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ABSTRACT

Distribﬁted programming is characterized by high communica-
tions costs and the inability to use shared variables and pro-
cedures for interprocessor synchronization and communication.
*MOD 1is a high-level language system which attempts'to address
these problems by creating an environment conducive to efficient
and reliable network software construction. Several of the *MOD
distributed programming constructs are discussed as well as an
interprocessor communication methodology. Examples illustrating
these concepts are drawn from the areas of network communication

and distributed process synchronization.
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1. Introduction

*MOD (starmod) , a language derived from Modula[35,36,37], 1is
intended forﬂ systems or application programming in a network
environment. The *MOD design is based’ on experience with our
PDP-11/VAX Modula compiler[7] and was inspired by Brinch Hansen's

"distributed processes" concepts[3]. A distributed program can

be characterized as an algorithm which requires multiple proces-

sors for its implementation; whereas a concurrent program

requires multiple processes for its implementation. A sequential

program is an algorithm which is implemented wusing only pro-
cedural constructs.

It is interesting to observe that after 25 yeafs of .experi—
ence with sequential programming, there is still no consensus on
language features. The current discussions invelving Ada[l9,20]
provide a case 1in point. Since even less is known about the
requirements for distributed and concurrent programs, *MOD was
developed as an experimentation media and is not presented here
as the ultimate solution. The primary design criteria were tran-
sparency, extensibility, and program adaptability.

Following Parnas' definition[29], a language is transparent

with respect to a given computer system if any system state and
any sequence of system states which could be obtained by program-
ming the component machines could also be obtained by using the
high-level language. For 1instance, experimentation would be
severely hampered if the language were inflexible with respect to
process definition and scheduling. Therefore, *MOD provides
low-level operations which can be extended by éhe programmer to

define high~level abstractions appropriate to a particular



machine environment. *MOD programs can also adapt to changes in
workload or response time requirements. The language is designed
so that a library module could be upgraded from a collection of
procedures to a collection of processes without changing any ‘of
its wuser's programs. Finally, *MOD permits the user to organize
his/her program to reflect the structure of the physical proces-
sors and the connectivity of the network.

This paper discusses the rationale behind the design of the
*MOD system and contrasts the language features chosen with those
of the Department of Defense(DoD) Ada language[l9], Hoare's Com-
municating Sequential Processes(CSP)[18], Feldman's éLITS[l,lB],
and Brinch Hansen's "distributed processes"[3]. In particular,
we address the distributed programming problem areas of interpro-
cessor communication, software testing and kernel efficiency.
The *MOD design decisions in other areas such as data abstrac-

tion[8] and synchronization{9] are described elsewhere.

2. Program Organization

Before proceeding further with a more detailed discussion of
the *MOD distributed programming mechanisms, the module concept
of Modula[35] will be considered as a focal point for network
software development. A module usually corfesponds to a program
abstraction and consists of an external interface specification,
data structure definitions, procedures, processes, and an
optional initialization part. In *MOD, a module can be used as a
type definition or to delineate a lexical scope as in Modula;
therefore, both the information-hiding properties proposed by
Parnas{28] and the flexibility of the Simula[l@] "class" mechan-

ism are maintained.



In Modula, if the prefix "device" or "interface" 1is wused
before the "module" keyword, the semantics of the module change.
For instance, "interface" denotes a module which semantically 1is
similar to a monitor{17]. *MOD extends the Modula prefix nota-

tion to provide the user with the following module types.

PROGRAM ::= network module IDENTIFIER [= LINKLIST];

[MODULEBODY]

end IDENTIFIER.

