A Methodology For
Adaptive Performance Improvement
0f Operating Systems

by

David Reiner and Tad Pinkerton

Computer Sciences Technical Report #377

January 1980

A Methodology For

Adaptive Performance Improvement

Of Operating Systems

David Reiner and Tad Pinkerton

Computer Sciences Department
University of Wisconsin - Madison

January, 1980

Abstract

This report focuses on the use of dynamic modification
of operating system control parameters to improve system
performance. The need for a methodology to approach this
type of adaptive control is discussed, and the methodology
is presented informally to acquaint the reader with the idea
of real-time experimentation based on system position within

a load-performance space. The methodology is then presented
more formally, with emphasis on concomitant statistical
techniques and possible iterative pathways within the metho-
dology. The first two phases of the methodology serve to
establish the environment for experimentation, and are fol-
lowed by an experimental phase where alternative parameter
settings are compared by experimenting on the live system.
A productive phase then uses the results of experimentation
to modify key control parameters on a periodic basis, in or-

der to respond to fluctuations in system load and perform-
ance.

Table Of Contents

Page
I. Introduction And Problem Description
The Domain Of A Large-Scale Operating System 1
Operating System Control Parameters 1
The Potential Of Installation Parameter Modification 3
The Need For A Methodology 4
Analytic And Simulation Models 4
Desirable Properties Of The Methodology 5
Related Research 5
IT. Development Of A Methodology For Performance Improvement
Goal Of The Methodology 7
The Load~Performance Space 7
The Evaluation Function 10
Structure Of The Methodology 10
The Duration Of Experimentation 11
ITI. A Formal Description Of The Methodology
Definition Of Notation 12
statement Of Objective 12
Phase 0: Establishment Of System Environment 15
Phase 1: Establishment Of System Environment 15
Restatement Of Objective 18
Phase 2: Experimental Phase 18

Iv.

Phase 3: Productive Phase
Case Space Restructuring
Iterative Pathways

Summary And Future Research

Bibliography

Page
3
32
37
40

41

List Of Figures And Tables

Page

1.1 The Domain Of A Large-Scale Operating System 2
2.1 Two-Dimensional Load-Performance Space Associated

With A System S 8
2.2 One Possible Case Space Based On The Load-Performance

Space Associated With S 9
3.1 Objective Of The Methodology 13
3.2 The Four Phases Of The Methodology 14
3.3 Learning And Transient Intervals 19
3.4 Regression Lines For Each Policy 24
3.5 Measuring Data to Calculate 26
3.6 The Methodology So Far 31
3.7 Parameter Settings Associated With A Case Space 34
3.8 The Restructured Case Space 34
3.9 Comparison Of Synthetic And Analytic Approaches To

Restructuring S/P 36
3.10 The Methodology With Iterative Pathways 39

I. Introduction and Problem Definition

The Domain Of A Large-Scale Operating System

Large-scale computer operating systems are generally
written for an entire family of related machines, such as
the IBM 360 series or the UNIVAC 1100 series. For a given
machine within such a family, a variety of peripheral and
processor configurations are possible. A given hardware
configuration may be used in timesharing and/or batch envi-
ronments, at installations whose applications range from
business data processing to scientific, research-oriented
computing.

At a particular site, long-term trends and changes in
system load can be expected, corresponding to changes in ap-
plications, user population, user requirements, and availa-
ble software. The workload also fluctuates in a periodic
fashion during the week and throughout each day, as the
batch load on the system varies in degree and characteris-
tics, and as timesharing users log on and off. Even on a
very short-term Dbasis, there are significant variations in
device queue lengths, memory reference patterns, and the
storage allocation map (see Figure 1.17).

Economic considerations provide the vendor with a strong
incentive for the standardization of an operating system,
despite the 1large number of possible environments in which
it must function. This is a complex and difficult task for
the system designer. The flexible, generalized, and univer-
sal systems which ensue require some modification before
they will yield optimal performance for a specific hardware
configuration, installation, and workload. Even then, they

are usually less reliable and consume more resources than a
system which 1is custom-built for its environment and work-
load.

Operating System Control Parameters

There are basically three levels of operating system
control parameters provided by the manufacturer which can be
modified to adjust or "tune" the system to its particular
environment and workload.

a) System generation parameters have their values fixed when
the operating system is generated. These are not modifiable
either because they have guided the generation process or
because the resulting system has been shaped by their values
in some permanent manner. These parameters include, for ex-
ample, buffer 1lengths, table sizes, and the selection of
permanently resident modules of the operating system.

The Domain Of A Large-Scale Operating System

Family of related machines

System . . .
Environment Possible hardware configurations
a4
Variety of installations
Long-term trends in workload characteristics
Workload Periodic variations (Seasonal,
orkioa day-to-day, and hourly changes)

h 4

Short-term fluctuations in load

(Figure 1.1)

-2 -

b) Installation parameters are generally set into specific
memory locations each time the operating system is assembled
(or compiled) and linked. Examples of these parameters are
the amount of buffer space available to the operating sys-
tem, the amount of swapping space allocated for user pro-
grams, and the CPU quanta given to executing processes by a
table-driven, multilevel feedback algorithm. Such parame-
ters are rarely modified once they have been set. Like sys-
tem generation parameters, they have been provided by the
vendor as a static system adaptation to the environment.

c¢) Algorithmic parameters are varied by algorithms within
the operating system itself (or sometimes from the console),
in an effort to respond to variations 1in workload. Job
scheduling, resource allocation, and memory management algo-
rithms, for example, have such parameters.

It has not been customary to view operating system con-
trol parameters in terms of the above three binding times.
Indeed, the distinctions between these levels of parameters
are not clear-cut, and the choice of level for a particular
parameter is not always made either explicitly or correctly
by the operating system designers. Parameters which are
static on one system may well have dynamic analogues on an-
other, and may not exist at all on a third system.

The Potential Of Installation Parameter Modification

For a given system, system generation parameters can be
changed only by building a new version of the system. Algo-
rithmic parameters are already being altered when deemed

necessary. —However, there area large number of—parameters
in the middle group which the operating system does not
change but which could be modified. Many of these installa-
tion parameters are important 1in resource management and
seem likely to have significant impact upon system opera-
tion, but the possibility of changing them is ignored by the
operating system once they are set. Actually, any parame-
ters which the vendor might not have considered modifiable,
but which are relatively easy to access and change, can be
considered to be part of this group.

While the vendor may have intended installation parame-
ters to be static, workload variations are so great that
their optimal values may change, perhaps drastically, along
with workload fluctuations. It seems intuitively reasonable
that dynamic modification of installation parameters has the
potential to improve system performance, through improved
response to changes in workload. By extending the operating
system's capabilities of self-adaptation, such modification

in effect enables the system to specialize itself more fully
for its particular environment.

The Need For A Methodology

Unfortunately, there are a number of serious problems
involved in this type of adaptive control. While a parame-
ter may be easy enough to modify, the effects of a change
may be unclear or difficult to observe. This is particular-
ly true for large systems, where workload and resulting per-
formance variations are sufficiently large to obscure chang-
es in performance caused by resetting control parameters.

The wrong choice of corrections may cause the system to
become unstable, oscillate, or even crash. Furthermore,
frequent changes to control parameters may induce transient
effects which degrade overall system performance.

Clearly, guesswork or unstructured attempts to intro-
duce adaptive control have 1little chance of success with
complex systems. What is needed is a methodology for ap-
proaching the problem of improving performance through dy-
namic modifications to installation control parameters.

Analytic And Simulation Models

Analytic and simulation models are frequently wused 1in
the analysis of operating systems, mainly in the areas of
system design, system configuration or reconfiguration, and
the discovery of bottlenecks and areas of poor performance.

The response to the results of such analyses is typically to
restructure a contemplated system, buy more equipment, modi-
fy the system workload, or change the system's generation
parameters or algorithmic parameters. Altering installation
parameters is not a common response.

The methodology we seek should identify and respond to
those variations in system workload not generally perceived
or identifiable by simulation and analytic techniques. Cer-
tainly there 1is no analytic function of system performance
measurements on a complex system which indicates which con-
trol parameters should be modified, when and how often such
changes should take place, or what the best settings might
be. Furthermore, the level of improvement obtained by our
methodology may be only a few percent or less, which 1is
quite significant on a large system, but exceeds the resolu-
tion of simulation and analytic techniques.

