A LANGUAGE FOR PARALLEL PROCESSING OF ARRAYS,
EMBEDDED IN PASCAL

by

Leonard Uhr

o + C oot T
CURIpUtET ™ ouTentes™red

September 1979

A Language for Parallel Processing of Arrays, Embedded in PASCAL

Leonard Uhr
University of Wisconsin

A new programming language is described for 1image process-
ing, pattern recognition and scene description on parallel array
computers. The language extends PASCAL to handle parallel pro-
cedures of the following general form:

| Iprocedure {procedurename};
{constants, types and variables declared here, as always}
begin
[1dim {declaration of dimensions for parallel processing};
| |set {arrays-to-be-assigned-results}
:= {structures in arrays, and compounds of structures};
| lif {structures and compounds} {conditional test}
| lthen {arrays-to-be-modified, and modifications}
|lelse {arrays and modifications};
| lend;

Examples are given of such parallel code, and how it can be
used. These extensions appear to fit reasonably well into stan-
dard PASCAL, allowing the programmer to intermix parallel and
serial code. The parallel statements are presently executed by a
serial computer. But, as the new parallel array hardware becones
available, they will execute (with orders of magnitude increases
in speed) directly, in true parallel fashion.

Introduction

This paper describes an experimental language (called Pas-
calPL) that extends PASCAL with constructs to process parallel
arrays. PascalPL allows the programmer to code procedures that
effect parallel operations over arrays of integer (or, optional-
ly, boolean) values of the sort commonly used in image process-

ing, pattern recognition and scene description programs. State-

ments can specify sets of relative locations (with respect to
each cell of the array), and compounds of such sets, embedded in

assignment statements, or in conditional statements.

-1-

PascalPL does not purport to handle efficiently a wide range
of numerical operations. Nor does it attempt to handle the prob-
lems of parallel-serial processing by networks in general. Rath-
er, arrays of information (e.g. as input by a television camera,
and transformed by arrays of hardware J[or virtual] processors)
are the major type of parallel structures that it addresses. But
since it is embedded in PASCAL all the facilities and power of

PASCAL are available to the programmer.

PascalPL presently exists as a program (coded in PASCAL and
running under the UNIX operating system on the University of
Wisconsin Computer Sciences Department's VAX) that inputs a legal
PascalPL program and outputs a legal PASCAL program that contains
the code the PascalPL pre—brocessor output (which will now effect
the parallel operations called for by the PascalPL code). Its
special parallel constructs (to be described below) include
parallel assignment (|]set .. =::= ..;), conditional (||if ..
| lthen .. |lelse eei), input (llread(..);) and output
(I lwrite(..);) statement-types. These all execute operations, in
true parallel fashion, on arrays of information. This is effect-
ed on the VAX, as on any other serial computer with only one pro-
cessor (the "central processing unit" or "cpu"), by setting up
temporary arrays (to keep processes parallel) and embedding the
processes within nested do-loops. (See the Appendix for exam-

ples.)

The Need for Higher-Level Languages for Parallel Arrays

Several large arrays of parallel processors are today Jjust

beginning to become available. CLIP4, a 95 by 95 array (Duff,
2

1976, 1978), has each of its almost 10,000 processors fetch, in
parallel, information from any subset of its 8 nearest neighbors
plus its own memory and execute a logical instruction. ICL's DAP
(Flanders et al, 1976, Reddaway, 1978) is a 54 by 64 array with a
good bit of capability for numerical as well as for image-

processing problems.

MPP (designed for NASA by Goodyear—-Aerospace, to be
delivered in 1982; see Fung, 1977) will be a very fast 128 by 128
array. Goodyear~Aerospace is also building ASPRO, a 2000 by 1
reconfigurable array with 32 processors and a flip network on a
single chip, for delivery by 1981 (anon, 1979). (ASPRO is close-
ly related to Goodyear's Staran-E [Batcher, 1974], essentially
using lsi technology to miniaturize a Staran into a one cubic
foot box.) Two pipelined and specially designed computers have
also been built for image processing: PICAP (Kruse, 1975, 1978),

and the Cytocomputer (Sternberg, 1879).

When actual array-processing hardware 1is connected to a
serial computer that executes PASCAL programs then the parallel
constructs in PascalPL can be translated to directly invoke the
parallel hardware, which will execute them directly (and with two

to five orders of magnitude increases in speed).

For the present it seems of interest to begin to develop

parallel languages, to ease the bhurden of coding parallel pro-

grams (even 1f for a serial computer), to explore what kinds of
parallel constructs are useful, and to examine what mixes of

parallel and serial constructs programmers actually use,

-3

It is not at all clear whether present-day languages that
have been developed for serial computers should be extended to
handle arrays and networks of parallel processors, or whether en-
tirely new languages should be developed. In the long run we
will inevitably see entirely new languages, that reflect the new
hardware architectures of computers as well as our advances in
understanding language design. But for the next 3 or 5 (or 10?)
years it seems likely that the most powerful systems will use a
serial computer (to serve as "host," file manipulator, conmpiler,
simulator, etc., as well as to execute the serial portions of
programs) along with any hardware arrays and networks of ©proces-
sors. It therefore seems appropriate to take advantage of the
serial computer, and of the power of the newer languages that

have been developed for serial computers.

PASCAL (Wirth, 1971, Jensen and Wirth, 1973) seems the best
choice for the language-to-be-extended. It is already widely
used and promises to be used increasingly, especially on micro-
processors of the sort used to build networks and arrays. It is
both powerful and relatively efficient. It has been extended, in
concurrent PASCAL (Brinch-Hansen, 1973) and Modula (Wirth, 1977),
to begin to handle networks of processors. It is being extended,
in Telos (Travis et al, 1977) to handle a wide range of artifi-
cial intelligence and data base management tasks. At the first

of what is expected to be a series of annual conferences on

parallel architectures and higher-level languages for image pro-
cessing the consensus of those who felt a modern language was
needed was that it should be embedded in PASCAL (until a com-

pletely new language emerges), and a working group was formed

with that goal (see Duff, 1979). Finally, since it seemed desir-
able to implement an experimental version of such a language, to
explore its problems and its uses, a decision had to be made as
to the specific language to extend. PASCAL seemed a reasonable

choice.

A Brief Background Review of Related Work

A large number of languages have been coded to handle paral-
lel array processes (see Preston, 1979). These have tended to be
at the assembly language level, or to be subroutine calls in For-
tran. But they include a number of languages that are quite sim-
ple and straightforward to use, and offer the user great power
(to a large extent because the parallel arrays, with their very
large numbers of processors, are so powerful). Most of these
languages execute entirely on a particular machine with parallel
hardware (or on a simulation of parallel hardware), and are
directed toward image processing. (The languages that have been
developed for array processing of numerical problems, e.g. APL
[Iverson, 19521 and Glypnir [Lawrie et al, 1975] and Actus [Per-
rott and Stevenson, 1978] for the Illiac-4 super-computer, will

only be mentioned here.)