PROCESSORDECLARATION ::= processor module IDENTIFIER

[REPLICATIONCOUNT] ;
[MODULEBODY]
[begin STATEMENTLIST]

end IDENTIFIER

MODULETYPEDECLARATION- : := type IDENTIFIER = [MODULETYPE] module;

[MODULEBODY]
[begin STATEMENTLIST]

end IDENTIFIER

MODULEDECLARATION ::= [MODULETYPE] module IDENTIFIER;
[ [MODULEBODY]
[begin STATEMENTLIST]

end IDENTIFIER]

MODULETYPE ::= MODULETYPEID | access !} scheduler

LINKLIST ::= LINK [,LINK]...

LINK ::= (PROCESSORVAR [,PROCESSORVAR]...)

REPLICATIONCOUNT ::= '[' EXPRESSION ']'
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A network module is required to define processor connec-
tivity and to declare any types, constants, procedures or
processes which are global to the processor modules. The LINK-
LiST details the communcation paths among processor modules in
terms of a source specification and a 1list of destinations.
Variable declarations and the initialization STATEMENTLIST are
prohibited at the network level since there is no instruction or
data storage outside of a physical processor. Procedures and
processes are allowed within network modules for global standard-
ization but are copied automatically by the compiler into each
processor module. Fiqure 1 gives an example of a five processor
module "star" system.

Processor modules were introduced as part of the *MOD design
to allow the programmer to partition a computation into collec-
tions of processes. All procedures and processes within a proces-
sor module can directly access shared variables; whereas inter-
processor references must be in the form of messages. By using
combinations of processes and the ability to specify processor
modules, a *MOD user can take full advantage of the physical
hardware available in order to exploit the inherent parallelism
in his/her algorithm. In some situations, an algorithm méy con-—
tain more processor modules than the number of physical proces-
sors avallable. 1In this case, a mechanism such as Jones' “task
force" language[2l] must be used to map the *MOD virtual proces-
sor set onto the physical network. It may also be advantageous
to use a mapping specification for networks with non-uniform com-

munication costs. In addition, the performance of processes

within a processor module can be improved by mapping the module
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Figure 1

network module star = (center,pr),{(pr,center);
const NOPROCESSORS = 4;
processor module center;
define communicator;
process communicator(...);

-

pr{i] .communicator(...); (*call processor i¥)

»

end communicator;
begin (*initialization#*)
end center; ]
processor module pr[NOPROCESSORS]; (*four peripheral processors¥)
define communicator;
import center;
process communicator(...);

center,communicator(...); (*call center¥*)

end communicator;
begin (*initialization¥)
end pr
end star.




to a multiprocessor. We should also point out that the availa-
bility of a hardware multiprocessor to implement a particular
processor module should be regarded as a fortuitous circumstance
and should not be counted on by the programmer.

The module "type" declaration can be wused to construct
extended data types as in Simula[l8] except that a *MOD program-
mer has more control over external interface and protection
specifications. The Modula prefix notation for modules has been
extended to include user defined module types in addition to the
"access" and "scheduler" keywords. An "access"[8] prefix can be
used to define array abstractions while the "scheduler"([9] prefix
can be wused to build synchronization abstractions such as moni-
tors{17])] or interface modules[35]. When a module "type" is used
as a prefix to a module declaration, the body of the "type" is
automatically replicated in the new module. Next, the syntaz of

a MODULEBODY will be illustrated.

MODULEBODY ::= EXTERNALINTERFACE
BLOCKHEADING
EXTERNALINTERFACE ::= [define ELEMENT[,ELEMENT]...;]
[export ELEMENT[,ELEMENT]...;]

[pervasive ELEMENT[,ELEMENT]}...;]

BLOCKHEADING ::= [import IDENTIFIER[,IDENTIFIER]}...;]

[DECLARATIONLIST]

ELEMENT ::= IDENTIFIER[(readonlylprotected)]

A module boundary delineates a closed 1lexical scope which

can only be superseded by the explicit specification of "define",



"export", "import" or "pervasive". The external interface for a
processor module usually lists any message types and process
names which are used for communication.