Desirable Properties Of The Methodology

Our methodology must guide the development of a practi-
cal link between the values of system load (and performance)
measurements, and the corresponding control parameter set-
tings which optimize (or at least improve) system perform-
ance, as measured by some readily calculated (computed)

evaluation function. It is desirable that the methodology

be:

a) Experimental -- based on the actual system instead of a
model;

b) Iterative -- to reflect growing understanding of system

dynamics on the part of the experimenter;

¢) Non-disruptive -- since experiments are done during pro-
duction to measure and observe the real system;

d) Inexpensive -- since the resulting improvement may be
small;

e) Easy-to-use -- for practical reasons;

f) System-independent -- for wide applicability and general-
ity;

g) Robust -- for greater probability of success; and

h) Statistically sound -- so that the significance of the

results can be demonstrated and verified.

Related Research

In recent years, interest in computer system perform-
ance improvement has been increasing steadily. A signifi-
cant part of current research involves adaptive, learning,
self-regulating, or self-tuning systems. While it is beyond
the scope of this technical report to survey the current
state of the art in these systems, we have 1listed below a
number of publications which are of special interest.

Experimental approach to system performance: [BARD, 19731,
[BARD, 19751, [BOX & DRAPER, 1969], [FERRARI, 19771,
[FRIEDMAN & WALDBAUM, 19751, [KELLY, 1977], [KOLENCE, 19731,
[RODRIGUEZ-ROSEL, 1971].

Learning and developing strategies: [FU, 19731, [KIMBLETON,
19751, [SAMUEL, 19671, [SLAGLE, 19711, [SLAGLE & BURSKY,
19711, [SMITH, 19731, [SMITH, 1977].

Adaptive or policy-driven resource allocation and schedul-
ing: [BADEL, 1974], [BERNSTEIN & SHARP, 19711, [BLEVINS &
RAMAMOORTHY, 19711, [BUNT, 1975 (1)1, [BUNT, 1975 (2)],
[BUNT, 19761, [BUNT & HUME, 1972], [CHANSON & BISHOP, 19771,
[DOHERTY, 19711, [GECK, 19791, [KRITZINGER, KRZESINSKI, &
TEUNISSEN, 19781, [MITRANI & HINE, 19771, [NORTHOUSE & FU,
19731, [POTIER et al, 19741, [SHARP, 19731}, [SHARP & ROB-
ERTS, 19741, [TEOREY & PINKERTON, 19721, [WILKES, 19711].

II. Development Of A Methodology For Performance Improvement

Goal Of The Methodology

As observed in Section I, optimal settings of operating
system control parameters (installation parameters) are
likely to vary with changes in system workload. The metho-
dology should thus anticipate and focus on the eventual im-
plementation of a dynamic parameter-modification policy or
algorithm.

The Load-Performance Space

The use of adaptive corrections based on system work-
load is referred to as feedforward control; when corrections
are based on the system's performance under a workload, this
is called feedback control. Hybrid control policies allow
both feedforward and feedback control, and are more flexible
than either policy alone. The term load-performance space
(L-P space) will be used to refer to the Cartesian product
of the sets of possible values for system measurements along
each of various axes (or dimensions) where system load and
its performance under that load can be determined or meas-
ured. Basically, it is changes in the system's position in
some load-performance space which should trigger modifica-
tions to parameter settings by hybrid control mechanisms.

As an example, consider a two-dimensional L-P space as-
sociated with an arbitrary interactive computer system S.
Let one dimension be the number of timesharing users cur-
rently logged onto terminals (a load measurement); let the

other dimension be the average system response time to ter-
minal users' commands over the previous minute (a perform-
ance measurement). One might well expect that a change in
system position in this space could necessitate a change to
an installation parameter such as the basic CPU timeslice
allocated to interactive users, in order to achieve better
system performance (see Figure 2.1).

Given a system and an associated L-P space, it is nei-
ther desirable nor possible to react to every minute

displacement of system position in the space. It is reason-
able to partition the L-P space into a number of
load-performance regions (or cases), under the assumption

that system movement from one region to another 1is a neces-
sary and sufficient change to require modification of con-
trol parameters. Ideally, regional contours should follow
roughly the lines of demarcation between different optimal
policies or parameter settings. The problem, of course, is
that such regional contours, or divisions between cases, are

unknown and must be determined through experimentation,
along with corresponding parameter modifications.

Two-Dimensional Load-Performance Space Associated With A System S

Number

Of o System position at time t + At
Timesharing .

Users

e System position at time t

b
[4
Average System Response Time

(Figure 2.1)

One Possible Case Space Based On The Load-Performance Space Associated With S

& ! !
|
High ! :
| |
I I The grid defines
_______ %-———nur——~—~~- nine regions, or cases.
(Number ! l
O'F . ‘ .t'ime t + At
.5, Medium : :
Users) i ______ ittt
: 1
I
Low o tithe t |
" 1
1 i >
L4
Good Fair Poor

(Average System Response Time)

(Figure 2.2)

-9 -

A convenient method for dividing an L-P space into cas-
es, attractive because of its simplicity, 1is to partition
each axis of the L-P space into a small number of intervals.
For example, the number of timesharing users on a system may
be characterized as "high", '"medium", or "low", and this
will be the only differentiation of system position changes
in L-P space based on this axis. The regions of the divided
L-P space (or case space) are defined by the grid resulting
from the partitions of the axes (see Figure 2.2).

One must strike a balance between too many regions and
too few. Having too great a number of regions complicates
experimentation, and casts doubt on the stability of
comtemplated corrections, since the system will not stay in
any one region for very long. Having too few regions may
obscure system movements in L-P space which presage and
ought to invoke important corrections to control parameters.
The evident conclusion is that partitioning the L-P space to
form the case space should be an iterative process 1n our
methodology, reflecting the results of continued experimen-
tation.

The Evaluation Function

In order to measure performance changes, a performance

metric is required. Such a metric, or evaluation function,
is not a priori well-determined, and must be to a large de-
gree a policy function. The reason for this is that some of

the performance measures avallable, such as system through-
put and individual response time, cannot be simultaneously
optimized. While the choice of evaluation criteria may be
relatively easy,-their-relative weightings as-components —of

the evaluation function will require careful consideration
of both policy and technical aspects.

For example, a good evaluation function (sometimes
called a figure-of-merit function) should distinguish be-
tween a poorly-balanced system and an under-utilized
(lightly-loaded) system [STEVENS, 19751. The former condi-
tion is cause for alarm, while the latter is 1inevitable on
occasion.

Structure Of The Methodology

Many choices and decisions encountered within the per-
formance improvement procedure must be made on insufficient
information and data. These include which control parame-
ters to modify, what dimensions to choose for the L-P space,
how to divide that space 1into regions to form the case
space, how often to modify control parameters, and so on.

- 10 -

sure that choices which are somewhat arbitrary make good use
of the information which is available at the time, and are
made in a sensible order. Furthermore, the methodology must
permit, define, and encourage the use of iterative pathways
along which the experimenter can go back and reconsider
critical decisions and key choices in the light of further
experimentation and analysis.

Since experimentation will probably show variables and
measurements to be interrelated in unexpected and complex
ways, an early part of the performance improvement procedure
should be an attempt to select a small number of uncorrelat-
ed variables as L-P space dimensions and as evaluation func-
tion components, to make results clearer and easier to ob-
tain.

The Duration Of Experimentation

It is difficult to discover the links between measure-
ments and optimal control parameter settings when the ef-
fects of changing those parameters are obscured by workload
fluctuations. The main weapon that the experimenter has
against this problem is to observe the sytem over a long pe-
riod of time to accumulate a large number of observations.
This provides a powerful statistical tool for data analysis,
and makes it possible to distinguish performance changes in-
duced by control parameter modifications from those due pri-
marily to workload fluctuations.

Even when a table of control parameter modifications
(the M-table) corresponding to regions of the L-P space has

been experimentally determined, and the system is no longer
being actively investigated to discover further adaptations,
a background program may still experiment periodically (or
on a time-sliced basis) to discover and compensate for
long-term trends.

- 11 -

III. A Formal Description Of The Methodology

Definition Of Notation

Let 8 be the system or subsystem to be considered.

Let C[S] = {CT’CZ’ e ,Cq} be the set of modifiable con-

trol parameters which affect the operation of S.

Let P[S] = {p1,p2, . e . ,pr} be the set of readily accessi=-

ble system performance functions characterizing the
status of S in terms of load and performance.

Let G (the evaluation function, or "goodness" function) be a
linear combination of certain of the functions in P[S3].

Statement Of Objective

By observing the behavior of S, we would like to learn
how to respond to system load and performance fluctuations
(characterized by the functions in a subset of P[S1), by
modifying some of the control parameters in C[S], so as to
improve the performance of 3 as measured by G (see Figure

3.1).

