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1. Introduction

In a previous paper [10] convergence theorems were developed for

recursive separable programming algorithms for problems of the form
n

min z f'i (X-i)

x i=1

(1.1)

s.t. xeCn[2,ul,

where x = (X],...,Xn)Te]Rn, C is a closed convex set, [%,u] denotes

the hyper-rectangle corresponding to the constraints & < x <u, and

each f; is a continuous convex function on the interval [ﬁi,uij.

Here we will consider computational aspects and experience with thess
and newly developed algorithms for the special case in which |
C = {x|Ax=b}, where A is an mxn matrix and b eR™,  (These methods

also apply with obvious modifications to the case in which C is

given by any finite set of linear equations and inequaiities, but for
notational simplicity we will consider only the case of C given by
linear equations.) In this case each iteration requires only the
solution of a linear programming problem.

It is notationally convenient to denote the feasible set of (1.1)
by S. To avoid trivial cases we will assume that S 1is non-empty
(if it was empty, this fact would be established on the first iteration)
and that the bounds satisfy & < u. Under the assumptions made, (1.1)
has an optimal value, denoted by z**. Finally, we denote 121 fi(xi)

by f(x).



ProbTems of this form arise in numerous applications, including econo-
metric data fitting [1], electrical networks [17], water supply systems [5],
logistics [18], and statistics [19]. Computational experience with problems
arising from several of these areas is described in Section 8.

At each iteration, in addition to the generation of a feasible
solution and a corresponding upper onnd for the optimal value as
described in Sections 2-4, a lower bound on the optimal value may also
be computed by using only function value information. If each fi is
differentiable and if equations of the form f%(x) = o may be easily
solved, Tower bounds based on Lagrangian relaxation may also be com-
puted. It is shown that the "primal" lower bounds described in
Section 5 are not tighter than the "dual-based" lower bounds from the
Lagrangian relaxation of Section 6. The algorithm may be terminated
when the difference between the upper and Tower bounds is less than a

prescribed-tolerance. - This-termination-criterion guarantees..that the

feasible solution giving rise to the upper bound differs (in an objective

function sense) from the optimal solution by less than the tolerance.



2. The Linear Programming Subproblems

The iterative method to be described for the given problem requires
the construction at each iteration of a piecewise-Tinear approximation
of at most two segments for each of the fi’ Except for the initial
iteration, in which a feasible starting solution is not assumed, the
piecewise-linear approximations %i are determined by function values
at points (%,m,0), where f s the optimal solution of the preceding
iteration, and % and U are "temporary" lower and upper bounds with

the admissibility properties:

(2.1) L< L <H<i<u,

(2.2) i, > &, if fiy > L., and
fi . if m. < u..

(2.3) il < U, if e < ug

From a computational viewpoint, these admissibility properties may

be thought of as allowing a decrease in X; (thought of as starting the
iteration with a value ﬁi) if x; is not at the true lower bound 2.,
and allowing an increase if Xs is not at the true upper bound. (These
properties are also used in convergence proofs for the method.) The
precise manner in which ¢ and U are generated at each iteration

will be described below. (Note that when Qi = ii = ﬁi or m, = Gi = Uss

fi is approximated by the secant determined by two function values rather

than by a two-segment approximation determined by three function values.)

In the case in which %i is comprised of two segments, the function

corresponding to [ii,ﬁi] will be denoted as ?%

responding to [ﬁi,ﬁi] will be denoted as ??.

and the function cor-
The key property of ?1

that is used to guarantee monotonicity of the algorithm is that



fi(xi)-i ?i(xi) for X; e [ii,ﬁi]. To exploit this property the
constraints xe[%,u] are imposed in the subproblem. Thus, the triple
(¢,m,u) not only determines the approximations ?1, but determines
additional constraints as well. For this reason, the corresponding
subproblem denoted by P(X,f,U) may be written as

n .
min ‘Zl fi(xy)

A x i
P(2,f,0) =

s.t. xeSn[2,0].

Since each %i is pijecewise-linear and convex, P(%,m,u) my be con-
verted to and solved as a linear program (LP) by standard techniques
(for details, see [13]. However, instead of directly decomposing

each variable X; corresponding to a two-segment approximation into
the sum of two variables x? and x;, it should be noted that with the

proper handling of the pricing out operation, this LP also can be taken

to be of size mxn except that an additional cost coefficient must be
stored for a variable corresponding to a two-segment approximation.
P(%,m,u) will have an optimal solution since it is feasible (the optimal
basic feasible solution f from the previous iteration may be used as a
starting basic feasible solution) and bounded.