Kruse and his associates (see Gudmundsson, 1979) have
developed a very nice algol-like language in which programs can

be coded that call both the Picap parallel processor and the

serial host computer. It contains two major parallel constructs,
for 1) logical and 2) numerical operations, with the format:

(type)

1 2
4 5 = result
7 8

O N w

That is, the programmer is asked to specify a 3 by 3 array of 9
values (these may be boolean values, or integers specifying
weights or inequalities), plus an operation and a result. This
closely vreflects the nearest-neighbor structure of the Picap-1

array (and of most other of today's hardware arrays).

Uhr (1979) has developed a higher-level 1language (also
called PascalPL, but let's refer to it as PascalPL.0) for the
CLIP parallel array that makes use of "compounds" and "implica-
tions"™ similar to, and precursors of, some of the constructs in

the present PASCAL-based PascalPL.

Reeves (1979) has developed a system that extends APL to
handle image ©processing as well as numerical processing of ar-
rays. He arques (personal communication) that APL, since it han-
dles arrays quite naturally, may well be preferable to PASCAL as
the "host language" into which parallel constructs should be em-
bedded. But since PASCAL is far more widely available, and far
more consonant with the feelings that most people have today
about what is "good sructure," it seems the better choice. APL
is, however, a language that can suggest some useful constructs

that might be embedded in a PASCAL-based system.

Levialdi and his associates (1978) are developing Pixal,
which consists of parallel extensions embedded in Algol-40 (which

they are using chiefly because PASCAL is not available on their

computer) . Pixal uses a "frame" construct that allows the pro-
grammer to specify a set of relative 1locations (not only
nearest-neighbors) to be looked at everywhere (that is, relative

to each cell in the array), and a "mask" construct with which the
-G

programmer can specify a set of weights to be applied to the re-

lative locations specified in the coordinate structure.

Douglass (1979) has proposed extensions to PASCAL to handle
parallel arrays, building on earlier proposed extensions by Pratt
and Ison (see Ison, 1977) to handle networks. These include a
"fork" operation to set up new processors that are executing dif-
ferent sets of instructions in parallel, and a "split" operation,
to invoke whole sets (e.g. arrays) of processors to execute the
same set of instructions, but each on different data (e.g. dif-
ferent local regions of a visual image). The programmer can

specify "windows" (sets of [relative] coordinate locations).

Schmitt (1979) has also described extensions to PASCAL to
define and then execute operations on any arbitrary network

structure, rather than limitting the programmer to arrays.

Almost all of these languages use as their key‘construct an
operation on a set of relative locations. The languages designed
for a specific hardware array will build in the interconnection
pattern of that array (usually, as in the case of Picap-1, the 3
by 3 sub-array of the nearest neighbors). Pixal's "mask" and
Douglass' "window" generalize this to any set of arbitrarily dis-
tant neighbors. (But when such a language is actually executed
on a hardware-parallel array this gives excessively long se-

quences of nearest-neighbor shifting operations.) Uhr added con-

structs for the convenient compounding and implying of informa-
tion over several different arrays. Douglass and Schmitt make
suggestions for constructs to handle much more general networks,

as well as SIMD (Single-Instruction-Multiple-Data-Stream) arrays.
-7 -

PascalPL is designed to handle arrays, and sets of arrays,
that contain binary, grey-scale and/or numerical values. It al-
lows one to code procedures that look at and compound sets of re-
lative locations (around each "pixel" cell) in a single array,
and to compound sets of these sets across several arrays, using

either arithmetic or boolean operations.

It seems best to introduce the reader to PascalPL by start-
ing with very simple examples, gradually introducing its full set

of constructs and features.

An Overview g£ PascalPL Constructs

A PascalPL program looks like a PASCAL program, except that
it contains several new constructs (all announced and made visi-
ble by two vertical [parallel] bars, e.g.: | Iprocedure..;
| lset..; |lif..; |lread..; |lwrite..;). This means that the pro-
grammer must declare all the necessary constants, data types and
variables, and strictly follow all the conventions of PASCAL
[e.g., a program must begin with "program
{programname} (input,output{...});" and end with "end."]. The
programmer can code as much as she/he desires in ordinary PASCAL.
Only when parallel constructs are desired do any deviations oc-

cur. These parallel constructs are handled as follows:

The procedure that will contain these (one or more) parallel
constructs must be declared:

| Iprocedure {procedurename};

Any time after this procedure's "begin” statement, a "dimen-
sion declaration" statement must be placed, e.g.:
I ldim [0..127,0..127];
Then come, interspersed with ordinary PASCAL statements,
parallel constructs of the sort:
| lread{..};
Ilwrite{..};
| Iset {array(s) assigned to} := {compound of array(s)..};
| 1if {compound of arrays) (ineq) }
| lthen {array(s) modified}
| lelse {arrays modified on failure - optional};
Procedures cannot be nested within parallel procedures (this
restriction will be lifted when PascalPL is actually embedded in

PASCAL, and can conveniently use stacks for declarations).

A Very Simple Example Program

The following program makes only the simplest use of Pas-
calPLL constructs, (See the Appendix for the PASCAL program into
which the PascalPL preprocessor translates it.)

program simple (input,output);
{the programmer must declare the array data structures used}
{ for this program they are: image, negative, edgedimage }

procedure sayhello;
begin

writeln('hello');
end;

| Iprocedure demonstrate;
begin
[1dim [0..2,0..2];
| lread (image) ;
| lwrite (image) ;
| lread (negative);
writeln('the image and the negative image have been input');
| Iset edgedimage := image - negative;
| Iwrite(edgedimage) ;

| |set image, negative := 0;
| lend;

begin {program}
sayvhello;
demonstrate;
end.

An Example of OQutput From the Simple Program Above

hello
TYPE IN INTEGERS FOR image[0.. 2, 0.. 2]
1 2 3 were input to row O
4 5 6 were input to row 1
7 8 9 were input to row 2
ARRAY = 1image contains:
1 2 3 ;
4 5 5 ;
7 8 9 ;

END OF ARRAY.
TYPE IN INTEGERS FOR negativel[0.. 2, 0.. 2]

5 5 5 were input to row 0
5 5 5 were input to row 1
5 5 5 were input to row 2
ARRAY = edgedimage contains:

-4 -3 =2 ;

-1 0 1 ;
2 3 4 ;

END OF ARRAY.

This program first outputs 'hello' and then inputs a 3 by 3
array, naming it "image". (As it is presently implemented to run
interactively, it outputs the message to TYPE an array, and out-

puts the inputs, to verify.)

The next statement "||write(image)" outputs the array stored
in image, in array form. "||read(negative)" inputs the array
that it names "negative". Now the program outputs that the two
arrays have been input. (Note that this is a regqular PASCAL
"writeln(..);" command. It illustrates how regular PASCAL state-

ments can be interspersed.)

Now, for each cell in the array "edgedimage" the program
subtracts what negative contains from what image contains. Next

it re-initializes the two arrays image and negative, so that each

of their «cells contains a zero. Finally, it outputs the array

named edgedimage.

-10-

This is a trivial example, and doesn't begin to indicate any
of the more powerful ways that the parallel-assignment construct
(I set) can be used. But it shows how PascalPL's parallel con-
structs can be intermixed with standard PASCAL, and it does show
how input and output are extended, in a straightforward but what

appears to be satisfactory way, to handle arrays.