As shown in Figure 3.2, the methodology is divided into
four phases.

_12 —

Objective Of The Methodology

System S

Adaptive
Performance
Improvement

Routine

Modifications
to Control
Parameters

Control
Parameters

Load
And

Performance
Fluctuations

7\

s O,

Evaluation

Function
Performance

Functions

(Figure 3.1)

- 13 -

The Four Phases Of The Methodology

Phase 0: Establishment of System Environment
\ 4 .

Phase 1: Establishment of Experimental Environment
<7

Phase 2: Experimental Phase
A4

Phase 3: Productive Phase

(Figure 3.2)

- 14 -

Phase 0: Establishment of System Environment

0.1 Select S.

0.2 Determine C[S].

0.3 Determine P[S].

Phase 1: Establishment of Experimental Environment
1.1 Select m modifiable control parameters from C[S].
With no loss of generality, 1let C = {C1,C2, . .. ,Cm} be

this set.

1.2 Observe the system 3 for a period of time to collect
representative values of the load-performance functions 1in
P[S].

1.3 Determine the pairwise correlations among functions in
P[S], from the data collected in Step 1.2. The results will
be helpful in Steps 1.4 and 1.5. If it turns out, for exam-
ple, that the correlation matrix shows Py and pj to be very

highly correlated, then one of them can be predicted as a
linear function of the other. This does not imply that p;

is—somehow"responsible" for pj, or pj for Py but only that

the relation Dbetween the two can be thought of as linear.
(See p. 619 of HAYS, 1973, for discussion of this
point.) When this is the case, then it is unnecessary to
use both Py and pj to characterize load or performance, or

as components of an evaluation function.

Another approach to determining dependencies among "in-
dependent!" variables 1is principal-component analysis, de-
scribed in BARD & SURYAMARAYANA, 1972, which uses eigenvec-
tors of the correlation matrix to determine which variables
can be solved for in terms of the others. However, the ref-
erenced analysis was used only as a general guide for de-
tecting dependencies, and the authors relied heavily on
knowledge of the system and direct study of the correlation
matrix.

In principal-component analysis, no particular assump-
tion about the underlying structure of the variables is re-
quired. Another approach, classical-factor analysis, is
based on the assumption that some underlying regularity of

-15 -

the data is responsible for the observed correlations. As
described in NIE et al, 1970, this technique relies on find-
ing a small number of common determinants which will account
for all or most of the observed relations in the data.

It is up to the experimenter to choose the level of so-
phistication of his search for dependencies among the func-
tions in P[S]. However, much can be learned from simple in-
spection of the correlation matrix, and it is decidedly ad=-
vantageous to select functions which have intuitive meaning
for the observer, rather than dealing with factors whose re-
lationship to the system S is not clear.

1.4 Construct the evaluation function G, using decision
analysis techniques to select its components from PIS] and
establish their weights. G is a policy function, and it is
very helpful to have formal techniques which prescribe how
decision makers "should think systematically about identify-
ing and structuring objectives, about making vexing value
tradeoffs, and about balancing various risks..." [KEENEY &
RAIFFA, 1976].

An additive evaluation function (e.g., G =) W pi) is
i

aesthetically more pleasing and easier to analyze than one
with interactions among the components. For G to be addi-
tive, it is necessary and sufficient to establish mutual
preferential independence among 1its components. This is
satisfied, according to Keeney and Raiffa, if our preference
for the various levels of a component is independent of the

tevels —of —the other components. —For example, if we -always

prefer short terminal response time to 1long terminal re-
sponse time, regardless of the percentage of CPU utiliza-
tion, and always prefer a high to a low percentage of CPU
utilization, regardless of the terminal response time, then
response time and CPU wutilization are mutually prefer-
entially independent, and our preference structure can be
expressed by an additive value function whose components are
response time and CPU utilization.

Keeney and Raiffa describe techniques for arriving at
component weights once mutual preferential independence has
been determined to hold. These may be applied for one
decision-maker or several. Delphi techniques [DALKEY, 1972]
can also be used to elicit the components and weights of an
evaluation function from a group of experts.

- 16 -

1.5 Select n orthogonal (as much as possible) functions
from PL[S]. Let Pi represent the range of pi. With no loss

of generality, let P = (P1,P2, e . ,Pn). "Orthogonal"™ 1is

used in the sense of "uncorrelated," as discussed in Step
1.3.

The set of all possible values for the vector P will be
called the load-performance space of S (L-P space of S), and
will be written S/P. Where "X" represents the standard Car-
tesian product of sets, we have:

S/P = P1 X P2 X . . . X Pn

We expect k of the P; to be load functions, and n - Kk

to be performance functions, for some k between 0 and n.
Note that if we base adaptive control mechanisms on system
position in S/P, then:

k = 0 ==> feedback system;
D <k <n ==> hybrid control system;
k = n ==> feedforward system.

S/P is n-dimensional, and is the wunion of the k-
dimensional load-subspace of S and the (n-k) - dimensional
performance subspace of S.

1.6 Using the data from Step 1.2 (and making additional ob-
servations of S if necessary), partition each Ei’

i=1,2,...,n into a small number Ei of intervals. With luck,

the data will be multi-modal, and a natural partition will
suggest itself for each dimension. If not, one can make the
intervals of equal size as a first approximation. (See page
32 for comments on later reconsideration of these parti-
tions.)

For each Pi, number the intervals 1, 2, c ey Li, and

define Fi as the interval number corresponding to the value

of p; - (Recall that Pi is the range of pi.) The case sSpace
of S is defined as:

ol

S/P = P1 X P2 X . . . X "

-17 -

The elements of S8/P are called cases. The number of

cases 1is L1 L2 o e . Ln . When the system is observed to be

at a certain location in S/P at a given moment in time, S is
said to be in the case which includes that location. _S5 1is
in one and only one case at a given time, since S/P 1is a
partition of S/P.

1.7 [This step is omitted the first time through Phase 1,
and will usually be entered from Step 2.5. It is discussed
at the end of this chapter on page 32.]1

Restatement of Objective

For each case in S/P, we wish to discover the modifica-
tions to C which maximize G (or at least improve it signifi-
cantly). The table of such modifications, arranged by case,
will be referred to as the modification table, or M-table.

Phases 0, 1, and 2 of the methodology are concerned with
the development of the M-table; Phase 3, with its productive
use.

Phase 2: Experimental Phase

2.1 For each case in S/P, determine a number of possible
test values for C (or modifications to C). These may or may
not be case-dependent, but should include the current param-
eter setting (CO) as a control. The test values represent

possible entries for the M-table, and should be carefully

chosen. For example, if Ci may range between Ai and B.,
L

then choose a number of test values spaced equally along the
interval [Ai,Bi]. The experimenter may wish to be more cau-

tious at first, and pick test values in a narrower range
than the entire interval [Ai,Bi], perhaps deviating only

slightly from the current setting(s). For some control pa-
rameters, it may be true that no effects on system perform-
ance can be observed except in a very small part of the pa-
rameter's range, often at or near one of the extreme set-
tings. If C is multidimensional, then factorial design
techniques [KEPPEL, 1973] are appropriate to test 1interac-
tions among its components.

Some tradeoffs are involved in the choice of test val-
ues. Failure to effectively bracket the range of a particu-
lar Ci may result in missing an optimal setting. Yet ex-

haustive testing is very time-consuming, especially using a
factorial design on several factors (components of C). It
is possible to compromise by starting with relatively few
test values, then refining or augmenting the selection of
test values based on the trends observed during testing.

- 18 -

This ties in with the need for caution -- it may not be de-
sirable to test the full range of possible control parameter
settings from the start without having a good idea what the
effects of small changes will be.

5.2 Determine the parameters which govern the investigative
process. These include the length of time over which each
set of test values for C will be assessed (the learning in-
terval), and the length of time after C has been modified
before a new learning interval commences (the transient in-
terval). In Phase 3, when the emphasis shifts from investi-
gation to production, the transient interval will not exist,
and the learning interval might more properly be referred to
as the "intra-observation and modification" interval (see
Figure 3.3).

Learning And Transient Intervals

Phase 2: Experimental Phase

A4

—— — — e Hime

Phase 3: Productive Phase

L L L L L -
[1] I }] %,
) ' i i \ i L4
« I\ I ~ N - ” g °© *
() (@] (] (&)

Tearning interval
transient interval
observe system; modify control parameters at end

(et B
mw o

(Figure 3.3)

There are no absolute standards to direct the choice of
interval 1lengths, but some tradeoffs should be considered.
The learning interval must be long enough to enable stabili-
ty of the observed system performance, yet short enough to
catch high-frequency fluctuations. The transient interval
must of course be long enough to fulfill its primary func-

tion =-- to allow +transients induced by control parameter
modifications to die out, yet it must be short enough so
that the observation process remains efficient. The nature

of the control parameters being modified is the most impor-
tant factor in determining the length of the transient in-
terval. If these parameters affect the memory map, for ex-
ample, it may take a minute or more for the system to
stabilize under a new policy.