For the initial subproblem, in which a feasible starting solution m
is not assumed, the problem P(%,(%+u)/2,u) may be solved. This is the
problem corresponding to the two-segment approximations generated by the
endpoints and midpoint of each segment [zi,ui]. (Note that the feasible
set for this problem is simply the original feasible set, so the feasi-

bility of the initial subproblem is a consequence of the feasibility of



the original problem.) If estimates or "target" values (to be described
below) are available for any of the Xis they may be used in the first
iteration instead of the midpoint values (£i+ui)/2, which may be
thought of as "default" values. In later iterations m will be

feasible, but the values used for ¥ and U need not be.




3. An Overview of the Algorithms

In essence, the algorithms to be considered for (1.1) consist of

the solution of a sequence of problems of the form P(%,M,uU), where

[t g

fi is an optimal solution of the preceding iteration, and 2 and
are appropriately chosen temporary bounds with the admissibility
properties (2.1)-(2.3). If xk denotes the optimal solution of
the k-th iteration, it may be shown (see [12]) that the iterates have

k+1)

the property that f(xk) > f(x , and that convergence of the

sequence {f(xk)} to the optimal value of (1.1) is guaranteed when
the values of % and U are chosen by a procedure called contraction

search. In this section the contraction search procedure will be

bl

described under the assumption that initial estimates for 2 and
are given. Procedures for generating these initial estimates are
outlined below and described in detail in the following sections.

The_idea_underlying contraction search is that a feasible solution

fi is an optimal solution for the original probiem (1.1) if and only if
it is optimal for a family of problems of the form P(Ej,ﬁ,ﬁj),
(3=1,2,...), where the initial triple (§1,m,u1) is admissible and
the others are defined by Pz - s(ﬁ-ij']), Gj =W+ B(Gj']-m) for
j>2, where B < 1 is a given constant (typically B8 = %). Thus,
unless ® is optimal for the original problem, as the hypercube
[Ej,ﬁj] contracts toward i, a problem of the form P(Z,f,0) will be
generated with the property that @ is not optimal for P(Z,f,0). In
that case, if x* is an optimal solution of P(Z,M,U), it follows

that f(x*) 5_%(x*) < f(W) = f(@), so that x* 1is a feasible solution

with a better objective value than m. Both from a theoretical and a



computational viewpoint certain additional properties are required for

' and o', Theoretical properties sufficient to

the initial bounds %
guarantee convergence were described in [10]. Computationally, several
rather different strategies have proved successful and will be described
below. In essence, these strategies endeavor to construct intitial bounds
that are neither so "far" from m that m is optimal for P(i],ﬁ,ﬁ])
(with the result that a contraction is needed) nor so “close" to m that

only a small improvement in the objective value is possible.




4. Adaptive Strategies

An adaptive strategy (referred to as ASI below) that has been

found effective for the determination of the initial bounds i] and

G] for the k-th major iteration uses the final set of bounds 2 and
i of the (k-1)st dteration and the optimal solution i of the cor-

responding problem P(2,M,0). We first consider the case of a variable

x; that is not artificially bounded, i.e., fi; = @1 implies @1 = L,

and ﬁi = Gi implies Gi = U;s SO that only an original bound may be

active at the optimal value of X In this case the initial bounds

_i'

for the next iteration are defined by E} = max {21,ﬁi-B(ﬁi-@i)—y[ﬁi—ﬁi]}
and U} = min {ui’m1+B(Gi'ﬁi)+Y]mi'ﬁil}’ where B and vy are

constants with B<1 and B+vy>1 (B=0.5 and vy =1 were
used). Theée formulas reduce the half-range (ﬁi—@i)/Z for X,

by a factor of B if the optimal value of X; coincides with

the median_point ﬁi’ and increase the half-range by nearly a factor of

g +y if the optimal value is nearly at a bound, with linear interpolation
between these extremes being used for intermediate values. If it is the
case that 21 < @1 = mi or mi = ﬁi < Uss provision is made for a
somewhat larger increase in the half-ranges. Details for these cases

are given in [Meyer (1980)].