An IDENTIFIER specified in an "impdrt" list causes a
declaration from a global 1lexical scope to be made accessible
within the module. The "export" attribute allows a local
declaration to be visible at the enclosing lexical level; while
"pervasive" makes the IDENTIFIER known at the enclosing and all
nested levels where the same name is not already declared. The
latter option is most useful for making functions appear to their
users as "builtin" to the language. For instance, the "sine" and
"cosine" functions are declared as "pervasive" in the math
library module; therefore, any use of that library automatically
imports the math routines into the enclosed scopes. |

The "define" statement is provided as an alternative to
"export". It gives the user the ability to list those IDENTIF-
IERs which can be referenced externally, but only by prefixing
the reference with the module name as in the Simula[l8] "class"
notation. “define" is used to reduce the size of "import" lists
since "import"ing a module name permits references to any of its
"define"d symbols. Secondly, a qualified reference to a
"define"d name serves a useful documentation function. The abil-
ity to specify the external interface for each module is becoming
a standard feature of modern programming as is demonstrated by
its use in Mesa[l4], Euclid[23], Alphard([32], Ada[l9], etc.

The *MOD user can also restrict variables and types to
read-only access or to no access. These restrictions are not

applied within the exporting module. Since the access checking’
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is enforced by the compiler, it can be maintained even across
distributed processors. The only exception is that any restricted
variable or instance of a restricted type can be passed as an

argument to a procedure exported from the defining module.

3. Language Concepts

From the *MOD viewpoint, a computer network can be charac-
terized as an arbitrary collection of processors with fixed com-
munication paths_for interprocessor message transfer. We have
adopted the traditional[33] definitions that a processor executes
commands or instructions, a procedure is a sequence of instruc-
tions for a processor, and a process is one or more procedures
together with the state vector which controls and defines the
virtual ©processor on which the process runs. It should be noted
that a procedure cannot execute except as part of a process.
Since *MOD programs are intended to run on a bare machirne, a *MOD

process is a much simpler entity than the processes found in most

operating systems. For instance, the state vector for a UNIX[34]
process on a PDP~11 contains over 1000 bytes of information while
the *MOD kernel for the same computer uses 32 bytes for a pro-
cess' state vector. Processes in the same processor module can
communicate wusing shared variables or messages; however, inter-
processor communication can only consist of messages.

Messages are assumed to range from no content(signal or
interrupt) to arbitrary data structures. We will refer to the

recipient of a message as the message handler, or handler.

Furthermore, *MOD enforces strong type checking on messages both

within and across processors to maintain system consistency.

Finally, any communication mechanisms presented should be
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efficient and should not constrain the options of the programmer.
In the next sections, the *MOD design will be discussed along
with a detailed analysis of the alternatives, advantages and

disadvantages.

3.1 Message Handlers

A procedure is a simple example of an intraprocessor message
handler. Since a message can be an arbiﬁrary data structure com-
posed of many subfields, the syntax for the argument 1list and
returned value was expanded to permit record and array types.
Thus, the familiar argument list notation is wused to represent

the component fields of a message.

PROCEDUREDECLARATION ::= procedure IDENTIFIER([(FORMALS)]
[:TYPEID];
BLOCKHEADING
[begin STATEMENTLIST]
end IDENTIFIER

PROCEDUREREFERENCE ::= PROCEDUREID[ (ARGUMENTS) ]

A procedure is an example of a dependent service in that the
procedure's activation record must be attached to the activation
record stack of an existing process, usually the caller, in order
to execute. *MOD does not permit procedures as interprocessor
message handlers. As an alternative, *MOD uses a process-

oriented communication methodology.