One more parameter which affects the process of inves-
tigation 1is the order in which the various test values from
Step 2.1 should be tried, for any given case. Statistical
considerations dictate a random method of selection among
the alternatives. In particular, if test values are drawn
randomly without replacement from the possible choices until
all alternatives have been tried, and this method is reused
repeatedly, then later comparisons of the alternatives <can
be Dbased on "balanced design" techniques. In other words,
the experimenter will have about the same number of observa-
tions of any given test value for each case.

2.3 Observe system behavior (as reflected in G) under peri-
odic modification by M-table test values from Step 2.1, us-
ing the parameters discussed in Step 2.2. The long periods
of time necessary for observation need not involve the
experimenter directly or continuously.. . Much of fthe work can

be done by low-overhead programs which periodically monitor
the system (at the end of each learning interval) and try
different control parameter test settings and time intervals
between modifications. These results may be spooled to tape
or disk files for later analysis. When experimenting over
time, it is preferable to switch fairly rapidly among the
possible parameter settings being studied, to further mini-
mize the effects of load fluctuations [BARD, 1973].

2.4 For each case in S/P, pick the ‘'best" M-table entry
from the results of Step 2.3. It is a useful preliminary
step to examine the components of G separately to make sure
that the control parameter changes have had some effect on
the system, particularly as certain components of G may be
inversely related, and changes to them might cancel each
other out. After that, selecting the test value (or policy,
as it will be referred to in the following discussion) with

the highest mean observed G value is intuitively the easiest

...20 -

way to select the "best" M-table entry for a given case. It
is appropriate to have some kind of statistical confirmation
that this policy is better than the standard setting CO

with, say, 90% or 95% probability. A number of statistical
approaches can be used (many of which depend on readily=-
available "canned" statistical programs):

a) Compare policies using a non-parametric test such as the
rank-sum test or the sign test (see pp. 280-300, DIXON &

MASSEY, 1957). There are two problems here. The first is
that we are ignoring the actual values of the data to con-
centrate on rankings (or signs of differences). This is not

wrong, but only makes partial use of our arduously-gathered
observations. The second problem is that such tests are
very sensitive to the independence of the observed data. We
have control over the choice of policy within a given load-
performance case, but not at all over case transitions. In
other words, we experiment in a given case when we are
forced there (perhaps by other factors not being consid-
ered), rather than when we wish to experiment there. Howev-
er, randomizing the policies can counteract this effect to a
certain extent. It is unavoidable that the total number of
observations will vary from case to case, since cases are
not equally likely to be visited.

b) Compare policies using a t-test. This improves on a)
since we are looking at actual data values of the evaluation
function G. A disadvantage is that the underlying distribu-
tions which we have sampled must be assumed normal. This
can be checked (with some effort) by the Chi-square test,
the Kolmogorov-Smirnov test, or graphically using probabili-
ty plots (see p. 116, RYAN et al, 1976).

c) Compare policies using the ranking and selection metho-
dology described in MAMRAK & DERUYTER, 1977. This is an it-
erative methodology which selects the best policy by a two-
step data-gathering procedure, where data from the first
step is analyzed to determine how many additional observa-
tions are necessary to guarantee that the probability of a

#
correct selection will be at least P , a value chosen by the

experimenter. In addition, the experimenter must specify
the magnitude of the difference that should be detected be-
tween the best and second-best means. As Mamrak and

De Ruyter point out, this is a desirable feature: if poli-
cies do not differ by much, large samples of data are re-
quired to determine the best one. From the standpoint of
looking for improved rather than optimal policies in a fair-
ly short period of time, experimenters should not require
too great a difference between the top two policies.

Incidentally, the authors discuss a number of tech-
niques for transforming data which 1s nearly exponentially
distributed into a more symmetric and more nearly normal
form. They also deal briefly with the problem of reducing
serial correlation of data observations.

d) If the observations are balanced (about the same number
for each policy in each case), then a standard analysis of
variance (ANOVA) program can be used to disprove the null
hypothesis that the policy means of the observations are ac-

tually all equal. If this can be disproved, then the
experimenter knows that there has been some effect on per-
formance, and can use a multiple comparison test (such as

the studentized range test [MILLER, 1976]) to get groupings
and find out which policy or policies are best. ANOVA pro-
grams do exist which accept wunbalanced observations, but
they are tricky to use and are not recommended [BOX et al,
19781. Francis has shown that several widely-used ANOVA
programs which <c¢laim to be able to handle unbalanced data
often yield misleading answers, depending on the order in
which variables are considered [FRANCIS, 19731].

e) Compare policies by multiple linear (or higher order)
regression of observations (evaluation function values) on
the n load-performance functions Pys p2, -rey Py (the dimen-

sions of the L-P space of 3). See RYAN et al, 1976, for a
description of a simple multiple regression program (in MIN-
ITAB). For each policy, this yields estimates of Wy where

G = g W, p; + €

Policies can then be compared for any given case using these
results. If the coefficient of determination (commonly re-

ferred to as R2) from the regression is low, however, the

results are not very useful or significant. If R2 turns out
to be fairly high, then we can more or less predict perform-
ance for a given policy based on actual values of the p;, as

opposed to the other methods which used a somewhat artifi-
cial stratification (or ‘"caseification") to characterize
load and performance. In other words, we are looking at the
L-P space instead of the case space.

This method, if it can be made to work, is useful as an
aid to understanding how the pi's (load-performance

characterizers) affect performance (the evaluation function
G) for each policy, and can also serve as a check on the
stratification involved in the case space. A somewhat simi-
lar approach was wused in FRIEDMAN & WALDBAUM, 1975, where
the authors used regression equations relating system per-
formance variables to variables describing the uncontrolled

- 2D =

workload and system modifications, to determine the effect
of these modifications.

f) Using a single number to represent workload and perform-
ance as defined by the p;, compare policies by regressing

this single value against the evaluation function for each

policy. Graphing the regression lines for each policy on a
single graph (see Figure 3.4) will make it easy to see which
policy is best where. The two main problems here are: 1)

it is difficult (and probably misleading) to represent all
of the pi's with one number; and 2) the confidence intervals

for the regression lines may be so wide (because of noisy
data) that conclusions are impossible.

- 23 -

Regression Lines For Each Policy

A

L/

7
S Policy 1

\\ .

X 2 Policy 3
\\\ ,r'
S L2
Value X P
of ‘\\‘ _ =

Evaluation NS =~ .

Function ' Policy 2
G .

Z Policy 4
Policy 5

Single Number Representing
Workload and Performance

—————————— = best policy contour

(Figure 3.4)
- 24 -

As in Step 1.3, it is up to the experimenter to select
a statistical method to support his choice of the '"best"
policy for each case. A useful reference is GIBBONS et al,
1977, which gives a rigorous but readable treatment of rank-
ing and selection procedures from a statistical point of
view.

2.5 Estimate the potential performance improvement associ-
ated with the M-table selected in Step 2.4. At this point,
it 1is of interest to the experimenter to know if the divi-
sion into cases which defined the case space from the L-P
space 1s reasonable. One would expect neighboring cases to
have somewhat related results (policies) in the M-table.
This 1s a good argument for designing a set of policies on
which a metric exists. If different policies are
incommensurable, then there is no test to indicate that the
original "caseification" was reasonable.

To estimate the potential performance improvement asso-
ciated with the M-table, we calculate 7. T (S/P; G; M-
table) is defined as:

i _ _
L (Gpagp (D) = Gpyq() « vy

i=1 + 100%

He~1la.
<
H

i=1

where the cases in the M~table are assumed to be numbered 1,

2, «.., J, and where for i=1, 2, ...,]
a) Vi is the number of visits observed in case 1i;

b) Gbe

the policy (modifications to C) chosen as best in Step
2.U4; and

St(i) is the average observed G value in case i for

c) Gold(i) is the average observed G value in case i for CO.