The Assignment Statement

An assignment statement contains a set of Tarrays-to-be-
assigned-results" (called “"assignees") to the left of the assign-
ment operator (":=") and a "compound-of-structures" (called "com-

pounds") to the right of the ":=",

Now let's examine a sequence of more powerful assignment
statements (See the Appendix for the PASCAL code output by Pas-
calPL for selected statements.):

| Iset vert := image[+(0:1,0:0,0:-1)1;

(This statement looks, for each cell in image, at the 3 rela-
tive locations specified, sums what it finds, and stores the
result in the corresponding cell of vert.)

| Iset cross := vert[+(0:0,0:2,0:-2)] * hor[+(0:0,2:0,-2:0)1;
(Sums the 3 relative locations in vert, does the same for

hor, then multiplies these sums and stores the result in cross.)

(Note that:

| Iset arrayl := array2 (op) array3;

is equivalent to:
| Iset arrayl := array2[0:0] (op) array3[0:0];)
| lset vert, hor, image := 2 * image[+(0:1,1:0)] - #average;

-11-

(This illustrates how several arrays can be assigned the
values computed by the compound, and how the compound can include
constants and variable identifiers [each must be preceded by
"$#'1.)

| Iset gradient := image[+(0:0%12,1:0%-2,0:1%-2,-1:=1%-1,...)];

[This will get a weighted difference between the center cell
(weighted +12) and the 4 square neighbor cells (weighted -2 each)
and 4 diagonal neighbors (weighted -1 each) (only the center and
3 of the 8 neighbors are shown).]

| |set featurei, featurej, labelk
:= featurem([* (4:-3%2>5,-5:7%3>14,0:0%21>112)1;
(Multiplies what is found in each relative location by the
specified weight and accepts the result only if it exceeds the
specified threshold; then stores the sum of these results in the

corresponding cells of featurei, featurej and labelk.)

To summarize: An assignment statement consists of an arbi-
trarily long compound (to the right of the assignment operator
":=") of array-specifications. An array-specification consists
of an array name followed (optionally) by a "structure". A
structure consists of an (integer or boolean) operator followed
by a set of relative locations. Each relative location in an in-

teger array can, optionally, be followed by an operator and a

weight and/or an inequality and a constant.

One or more arrays can be named to the left of the assignment

operator. Bach will be assigned the result of the set of opera-
tions on arrays specified in the compound. (An option that is
probably not very wuseful also allows [for integer arrays] an ar-

-12-

ithmetic operator followed by an integer, to modify each result

by the specified constant before storing it in its corresponding

cell.)

The Conditional Statement

A conditional statement can also be constructed, with the
form:
| 1if {compound} {optional inequality} ||then {modifications};
or
| |if {compound} {opt. ineq.} ||then {modif.} ||else {modif.};
For example (see the Appendix for PascalPL's PASCAL output):
|1if featurei[+(0:1,0:-1)] * featurej[+(1:0,-1:0)] > 11
| lthen labeli+19, labelj*2, labelk-33
|lelse 1labell*2, labelm+27;

The conditional statement first computes the compound (for
each «cell 1in the arrays). Then, if an inequality is specified,
it tests it and (only when it is satisfied or, when using boolean
arrays, 1f the compound is true) makes modifications to the ar-
rays following the "||then". 1If there is also an |lelse, what
follows it 1is modified (only when the conditional fails, or is

false).

The modifications can specify an operator and an integer
(e.g. labeli+l19, indicating "add 19 to labeli", or vert#*36, to

multiply vert by 36). Reading and Writing Arrays

The two simple constructs:
| lread({arrayname}); and

| lwrite({arrayname}l);

input and output the specified array.

-] 3

Constructs that Declare Parallel Procedures

The ||procedure {procedurename};
construct must declare each procedure that contains one or more
|[lif... or |l|set... statements. (Its purpose is to signal the
PascalPL pre-processor that a parallel procedure will have to be
set up, so it can declare that procedure here, with a "forward".
This avoids any problems that might arise if the programmer used
the same name in the declarations that PascalPL uses in declaring
the temporary lists and data structures that it must use, If
these extensions were embedded in the PASCAL compiler itself this
declaration could be eliminated or, probably better, combined
with the |ldimension declaration.)

The ||dim statement declares the array-type and dimensions
of the arrays to be used in the parallel constructs that follow
in this procedure. Its shortest and simplest form is:
| 1dim;

(which declares the previously declared, or default,
dimensions and integer arrays).

Its full form is:

[ldim {arraytypelmerge from {from-setname} [{arraydimensions}]
to {to-setname} [{shrink-convergence}];

The arraytype can be & (for boolean) or * (for 1integer).
The from-setname and to-setname are optional. 1If used, they are
concatenated in front of the names of arrays in a) compounds and
in b) assignees or modifieds, respectively. (This is an option
that may be useful when sets of arrays are collected into layers

or characteristics, and if and when a feature that lets the pPro-

grammer declare and use them as arrays of records, using the PAS-

CAL "with" construct, is implemented.)
-14-

The arraydimensions must be given in the form:
[minx..maxx,miny..maxy], optionally declared boolean or integer -
e.9., [0..127,0..53 : integer]. (Note that this means the array-
type can either be declared before or within the arraydimensions.
Whichever seems more convenient and more natural will be retained
in the future.) Thus still another alternative declaration is:

l1dim [0..7,0..15 : boolean] {optional shrink};

The shrink-convergence indicates how information is con-
verged from a from-array to a to-array. For example, if it is
2,3 then the x-coordinate of a from-layer cell is divided by 2,
and the y-coordinate is divided by 3, to compute the coordinates
of the to-layer's cell. (If no shrink-convergence 1is specified
the program will use whatever was last specified. The default,
if shrink-convergence was never specified, is 1,1 - that is,

coordinates are divided by 1, so that no convergence occurs.)

An end statement: I lend;

ends the parallel procedure.

The type of border to be used when a relative location-to-
be-looked-at lies outside the array is specified by:
| Iborder := {bordertype};
where bordertype can equal 0 (for 'false"): or 1 (for 'true'); or
2 (for 'what is contained by the nearest cell within the array').

(The default condition is border = 2.)

-] 5~

Suggestions for Possible Future Extensions

As noted above, PascalPL can be simplified and improved when
it is embedded within PASCAL itself (this could have been done in
the present pre-processor, but did not seem worth the effort in a
first experimental system). The symbol table PASCAL builds up
could be used to merge the names PascalPL must declare with those
that the programmer declares (and also change names that are the
same). PASCAL could get each array's type when it 1is declared;
then PascalPL could generate the appropriate temporary arrays and
stores (but it may be bhest to limit the programmer, since there

will rarely be more than one physical hardware array present).

If declarations of dimensions, border-types, array-types and
shrink-conversion were stacked parallel blocks could be embedded,
and treated exactly like ordinary blocks (but this would violate
the capabilities of most parallel hardware). Procedures could be
generated and then called, to shorten the code (but the present
code seems more appropriate for a first experimental system,
since it makes clear exactly what serial PASCAL code must be exe-
cuted to effect each parallel PascalPL procedure). Code could be
made more efficient in several places. For example, the
temp{oraryl}store 1is often not needed; the conditional test need

be made only once; a compound could be stored immediately in TEM-

PARRAY0O when it contains only one element.