3.1.1 Processes

Each "processor module" consists of one or more concurrent

processes declared as follows:



PROCESSDECLARATION ::= process IDENTIFIER[(FORMALS)]
" [ '[' PRIORITY ']' ]:TYPEID;
BLOCKHEADING
[begin STATEMENTLIST]
end IDENTIFIER

PROCESSREFERENCE ::= PROCESSID[(ARGUMENTS) ]

Except for the keyword ‘"process" and the optional PRIORITY
expression, the declaration is identical to that of a procedure.
This correspondence was made intentionally to make it easier for
a programmer to convert a sequential program to a concurrent or
distributed program. A PROCESSREFERENCE must specify a 1list of
arguments corresponding exactly in type and number to the FOR-
MALS. Every procedure call creates a new activation record; how-
ever, a PROCESSREFERENCE creates a new activation record stack
and state vector. Thus, each pfocess can have multiple activa-
tions all executing in parallel.

The returned value for a functional process 1is set by
assignment to the process identifier and must match the specified
TYPEID. A reference to a functional process within the same pro-
cessor 1s the same as a procedure reference. However, an inter-
processor functional reference implies independent execution for
the called process; the caller must wait. Also, the compiler
will flag a process reference as an error if there are no direct
communication links between the caller and handler processes.

The optional PRIORITY must evaluate to a compile-time con-
stant which specifies the initial(default zero) priority of the
process. The initial priority can be modified by altering the

value of the pseudo-variable "priority". Priority can be used to
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improve the performance or response time of an algorithm by
establishing precedence relationships among its processes.
Consider the following execution options for a process as a

message handler.

1. execute in parallel with caller no reply message
2. execute in parallel with caller reply message
3. caller waits for completion no reply message
4, caller waits for completion reply message

Option 1 is implemented by a *MOD process which does not
return a value while Option 4 is represented by a functional pro-
cess. The reply message is the returned value which can range
from a simple variable to an arbitrary record. ‘Option 3 is
easily programmed by using Option 4 to return a completion indi-
cation. Option 2, which corresponds to Conway's[5] "fork" and
"join" methodology, 1is available wusing the ‘“port" mechanism
described in Section 3.1.2.

The example in Figure 2 illustrates these concepts with a
ring network version of Dijkstra's Dining Philosophers{11l] prob-
lem. As in the original version, five philosophers are each try-
ing to eat from a plate of special spaghetti which has been
placed in the middle of a round table. The spaghetti is special
since each philosopher requires two forks to eat it. In our
example, each philosopher can directly control only the right-
hand fork; to get the left fork, the philosopher to the left must
be consulted. However, each philosopher is also restricted to
conversation with the right neighbof only; therefore, messages

must be sent around the ring(table) to get permission to use the
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Figure 2

network modulé diningroom=(phil[l],phil({2]),(phil[2],phil([3]),
(phil[3],phil{4]),(phil[4],phil([5]),
(phil([5],phil[1l]); (*ring network¥)
processor module phil[5];
define get, put, got; (*communication processes®)
module at table;
export get, put, got, getforks, putforks;
import phil;
var myfork, gotone: semaphore;
process get(who, fork: integer); (*get "fork" for "who"*)
begin
if fork <> pid then phil(pid mod 5 + 1]}.get(who,fork)
else p(myfork); got(who)

end if
end get;
process put(fork: integer); (*give "fork" back¥)
begin ‘

if fork <> pid then phil[pid mod 5 + 1l].put(fork)
else v{myfork)

end if
end put;
process got(who: integer) [1]; (*let "who" use fork¥*)
begin

if who <> pid then phil[pid mod 5 + 1].got(who)
else v{gotone)
end if

Pty

end got;
procedure getforks; (*philosopher waits for both forks¥*)
begin get(if pid=1 then 1 else pid-1l); p(gotone);
get(if pid=1 then 5 else pid); p(gotone)
end getforks;
procedure putforks; (*give forks back and don't wait¥*)
begin put(pid);
put(if pid=1 then 5 else pid-1)
end putforks
end at_table;
begin loop
(*think*) getforks;
(*eat *) putforks
end loop
end phil
end diningroom.
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left-hand fork and to give it back. The algorithm is based on an
ordered resource allocation strategy developed by Havender[l6]
which prevents deadlock and starvation.