Although it seems 1like the natural definition, if we
use b) as stated above, there will be a statistical bias in-

troduced into the calculation of 7. Instead of just taking

*
the average G value for the best policy (call it C) in case
1, we should take the average G value over the group of pol-
icies which are not statistically significantly different

%
from C , although their average G values may have been
slightly smaller. To give a more concrete example of this
point, suppose that policies numbered 7, 8, and 9 are all

- 25 -

better than CO’ but not significantly different from each

other. We could then use the average of all of their G val-
ues, rather than the average G value for just policy 8, say,
if it happens to be slightly greater than those of policies

7 and 9. In this way, we avoid overestimating T.

m is a very useful number. If the relevant raw data
has been retained, two differently-structured case spaces
(and their associated M-tables) may be compared in terms of

their 7 values. (See Case Space Restructuring, page 32.)

2.6 Observe the system again to obtain a more accurate
estimator of potential performance improvement which takes
into account the effect of transients generated by frequent
switches to control parameters. Up until this point, G has
been measured only after intervals of time have '"cushioned"
the effects of any transients generated by switches in con-
trol parameter policies. 1In practice, there may or may not
be some degradation to G during those transient intervals.

%, defined in Step 2.5, is an estimator for w, which we
define as the performance improvement which will be obtained
by actually using the M-table in practice (see Phase 3 be-

N
low). Obtain a more accurate estimator m of 7 in the fol-
lowing manner:

Observe the system S again, alternating between setting
control parameters to CO (the static approach) and using the

M—table entries to set C (the adaptive approach). Allow

each of these two approaches to run for some time (gay ten
times the original learning interval L), but switch between
them often enough to eliminate most of the effects of work-
load wvariation. Allow time (T') for transient effects to
die down between the static and adaptive approaches, of
course, but measure G for the entire time interval for which
each approach 1is in effect. In short, as shown in Figure
3.5, the transient interval T of Step 2.2 is set to zero.

Measuring Data To Calculate Il

adaptive approach static approach adaptive approach ...
I
— A ~~ r-"""'"“"'"'\ — ~
i 4 =t =ttt 4
iL L‘ L] . * L Tl L—L hd ¢ . L T/ L L * * ° L
time

(Figure 3.5)

26

We define m (S/P; G; M-table) as

P - .
“adaptive Gstatlc

= 100%
Gstatio
where G . is the average G value observed while the
adaptive _
adaptive approach is in effect, and Gsfatic is the average G

value observed while the static approach 1is in effect.

Clearly, the experimenter would prefer T to be positive and
as large as possible.

If a synthetic, repeatable workload is available which
is representative of overall system activity, then the adap-
tive and static approaches may be compared during system
test time on the basis of their performance under this work-
load. There is no need to swap between the two approaches;
since the workload is repeatable, they may be run separately
for a predetermined amount of time, or until all batch jobs
and timesharing requests have completed.

2.7 Attempt local optimization within each case. The M-
table entry associated with each case may be good but per-
haps 1t «can still be improved on. Several techniques are
available which concern themselves with gradual improvement
or optimization of a control parameter (or parameters, since
C may be multidimensional).

As Fu remarks [FU, 19731, there are a number of numeri-

cal methods such as stochastic approximation (see WASSAN,
1969) which depend on estimation or successive approximation
of the unknown guantities of a function which represents the
process under study. However, in very complicated 1learning
situations, when the underlying mathematical model is impos-
sible to formulate, these methods should be rejected in fa-
vor of more heuristic approaches. Kimbleton [KIMBLETOMN,
19751 concurs, commenting that since probabilistic approach-
es cannot adequately reflect system complexity, and since
deterministic (mathematical programming) techniques cannot
conveniently deal with random phenomena, a heuristic ap-
proach is often best. 1In addition, sequential search plans,
where future experiments are based on past outcomes, are
preferable to simultaneous search plans, where every experi-
ment 1is specified before any results are known [WILDE,
1964 1].

Briefly, here are a few procedures which seem likely to
be helpful for local optimization within cases, although
most of them were designed with some type of global optimiz-
ation in mind.

- 27 -

a) Evolutionary Operation [BOX & DRAPER, 1969] consists of
trying a cycle of slight variants about the current parame-
ter setting, for one or two key parameters. Although this
technique was developed mainly for chemical works processes,
it is applicable here. After a period of experimentation,
the experimenter can:

1) adopt a new parameter setting;
2) explore a certain favorable direction;
3) modify the variants attempted;

4) modify the ranges through which the parameters are
allowed to vary; or

5) try different control parameters.

b) The Steepest Ascent Procedure [MYERS, 1976] is a method
whereby the experimenter proceeds sequentially along the
path of maximum increase in response. Some possible prob-
lems are: 1) only one of a number of peaks may be ap-
proached; and 2) the procedure of steepest ascent is not in-
variant with respect to scaling of the variables, but de-
pends on the choice of units (see BUEHLER et al, 1961). A
good example of the use of steepest ascent is glven in BOX &
WILSON, 1951. Also see BUEHLER et al, 1964, for a discus-
sion of the method of parallel tangents, and CARTON et al,
1973, for ‘comments on gradients and other classical edge—
detection techniques.

c¢) The Method of Ridge Analysis [DRAPER, 1963] deals with

situations such as rising ridge and saddle point systems,
where no optimum has yet been discovered and further analy-
sis or experimentation seems to be called for. This method
resembles the steepest ascent method, with one important
difference. Steepest ascent is used before canonical analy-
sis (which attempts to translate the axes of the original
response surface so that they correspond to the principal
axes of the contour system, with the introduction of new
variables as necessary). Ridge analysis is designed to be
used after canonical analysis as a tool to aid the interpre-
tation of the existing response system (see p. 96, MYERS,
1976) .

d) The Experimental Approach [BARD, 1975] is proposed as an
alternative to stochastic approximation, which Bard feels
requires too many observations, and to evolutionary opera-
tion, which he feels involves too detailed an examination of
the response surface. This method assumes that system re-
sponse is a function f of the modifiable system control pa-
rameters (plus an error term). Using a composite,

_28..

rotatable, balanced design, a number of possible control pa-
rameter vectors are selected, and the system is run to meas-
ure response for each vector. The function f is approximat-
ed by another function F, which is continuous, approximates
the observed data, and has an easy-to-evaluate, closed ana-
lytic form. After F has been constructed, a non-linear pro-
gramming routine is used to find a parameter vector which
maximizes F within a suitable region. With this vector as a
starting point, the process is repeated.

Bard counsels small changes on a live system, and rapid
switching among parameter settings to average out random
variations due to workload fluctuations (see BARD, 1973).

e) Heuristics and Learning Methods borrowed from the realm
of "TArtificial Intelligence may be of some use in improving
control parameter settings, although they are rarely em-
ployed in this context. Rote learning and generalization
[SAMUEL, 1963] are helpful, if elementary, techniques. As
described in SLAGLE & BURSKY, 1971, a learning program can
supply the rest of the system with functions for estimating
how the merit of an untried goal depends on the features of

that goal. If untried goals are equated with possible new
parameter settings, such evaluation functions could be of
some worth. Several experimenters (see SMITH, 1973, and

SAMUEL, 1967) have written learning programs which rely on
tables of adaptively-determined weights indicating the ad-
visability of wvarious strategies. This could be a useful
approach, since parameter settings are, in effect, strate-
gies.

2.8 Modify the M-table, if possible, to reflect a global.
strategy based on the goodness surface (average G value)
above the case space of S. While Step 2.7 was concerned
with local optimization within each case, some global opti-
mization may now be possible. It is desirable to force the
system into regions (or 'peaks") of high performance, ideal-
ly via a trajectory which maximizes the integral of G over
time. Such a route would avoid "valleys" of low perform=-
ance, and concentrate on regions where performance is gener-
ally good.

It is likely that any system movement which <c¢an be
forced (or strongly encouraged) will be in the performance
subspace of S, although it i1s not inconceivable that system
position in the load subspace might be affected.

The experimenter must keep track not only of the aver-
age G value associated with a given control parameter set-
ting 1in a case, but also of the vectors in L-P space repre-~
senting the change in system position induced by the parame-

- 29 -

ter setting, in order to accumulate information on how to
urge the system in a given direction. As before, one major
problem crops up -- distinguishing between random fluctua-
tions in position and those due to parameter changes. Ob-
servation over time may yield sufficient statistical evi-
dence to reach some tentative conclusions, but this is a
thorny problem.

Phase 3: Productive Phase

3.1 Continue to modify C using the M-table at intervals of
length L. During a small percentage of the time, repeat the

experiments of Step 2.3, 1in order to detect long-range
changes in the patterns of system load and performance which
might require modifications to the M-table. Some of Step

2.6 may also be repeated.