An alternative approach that has also proved successful involves

the direct use of error bounds. As will be shown in Sections 5-7, it

is possible at iteration (k-1) to derive a lower bound Zyp on
the optimal value of (1.1), so that f(xk"])-z**:if(xk'1)-;gk_] = By 1.
The error bound from iteration (k-1) may be employed to derive the

initial estimates for iteration k by using the expressions



E} = max {11,mi-e-(Bk_]/f(m))%(ui-zi)/2}, where 6 is a given positive
constant (0.4 was used) and G} = min {ui,mi+a.(3k_1/f(m))%(ui-zi)/z},
Thus, as the error bound tends to 0, the width of the initial half-ranges
also tends to 0. It is easily shown that this choice of iV oand @
also guarantees convergence of {f(xk)} to z**,

The two adaptive strategies may be combined by beginning with the
first and then switching over to the error-bound strategy once the error
bound is sufficiently small (say, Bk_]/f(ﬁ) < 0.01). This combined strat-

egy will be referred to as AS2 below. (For stability purposes the ratio

(G}-E})/(ﬁi-ﬁi) is also bounded from above and below in this strategy.)




5. Error Bounds from P(2,f,u)

Given an optimal solution x* of P(%,f,u4), a lower bound on the
optimal value z** of (1.1) may be obtained. We will first derive a
Tower bound under the assumption that x* 1is not artificially bounded,
and then show how the other case (x$=§1>21 or x$=ﬁi<u1 for some 1)
may be transformed to the first through the use of the optimal va]ues
of the dual variables and the modification of the bounds % and/or .

Related ideas may be found in [7] and [20].

It was shown in [12] that, when x* is not artificially

bounded by © or u, a lower bound on z** is given by

. n N
f(x*) - } éi’ where &. >  max (f;(x.)—fi(x.)). For those
i=1 TR !

functions f. for which the equations f%(xi)

]

O

el

=
Q.
~h
T
e

>

iy

~

1]

(@]

may be solved, €. may be taken to be Ei = max (f.

In cases in which the maximum error is not easily computed, &. may be

obtained by using the fact that a lower bound for fi on [ii,mi] is

u on that interval, and a lower bound for f. on [fi,,0.]

given by fi i i

is given by ?% on the latter interval (see Figure 1). This yields

an upper bound

~ zL =U zU zL
g, = max { max (Fi(x;)-f:(x:)), max (f;(x;)-f:(x;))}
i [Ei’mij (AN R [mi’ui] PNV

which, although seemingly rather crude, has proved rather good in
practice. (In the case in which ?1 consists of only a single segment,
any value of fi outside of the segment can be used to generate a

similar upper bound on the approximation error. If first derivatives
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Figure 1.

Using the two-segment approximations

to obtain under-estimates for fi
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of fi are available or if bounds on the second derivative of fi are
known, then more accurate under-estimates of fi may be used to obtain
smaller values of éi (see [20], but in such cases Ei itself may usually

be computed.) A

We will now complete the discussion of the error analysis by con-

sidering the case in which x? = ii > 21 or x? = U, < u, for some i

(xi is said to be artificially bounded). In this instance, for each i

such that X is artificially bounded, the approximation ?1 will be
replaced by a new two-segment approximation f% (the superscript E s

used to suggest that the new approximation extends outside of [Ei’ai])'

Theorem 5.1: If a variable x. 1is at its upper bound Gi < us in an

~

j
optimal solution x* of P(4,m,0) and if p? . s an optimal value of
the dual variable for the corresponding bound constraint, then x* s

also an optimal solution of the problem obtained from P(£,m,i) by

(1) replacing ﬁi by u and (2) replacing ?1 by the function fs defined
U

o ~U - ~
on [%i,ui] by fi and on [ui’“i] by fi

* -~
(x) - pi,+(xi'ui)‘

Proof: This result may be established by considering the optimality condi-

tions for an appropriate LP. For details refer to [13]. A

Geometrically, this implies the optimality of x* with respect to
the two-segment approximations fs in which ?g(xi) (with slope c?)

becomes the left segment of fE and ??(xi) - p? +(xi—ﬁi) becomes the

right segment (see Figure 2). An analogous argument holds for the case

~

in which a variable X; is at a lower bound ii satisfying li < 21 < ﬁi

(see Figure 3). In this case the new two-segment approximation f% has
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~

f%(xi) (with slope cg) as its right segment, and ?%(xi) - p?,—(xi’zi)
as its left segment. If this construction is carried out for each variable
that is artificially bounded in the optimal solution, then x* is still
optimal for the resulting set of two-segment approximations, but x* is
no Tonger artificially bounded with respect to the bounds associated with
the new approximations, so the previous error analysis applies.

