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ABSTRACT

Operational analysis replaces certain classical gueueing
theory assumptions with the conditions of "homogenous service
times" and "on-line=off-line behavior." It has been conjectured
that these conditions hold as t--> only if the service times
are exponentially distributed. In this paper, we show that this
is correct for M/G/1 dJueueing systems. We also state dual
results for inter-arrival times in G/M/1. Finally, we consider
the relationship between the operational quantities 8(n),
n=1, 2, ,. . . and the mwmean service time in M/G/1. This
relationship is  shown to depend on the form of the service time

distribution.



ON HOMOGENEITY AND ON-LINE=OFF-LINE BEHAVIOR

IN M/G/1 QUEUEING SYSTEMS

1. 1INTRODUCTION

Operational Analysis [2; 3; 4] is a non-classical approach
to analysis of qgqueueing systems in which the system parameters
N(n) and u(n) are replaced by observed quantities I(n) and S(n)
respectively. Assumptions about arrival and service time
distributions are replaced by conditions on S(n) and I(n). Two
of the key conditions are "homogenous service times" which states
that S(n) is constant in n and "on-line=off-line behavior" which
states that the S(n) do not depend on the system arrival rate.

Whenever a new idea like this appears, it 1is natural to
explore its relation to the existing theory. This paper examines
the relationship between operational and classical concepts by
considering the limiting values (as t-->w) of I(n) and S(n) for
the sample paths of an M/G/1 gueueing system. The primary
results are that on-line=off-line pehavior and homogenous service
times occur in M/G/1 if and only if the service times are
exponentially distributed. Dual results for the G/M/1 gueue are
stated. It is also shown that open, feed-forward networks of
single~server gueues with Poisson external arrivals can have
product form solutions with load independent behavior if and only

if all the service times are exponential. Finally, exact values



2 ON HOMOGENEITY AND ON-LINE=OFF~-LINE BEHAVICR IN M/G/1

for S{(n) in M/G/1 dJueueing systems are derived and their
dependence on the mean service time is depicted for several
standard service time distributions. This discussion shows that
to estimate how an observed value of S(n) would change if the
server's rate were increased or decreased, one must specify the
service time distribution.

In Section 2 we describe the notation of the paper ana give
definitions of "homogeneous service times" and "on-line=off-line
behavior." Section 3 discusses what it means for an M/G/1
Jqueueing system to have these operational properties; this
section also contains the main results of the paper. These
results are used to provide a method of calculating S(n) for
arbitrary service times in an M/G/1 queue. Graphs of these

values versus mean service time are then given in Section 4.

2. NOUTATION AND DEFINITIONS

Throughout this paper, whenever we are considering an M/G/1
gueueing system, we will assume that the system is stable, has
arrival rate \ and service distribution B(t). We let x denote
the mean service time and up=l1 / x. We will let P denote the
system utilization and p(n) denote the stationary probability of
finding n customers in system. For a G/M/1l queueing system, we
let A(t) denote the inter-arrival time distribution, a denote the
mean inter-~arrival time, and u denote the system service rate.

We will use a superscript * to indicate the Laplace-Stieljes

*
transform; for example, B (s) is the transform of B(t) and is
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defined as:

Where necessary to distinguish real numbers from real valued
randaom variables, we will use an underline to indicate the random
variable.

For any particular realization of an M/G/1l queueing system,
we define the sample path w (t) as the right continuous function
giving the number of jobs in system versus time. We assume that
w () = 0 for all sample paths, and that w is a sample point in
some probability space 52 .

We now give some definitions from operational analysis.
Most of this material is contained in [3], however we prefer a
notation more similar to that of [4]. To emphasize the fact that
these guantities depend on values observed during a finite time
interval [G,£), we will modify the notation of [4] to explicitly
include the parameter t.

We begin by defining the "basic operational measures" of a
queueing system during [&,t):

A(n,t) is the number of customers who arrive in [#,t) to find
exactly n customers already in system.

C(n,t) is the number of customers who left the system during
[0,t) when there were exactly n customers in system.

T(n,t) is the amount of time during [6,t) when there were
exactly n customers in system.