3.2 Reduce the computational and space requirements of the
program which modifies parameters using the M-table. During
Phase 2, general code may have been necessary for flexibili-
ty of experimentation, but when results are known and an
adaptive parameter-modification scheme is in full operation,
specialized code and compacted tables may be substantially
more efficient.

- 30 -

The

Methodology So Far

Establishment of System Envivonment”

C CS] P[S]‘

Establishment of
Experimental Environment

Colkd info o P[S]

Co rrc_la:('wv\s in PE'S]

\ @ 5

@@

@)

(Phase &)

Test valves for C

Experiment @
A4
Find ““best"’ Po(fcfcs @

L4 A

Calevlate T (2.5

Experimental Phase

Iw(*e,rva(s @

N/

v A
Dbserve and calculate ﬁ.

¥

Locaf eptimizat-ion @
v

Q‘(Dbm‘ oP‘HM\‘aa:h’m

lrodvctive Phase

Prodvet l‘o;{ vs age @
B
Prosrwm opﬁm?td’fov\ @

(Figure 3.6)

- 31 -

Case Space Restructuring

The ideal division of the load-performance space (S/P)
into cases should follow the lines of demarcation between
optimal (or improved) parameter settings (or policies). Un-
fortunately, these policy boundaries are not known before
experimentation takes place in Phase 2. Once the results of
experimentation are available, it may be advisable to
restructure the case space (3/P) to reflect this additional
knowledge about system dynamics. Such restructuring should
be <considered a temporary return to Phase 1, since it af-
fects the experimental environment.

1.7) Restructure the case space S/P, using the results of
the system testing and experimentation performed in Step
2.5. Before restructuring can take place, 1t 1s essential
to have a metric with which to compare different policies.
When only one parameter 1is being modified, a metric is easy
to define; when several parameters are altered, the situa-
tion is more complex.

If policies in adjacent cases seem to differ by a great
amount, this is a danger sign. Recall that system movement
from one case to another 1s considered a necessary and suf-
ficient change to require control parameter modification.
If the modification is large, then perhaps there should have
been an intermediate case, or perhaps the regions should
have been smaller in that neighborhood of the L-P space.
This 1s especially truve if the system S passes through the
neighborhood frequently, for then performance will be very
sensitive to any control parameter modifications associated
with the cases in that neighborhood.

Conversely, if policies in adjacent cases differ Dby
very 1little or not at all, this argues strongly that a
change in system position from one case to the other is
meaningless as far as changing parameter settings. This is
especially true if the system S passes through the neighbor-
hood infrequently, since control parameter modifications in
that neighborhood are likely to have little effect on per-
formance anyway.

An example will help to clarify +this point. Suppose
that we are modifying a single control parameter which can
take on integral values between 1 and 80, inclusive. Let

the metric for comparing two parameter settings be the abso-
lute wvalue of their difference. Referring back to Figure
2.2, suppose that the best parameter settings found for each
case are as shown in Figure 3.7.

Intuitively, this suggests that:

- 32 -

a) Cases (Good,Low), (Good,Medium), and (Fair,Low) should be
combined;

b) Cases (Good,High), (Fair,Medium), and (Fair,High) should
be combined; and

¢) The adjacent case pairs (Fair ,High)-(Poor,High),
(Fair ,Medium)-(Poor,Medium), and (Fair,Low)-(Poor,Low)
have such widely divergent control parameter settings
that a finer regional grid in the neighborhood of Fair
and Poor throughput might yield some helpful intermediate
values of control parameters.

This new view (restructuring) of the <case space 1s
shown in Figure 3.8.

The experimenter's intuitive understanding of potential
case space restructuring can be supplemented and clarified
by the techniques of cluster analysis. These provide a for-
mal approach to grouping together cases for which similar
optimal parameter settings have been found. HARTIGAN, 1975
is a useful reference on clustering algorithms. One point
Hartigan makes 1is that "clear-cut and compelling clusters

. require an explanation of their existence and so pro-
mote the development of fheories ..." Observation of exper-~
imental results and the application of clustering techniques
to the «case space and its associated M-table may render a
"black box" system less mysterious, at least in terms of un-
derstanding the effect on the system of the control parame-
ters being modified.

Parameter Settings Associated With A Case Space

wmuﬂmr““"“j“*“*']

| I

. | 1

High 50 | 4% | X

| | !

_____ —_'.._._._..._.‘I....-._-—._.__l

(Number | : |
T(.)S. Med i um Gl ' H9 : /6 : ine cases

Users) | 11_______4________4

! | |

I

& I I

low és : 3 I /7 i

{] J

[4

Good Fair Poor
(Average System Response Time)
(Figure 3.7)

The Restructured Case Space

L TTTTTTT T

I I |

High l |

g | I |

| ! |

| o Pk

|
(NU(;n]Per - : | l' | Eight cases.

T.5. Medium | | I |

Users) L__-l--_J___ !

| 1

| | |

Low 1 I |

| l '

|

1] >

Good Fair

Fair-Poor Poor

(Average System Response Time)

(Figure 3.8)

- 34 -

T is defined in Step 2.5 as the potential performance
improvement associated with a given case space, evaluation
function, and M-table. If the case space is restructured,

then a new value of 7T can be calculated, providing that the
necessary raw data has been retained. This is a very sig-
nificant point, since it means that we can compare alterna-

tive case spaces in terms of their associated T values with-
out further experimentation, to find the best restructuring.
True, some additional analysis of the data is required, but
it 1s not difficult.

In practical terms, non-uniform or oddly-shaped cases
can be awkward to deal with. The initial division of the
L-P space into cases by an n-dimensional grid has the advan-
tage of simplicity, and restructuring approaches which leave
intact most of the structure of the original S/P are to be
preferred. Two simple restructuring approaches with this
property are presented below. (Note that each case of the
original case space has the form of an n-dimensional rectan-
gular parallelepiped.)

The Analytic Approach: S/P may be (recursively) modified by
dividing any case in half, by a hyperplane perpendicular fo
some axis of S/P.

The Synthetic Approach: S/P may be (recursively) modified
by combining any two adjacent cases.

Figure 3.9 offers a comparison of these two methods of
case..space.restructuring

Comparison Of Synthetic And Analytic Approaches To Restructuring S/P

Synthetic Approach

Analytic Approach

Criteria for
Action

Neighboring cases have
similar values (or very
few observations in a

Neighboring cases have
dissimilar values (or
a case 1s visited very

frequently).
Rectangular projection
on any planar subspace
of 3/P.

Coarse mesh to start
will later be refined

case) .
May be irregular; not
necessarily convex.

Shape of Cases

Need finer mesh to
start, which means less

Mesh (= Fineness
of Division Into

Cases) data per case. only where necessary.

Aid in Under- Gradual steps make Regular regions help;

standing S trends easier to see; projections are more

smoother transitions. meaningful.

Ease of May be hard to decide If in doubt, splitting is

Application when to merge cases. easy to do. It is equiv=-
alent to identifying
regions where further an-
alysis is needed.

Cost of Perhaps somewhat more

Implementation expensive, since more

data must be gathered.

(Figure 3.9)

One additional comparison is that in the synthetic
proach (so-named because of its synthesis of cases, and

ap-
not

because it is artificial in any way), all dimensions of S/P
are regarded as equally important. In the analytic ap-
proach, a particular dimension may be singled out for
splitting, since it 1s possible that one (or more) of the
dimensions is more important than the others in determining
the proper control parameter settings. Another way to say
this is that the load-performance functions which determine

S/P are regarded as passive in the synthetic approach (where

cases are Jjoined), and active in the analytic approach
(where cases are subdivided).
Case space restructuring can be viewed as an

instantaneous process where all changes are made concurrent-
ly, but it is intriguing to contemplate the alternative of
sequential restructuring. The experimenter may proceed se-
quentially through the dimensions of 3/P, so that restruc-
turing within a given dimension depends on the restructuring
done in previously-considered dimensions, and on the order
in which the dimensions were considered. The distinction

_36..

between sequential and concurrent restructuring is independ-
ent of the choice of a synthetic or analytic approach to re-
structuring.

Case space restructuring more drastic than that provid-
ed by the two above approaches may be done by returning to
Steps 1.5 or 1.6, to reselect the dimensions of S/P, or to
repartition them completely.

For convenience, restructured versions of the case
space S/P will also be referred to as S/P. This is appro-
priate, since restructuring usually will leave intact most
of the case-structure of S/P.

Iterative Pathways

It would be agreeable to an experimenter to proceed in
a straight line through the steps of the methodology (as in

Figure 3.6) to achieve improved system performance. It
would also be somewhat surprising to advance in such an
unswerving fashion. Case space restructuring, discussed in

the previous section, represents one iterative pathway which
returns the experimenter to an earlier step of the methodol-
ogy. In fact, there are compelling reasons to consider oth-
er such loops.