There is an interesting relationship between the estimation of the
maximum of the approximation error ?1 - fi and the solution of a Lagrangian

relaxation of the original problem. This relationship will be described in

the next section.
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6. Lagrangian Relaxation

An alternative approach for the construction of error bounds
and initial bounds for the contraction search is based upon Lagrangian
relaxation. For every m-vector m we may define a Lagrangian relaxa-
tion P“(x) by multiplying the equality constraints of (1.1) by =

and subtracting this product from the objective:

min f(x) - w(Ax-b)

Pﬂ(x) = X

s.t. 2 <x<u
We denote by L(x,w) the objective function f(x) - m(Ax-b) and by
w{m) the optimal value of Pﬂ(x), and observe that, for any m,
w(m) < f(x**) - w(Ax**-b) = z**, so that w(w) 1is a Tower bound for
~ the optimal value z**. From duality theory (see, for example,

[17] it is easily shown that there exists a m** such that

w(m**) = z**,  and therefore "good" choices of = will provide
tight Tower bounds on z**. We will refer to these as "dual" Tower
bounds to distinguish them from the "primal" Tower bounds of the
preceding section.

From a computational viewpoint, the solution of the approximating
problem P(%,M,di) as an LP provides a set of optimal values =* for
the dual variables corresponding to the constraints Ax = b. Moreover,
the separability of f implies that an optimal solution of Pﬂ(x)
may be obtained by separately solving n one-dimensional optimization
problems, since L(x,m) 1is also separable and the constraints of

Pﬂ(x) are simply bounds on the individual variables. In order to give
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a geometric interpretation to these problems, we define s? = w*A1,
where A' is the ith column of A, and let Pﬂ*(xi) denote the

problem

i AX.) - *x . +k*
. gnn f1(x1) (s,lx1 k1),
i

where k? is a constant chosen so that ?1(x$) =s§x$-+k?. (Observe that
the value of the constant term in Pﬂ*(xi) has no effect on the set of
optimal solutions of this problem.) For notational convenience we denote

an optimal solution of Pﬂ*(xi) as x?(n*) and the optimal value of that

problem as w,(n*). Note that —w. (%) = max  [(s¥x,+tk¥) - f.(x;)],
i i g.ex.cu. i v

==

and that -wi(w*) > 0 since the functions s?xi + k? and %i(xi) agree
at x?. Thus, the value -wi(ﬂ*) may be interpreted as the maximum
amount (which must be non-negative) by which s?xi + k? over-estimates

fi(xi) on the interval [zi,ui], and X?(ﬂ*) is the point at which

this maximum error occurs. The following two lemmas establish

. n
that the Tower bound w(m*) may be written as f(x*) - ] (-wi(ﬂ*)),
i=1

so that it is simply F(x*) minus the error bounds associated with the
approximation of fi(xi) by s?xi + k?. We will then show that because
of the optimality conditions corresponding to the problem P(Z,f,0),
these error bounds are not greater than those associated with f. More-
over, from the standpoint of reducing the error bound term, the use of

x?(w*) in constructing the approximation for the next iteration serves

to reduce to 0 the approximation error at the point at which it was largest.

~

Lemma 6.1: w*(Ax-b) = (s?xi+k$) - f(x*)

i

He~3

1
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. n

Proof: By definition, s¥ = m*A', so that s¥x; = s*x = m*Ax, and
i=1

thus the coefficients of x agree in the equation to be verified. Since

x* is feasible for (1.1), we have Ax*-b=0. This implies =*(Ax*-b) =0,

n . n .
but, by definition, 0=} (s?x*+k*—f.(x*)) = ¥ (sEx¥+k¥) - T(x*). A
i T I A 2y it

Lemma 6.2: w(m*) = (»1.(1r*) + F(x*)

It~

i=1

Proof: Clearly the vector x* (r*) 1is an optimal solution of Pﬂ*(x),
so the relation is -established by applying the preceding lemma to

w(w*) as follows:

w(n*) = f(x*(m*)) - o*(Ax*(n*)-b) =

=3

fx*(m*)) - .X](s?x§(w*) +k¥) o+ F(x*)
'l:

The result now follows from the definition of wi(ﬂ*). A

The next theorem shows that the approximation error -mi(ﬂ*)

*
. + k. is not greater than that associated with

associated with s%‘x1 ;

fi on [zi,ui].