Given these quantities, we then may define the following
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"operational performance measures." (We follow the convention
of [4] and leave undefined any guantity with a zero
denominator.) :
S(n,t) =T(n,t)/C(n,t) is the mean service time between job
departures during [@,t) given n jobs in systen.
I(n,t) =T(n,t)/A(n,t) is the mean inter-arrival time during
[B,t) given n jobs in system.
P(n,t) =T(n,t)/t is the proportion of time there were n jobs
in system during [@,t).

We note that in operational analysis, I(n,t) and S(n,t)
serve the roles of conditional arrival and service rates in
classical queueing theory (see [3]).

We will be primarily interested in the asymptotic values of
S{(n,t), I(n,t), and P(n,t) as t-->w, assuming that these values
can be defined in a reasonable way. We will indicate this
limiting value (assuming it exists) by dropping the parameter t.
Thus:

S(n) = Lim S{n,t).
t——>w

We will refer to S(n) and I(n) as the (asymptotic) service
and arrival functions, respectively.

Finally, we wish to define certain operational terms so that
they can be conveniently referred to in the seqguel:

Definition 2.1: A queueing system is said to have homogenous

arrivals during [@,t) if I(n,t) 1is constant in n.

Definition 2.2: A queueing system is said to have homogenous

service times during [8,t) if S(n,t) is constant in n.
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Definition 2.3: A gqueueing system 1is said to satisfy

on-line=off-line behavior dGuring [6,t) if it has homogenous

service times during [6,t) and the common value of S(n,t) 1is

equal to the average customer service time,

We point out that in operational analysis, the homogenous
service time condition 1is the counterpart of the assumption of
exponential service times in classical queueing analysis [4].

We now discuss the meanings of these conditions with regard

to an M/G/1 queueing system.

3. OPERATIONAL ANALYSIS AND M/G/1 QUEUEING SYSTEMS

The operational performance measures defined in the last
section are calculated from observations of a system during a
particular time interval [6,t). In the context of an N/G/1
gueueing system, we would say that they have been defined for a
particular sample path, w g Thus, we have defined what it means
to say that "w , has homogenous service times during [U,t)" but

)

we have vyet to define what it means to say that "an M/G/1
gqueueing system has homogenous service times." It is the
purpose of this section to define the latter phrase in what we
believe is a natural way and to explore the consequences of such
a definition.

For any sample path w in 52 ;, let A(n,t,m), C(n,t,w),

S(n,t,wn), and I(n,t,w) be the values of A(n,t), C(n,t), etc.

associated with w during [6,t). Let A(n,t), C(n,t), etc. denote
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the random variables thus defined on §2 . Let Ea(n) be the event
that an arrival occurs to find n jobs already in system, and let
Ed(n) be the event that a departure occurs when there were n jobs
in system. Finally, if E is a recurrent event, let m(E) denote
the mean recurrence time of the event. Then we note that for any
stable M/G/l queueing system:
(1) With probability one, T(n,t)/t-->p(n) as t-->wm.
(2) Since the embedded Markov Chain defined at departure
instants is irreducible and positive recurrent, it follows

that m(E.(n))<wm, for all n>@. Furthermore, since the

d

probability of two or more arrivals in [t,t+h) is o(h), it

follows that O<m(E.(n)).

d
(3) The recurrence times of Ed(n) are asymptotically
independent random variables, since recurrence times
during distinct busy cycles must be independent.

Therefore, by an elementary result of renewal theory

[8, p. 36]:
Lim C(n,t)/t = l/m(Ed(n))
L—=>w

with probability one.

(4) S(n)=Lim (L(n,t)/t)/(C(n,t)/t).
t==->w ’
We have thus shown:

Theorem 3.1: The limiting random variables S(n) are constant

with probability one and S5 (n)=p(n) m(Ed(n)). [

To get a similar statement for I(n), we need the following

Lemma, which we will find useful later in this section:
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Lemma 3.2: In any stable M/G/1l queueing system,