At each step of the methodology, the experimenter must
make choices or decisions. Sometimes, this is easy to do.
More often, there is not really sufficient information or
experimental evidence available on which to base selections
or crucial decisions. The experimenter will naturally use
any knowledge or intuitive understanding he has about system

structure and behavior in addition to the data available at
the moment of decision. However, it is inevitable that im-
portant choices and decisions must be reconsidered after
further analysis and experimentation have taken place. If
the experimenter knew all the right answers beforehand,
there would be no need to experiment! This argues for the
inclusion in the methodology of the additional interative
pathways which are described below:

a) Return to Step 1.1 to try modifying different control
parameters. If it Dbecomes clear at some point that S is
relatively insensitive to changes made to C, then other con-
trol parameters should be chosen for experimentation. Per-
haps system performance is dominated by parameters which
have not been experimented on but should be. There 1s no
great merit (or profit) in expending large amounts of time
and computer resources to squeeze out one tenth of a percent
improvement from the system.

Of course, if modifications to C have been successful,
the experimenter may also want to try modifications to other
parameters, in hopes of further improving system perform-
ance.

b) Return to 3Step 1.4 to alter the components of G or their
relative weights. As we have stated before, G is a policy
function. Changing the way G is calculated does not neces-
sarily signal a significant policy change. This kind of ac-
tion may also be taken if it seems that the components and
weights of G do not accurately represent, or implement, the
preferences of the experimenter with respect to good system
performance.

For example, 1if the components of G include average
batch turnaround time, it might be possible to increase G at
the expense of the variance of this component. Adding the
variance of batch turnaround time as an additional component
of G might correct this situation.

c) Return to Steps 2.1 and 2.2 to change control parameter
test values, or the lengths of the 1learning and transient
intervals. This is a fairly routine loop to take after the
experimenter has a better understanding of the effect of C
on S.

d) Return to Step 2.3 (from Step 2.4) to experiment fur-
ther. This iterative pathway is the experimental core. Ex-
perimentation should continue until the differences among
control paramefer settings have emerged, and can be shown to
be statistically significant. If no differences appear, the
alternative pathways a), b), and c¢) above should be consid-
ered and compared.

Figure 3.10 shows the iterative pathways (represented
by dashed lines) which complete the methodology.

- 38 -

The Methodology With Iterative Pathways

@

Establishment of Sysfem Environment Cl[:S] P [5] .

"!"ry_o}j@f:v;e-wf io:ﬁ:o_(f@(l: CoHCc;l' |T{° on PLS] @

1
1
, / \
1_ Moy wishto adjust weights _ | _ =
e G
\

Establishment
of
Expevimental

Envivonment

Mﬁ:r cov\hnvcd

|
!
i
1
I
| ase S,DaCQ
1 \res-)'rvafur{ug < il
I b \ I
! \ \ '
T T - LR b
! I Betier appreciation of - N !
! : theeffect of C on S \ 3, !
| Test valves Tnterval I
| : .For C leh ‘ths. 52:": ::ed mere
. G EEL
g — "7 raw data
! | l Experimental EXPC“"@“T b:.:.’n ;a.\rcda:s :
) l 1 Core
'}‘ T «——__--- For each mge, ‘C\Wd “best” 2 L'l '
— -r:...._..._._.::—.SC‘H'm of C - Te ‘f‘{ 1 : !
| ! - q st for significance
Phase 2 , : :
$
. { ! A
g)(Pgran‘hd : | Calevlate Te—— — = — — — — — » —1
Phase l : 1, Maybe T can be improved]
|
’!P e — Observe a :
T T calculate T[" |
4\
i L S i LOCOJ OPfﬂb‘\\iqj';on —————— > -—-T
| l !
1 € = - - Q\oba(op’f‘l‘mftaﬂ'o“ e i I |
| | !
T v :

Produa‘}'ive Phase

— — — —~Production usage — = — — — — — — — — —
ey perime vdu.:h (117

Proaraw\ opﬁm'\zqﬂov\:

(Figure 3.10)

- 39 -

IV. Summary And Future Research

A system-independent methodology has been presented
which focuses on the use of dynamic modification of operat-
ing system control parameters to improve system performance,
as measured by an evaluation function. The first two phases
of the methodology serve to establish the environment for
experimentation, and are followed by an experimental phase
where alternative parameter settings and modifications are
compared by experimenting on the live system. A productive
phase then uses the results of experimentation to modify key
control parameters on a periodic basis, in order to respond
to fluctuations in system load and performance. Throughout
the formal presentation of the methodology, concomitant sta-
tistical and optimization techniques as well as iterative
pathways within the methodology have been emphasized.

We are currently experimenting on the UNIVAC 1100 com-
puter system at the Madison Academic Computing Center of the
University of Wisconsin, which serves a large and varied us-
er community. The parameters being modified control the in-
itial <core quanta allocated to batch and timesharing runs.
The initial core quantum of a program 1is essentially the
length of time it is guaranteed to remain in core before be-
coming swappable. If the initial quanta are too low, swap-
ping overhead increases; if they are too high, response time
for timesharing users suffers. It is our hypothesis that
the parameters which control core quantum size should be
modified periodically as the size and composition of the
workload on the 1110 vary throughout the day. We are using
the methodology presented in this report to test that hy-
pothesis, and to gain a better understanding of the
practicality of the methodology itself.

- 4p -

V. Bibliography

[BADEL, 1974] Badel, M. et al, "Adaptive Optimization of
the Performance of a Virtual Memory Computer,”

Rapport de Recherche n® 88, Institut de Recherche
d'Informatique et d'Automatique, Rocquencourt,
France, November, 1974,

[BARD, 1973] Bard, Y., "Experimental Evaluation of System
Performance," IBM Systems Journal, Vol. 12, No. 3,
1973, 302-315.

[BARD, 1975] Bard, Y., "An Experimental Approach to System
Tuning," IBM Cambridge Scientific Center, Tech Re-
port No. G320-2108, October, 1975.

[BARD & SURYANARAYANA, 1971] Bard, Y., and Suryanarayana,
K.V., "On the Structure of CP-67 Overhead," in Sta-
tistical Computer Performance Evaluation (ed. W.
Freiberger), Academic Press, 1972.

[BERNSTEIN & SHARP, 1971] Bernstein, A.J., and Sharp, J.C.,
"A Policy-Driven Scheduler for a Time-Sharing Sys-
tem," CACM, Vol. 14, No. 2, Feb. 1971, T4-78.

[BLEVINS & RAMAMOORTHY, 19711 Blevins, P.R., and Ramamoor-
thy, C.V., "Aspects of a Dynamically Adaptive Oper-
ating System," Tech Report 132, University of Tex-
as, Austin, Texas, July, 1971.

[BOX & DRAPER, 19691 Box, G.E.P., and Draper, N.R.,
Evolutionary-Operation;John-Wiley-and-Sonsy— NoYuy
1969.

[BOX et al, 1978] Box, G.E.P, Hunter, W.G., and Hunter,

“J.3. Statistics for Experimenters, John Wiley and
Sons, New York, 1978.

[BOX & WILSON, 19511 Box, G.E.P, and Wilson, K.B., "On the
Experimental Attainment of Optimum Conditions,"
Journal of the Royal Statistical Society of
Britain, Vol. 13, No. 1, 1951.

[BUEHLER et al, 1964] Buehler, R.J., Sha, B.V., and
Kempthorne, 0., "Some Properties of Steepest Ascent
and Related Procedures for Finding Optimum Condi-
tions," ONR Tech Report #1, Iowa State University,
1961.

[BUEHLER et al, 1964] Buehler, R.J., Shah, B.V., and
Kemptherne, 0., "Method of Parallel Tangents,"
Chem. Eng. Progr., Symp Ser. 60, 1964.

[BUNT, 1975 (1)] Bunt, R.B., "The Effective Treatment of
Overload Through A Self-Regulating Scheduler", Tech
Report 75-2, Dept. of Computational Science, Uni-
versity of Saskatchewan, Saskatoon, Canada, January
1975.

[BUNT, 1975 (2)] Bunt, R.B., "Self-Regulating Schedulers
for Operating Systems'", Tech Report No. 76, Dept.
of Computer Science, University of Toronto, Canada,
January 1975.

[BUNT, 1976] Bunt, R.B., "Adaptive Processor Scheduling
Based On Approximating Demand Distribution", Tech
Report 76-1, University of Saskatchewan, Saskatoon,
Canada, June 1976.