Theorem 6.1: If x* ds an optimal solution of P(Z,f,0) and w* is

a set of optimal values of the dual variables for the constraints

= i 19,0 *x, + k* f.(x. e[,
Ax = b 1in P{L,f,tl), then S¥X, k1 ﬁ_fl(x1) for x]e[21,u1].
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Proof: From the optimality of =* it follows that x* is also an

optimal solution of the problem

wn

‘-—P
=
fantd

g < x <

However, this implies that, for i =1,...,n, x? is an optimal solution

of

Since ?i(x§) - (s$x$+ k?) = 0 by construction, it follows that

?i(xi) - (s$x1+ki) >0 for all xie[zi,ﬂij from which the result

follows.

Corollary 6.1: If x’.‘e(ii,ﬁﬁ.

_ =L
3 1), then s?xi + k? = fo(x;). If

11

~

X*e(ﬁfj‘707#*%h8ﬂ4‘5*%7*+ k= fg(x ).

i i % i i

Proof: If x¢€(ii,m1), then the linear function s¥*x, + k? dominates

i™
?%(xi) on [Ei,mi], but it also coincides with ?%(xi) at a point in

the interior of that interval, so the two functions must agree. The

analogous result holds in the ?g case.

From a geometric viewpoint, the possible relationships between

s?xi + k? and ?i correspond (in the differentiable case) to the

eight cases illustrated in Figures 4-11.

Note that in cases 3a-3d in which x¥ = €. or x; = U, the

i i i’

function S$Xi + k? coincides with the extension fS for X < Ei
T — T — ]
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or x; > Gi respectively, so that the dominance property carries over

to these cases also. (In the case of non-differentiable fi’ convexity

implies the existence of finite left and right (directional) derivatives

for xie(ﬁi,ui), and obvious extensions of the differentiable cases may

be made.) It should also be observed that in cases 3a or 3d, if the

active bound coincides with an original bound (%,

; or ui), then the

error term wi(ﬂ*) will be 0. (The error term will also be 0 if

x¥ = mie(ii,ai) and s¥ = f{(x¥), but this case would be exceptional.)

In many practical problems the fi are differentiable, and Pw*(xi)
may be solved by letting X?(ﬂ*) be a point satisfying f{(xi) = s?
if such a point exists within Ezi’uij’ and otherwise Jetting
x?(n*) = 21 or u, according to the value that maximizes the error
function.

In addition to yielding a lower bound on z**, the solutions

x?(n*) may be used to provide the initial bounds for the next iteration.

If X?(ﬂ*) < x?, then X?(W*) is used as the initial lower bound, and
if x?(n*) > x?, then x?(w*) is used as the initial upper bound, with
the remaining bound being located symmetrically with respect to x?.
In this way, information from both the primal and dual problems may be
taken into account in constructing the next approximating problem. (From
another point of view, an approximation constructed in this manner com-
bines information from both feasible (i.e., x*) and infeasible

(i.e., x*(n*)) solutions, since x*(w*) is infeasible unless it is optimal
for (1.1).) In practice, tolerances based on the error bound are imposed in

order to safeguard against having x?(w*) too close or too far from x?.



-22-

7. Line Searches

One key feature of the algorithm as presented is that it does not
require a 1ine search in order to determine a better feasible solution.
Because of the dominance property of the approximations, the solution
x* of P(Z,f,i) is guaranteed to satisfy f(x*) < f(i) provided that
x* # M. However, in certain instances it has been found helpful to use
a line search in order to obtain fﬁrther improvements in the objective
value. Note that f(x*) - f(i) < 0 implies that the direction (x*-fii)
is a descent direction when f is differentiable and convex. Thus, a
line seérch may be carried out in the direction (x*-fi) to determine
the best value of f on L = {x|xeS, x=fi+A(x*-m), A>0}. Since
A(x*-fi) = 0, the constraints Ax = b need not be taken into account
in determining L, and only the bounds £, u will serve to Timit A,
The line search has the nice property of compensating for overly
restr{étive temporary bounds. Moreover, if the final three values of