The specifications of a mask (what to look for in a set of
relative locations) could be handled with 2-dimensional masks of
the sort used by Picap. This would be especially convenient 1if

implemented as part of an interactive prompting routine. Masks
S g

should also be declarable, e.g. with ||lmask := {mask}; so that
the programmer could simply name them, and also could perform

operations on them, to transform them.

In addition, the format for declaring array-types and
shrink-convergence can be regularized, generalized, and brought
closer to standard PASCAL format. One example of a promising
version would replace the declarations:

| I[procedure {procedurename};

.

Iidim &merge from [0..15,0..32] to [2,2];
by

| Iprocedure {name} (dim 0..15,0..15 : boolean; shrink 2,2);
(Now "shrink" would be only one of a number of conversion opera-
tions the programmer might designate are to be effected, along
with, for example, "rotate" or "invert". The programmer should
probably also be given the facility to write procedures that com-
pute still other operations, and call them along with the built-

in operations.)

PascalPL could also get the dimensions of arrays £from the
programmer's declarations, so that the procedure could be de-
clared even more simply, e.g.:

| Iprocedure {procedurename} (shrink 3,4); Alternately, shrink
(and other operations) could be handled as simple assignment

statements (either with or without "|[").

The dimensions might be used to specify sub-arrays, and then
the programmer be given facilities for coding different sequences
of instructions to be executed over different sub-arrays. This

-17-

begins to give facilities for programming MIMD (Multiple-
Instruction-Multiple~Data Stream) as well as SIMD arrays. In the
extreme, the programmer could specify a sub-array of 1 cell, and
different instructions for each such (l-cell) sub-array. It 1is
not clear whether this would violate the parallel array structure
(such programs could certainly not be executed except with enor-
mous inefficiencies on actual arrays of physically parallel pro-
cessors). But it seems an interesting step toward a language for
more general networks, where the lock-step parallel processes of
the array are relaxed. And it makes clear that it 1is not the
MIMD vs. SIMD distinction that is important for efficiency in ex-
ecuting programs (as opposed to simplicity in building one pro-
gram controller to drive all processors) but rather the need to
keep all processors working for (close to) the same amount of
time (which 1is guaranteed when all processors execute the same

sequence of instructions).

A parallel version of the standard PASCAL Case statement
would probably be desirable, to handle situations where a se-
quence of embedded 'J|if..||then..' statements would otherwise be
needed. A slight extension should also be made, to allow ine-
qualities over integer values. This would, for example, handle
situations where one set of actions should bhe taken if a result
of a compounding operation exceeded some threshold, while dif-

ferent sets of actions should be taken for intervals to succes-

sively smaller next threshold(s). Therefore the Case statement
should accept 1inequalities as well as PASCAL character ("char")

symbols, e.g.:

-18-

| lcase threshold of
>57 : modify(hor+23,vert-3,tree+b);
>21 : modify(noise+7,hor-3);
>3 : modify(noise+ll,vert~7);
end {case}
This would be another step toward handling more general MIMD

processes.

A |lrepeat...|luntil...; and a ||lwhile...|ldo...; should be
introduced, along with []if...]|then...|lelse...; statements that
applied arbitrary blocks of code to the individual cells, rather
than the relatively standard and therefore close-to-equal-in-time

modifiers presently programmed.

Discussion

Again, these changes would move the language away from a
language for physically parallel arrays (and may well violate the
spirit of parallel processing on these arrays) and toward much
more general networks of processors. But if the programmer took
care to keep all eventualities relatively close in the time they
needed for execution, and appriate hardware were avallable, this
might be a good procedure for getting efficient programs. For
the 1language would handle the allocation of processors and mes-
sage passing automatically and efficiently. And the burden on
the programmer would be relatively small - to formulate the pro-
gram so that it executed through a parallel-window-like set of

processes of a size commensurate with the size of the hardware-

parallel system (which might be an array, or some other appropri-

ate network).

-19-

Should a language for parallel arrays and, more generally,
for networks, remain as an extension embedded in PASCAL? The
present and projected extensions appear to cohabit rather conge-
nially within PASCAL. PascalPLl seems surprisingly simple in the
extensions that were needed, and it makes use of standard PASCAL
in many ways. A programmer should be able to code in this mix-
ture with little interference between the two systems. And PAS-
CAL 1is useful when the programmer codes at least some processes
for a serial computer (as she/he certainly will, at least until
all the wvery difficult problems of parallel arrays and networks

are solved).

But it seems likely that the parallel aspects of computing
are of overriding importance, that we are entering a completely
new era of parallel networks of computers. We will need to
develop completely new parallel algorithms and programs; we will
find that whole new types of approaches to problems, and of prob-
lems themselves, are now amenable to attack, and invite attack.
At some point, possibly quite soon, entirely new languages will
be called for. But it seems best to move toward new languages by
first extending those that exist, and also trying to combine the
features of different types of languages that appear to be
relevant (e.g. APL, array languages like Picap's PPL and Clip's
CAP4 [Wood, 19771, and multi-processor languages like Concurrent

PASCAL and Modula). These endeavours, along with the continuing

design or and experience with arrays and networks, should give us
the understanding needed to develop entirely new and more ap-

propriate languages.

-20-

Presently Implemented Options to PascalPL Constructs

A number of optional formats are presently allowed, so that,
in this experimental version, they can be compared in terms of
convenience and preference. The spirit of PASCAL suggests that
optional forms not be given users. But those that prove to be
useful, and do not lead to more programming errors, might be
worth keeping.

Present options include:

1) Any number of vertical bars can identify a parallel con-
struct, e.g. 'Iset' '||lllif..lthen..]|lelse' (two bars, e.q.
| |Iset, is recomended, since this is a standard symbol for paral-
lely.

2) "|]let' can be used instead of '||set'.

3) 'amerge' or 'bmerge' or '&' or 'b' can be used to designate
boolean arrays; to designate integer arrays.
The construct [xmin..xmax,ymin..ymax : boolean] can be used
to declare a boolean (or .. : integer] for integer) array within
the dimensions, as discussed above.

4) Because (when they are implemented) a period must precede a
name of an array in an array of records, the options are given to
use ',' or '"+' or '@ to indicate that ordinary arrays are used.

5) |ldim & [0..7,0..7]; can be used instead of
|ldim &from [0..7,0..7]; and, if the desired dimensions
have previously been specified and the default condition of in-
teger arrays is desired, then it is sufficient to write:
| ldim; (which is equivalent to ||dim {integer} [{current di-
mensionsl}];) .

6) |lborder := {bordertype} is not needed;
border := {bordertype} will suffice.
But the former seems good practice, since border must be desig-
nated for the parallel array operations.

7) Similarly, flend; 1is not needed: end; will suffice.

8) A sequence of arraynames for assignment or modification (in
conditional statements) may be separated by mixtures of commas,
end-brackets, or spaces, e.g.:

| |set namel, name2, name3

FTsetnamel] hameZl, names :
| |set namel, name2 name3] named :=

9) If no arithmetic operator follows a name to be modified in a
conditional, that array is assigned the value of the expression
preceding ||then (and is therefore handled exactly as it would be
by a |lset assignment statement).