Each philosopher is required to call Jgetforks" to start
eating and "putforks" to stop. The lower level protocol as well
as the problem restrictions and network topology are completely
hidden from the wuser. The "get" process accepts fork requests
and either passes the request to the right in the ring or else
gets control of its own fork and sends an acknowledgment to the
"who" philosopher. "pid" is a builtin function which identifies
each processor by its index value. "got" acknowledges fork allo-
cations and "put" frees forks. The algorithm works correctly
without process priority but we have specified a higher priority
for the "got" process to illustrate how performance can be
“tuned" by such assignments. Note that every message in the ring
activates a parallel process; thus, the performance of the algo~

rithm can also be improved by using multiprocessors for the nodes

of the ring.

3.1.2 Ports

In addition to the call/return form of message communication
described in Section 3.1.1, it is often desirable to iﬁplement
coroutine([6], rendezvous[19], or multiple handler protocols. We

have integrated Balzer's[2] port mechanism into the *MOD design

to provide these facilities.

PORTDECLARATION

:= port IDENTIFIER[(FORMALS)][:TYPEID];

PORTREFERENCE

]

PORTID[ (ARGUMENTS) ]

A procedure provides a dependent message handler; a process is an
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independent message handler; and a port is a message queue which
is independent of a handler. Thus, a port can be thought of as a
queue of procedure or process messages(argument lists) waiting
for execution. With a procedure or process, the caller initiates
execution; with a port, only the handler can initiate execution

as follows:

REGIONSTATEMENT ::= region PORTID [,PORTID]... ;
[PORTBODY]

end region
PORTBODY ::= STATEMENTLIST | PORTCASE [; PORTCASE]...

PORTCASE ::= PORTID: begin STATEMENTLIST

end PORTID

If only a single PORTID is present, the PORTBODY must be a
STATEMENTLIST; otherwise, a PORTCASE is required for each PORTID
listed. The latter option permits a process to service requests
with non-deterministic arrival times. The region statement
copies the selected message into the current activation record
and reserves a return value cell if the port is a function. When
an "exit" from the region occurs, the returned value, if present,
is transmitted to the PORTREFERENCE statement. As with processes,
the caller only waits if the port returns a value. At compile-
time, the scope of the argument list is opened on region entry
and closed on region exit for a single port. For multiple ports,
a scope is opened and closed for each PORTCASE. When the region
statement is executed, the executing process will wait wuntil a
message is present at one of the‘listed ports. If multiple

regions are waiting for the same port when a message arrives, the
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region to execute is chosen non-deterministically. If a region
is waiting for several ports which simultaneously receive mes-
sages, the arrival order determines the processing order. Also,
an "awaited" function is provided to test the status of a port.
Figure 3 illustrates an implementation of the previous exam-
ple using ports. The first example uses a process for every mes-
sage which provides the maximum parallelism. 1In the port imple-
mentation, only one communication process is created for each
processor and the messages are handled sequentially. However,
multiple ‘"communicator" processes could still be invoked to

increase parallelism.

3.2 Processor Communication

In *MOD, processes, ports and procedures are all referenced
with the same syntax; thus, the user of a module's services need
never know how the service is provided. The advantage 1is that
the implementation can be easily modified to adapt to changes in
workload or response time requirements. The only restriction on
such changes is that procedures cannot be used for interprocessor
communication.