A used in the line search are A, A", and A"’ with A < A" < A"

and F(@A"(x*-f)) < (@) (x*-f)) and FREN (=) )< PR ok
the values of @ + A (x*-fi) and @ + \''(x*-f) may be used in the
obvious manner in setting up the initial bounds for the next iteration.
(In the case of 0 components of (x*-fi), the procedures previously
described would be used to set up bounds.) In some preliminary studies
made with the numerical test problems to be described in the next section,
the additional function value improvement associated with the use of the
1ine search was too small to justify the additional computational effort.
However, the line search option still holds some promise with regard to
strategies that do not fully solve each subproblem (see section 9), and
line searches have proved effective in the extension of this piecewise-
linear approximation approach to the case of non -separable objectives as

described in [10].
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8. A Comparison of Numerical Results

In this section we present results to show the effectiveness of the
strategies on a variety of test problems. Test problem set 1 is a
collection of problems arising from an application in statistics [10,
19]. The second test problem set contains some of the econometric
model1ling problems described in [1]. The third is a water supply system
application [5,6] and the fourth is a set of optimal control problems
given in [3].

The following notation is used in the tables below:

I = total number of (major) iterations
n = number of variables
m = number of linear constraints (excluding bounds)

AST = objective value of the feasible solution found with adaptive

strategy—1-

AS2 = objective value of the feasible solution found with adaptive
strategy 2

LR = objective value of the feasible solution using Lagrangian

relaxation for construction of the initial bounds at each
iteration

PLB2 - lower bound on the optimal value computed using the primal
approach and adaptive strategy 2

LLB - Lagrangian lower bound
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[Test Problem Set 1]

The objective functions for these test problems contain terms of

the form X; log X5 and are thus non-differentiable for X; = 0=12

1'0
A complete statement of the problems is given in [10].

Case l (m,n) | I 1 AS1 AS2 l PLB2
1 (5,6) 11 .263949 .26394222 .26394222
2 (6,8) 10 .167263 .167257560 . 167257558
3 (8,12)] 16 . 149422 . 149409878 . 149409876

Table 1. Summary of results for test problem set 1

[Test Problem Set 2]

These problems are quadratic transportation problems of the type

described in [1]. The problem format is

. 2
min ) (%, .-t. )
X 1,3 1, 1,]
k
svto ) Xy = dy (G=Ts5k)
AT PR
) (1,0
X' s = S' 1=], ,k
351 1,3 i
%920
where the ti i are constants giving "target" flows on the arcs, dj

is the demand at node j, and S5 is the supply available at node i.

The initial problem in this group was constructed to have a known
optimal solution given in [13]; the others are based on real econometric
data used by Bachem and Korte. Except for the first problem,
the adaptive strategies proved inferior to the Lagrangian relaxation

approach, so only results for the latter are reported. The superiority of

the Lagrangian method also held for the remaining test problems.
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Case (m,n) 1 LR LLB
1 (20,100) 13 6600.0001 6599.9998
2 (24,144) 13 7302243.46 7302243.17
3 (24,144) 12 2714896.45 2714895.60
4 (109,2202) 13 5634201.64 5634200.88
5 (109,2238) 13 12022985.19 12022984 .64
Table 2. Summary of results for test problem set 2

[Test Problem Set 3]

The Tinear constraints for these hydraulic equilibrium problems are
network constraints, so a network optimization code was used to solve the
subproblems. The largest problem in this set has 906 variables (n=906)
and 666 constraints (m=666), 18 linear objective terms, and 888 nonlinear

.85
2 ).

objective terms (mostly of the form Cilxil Further details are

given in [5] and [6].

Case | (m,n) | 1 | LR | LLB
1 (30,46) 15 -32392.730 -32392.731
2 (150,196) 17 -48199.858 -48199.864
3 (666,906) 23 -206175.21 -206175.67
Table 3. Summary of results for test problem set 3

[Test Problem Set 4]

This set of optimal control problems for a reservoir is described
in [3]. Water release from the reservoir is to be scheduled so as to
come as close as possible to certain target figures. There are periodic

inputs to the reservoir and bounds on the total volume of water in
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the reservoir. Two types of objective functions are considered and the
corresponding results are presented in Table 4. The case numbers without
primes correspond to quadratic objective functions, while the primed
numbers correspond to problems with the same constraints but exponen-

tial objective functions.