A(n-1,t) C(n,t)
Lim : = Lim
L=-—>00 t L==->0 t

4

with probability one, for all n > 1.
Proof: Let {ti} be the starting instances of the busy cycles
of the queue. Clearly ti~->a> as i-->w and ti<a) for all 1,
both statements with probability one. Similarly,
A(n-l,ti)=g(n,ti) with probability one, since the number of
up~crossings of level n-1 must be the same as the number of
down-crossings level n at the start of each busy cycle. (Note
that the arrival at time ti is not counted in A(@,ti) since
g(@,ti) is the number of arrivals which found the system empty
dur ing [@,ti).) Finally, we note that A(n-l,t,wm) > C(n,t,m) >
A(n-1,t,wm)-1 for all t and all sample paths w . Thus with
probability one
A(n-1,t) C(n,t)

Lim = Lim — []
t—-=>00 t t-—->00 t

Therefore, Ea(n) is a recurrent event whenever Ed(n+1) is,

and we have

Theorem 3.3: The limiting random variables I(n) are constant
with probability one and I(n)=p(n) m(Ea(n)). [l
Since I(n) and S(n) are almost everywhere constant, we will
drop the distinction between these random variables and their

values.
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With these facts in mind, is seems natural to suggest the
following definitions:

Definition 3.4: An M/G/1 queueing system will be said to

have homogenous arrival rates if and only if I(n) is constant in

ne.

Definition 3.5: An M/G/l gueueing system will be said to

have homogenous service times if and only if S(n) is constant in

n.

Definition 3.6: An M/G/1 queueing system will be said to
satisfy on-line=off-line behavior if and only if S(n) = x for all
n.

Now we wish to determine what types of M/G/1 gueueing
systems satisfy these definitions. We begin with a basic Lemma:

Lemma 3.7: In any stable M/G/1 gueueing system:

(3.1) S(1) =

Proof: E.(l) occurs if and only if the system becomes idle.
Thus m(Ed(l)) is the mean busy cycle length. Now the Laplace
transform of the busy period distribution, G*(s), is known to
satisfy the functional equation:
G (s) =B [s+\=-\G (s)]

(see, for example, [6, p. 212]). From this equation it 1is easy
to «determine the mean busy period length, and upon adding the
mean idle time we obtain the mean busy cycle length:

L/N+x/(1=-p).

Also, we know p(l) = Q' (8), where Q(2z) is the generating
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function of p(n). Thus p(l) can be found from the
Pollaczek-Khinchin transform equation (see, for example,
[6, p. 1941):

(1 -p) (1-z)

(3.2)  G(z) = B (\-hz2) — .
B (N-\z)-z

Calculating p(l) from equation (3.2) and using Theorem 3.1 shows

that S(1) has the indicated form. D

We observe that on-line=off-line behavior means that the
S5(n)'s cannot depend on \. This observation is the basis for the
following theorem.

Theorem 3.8: Suppose B*(s) is analytic for § < Re(s) < u.
Then the M/G/1 queueing system satisfies on-line=off-line
behavior if and only if B(t) is exponential.

proof: (i) TIf B(t) 1is exponential then the result is
straightforward.

(ii) Suppose that the system satisfies on-line=off-line
behavior. Then, in particular, S(l) does not depend on \.
Solving equation (3.1) for B*(x) we get

1

BN = —————, 0 <\ < a.
1 + N\ S5(1)

*
But we have thus determined B (s) on a set with limit point, and

*
hence determined B (s) throughout its region of analyticity.

13

Therefore B(t) = 1 - exp( t s(1)).
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If B(t) is non-exponential, the dependence of S(l1) on \ can
be quite pronounced. In Figure 3.1 we have plotted 5(1) versus \

for some typical service distributions. (All distributions have

» |

=1.0.) The horizontal line at S(l)=1.0 represents the S(1)
versus N\ curve for exponential service times. We see that those
distributions with coefficients of variation less than one have
S(l1) wversus N\ curves which lie above the exponential case; and
that those distributions with coefficients of wvariation greater
than one have S(l1) versus N\ curves which 1lie below the
exponential case.

e have shown that if the S(n)'s are constant in n and do
not depend on \, then the service time must be exponential. But
is it possible that the S(n)'s are constant in n, but all of them
depend on \ in the same way? If so, we would still have
homogenous service times but not on-line=off-line behavior. To
study this situation, we begin with:

Lemma 3.9: In M/G/1, I(n)=\"? for all n.

Proof: Because the arrival process is Poisson, m(E_(a)) =

[

p(n) N. The result then follows from Theorem 3.3.