A procedure invocation implies the creation of an activation
record which is added to the stack of the calling process. How-
ever, for an interprocessor call, the stack of the calling pro-
cess 1is not available. The alternative 1is to attach the
procedure's activation record to the stack of a randomly selected
process in the called processor. We rejected this choice because
the selected process could not continue execution until the
procedure's activation record was removed. A mére serious prob-

lem occurs if the process controls a resource needed by the
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Figure 3

network module diningroom=(phil[1l],phil{2]),(phil[2],phil([3]),
(phil(3],phil[4]),(phil[4],phil([5]),
(phil[5],phil([1]); (*ring network¥)
processor module phil{5];
define get, put, got;
module at table;
export get, put, got, getforks, putforks;
import phil;
var myfork, gotone: semaphore;
port get(who, fork: integer); (*get "fork" for "who"¥)

port got(who: integer); (*¥*let "who" know?*)
port put(fork: integer); (*give "fork"™ back¥*)

process waitrep(who: integer); (*local rep. for "who"*)
begin p(myfork); got(who)
end waitrep;
process communicator;
begin loop
region get, put, got;
get: begin
if fork<>pid then phil[pid mod 5+1].get(who,fork)
else waitrep(who)
end if

put: begin
if fork<>pid then phil[pid mod 5+1].put(fork)
else v{myfork)
end if
end put;
got: begin
if who<>pid then phil{pid mod 5+1].got(who)
else v(gotone)
end if
end got
end reqion
end loop
end communicator;

procedure getforks; (*philosopher waits for both forks*)
begin get(if pid=1 then 1 else pid-1); p(gotone);
get(if pid=1 then 5 else pid); p(gotone)
end getforks;
procedure putforks; (*give forks back and don't wait¥*)
begin put(pid);
put(if pid=1 then 5 else pid-1)
end putforks;
begin communicator
end at_table;
begin loop
(*think*) getforks; (*eat *) putforks
end loop
end phil
end diningroom.




procedure; 1in this case, deadlock could result. Therefore, *MOD
provides only ports and processes for interprocessor communica-
tion.

A process provides parallel execution for each message
handler but requires a storage allocation operation to create its
stack. A port, or multiple ports, can be handled by a single
process which remains permanently active; thus, a port communica-
tion involves only a context switch which can be performed very
quickly with moéern hardware. If the handler execution time is
considerably longer than process creation time, a process is the
appropriate implementation <choice. Otherwise, a port will pro-

vide the fastest response time.

3.3 Compariscn with Other Languages

*MOD integrates Brinch Hansen's[3] "distributed
processes" (DP) concepts with the modular programming philosophy
of Wirth{35,36,37]. Figure 4 illustrates the compatability of a
DP "process" with a *MOD "processor module". *MOD also provides
the user with network and processor modules, ports, processes,
and rsynchronization abstractions{9]. DP is oriented towards a
single process per processor while #*MOD 1is intended as a

general—-purpose language for distributed programming.

3.3.1 Ada

Ada[l1l9,20] is a 1language proposed by the Department of
Defense for universal use; therefore, it should be instructive to
compare an Ada "task" with a *MOD "process". In *MOD as in
Modula, a process can not be declared inside other processes or

procedures. An Ada task "may be declared 1local to other task
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Figure 4

process distributed
<own variables>
proc name(input params#output params)
<local variables>
<statement>

<initial statement>

processor module *MODdistributed;

define name, nametype;
<own variables>
type nametype= record
output params
end record;
process name(input params) :nametype;
<local variables>
begin <statement>
end name;

begin <initial statement>

end *MODdistributed;
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bodies, packages, subprograms and blocks" and a "thread of con-
trol" is maintained between a task and its parent. In addition,
"any subprogram, module, or block containing task declarations
cannot be left until all local tasks have terminated". Further-
more, tasks can contain procedures which can be called by other
tasks. Thus, tasks within blocks or procedures must be able to
share activation record stacks and tasks which call procedures in
other tasks must be able to share the procedure's global variable
space. *MOD avﬁids these addressing and protection problems by
allowing shared access only to global variables. *MOD also
avoids maintenance of the "thread of control® information. All
of these Ada conventions are even more difficult to implement
acroés processors.