Case (m,n) I LR LLB
1 (13,23) 11 -1975.6491 -1975.6492
1 (13,23) 12 12.6412 12.6411
2 (53,103) | 11 -8731.0258 -8731.0264
2’ (53,103) | 12 56.5603 56.5594
3 {(105,207) | 10 -17393.553 -17393.558
3 |(105,207) | 13 124.758 124,757
4  1(366,729) | 11 -60750.488 -60750.491
4 1(366,729) | 17 476.266 476.265

Table 4. Summary of results for test problem set 4
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9. Directions for Further Research

Although excellent computational experience has been obtained with
the algorithms in their present form, there are a number of ideas under
study that may further improve efficiency. One obvious strategy is to
terminate the solution of the subproblems P(%,m,u) prior to optimality,
particularly in the initial major iterations in which these problems
require numerous pivots. In this case the termination criterion for the
early subproblems could be a fixed number of pivots or a tolerance on
the reduced cost of candidates to enter the basis or a combination of
these two strategies. Such a tolerance would avoid pivots that would
have only a marginal effect on the objective function value in favor of
pivots (in the next major iteration) with a more significant effect. In
later major iterations the termination criterion could be the achievement
of a certain percentage reduction of the error bound. Note that the

limiting case of this strategy would be the use of only one pivot per

jteration (except for the first iteration, in which this approach would
be postponed until feasibility had been attained). While it would
probably be inefficient in this limiting case to calculate new objective
function values for all variables after each pivot, the algorithm could
be further modified by calculating a new value for a variable only if
the variable is driven to a bound Ei 2 21 or ﬁi # u; asa result of
the pivot, in which case the new evaluation of fi would allow the
variable to continue its change past the temporary bound Ei or ﬁi
(provided that the variable corresponding to the new segment of the
cost function priced out with the proper sign). This approach is

equivalent to what might be termed an "implicit grid" strategy in which
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the function values at the implicit grid points are calculated only as
needed when a variable reaches the limits of its initial range [ii,ﬁi].
(With regard to the calculation of function values, it should also be
noted that, in the case that a subproblem is not to be solved to
optimality, the only objective coefficients required to apply the
primal simplex method are those of the basic variables and those non-
basics to which the pricing out operation is applied. In other words,
it is possible to avcid many of the additional function evaluations
that would otherwise be required to compute cost coefficients for
non-basics.)

Along similar lines, note that if, as a result of a pivot, a
variable x? has been driven to 0, the next variable to be priced out
should be X3 since there is a good possibility that a further

decrease in X; may lead to additional improvement of the objective

function. (Analogous observations apply if x% is driven to 0.)
Moreover, the pricing out operation as applied to x? yields the

"reduced cost" of X; as well except that the sign must be changed
and the term c? - c; must be added. (This observation also
establishes that when a variable x?(x;) is basic, its complement
x;(x?) will price out in such a way that it will not be a candidate
to enter the basis, so that those non-basics need not be priced out.)
Thus, algorithms with special provisions for taking these pricing
strategies into account (such as the GNET code of [4] and the algo-
rithm described in [16]) should be considerably more efficient for this

problem class than those that do not take advantage of the problem

structure.
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In a strategy in which the subproblems are not solved to optimal-
ity, the use of a line search could be expected to be of greater value
than it is in the current strategies. Note that convexity guarantees
that any point yielding an improvement in the approximating function
furnishes a descent direction.

For special problem classes such as those of test problem set 2,
the ability of the algorithm to utilize both feasible and infeasible
points in the construction of the objective approximations could be
further exploited in the initial iteration. For example, in those
quadratic transportation problems an initial feasible solution may be
easily generated that is relatively "close" to the target flows ti,j‘

This feasible solution could be used as the initial #, and the

t themselves could serve as initial values for the Ei or u.

i, i

(depending on whether they were above or below the values ﬁi).

~ The idea of using local piecewise-linear approximation may, of
course, be easily extended to non-separable objective functions as
described in [10] and to nonlinear constraints as well. However, the
convergence properties of such algorithms in the nonlinear constraint -
case are still under study. Note also that many of the ideas dealing
with primal and dual error bounds also carry over to the non-separable

case. Further details and computational experience will be given in [14].
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