
show that a fruitful interconnection topology can be achieved by
interpreting the all the boxes as processing elements or as
shared—-path subnetworks.,

Our results also generalize previous work in allowing
numbers of neighbors other than 4. When drawn in the style of
Figure 4 the lens has p connections from each box "upward" and g

connections "downward",

8. Conclusions

In this paper we have presented a new interconnection stra—
tegy called the lens that performs well with respect to all the
criteria listed in the introduction:

l. The diameter of the completed lens grows slowly with
the number of processors. The diameter d is L3n/2x, and the

number of processors N is n(p—l)n, so the diameter is

LB(log N - log n) &
a= |Z-clso_ I T ,
2 log(p-1)

which is logarithmic in N. The uncompleted lens diameter also
grows logarithmically with N; in this case, d is 2n.

2. Every processor is connected to g busses, and every bus
is connected to p processors, independent of the size of the
network.

3. The processor addressing scheme permits efficient algo-

rithms for routing messages from any processor to any other.

17

Completing the lens does add complexity to the algorithm, but
it is still linear in the length of addresses.

4. The traffic load is uniform for all processors and all
busses,

5. Multiple minimal paths provide robustness in the event
of component failure,

One problem with the complete lens is that it seems to re-
quire expansion in large increments, since the number of proces-
sors must be an integer of the form n(p-1)". Structures of other
sizes could be built by viewing them as lenses of the next larger
size with some processors and busses missing. The characteris-
tics of such "partial lenses" will be investigated in a future

paper.

9. References

Arden, B. E. and Lee, H. "A Multi-Tree Structured Network"
Princeton University Electrical Engineering and Computer

Science Technical Report $239, January 1978.

Batcher, K. E. "The flip network in STARAN," Proceedings of the

National Computer Conference, Pp. 405-410, May 1974,

Finkel, R. A., Solomon, M. H., Tischler, R., Arachne User Guide,

Version 1.2, University of Wisconsin--Madison Computer Sci-

ences Technical Report #379, February 1988.

Finkel, R. A, and Solomon, M. H. Processor Interconnection Stra-

18

tegies, IEEE Transactions on Computers, May 1980.

Goke, L. R. and Lipovski, G. J., "Banyan networks for partition-

ing multiprocessor systems," First Annual Symposium on Com-—

puter Architecture, pp. 21-28, December 1973,

Jones, A. K., Chansler, R. J. Jr., Durham, 1I., Feiler, P.,
Schwans, K., "Software Management of Cm* -— A Distributed

Multiprocessor", Proceedings of the National Computer

Conference, Vol 46, pp. 657-663, AFIPS Press, 1977.

Lawrie, D., "Access and alignment of data in an array processor,"

IEEE Transactions on Computers, Vol. C-24, No. 12, PP.

1145-1155, December 1975.

Pease, M. C., "The indirect binary n-cube microprocessor array",

IEEE Transactions on Computers, Vol. C-26, No. 5, pp. 458-

473, May, 1977.

Siegel, H. J., McMillen, R. J., and Mueller, P. T. Jr., "A survey
of interconnection methods for reconfigurable parallel pro-

cessing systems," Proceedings of the National Computer

Conference, pp. 529-542, June 1979.

Solomon, M., and Finkel, R., "The Roscoe Distributed Operating

System", Proceedings of the Seventh Symposium on Operating

Systems Principles, pp. 198-114, 18-12 December, 1979,

Stone, H. S., "Parallel processing with the perfect shuffle,"

IEEE Transactions on Computers, Vol. C-20, No. 2, PP. 153-

19

161, Pebruary 1971.

Sullivan, H., and Bashkow, T. R., "A Large Scale, Homogeneous,

Fully Distributed Parallel Machine," Proceedings of the

Fourth Symposium on Computer Architecture, pp. 185-124,

1977.

Wittie, L. D. "Efficient Message Routing in Mega-Micro-Computer

Networks", Proceedings of the Third Symposium on Computer

Architecture, pp. 136-140, 1976.

Wittie, L. D., Micronet: A reconfigurable microcomputer network

for distributed systems research, State University of New

York at Buffalo Department of Computer Science Technical Re-

port 143, April, 1978.

Wittie, Larry D., "A Distributed Operating System for a Reconfi-

gurable Network Computer" Proceedings of the First Interna-

tional Conference on Distributed Computing, October 1979.

20

Figures

19.

[o TRU—Y, ;) e (34
[=
— =
Dlyremamee = = m

(b) Level 2

(a) Level 1

P 111
‘]
B
\
g1 \\
\
/
/80.1
<~
L

P 101
€
[
N\

P 801

«n
P pglp.

AP 110
1.0
\1
/a

P g.
1.0
B

100
/

B

{
g0 \
RN
g9\

\
00.0
\B I

P 900

(c) Level 3

Figure 1
The Lens (p = q = 3)

Source address: g 2 1.0 2
Destination address: 0 1 1 0 @
Differences: g1 9.0 1

Source dot position—}
Destination dot position

(a) A Sample Routing Problem (n =

(Liifrce dot position
B,

—

estination dot position

(b) Differences (¢) Class-1 Paths

(e) Class-3 Paths (£) Class-4 Paths

Figure 2

Routing in the Completed Lens

Q

21

=N
IR
R et ot
QNN

2

{(d) Class~2 Paths

g 21.802128 12
g 2.2 08212012
p.2 2 6 212012
g 1.2 82120812
211.02120812
g 110.212012
g110900.1 2812
1100 1.2012
p110010.012
21109010 2.1 2
11006 10.212

(g) Class-1 Paths

1.1

3 T%.<i>< %
B@. 1. PgO. g1. l6. _Pl1l.
éﬂ.ﬂ Zl.ﬂ i%?i::él.l

(a) (b)

Bgp.s BEl.0 _Blo.p Q&l.lﬂ ~B0g.1 B@l.l .~Bl@.1
-" """%m,‘w

”

%0.@6 Bl.do I:>x<::

PO.30 Zl.@@ PP.OI~P1.061

%%EEF:: gl. I%EEF::BQ\\

Pllg.

POGO. POUl. By1a. P11, Piggd. Plgl. .
[>< \><L éi><l i?<
g00.0 B@l.0 B10.8 11.19 1 BAl.1 g.1>~B1ll.1

(c)

Figure 3

A Different Layout of the Lens

Bll.l

l
t
POd.0 gl1.0 PiD. 0o Til T@*«p@g [~~ppgl.1 S~ 19.1 ,P11.1

;;\;B\\Bl 10 ;%>T§::Bl 11
C10~~P1.10 Tgiié:jpl.ll
;%§;§::51@1. T1g.>>B111.

P111

22

~ ~ -~ N -
~— ~ /—‘\ !
\\ N - ~
/’}"’\A\ \\ !
5 TS W
X
X X X

Figure 4

Schematic Version of Figure 3

23