It is an error to initiate more than one instance of an Ada
task; the user can declare vectors of tasks but each element must
be individually addressed. Ada provides ports in the form of
"entry" declarations which are restricted to a task body. There-
fore to communicate with a task, the wuser must name an entry
point. If multiple instances of tasks with the same name were
allowad, the entry point could not be named without ambiguity.
*MOD avoids this restriction by requiring port declarations to
occur outside of processes; thus, any port can be serviced by any
process., This is not possible in Ada.

The Ada "accept" statement is equivalent to a *MOD "region"
but always requires the caller to wait until the body of the
"accept" completes execution. Thus, Ada does not have a direct
equivalent to *MOD functional ports, functional processes, or

multiple processes. Procedures, processes, and ports are refer-
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enced identically 1in *MOD; only procedure and entry references

are similar in Ada.

3.3.2 Mesa

Meéa[27] includes both processes and ports in a format simi-
lar to *MOD. Mesa allows a procedure body to be called as a pro-
cess by using the "fork/join" statements. The "join" statement
allows the returned value to be retrieved after the call. We
decided not to use this methodology because it would require
changes to all wuser programs if a handler were changed from a
procedure to a process. As pointed out in a recent paper(22],
the "join" construct 1is infrequently used compared to the
"detached" process option which is similar to the *MOD design.
Ports in Mesa were designed to implement coroutines; procedures
must have a special "start" phase, be "connect"ed to a port and
then '"restart"ed. The Mesa port mechanism is so complex because
it was designed to set up a coroutine relationship between two or
more procedures within the same process. The *MOD port is a more
general\mechanism which has a variety of uses including connect-

ing processes as coroutines.

3.3.3 CSP and PLITS

Hoare's CSP[18] and Feldman's[1l,13] PLITS languages are
oriented toward end-user programming on top of an operating sys-
tem. PLITS, for instance, performs automatic routing and flow
control of messages; these would be user-implemented services in
*MOD. CSP is strongest in its exploration of nondeterministic
programming features while PLITS is more completely specified

with respect to distributed programming. Both langauges are port
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oriented, Hoare's processes can be created dynamically as in
*MOD; however, the relationship between two communicating
processes 1is' symmetrical and requires both of them to name the
other. Communication 1is asymmetrical in *MOD so that in
hierarchical systems, handlers can be created without knowing the

identities of their callers.

3.3.4 CLU

Liskov{24] has recently proposed some distributed computing
extensions to CLU[25]. A CLU "guardian" is similar to a *MOD
"processor module" but is restricted to ports for communication.
There is no equivalent to a "network module" for processor organ-
ization. Ports are global to processes as in *MOD and include
timeout and error detection notation. The major difference
between the two proposals arises because of the integrated defin-
itions of procedures, processes, and ports in *MOD. All of the
languages that we have examined, including CLU, have a special
syntax for one or more of these constructs; thus, any change to a

library program may require changes to all user programs.

4. Software Testing

In order to test software in the distributed environment, it
must be possible to experiment both with software algorithms and
hardware organizations. The advent of high~level 1languages has
greatly enhanced algorithm development but the same flexibility
is not present for hardware. The wvirtual machine approach[15]
was a step in the right direction but was primarily oriented
towards the construction of multiprogrammed, single processor

software. The VM environment has been suggested[34] as suitable
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for the development of network software but the user 1is still
given a bare machine as a starting point.

Our proposal consists of a two-level approach -- 1) a VHLN
(Virtual High-level Language Network) *MOD environment for net-
work software development and testing on a single host computer
(a PDP-11 or VAX in the current implementation effort); and 2) a
compiler capable of producing code for a number of different
machines, The VHLN system is a runtime package which executes
all of the processor modules on a single processor. The package
also provides debugging, simulation and performance analysis
aids. It is much more economical to develop software tools for
one host development computer than for each target machine. Once
a software system has been tested, it can be moved to the network
for production wuse. We have used this methodology to construct
operating systems for virtual processors, file systems, and simu-
lations of the Ethernet([26] and DCS[12] networks.