-21—

10) In assignment statements, names can be followed by arith-
metic operators and integers. But these will be taken to specify
modifications to the assigned value, rather than, as in the con-

ditional statements, as modifications to the presently stored
values,

11) The |lread(..); and ||write(..); constructs can specify
sub-arrays, e.g., |lread(image[0..3,2..7]1);. But this must be
done carefully in the present implementation, since these become
the new array dimensions, and must lie within the previous dimen-
sions.

12) |lvari {integer variables} integer; and
| lvarb {boolean variables} : boolean;
can be used as an alternative way of declaring array type.
(This should be more useful when the program is extended to han-
dle automatically the finding and using of the array's type in
determining what type of operations to perform.)

-22-

Syntax Diagrams for the PascalPL Extensions to PASCAL

parallel--=>(|)
procedure ()
<

(ure) |ifier | flist | Iblock I
() | |

-+~ (proced-)-->|ident-|-->|parameter|->|parallel|-->
|
|

parallel--->(begin)--->T dimension [—==>(;)=====m= m———— e >
block (___) | declaration | ()
I | T
e R R T o e Fomm e e o >
I I | I |
Iparallel| [parallel | [parallel | [parallel | |parallel |
|border | Jassignment| | condit- | | read | | write I
|declar- | |statement | | ional | |statement| |statement |
| ation | | | |statement]| | P |
R _ l V] | l
l l I l |
———— e > e o e) ST R D tm———— D >
-=->--]statement[---+
e I
!

i e e Fm——— >C T)==+--->("end)————- Demmm e >
l
|
l

—-23~

dimension
declaration

5| array type
i)"“‘> identifier \,

. —>| (array)
(f rom) jdentifier

R

%)

Vv Vv

\
o
\§ﬂ3:> -1 dimensions

> array type

4

v

A 4

_ @_;, shrink

gpecifications

Y

(array)
identifier

parallel

assignment . -
=
statement ——)@K —-———-—>‘-—--—>modlf1catlons —>(™| compound | >
parallel
conditional 5 E<::)—> compound
statement ; ; ;
1nteger
h @_} modifications @ < else ’ > modifications‘)
parallel

<§>

read : (array)
statement @—}- @ identifier

—> dimensions

parallel
write (array) -
statement ""X;;>“> '_"‘"><::>—">‘identifier ’<E:>€>
dimensions
parallel
end > “>‘IHIHII’-—><::>—~———>
statement
parallel
border h “9@"? border type p——>
declaration
border il .
S
-~

modifications (array)
identifier
* + = /

\
N P e

dimensions —————>1 integer %ﬂ::::)~—> integer ‘ﬁ><:>‘*> integer 9(::::}‘9 integer >

/ﬂ (variable) identifier

ﬂ (constant) identifier

integer
¢ operator |
\\ (array) ‘j»
identifier
compound =
[k N
operator relative
specifications}|—>
relative "
specifications > integer “““;<::>—4>'1nteger ‘TL ~
operator -;4 integer
<
~
operator z integer P>
() (9 %9@
~
td
array type ———————-K:iik boolean J::7T—-—%>
array type >
identifier i i
:i S >
- ~
shrink
specifieations=———=> integer ——>O >| integer |—>
parallel variable . . s
declaration identifier] type |=——>

>0 >'§

Examples of Program and Code Translated from PascalPL to PASCAL

The PascalPL Program Input to the PascalPL Preprocessor

program simple (input,output);
{the programmer must declare the array data structures used}
const

xmin = 0; xmax = 7; ymin = 0; ymax = 7;
type

xindex = xmin..xmax;

yindex = ymin..ymax;

arraytype = array [xindex,yindex] of integer;
var

arrayx Xmin, .xmax;

arrayy : ymin..ymax;
image, negative, edgedimage : arraytype;

procedure sayhello;
begin

writeln('hello');
end;

| Iprocedure demonstrate;
begin
I1dim [0..2,0..2];
| lread (image) ;
| Iwrite (image);
| lread (negative) ;
writeln('the image and the negative image have been input');
| Iset edgedimage := image - negative;
| l[write (edgedimage) ;
| |set image, negative := 0;
end;

begin {program}
sayhello;
demonstrate;
end.

The PASCAL Program OQutput for the Simple Program Above

{****STARTING READIN#**%%}
{**%*YOU MAY ASSIGN border := 0 (or 1 or 2)*x%x}
{****DEFAULT border = 2 (for self - i.e., the nearest inner border)**#*%}
{****DEFAULT arraydimensions are 0 .. 7, 0..7%%%%}
{****DEFAULT xshrink, yshrink are 1 and 1 (no shrink)#**%%}

(*INPUT1l=program simple (input,output); *)

nrooran..cinnlaofinnid Ladeaande)
£ = -k %

LR SA= =i S A iy S = i

(*INPUT2= {the programmer must declare the array data structures used} *)
{the programmer must declare the array data structures used}

(*INPUT3= const *)
const
-4

*)

(*INPUT4= xmin = 0; xmax = 7; ymin = 0; ymax = 7; *)
xmin = 0; xmax = 7; ymin = 0; ymax = 7;
(*INPUT5= type *)
type
(*INPUTG= xindex = xmin..xmax; *%)
Xxindex = xmin..xmax;
(*INPUTT7= yvindex = ymin..ymax; *)
yindex = ymin..ymax;
(*INPUT8= arraytype = array [xindex,yindex] of integer;
arraytype = array [xindex,yindex] of integer;
(*INPUT9= var *)
var
(*INPUT1O0= arrayx Xmin..xmax; *)
arrayx : xmin..xmax;
(*INPUT11= arrayy : ymin..ymax; *)
arrayy ymin..ymax;
(*INPUT12= image, negative, edgedimage : arraytype; *)
image, negative, edgedimage : arraytype;
(*INPUT13= *)
(*INPUT14= procedure sayhello; *)
procedure sayhello;
(*INPUT15= begin ¥*)
begin
(*¥*INPUT15= writeln('hello'); *)
writeln('hello');
(*INPUT17= end; ¥*)
end;
(*INPUT18= *)
(*INPUT19= ||procedure demonstrate; *)
procedure plparpll;
forward;
{** 1!!DADALTEL
procedure demonstrate;
(*INPUT20= begin *)
begin
(*INPUT21= |]dim [0..2,0..2]; *)

-5~

plparpll;
{**** DIMENSIONS ARE= 0 2 0 AR
end;
{***starting a block of PARALLEL CODE!l#%%*}
procedure plparpll;
const
xmin
Xxmax
ymin
ymax
type
xindex xmin..xmax;
yindex ymin..ymax;
temparraytype = array [xindex,yindex] of integer;

~3 we W

0
2
0
2

W

-

var
beyondborder : boolean;
partineq : char;
valueread, border, tempstore, partthresh, arrayxloc,arrayyloc,xshrink,yshr b
arrayx : xmin..xmax;
arrayy : ymin..ymax;
TEMPARRAYO, TEMPARRAY1l, TEMPARRAY2 : temparraytype;

begin
border := 2;

{#*%*%*SET NO SHRINK, so SHRINK = 1,1%%%%}
xshrink
yshrink

1;
1;