[BUNT, & HUME, 1972] Bunt, R.B., and Hume, J.N.P, "Self-
Regulating Operating Systems", INFOR, Vol. 10, No.
3, October 1972.

[CARTON et al, 1973] Carton, E.J., et al, "Some Basic Edge
Detection Techniques", Tech Report TR-277, Computer
Science Center, \University of Maryland, College

Park, Maryland, December 1973.

[CHANSON & BISHOP, 19771 Chanson, S.T., and Bishop, C.D.,
"A Simulation Study of Adaptive Scheduling Policies
In Interactive Computer Systems'", Performance Eval-
uation Review, Vol. 6, No. 3, Summer 1977.

[DALKEY, 19691 Dalkey, N.C., Studies in the Quality of
Life: Delphi and Decision Making, D.C. Heath &
Co., Lexington, Massachusetts, 1969.

[DIXON & MASSEY, 1957] Dixon, W.J., and Massey, F.J. Jr.,
Introduction to Statistical Analysis, Second Edi-
tion, McGraw-Hill, Inc., 1957.

[DOHERTY, 1971] Doherty, W.J., "The Effects of Adaptive Re-
flective Scheduling", IBM, T.J. Watson Research
Center, Tech Report RC 3672, September 1971.

[DRAPER, 1963] Draper, N.R., "Ridge Analysis of Response
Surfaces", Technometrics, Vol. 5, No. 4, 1963, 469.

[FERRARI, 1977] Ferrari, D., "An Approach to the Design of
a Learning Memory Manager", Proceedings of the 1977
SIGMETRICS/CMG VIII Conference on Computer Perform-

- U2 -

ance: Modeling, Measurement, and Management, 1977,
217=-224,

[FRANCIS, 1973] Francis, I., "A Comparison of Several Anal-
ysis Of Variance Programs", JASA, Vol. 68, No. 344,
December 1973.

[FRIEDMAN & WALDBAUM, 1975] Friedman, H.P., and Waldbaum,
G., "Evaluating System Changes Under Uncontrolled
Workloads; A Case Study", IBM System Journal, Vol.
T4, No. 4, 1975, 340-352.

[FU, 19731 Fu, K.S., "Learning Systems", Symposium of AACC,
Am. Soc. of Mech. Engineers, 1973

[GECK, 1979] Geck, A., "Performance Improvement by Feedback
Control of the Operating System", 4th Int'l Symp.
on Modelling and Performance Evaluation of Computer
Systems, Vienna, Austria, February 1979.

[GIBBONS et al, 1977] Gibbons, J.D., Olkin, I., and Sobel,
M., Selecting and Ordering Populations: A New Sta-
?

tistical Methodology, John Wiley and Sons, 1975,

[HARTIGAN, 1975] Hartigan, J., Clustering Algorithms, John
Wiley and Sons, 1975.

[HAYS, 19731 Hays, W.L., Statistics for the Social Scienc-
es, Second Edition, Holt, Rinehart, and Winston,
Ine., 1973.

[KEENEY & RAIFFA, 1976] Keeney, R., and Raiffa, H., Deci-

sions With Multiple Objectives: Preferences and

Value Tradeoffs, John Wiley and Sons, 1976.

[KELLY, 19771 Kelly, Capt. J.C., USAF, "Using SIP to Opti=-
mize Memory Preference", USE Inc., Spring Confer-
ence, Salt Lake City, 1977, pgs. 1-33.

[KEPPEL, 1973] Keppel, G., Design and Analysis: A Re-
Searcher's Handbook, Prentice-Hall, Inc., New Jer-
sey, 1973.

[KIMBLETON, 1975] Kimbleton, S.R., "A Heuristic Approach to
Computer System Performance Improvement", Tech Re-
port ISI/RR-74-20, Information Sciences Institute,
Univ. South California, March 1975,

[KOLENCE, 1973] Kolence, K., "Experiments and Measurements
In Computing", SIGME Symposium, Palo Alto, Califor-
nia, February, 1973.

- 43 -

[KRITZINGER et al, 1978] Kritzinger, P.3., Krzesinski,
A.E., and Teunissen, P., "Design of a Control Sys-
tem For A Timesharing Computer System", Performance
of Computer Installations (ed. D. Ferrari), North-
Holland Publishing Co., 1978.

[MAMRAK & DERUYTER, 1977] Mamrak, S.A., and DeRuyter, P.,
"Statistical Methods for Comparing Computer Servic-
es", COMPUTER, Vol. 10, No. 11, November 1977, 32.

[MILLER, 1966] Miller, R.G.Jr., Simultaneous Statistical
Inference, McGraw-Hill, 1966.

[MITRANI & HINE, 19771 Mitrani, I., and Hine, J.H., "Com-
plete Parameterized Families of Job Scheduling
Strategies”, ACTA INFORMATICA 8, Springer-Verlag,
1977, 61-73.

[MYERS, 1976] Myers, R.H., Response Surface Methodology, no
publ. given, 1976.

[NIE et al, 1970] Nie, N., et al, SPSS - Statistical Pack-
age for The Social Sciences, Second Edition,
MeGraw-Hill Co., 1970.

[NORTHOUSE & FU, 1973] Northouse, R.A., and Fu, K.S.,
"Dynamic Scheduling of Large Digital Computer
Sysems Using Adaptive Control and Clustering Tech-
niques", IEEE Trans. Systems, Man, and Cybernetics,
Vol. SMC-3, No. 3, May 1973, 225-233.

[POTIER et al, 19741 Potier, D., et al, "Adaptive Alloca-
tion of CPU Quanta", Rapport de Recherche n~ 58,

Institut de Recherche d'Informatique et
d'Automatique, Rocquencourt, France, April 1974,

[RODRIGUEZ-ROSEL, 19711 Rodriguez-Rosel, J., "Experimental
Data On How Program Behavior Affects the Choice of
Scheduler Parameters", Proc. ACM Third Symp. on
Operating System Principles, Stanford University,
1971.

[RYAN, 1976] RYAN, T.A. Jr., Joiner, B.L., and Ryan, B.F.,
MINITAB Student Handbook, Duxbury Press, Massachu-
setts, 1979.

[SAMUEL, 19631 Samuel, A.L., "Some Studies 1in Machine
Learning Using the Game of Checkers", in Computers
and Thought (eds E.A. Feigenbaum and J. FelIdman),
McGraw-Hi11, N.Y., 1963, 71-105.

- 44

[SAMUEL, 1967] Samuel, A.L., "Some Studies in Machine
Learning Using the Game of Checkers II ~- Recent
Progress", IBM Journal, November 1967, 601-617.

[SHARP, 1973] Sharp, J.C., "An Analysis and Evaluation of
Static and Adaptive Policy-Driven Operating System
Schedulers", Workshop of ACM SIGME Symp. on Meas-
urement Evaluation, February 1973.

[SHARP & ROBERTS, 1974] Sharp, J.C. and Roberts, J.N., "An
Adaptive Policy-Driven Scheduler", Performance
Evaluation Review, Vol. 3, No. 4, December 1974,
199.

[SLAGLE, 1971] Slagle, J.R., Artificial Intelligence: The
Heuristic Programming Approach, McGraw-Hill, 1971.

[SLAGLE & BURSKY, 19711 Slagle, J.R., and Bursky, P., "Ex-
periments in Automatic Learning for a Multipurpose,
Heuristic Program", CACM, Vol. 14, No. 2, 1971,
91-99.

[SMITH, 19731 S3Smith, M.H., "A Learning Program Which Plays
Partnership Dominoes", CACM, Vol. 16, No. 8, August
1973, 462.

[SMITH et al, 1977] Smith, R.G., et al, "A Model For Learn-
ing Systems", Heuristic Programming Project Memo
77-14, STAN-C3-77-605, Departments of CS and EE,
Stanford University, 1977.

[STEVENS, 1975] Stevens, B.A., "A Note on Figure of Merit",

Performance Evaluation Review, Vol. 4, No. 1, 1975,
13-
[TEOREY & PINKERTON, 1972] Teorey, T.J., and Pinkerton,

T.B., "A Comparative Analysis of Disk Scheduling
Policies", CACM, Vol. 15, No. 3, March 1972.

[WASSAN, 1969] Wassan, M.T., Stochastic Approximation, Cam-
bridge University Press, Cambridge, 1969.

[WILDE, 19641 Wilde, D.J., Optimum Seeking Methods,
Prentice-Hall, Inc., 1964.

[WILKES, 19711 Wilkes, M.V., "Automatic Load Adjustment 1in
Timesharing Systems", Proc. ACM Workshop on

- L5 -