Lemma 3.18: In M/G/l, p(n) = p(n-1) S(n) / I(n-1), n > 1.

Proof: By Lemma 3.2 we know that m(Ea(n—l)) = m(Ed(n)).
Using this fact, combining the formulas for S(n) and I(n) from
Theorems 3.1 and 3.3, and solving for p(n) gives the desired

result. D

We can now show that homogeneity is essentially eguivalent
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to on-line=off-line behavior:

Theorem 3.11: An M/G/l gueueing system has homogeneous

service times if and only if the service distribution 1is
exponential.

Proof: (i) As before, if the service times are exponential
the result is straightforward.

(ii) Let S denote the common value of S(n). From the
Lemmas it follows that p(n)= N\ S p(n-1l), n > 1. Wwe Know
p(B) =1 - P in any M/G/l1 queue. Thus

n

L-p) (NS)", n> 0.

(@]
s}
Il

p(n) = 1 implies that

Hence P =\ S or S=1/ un. Thus S cannot depend on \.
To finish the proof without the explicit analyticity
condition of Theorem 3.8, we let P(z) be the generating function

of p(n). Equating P(z) and Q(z) from equation (3.2) gives us:

(1 -p) (1-p) (1-z)
- s e P :

(1-p 2 B" (\-\z) -z

*
Solving for B ( N\ -~ N\ 2z ) and substituting s = \ - \ z yields:

Before turning to the case of G/M/1l, we note the following

limited result for gueueing networks:
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Theorem 3.12: Consider any open, stable, feed-forward

network of single-server gueues, and assume that xternal
arrivals to the network are Poisson and indepenaent of the
network state. Then the network stationary probability
distribution p(n) is of the product form

, TN M

if and only if all of the service times are exponential.

Proof: (i) If the service times are all exponential, the

result is due to Jackson [5].

(ii) Pick any queue with only external arrivals. By the
form of equation (3.3) this queue 1is an BM/G/1 Jgueue with
homogenous service times. Hence, by Theorem 3.8, the service
time at this queue is exponential. By Burke's Theorem [1], we
then know that the departure process from this gueue is Poisson.
Repeating this argument at all queues with only external arrivals
shows that all gdgueues 1in the network have Poisson arrivals.
Hence all dueues 1in the network have ©Poisson arrivals and
homogenous service times. Therefore all of the service times

must be exponential. M

We note that in the case of c¢losed networks, there are
several examples known of queueing systems which satisfy a type
of product form, but which have decidedly non-exponential service
times [4]. In such networks, the arrival process at each node is

definitely not Poisson due to dependencies among inter-arrival
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times. We will not consider closed networks here.
We state without proof some dual results for G/M/1 Qqueueing
systems:

* —
Theorem 3.13: If A (s) is analytic in re(s) > 1 / a, and

I(n) does not depend on pu, then A(t) 1is the exponential

distribution. LI

Theorem 3.14: A G/M/1 queueing system has homogenous arrival

times (in the sense of Definition 3.4) if and only if the

inter-arrival time distribution is exponential. [

4. S(n) EVALUATION IN M/G/1

Let us consider the following performance prediction
problem:

Random arrivals from a very large population are served

one at a time, in FCFS order. The system appears to be

stable, but still is very heavily loaded. What would

the mean number of jobs in system be if a server twice

as fast as the current one were installed? Observead

values of I(n,t) and S{(n,t) are available.
To solve this problem using operational analysis, one would
adjust the S(n,t) values to represent the service function for
the faster server and leave the I(n,t) values unchanged. From
the new values of S(n,t), the current values of I(n,t) and the

relation P(n,t) = P(n-1) S(n,t)/I(n-1,t), one could estimate new
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values of P(n,t) and hence new values of the mean number of jobs
in system.

The difficult part of the problem is estimating the new
values for S(n,t). One obvious estimate is to let the new values
be one-half of the old values. However, simulation evidence
indicates that this is not always the most accurate approach.
Instead the exact way that the S(n,t) depend on X varies with the
service time distribution at the server. To illustrate this
dependence, we will consider the relationship between S(n) and X
in an M/G/l gueueing system.