(*INPUT22= | lread (image); *)
writeln("TYPE IN INTEGERS FOR image[0.. 2, 0.. 21");
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do
begin
read (valueread);
image[arrayx,arrayy] := valueread;
writeln("[",arrayx," , ",arrayy,"1 :=",valueread);
end;
end;

(*INPUT23= | lwrite (image); *)
writeln ("ARRAY = image contains:");
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do
begin
write(image[arrayx,arrayy]:4);
end;
writeln(" ;");
end;
writeln ("™ END OF ARRAV ., ")

(*INPUT24= | lread(negative); *)
writeln("TYPE IN INTEGERS FOR negativel[O0.. 2, 0.. 21™);
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do
-Dh =~

begin
read(valueread);
negativel[arrayx,arrayy] := valueread;
writeln("[",arrayx," , ",arrayy,"] :=",valueread);

end;

end;

(*INPUT25= writeln('the image and the negative image have been input?')
writeln('the image and the negative image have been input');

D

(*INPUT26= | |set edgedimage := image - negative; ¥)
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do
begin

{ (*NO REL LOCS, SO NO BORDER TEST NEEDED*) }
arrayxloc := arrayx;
arrayyloc := arrayy;

if beyondborder = true then

TEMPARRAY1 [arrayx,arrayy] := 0
else
begin
tempstore := imagelarrayxloc,arrayyloc];
TEMPARRAY1 [arrayx,arrayy] := tempstore;
end;

TEMPARRAYO [arrayx,arrayy] :=
TEMPARRAYI1 [arrayx,arrayy];
{ (*NO REL LOCS, SO NO BORDER TEST NEEDED*) }
arrayxloc := arrayx;
arrayyloc := arrayy;
if beyondborder = true then

TEMPARRAY1 [arrayx,arrayy] := 0
else
begin
tempstore := negativelarrayxloc,arrayyloc];
TEMPARRAY1 [arrayx,arrayy] := tempstore;
end;

TEMPARRAYO [arrayx,arrayy] :=
TEMPARRAYO [arrayx,arrayy]
- TEMPARRAY1 [arrayx,arrayy];

end;
end;
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do
begin

edgedimage[arrayx div xshrink,arrayy div yshrink] :=
TEMPARRAYO [arrayx,arrayy];

end;
end;
(*INPUT27= | lwrite(edgedimage); *)
writeln("ARRAY = edgedimage contains:");
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do

-27 -

begin
write(edgedimage[arrayx,arrayyl:4);
end;
writeln(" ;");
end;
writeln (" END OF ARRAY.");

(*INPUT28= | |set image, negative := 0; *)
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do
begin
TEMPARRAYO [arrayx,arrayy] := 0;
end;
end;
for arrayx = 0 to 2 do
begin
for arrayy := 0 to 2 do
begin

imagelarrayx div xshrink,arrayy div yshrink] :=
TEMPARRAYO [arrayx,arrayy];
negative[arrayx div xshrink,arrayy div yshrink] :=
TEMPARRAYQ [arrayx,arrayyl;
end;
end;

(*INPUT29= |lend; *)
end; {END OF PARALLEL BLOCK= 1}

(*INPUT30= ¥*)

(*INPUT31= begin {program} *)
begin {program}

(*INPUT32= sayhello; *)
savhello;
(*INPUT33= demonstrate; *)

demonstrate;

(*INPUT34= end. *)
end.

(*INPUT35= *)

(*INPUT36= *)

{****READIN HAS FINISHED,**%%}

-28 -

PASCAL code follows for the following two PascalPL
statements:

| |set cross := vert[+(0:0,0:2,0:-2)] * hor[+(0:0,2:0,-2:0)];
| Iset featurei, featurej, labelk
:= featurem[* (4:-3%2>5,-5:7*%3>14,0:0%21>112)1];

(*INPUTX= | lset cross := vert[+(0:0,0:2,0:-2)] * hor[+(0:0,2:0,-2:
{****ASSTGNMENT STATEMENT HANDLED HERE,**%%}
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do
begin

arrayxloc := arrayx + 0;

arrayyloc := arrayy + 0;
{ (**KEEPS IT IN BOUNDS!*%*)}

beyondborder := false;

if arrayxloc < 0 then beyondborder := true;
if arrayxloc > 2 then beyondborder := true;
if arrayyloc < 0 then beyondborder := true;
if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then
TEMPARRAY1 [arrayx,arrayy] := 0
else
begin
tempstore := vertl[arrayxloc,arrayyloc] * 1;
TEMPARRAY1 [arrayx,arrayy] := tempstore;
end;
arrayxloc := arrayx + 0;
arrayyloc := arrayy + 2;
{ (**KEEPS IT IN BOUNDS!*%*)}
beyondborder := false;
if arrayxloc < 0 then beyondborder := true;
if arrayxloc > 2 then beyondborder := true;
if arrayyloc < 0 then beyondborder := true;
if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then
TEMPARRAY2 [arrayx,arrayy] :=
0 + TEMPARRAY1 [arrayx,arrayy]
else
begin
tempstore := vertlarrayxloc,arrayyloc] * 1;
TEMPARRAY2 [arrayx,arrayy] :=
TEMPARRAYL [arrayx,arrayy]
+ tempstore;
.;.Jr..- LJULJCL 2 Lllcll
if TEMPARRAY2[arrayx,arrayy]l] > 1 then
TEMPARRAY2 [arrayx,arrayy] := 0;
end;

arrayxloc := arrayx + 0;
arrayyloc := arrayy + =-2;
{(**KEEPS IT IN BOUNDS!*%*)}
beyondborder := false;
-29-

if arrayxloc < 0 then beyondborder := true;

if arrayxloc > 2 then beyondborder := true;

if arrayyloc < 0 then beyondborder := true;

if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then

TEMPARRAY1 [arrayx,arrayy] :=

0 + TEMPARRAY2[arrayx,arrayy]
else
begin
tempstore := vertlarrayxloc,arrayyloc] * 1;

TEMPARRAY1 [arrayx,arrayy]l :=
TEMPARRAY2[arrayx,arrayy]
+ tempstore;
if border < 2 then
if TEMPARRAY1[arrayx,arrayy]l > 1 then
TEMPARRAY1 [arrayx,arrayy] := 0;
end;
TEMPARRAYO [arrayx,arrayy] :=
TEMPARRAY1 [arrayx,arrayyl;
arrayxloc := arrayx + 0;
arrayyloc arrayy + 0;
{ (**KEEPS IT IN BOUNDS!**)}
beyondborder := false;

I

if arrayxloc < 0 then beyondborder := true;
if arrayxloc > 2 then beyondborder := true;
if arrayyloc < 0 then beyondborder := true;
if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then
TEMPARRAY1 [arrayx,arrayyl] := 0
else
begin
tempstore := hor[arrayxloc,arrayyloc] * 1;
TEMPARRAY1 [arrayx,arrayyl := tempstore;
end;
arrayxloc := arrayx + 2;
arrayyloc := arrayy + 0;
{ (**KEEPS IT IN BOUNDS!*¥*)}
beyondborder := false;
if arrayxloc < 0 then beyondborder := true;
if arrayxloc > 2 then beyondborder := true;
if arrayyloc < 0 then beyondborder := true;
if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then
TEMPARRAY2 [arrayX,arrayyl :=
0 + TEMPARRAYl[arrayx,arrayy]
else
begin
tempstore := horlarrayxloc,arrayyloc] * 1;