The VHLN system also has some disadvantages. The simulated,
multiple processor environment provided by the *MOD test system
is unrealistic in the sense that events will not have a real-time
correspondence to the performance of systems running on bare
machines. However, even this problem can be solved by using the
techniques proposed by Canon[4]. As we gain experience with the
system, it will be possible to draw more definitive conclusions

regarding the ease of moving from a simulated to a real network.

5. The *MOD Kernel

The code generated by the *MOD compiler 1is independent of
its execution environment. For example, we have several bare

machine kernels for different PDP-11ls, a kernel for simulation,
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and a kernel which allows *MOD programs to run on UNIX[30]. The
bare machine kernels are used for real-time testing, the simula-
tion kernel for performance evaluation, and the UNIX kernel for
system development and debugging. Except for simulation state-
ments, the same *MOD program could be executed with any of the
kernels. Next, the *MOD bare machine kernel will be described.

The *MOD kernel performs message transmission and synchroni-
zation functions only; any routing, scheduling, or flow control
operations are the domain of the systems programmer. A process
loses control of a hardware processor only by terminating, block-
ing, lowering its priority, or by receipt of a message for a
higher priority process.

The compiler generates a list which details the processes
and ports referenced by a processor module together with their
processor addresses. In addition, a similar list is created for
local ports or processes that have been "export®ed or "define"d.
When an external process or port call occurs, the kernel con-

structs a message from the argument list as follows:

var message : record

arg; : TYPEl;

8rdy : TYPE;

end record

The processor address for the destination is available from the
kernel tables to control message transmission. For a functional
call, the originating kernel changes the process'! status to indi-

cate that it is waiting for a reply message from the target pro-
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cessor. When a reply arrives, its origin is verified against the
saved wvalue in the process' control block; the reply is appended
to the process' activation record; and the process' status is
changed to "ready". It will resume execution when it is the
highest priority, "ready" process.

In *MOD, each interrupt or message is sent to either a port
or a process, A message to a process creates a new process
activation record stack. The new process' priority and start
address are taken from the kernel control table. A process
switch occurs only if the new process has a higher priority than
any of the executing processes. A message to a port is logged if
no process is waiting; otherwise, a process switch decision based
on priority is made. Port qommunication only requires a process
switch while a process call requires both the creation of an
activation record and a process switch. The critical question is
how quickly these operations can be performed. Table 1 lists the
number of instructions executed for process/port communication on
our PDP-11 standalone and UNIX kernels.

The UNIX kernel copies each process' stack segment from high
core to a save area on every process switch. The standalone ker-
nel has less work to do on context switches because there is no
copying, although the state vector is more complicated. Also,
the initial stack space for new processes is fixed in size which
means that the allocate/free operations can be executed in con-

stant time.

6. Summary

The *MOD system represents an exploration of the design

decisions necessary to apply the modular programming philosophy
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Operation

process create{N arguments)

process delete

port call(no arguments)

pert call(N arguments)

(A)
(B)
(8)

(C)
(D)
(E)
(F)
(G)

allocate memory
free memory

process switch

number of free list cells of smaller size

number of free list cells at a smaller address

Table 1

Standalone

39+7N+A+S
714B+S
18+S
24+7N+S
45

5

32

number of processes in scheduling list

0ld process' stack size

new process' stack size

-25.

Unix Kernel

314+2N+A+S
13+5E+B+S
14+S
20+B+A+2N+S
280+18C
22+6D

36+B+A+2F+2G



of Wirth to the development of distributed software and to pro-
pose an environment conducive to the construction and testing of
such systems. This paper would not have been written but for the
impetus and inspiration of Brinch Hansen's article[3] on distri-
buted processes.

The current design was developed by experimenting with
extensions to our Modula compiler which is written in C[31] and
runs on Version 7 UNIX. The compiler generates either PDP-11 or
VAX11/780 machine code. A separate *MOD compiler is currently

under development.
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