To evaluate S(n) we recall Lemma 3.18, which relates S{(n),
I(n), and p(n). Since in M/G/1, I(n)=\, it follows that the p(n)
determine the S(n). This observation (originally due to Buzen

[3]), allows the calculation of S(n) from the service time

distribution. To do so0 we can use a power Series expansion of
the Pollaczek-Khinchin +transform formula (eguation 3.2) to
calculate p(n). While this process is algebraically involved,

suitable tools exist to assist in the calculation and evaluation
of the derivatives of §(z). (The calculations in this paper used
the FORMAL system [7], a FORMAC like system developed at the
University of Maryland.) Thus for a particular service
distribution, one can determine p(n) and hence 5(n) as a function
of the distribution parameters, at least for a few values of n.
For values of n > 14, the expressions for p(n) become too
complex for FORMAL to handle. Even if such large expressions
could be generated, round off error would probably make any

evaluated results meaningless. As we shall see below, values of
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S{(n) for n > 5 are usually not needed.

We believe it 1s unlikely that significantly simpler
formulas for S(n) will ever be found. It is clear that if simple
closed form expressions for S(n) were known, then simple closed
form expressions for p(n) could easily be constructed. Since no
known formulas for the latter exist, it seems unlikely that any
will be found for S(n). (However, see [3] for an alternative
approach.) We now return to our discussion of the relationship
between S(n) and x.

We have already given a formula for S(1) in M/G/l, and we
begin our discussion by considering a graph of $(l) versus X for
some typical service distributions. (See Figure 4.1.)
Throughout this discussion, we are considering a stable M/G/1
queueing system with \=1.6. 1In this fiqure we have included the
S(1) versus X curve for exponential service times as a
comparison. We see that of the service distributions we have
considered, the distributions with squared coefficients of

variation (cvz) greater than 1 have S$(1) versus x curves which
lie below the exponential case, and those distributions with CV2
< 1 have curves which lie above the exponential case. Thus to
estimate new values of S(l,t) in our performance prediction
problem, we should more than halve the observed S(1,t) values
when the service distribution has CV2 > 1, and less than halve
the observed S(l,t) values when CV2 < 1.

Figures 4.2, 4.3, and 4.4 give S(n) versus X graphs for

higher values of n. 1In each graph the S(n) values for a specific

distribution nave been plotted. (As before, we have included the
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SERVICE FUNCTIONS 'S(N) FOR M/G/1 WITH ERLANG-R SERVICE TIMES
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SERVICE. FUNCTIONS S(N) FOR M/G/1 WITH CONSTANT SERVICE TIMES
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S(n) versus x curve for the exponential case as a reference.)
The first observation about these graphs is that S(n) rapidly
approaches a limiting value as n increases. Apparently, the tail
of the distribution of number in system is approximately
geometric for large values of n. A second observation is that
the limiting S(n) versus x curve always lies on the other side of
the exponential case curve from the S(1) curve. Thus we cannot
extend the statement of the last paragraph to higher values of n.
Exactly how to estimate these values of S(n,t) depends on the
current value of x and the other parameters of the service
distribution. Third, from these examples it appears that if CVZ
< 1, then the 8(n) versus x curve is convex upward; if CV2 > 1
then the curve is convex downward.

In brief, the performance problem we have posed does not
appear to be solveable without making additional assumptions
apout the distribution of service time. With such assumptions,
graphs 1like Figure 4.2 could be drawn, and new values of S(n,t)
could be determined from observed values in a methodical way.
Thus instead of assuming that the service time distribution is of
a certain form, fitting the observed service times to that form,
and then applying the M/G/1 solution with G replaced by the
fitted distribution, we could instead estimate the new values of
S(n,t) and solve directly for P(n,t). The relative merits of

these two approaches have yet to be explored.
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5. CONCLUDING REMARKS

The subject of this paper has been an amalgam of two almost
antithetical disciplines: operational and stochastic analysis of
queueing systems. It has not been the intent of this paper to
criticise or praise either of these approaches. Each is useful
in its own way, when applied to certain types of problems, or
when used to best advantage by certain groups of people.

The point of this paper is that there is not that much
difference between the two approaches, as the eguivalence proofs
of Section 3 have shown. Indeed, one of the most useful results
of this paper might be the graphs of Section 4; results which
come from an interplay of both operational and stochastic

concepts.
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