TE;’;WRAYZ{GLLOYA,GLLGIYY} °

TEMPARRAY1 [arrayx,arrayyl
+ tempstore;
if border < 2 then
if TEMPARRAY2[arrayx,arrayyl > 1 then
TEMPARRAY2 [arrayx,arrayyl := 0;
end;
arrayxloc := arrayx36 -2;

arrayyloc := arrayy + 0;
{ (**KEEPS IT IN BOUNDS!*%*)}
beyondborder := false;

if arrayxloc < 0 then beyondborder := true;

if arrayxloc > 2 then beyondborder := true;

if arrayyloc < 0 then beyondborder := true;

if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then

TEMPARRAY1 [arrayx,arrayy] :=

0 + TEMPARRAY2[arrayx,arrayy]

else

begin

tempstore := horl[arrayxloc,arrayyloc] * 1;

TEMPARRAY1 [arrayx,arrayy] :=
TEMPARRAY2[arrayx,arrayy]
+ tempstore;
if border < 2 then
if TEMPARRAYl[arrayx,arrayy] > 1 then
TEMPARRAY1 [arrayx,arrayy] := 0;
end;
TEMPARRAYO [arrayx,arrayy] :=
TEMPARRAYO [arrayx,arrayy]
*¥ TEMPARRAY1 [arrayx,arrayy];

end;
end;
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do
begin

crosslarrayx div xshrink,arrayy div yshrink] :=
TEMPARRAY(O [arrayx,arrayyl;
end;
end;

(*INPUTyl= | |set featurei, featurej, labelk *)
{****ASSTGNMENT STATEMENT HANDLED HERE,**%*%}

(*INPUTy2= := featurem([* (4:-3%2>5,-5:7%3>14,0:0%21>112)]; *)
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do

begin
arrayxloc := arrayx + 4;
arrayyloc := arrayy + =-3;
{ (**KEEPS IT IN BOUNDS!*%)}
beyondborder := false;

if arrayxloc < 0 then beyondborder := true;
if arrayxloc > 2 then beyondborder := true;
H—arrrayytee g—+then—beyondborder—r=—=%truey
if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then
TEMPARRAY1 [arrayx,arrayy] := 0
else
begin
tempstore := featurem[arrayxloc,arrayyloc] * 2;
if not (tempstore > 5) then

-3]-

tempstore := 0;
TEMPARRAY1 [arrayx,arrayy] := tempstore;

end;
arrayxloc := arrayx + -5;
arrayyloc := arrayy + 7;

{ (**KEEPS IT IN BOUNDS!*%*)}
beyondborder := false;

if arrayxloc < 0 then beyondborder := true;
if arrayxloc > 2 then beyondborder := true;
if arrayyloc < 0 then beyondborder := true;

if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then
TEMPARRAY2[arrayx,arrayy] :=
0 * TEMPARRAYl[arrayx,arrayy]

else
begin
tempstore := featuremfarrayxloc,arrayyloc]
if not (tempstore > 14) then
tempstore := 0;
TEMPARRAYZ2 [arrayx,arrayy] :=
TEMPARRAY1l [arrayx,arrayy]
® tempstore;
if border < 2 then
if TEMPARRAY2[arrayx,arrayy] > 1 then
TEMPARRAY2[arrayx,arrayy] := 0;
end;
arrayxloc := arrayx + 0;
arrayyloc := arrayy + O0;
{ (**KEEPS IT IN BOUNDS!*%*)}
beyondborder := false;

if arrayxloc < 0 then beyondborder := true;

if arrayxloc > 2 then beyondborder := true;

if arrayyloc < 0 then beyondborder := true;

if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then

TEMPARRAY1 {arrayx,arrayy] :=

0 * TEMPARRAY2[arrayx,arrayy]

else

begin

tempstore := featurem[arrayxloc,arrayyloc]

if not (tempstore > 112) then
tempstore := 0;
TEMPARRAY1 [arrayx,arrayy] :=
TEMPARRAY2[arrayx,arrayy]
* tempstore;
if border < 2 then
if TEMPARRAYl[arrayx,arrayy] > 1 then
TEMPARRAY1 [arrayx,arrayy] := 0;
end;

21;

TEMPARRAYQ [arrayx,arrayy] :=
TEMPARRAY]1 [arrayx,arrayy];

end;
end;
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do

-32~

begin
featureif[arrayx div xshrink,arrayy div yshrink]
TEMPARRAYO [arrayx,arrayyl;
featurejlarrayx div xshrink,arrayy div yshrink]
TEMPARRAYO [arrayx,arrayy];
labelk[arrayx div xshrink,arrayy div yshrink] :=
TEMPARRAYO [arrayx,arrayy];
end;

]

end;

An Example of PascalPL Output for a Simple Conditional Statement

The following shows the PascalPL conditional statement
(labeled INPUTz), and then the PASCAL code output by PascalPL, for:

[1if featurei[+(0:1,0:-1)] * featurej[+(1:0,-1:0)] > 11
| [then labeli+19, labelj*2, labelk-33
| lelse labell*2, labelm+27;

(*INPUTzl= |1if featurei[+(0:1,0:-1)] * featurej[+(1:0,-1:0)] > 11
{IF STATEMENT BEING HANDLED HERE. }
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do
begin

arrayxloc := arrayx + 0;
arrayyloc := arrayy + 1;
{ (**KEEPS IT IN BOUNDS!*%*)}
beyondborder := false;

if arrayxloc < 0 then beyondborder := true;
if arrayxloc > 2 then beyondborder := true;
if arrayyloc < 0 then beyondborder := true;
if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then
TEMPARRAY1 [arrayx,arrayy] := 0
else
begin
tempstore := featureilarrayxloc,arrayyloc] * 1;
TEMPARRAY]1 [arrayx,arrayy] := tempstore;
end;
arrayxloc := arrayx + 0;
arrayyloc := arrayy + -1;
{ (**KEEPS IT IN BOUNDS!*%*)}
beyondborder := false;
if arrayxloc < 0 then beyondborder := true;
if arrayxloc > 2 then beyondborder := true;
if arrayyloc < 0 then beyondborder := true;
1f arrayyloc > 2 then beyondborder := true;
if beyondborder = true then
TEMPARRAY2 [arrayx,arrayy] :=
0 + TEMPARRAYl [arrayx,arrayy]
else
begin
tenpstore := featureilarrayxloc,arrayyloc] * 1;

~33-

TEMPARRAY2 [arrayx,arrayyl :=
TEMPARRAY1 [arrayx,arrayy]
+ tempstore;
if border < 2 then
if TEMPARRAY2[arrayx,arrayy] > 1 then
TEMPARRAY2 [arrayx,arrayy] := 0;
end;
TEMPARRAYO [arrayx,arrayy] :=
TEMPARRAY2 [arrayx,arrayy];
arrayxloc := arrayx + 1;
arrayyloc := arrayy + 0;
{ (**KEEPS IT IN BOUNDS!**)}
beyondborder := false;

if arrayxloc < 0 then beyondborder := true;
if arrayxloc > 2 then beyondborder := true;
if arrayyloc < 0 then beyondborder := true;
if arrayyloc > 2 then beyondborder := true;

if beyondborder = true then

TEMPARRAY1 [arrayx,arrayy] := 0
else
begin
tempstore := featurejlarrayxloc,arrayyloc]
TEMPARRAY1 [arrayx,arrayy] := tempstore;
end;
arrayxloc arrayx + -1;

arrayyloc := arrayy + 0;
{(**KEEPS IT IN BOUNDS!*%)}

beyondborder := false;

if arrayxloc < 0 then beyondborder := true;

if arrayxloc > 2 then beyondborder := true;

if arrayyloc < 0 then beyondborder := true;

if arrayyloc > 2 then beyondborder := true;
if beyondborder = true then

TEMPARRAY2 [arrayx,arrayy] :=

0 + TEMPARRAYl [arrayx,arrayy]

else

begin

tempstore := featurejlarrayxloc,arrayyloc]

TEMPARRAY2 [arrayx,arrayy] :=
TEMPARRAY1 [arrayx,arrayy]
+ tempstore;
if border < 2 then
if TEMPARRAY2[arrayx,arrayy] > 1 then
TEMPARRAY2[arrayx,arrayy] := 0;
end;
TEMPARRAYO [arrayx,arrayy] :=
TEMPARRAYO [arrayx,arrayy]
* TEMPARRAY2[arrayx,arrayy];

end;
end;
(¥ INPUTz2= | Ithen labeli+19, labelj*2, labelk-33 *)
for arrayx := 0 to 2 do
begin
for arrayy := 0 to 2 do
begin

-34-

(*INPUTz3=

end;

if

if

if

else

end;

(**modify if found greaterthan value*#)
(TEMPARRAYO[arrayx,arrayy] > 11) then
labelifarrayx div xshrink,arrayy div yshrink]
labelifarrayx div xshrink,arrayy div yshrink]
(**modify if found greaterthan value*¥%)
(TEMPARRAYOQO[arrayx,arrayy] > 11) then
labeljlarrayx div xshrink,arrayy div yshrink]
labeljlarrayx div xshrink,arrayy div yshrink]

[lelse labell*2, labelm+27; *)
(**modify 1f found greaterthan value**)
(TEMPARRAYO[arrayx,arrayy] > 11) then
labelk[arrayx div xshrink,arrayy div yshrink]
labelk[arrayx div xshrink,arrayy div yshrink]

(**else do the following:*¥)
labell[arrayx div xshrink,arrayy div yshrink]
labell[arrayx div xshrink,arrayy div yshrink]
(**else do the following:*%)
labelm[arrayx div xshrink,arrayy div yshrink]
labelm[arrayx div xshrink,arrayy div yshrink]

*

19;

33;

27 ;

-35-

anon, advertising brochure and personal communication,
Aerospace, Akron, Ohio, 1979.

Batcher, K.E., STARAN parallel processor system hardware, Proc.
AFIPS Wational Computer Conf., 1974, 43, 405-410. T

Brinch Hansen, P., Operating System Principles, Englewood-Cliffs:
Prentice-Hall, 1973.

Douglass, R.J., Extensions to PASCAL for parallel image process-—
ing, paper presented at Workshop on Higher-Level Languages
for Image Processing, Windsor, England, June, 1979.

Duff, M. J. B., CLIP4: a large scale integrated circuit array
parallel processor, Proc. IJCPR-3, 1975, 4, 728-733.

Duff, M. J. B., Review of the CLIP image processing system, Proc.
National Computer Conf., 1978, pp. 1055-1040. T

Duff, M.J.B., Final Report on Workshop on Higher-Level Languages
for Image Processing, University College London, 1979,

Flanders, P.M., Hunt, D.J., Reddaway, S.F., Parkinson, D., Effi-
cient high speed computing with the Distributed Array Pro-
cessor, In: High Speed Computer and Algorithm Organization,
New York: Academic Press, 1977, pp. 113-128.

Fung, L., A massively parallel processing computer. In: High
Speed Computer and Algorithm Organization, Kuck, Lawrie and
Someh, Eds., New York: Academic Press, 1977.

Gudmundsson, B., An interactive high-level language system for
picture processing, Paper presented at Conference on
Higher-Level Languages for Image Processing, Windsor, Eng-
land, June, 1979.

Ison, Unpublished paper on extensions to PASCAL for parallel net-
works, Univ. of Virginia, 1977.

Iverson, K.E., A Programming Language, New York: Wiley, 1962,

Jensen, K. and Wirth, N., PASCAL User Manual and Report (Second
Edition), Berlin: Springer-vVerlag, 1975.

Kruse, B. The PICAP picture processing laboratory, Proc. IJCPR-
3, 1975, 4, 875-881.

Kruse, B. GExperience with a picture processor in pattern recog-
nition processing, Proc. National Computer Conf., 1978.

Goodyear-

Lawrie, D.H., Layman, T., Baer, D. and Randal, J.M., GLYPNIR - a
programming language for ILLIAC IV, CACM, 1975, 18, 157-
154,

Levialdi, S., Maggiolo- Schettini, A., WNapoli, M, and Uccella,
G., PIXAL: a high level language for image processing,
working paper, Japan-U.S. Seminar on Real-Time Parallel Im-
age Analysis and Recognition, 1978.

Perrott, R. and Stevenson, D., ACTUS - a language for SIMD ar-
chitectures, Proceedings of the 1978 LASL Workshop on Vec-
tor and Parallel Processors, Los Alamos, 1978, pp. 212-218.

Preston, X., Image manipulative languages: a preliminary survey,

paper—presented gt WOrksShop on Higher-Level Languages for
Image Processing, Windsor, England, June, 1979.

Reddaway, S.F., DAP - a flexible number cruncher, Proceedings of
the 1978 LASL Workshop on Vector and Parallel Processors,
Los Alamos, 1978, pp. 233-23174.

Reeves, A.P., An array processing system with a Fortran-based
realization, Computer Graphics and Image Processing, 1979,
9, 267-281.

-36-

Schmitt, L., Unpublished paper on parallel languages for dgeneral
networks, Univ. of Wisconsin, 1979.

Sternberg, S.R., Cytocomputer real-time pattern recognition, pa-
per presented at Eight Pattern Recognition Symposium, Na-
tional Bureau of Standards, April, 1978.

Travis, L., Honda, M., LeBlanc, R. and Zeigler, S., Design ra-
tionale for TELOS, a PASCAL based AI language, ACM SIGPLAN,
1977, 12, no. 8, A7-764,

Uhr, L., A language for programming scene description and pattern
recognition systems on a parallel array computer, paper
presented at Workshop on Higher-Level Languages for Image
Processing, Windsor, England, June, 1979. (also U. Wiscon-
sin Comp. Sci. Dept. Tech Rept. 354)

Wirth, N., Design of a PASCAL compiler, Software: Practice and
Experience, 1971, 1, 309-333.

Wirth, N., Toward a discipline of real-time programming, Comnm.
ACM, 1977, 20, 577-583. o

Wood, A., CAP4 Programmers Manual, University College London, Im-
age Processing Group, 1977.

-37 -

