THE FORMAL DESIGN AND ANALYSIS OF
DISTRIBUTED DATA-PROCESSING SYSTEMS

by

P—R.,—Fitzwater

L LG W

Computer Sciences Technical Report #361

August 1979

The Formal Design and Analysis of
Distributed Data-Processing Systems

D. R. Fitzwater

ABSTRACT

This is the final report on ABMDSC-ATC-P Contract
DASG60-76-C—-0080, Mod. P00007 covering the period of
May, 1978 to June, 1979. This work consists of the
following major tasks:

a) To define a required set of formal properties

for any distributed system specification language.
b) To analyze the Requirements Engineering and
Validation System (REVS) for these properties.

c) To find a way to extend REVS for these properties.

d) To participate in the ongoing design experiments

on distributed real-time systems.

The results of this work make possible the extension
of REVS to the practical specification of distributed real-
time systems and the automatic generation of simulation
models from the specifications. In addition, new modes of
distributed simulation of distributed systems are developed.
A classification of real-time systems based on test simpli-

fication is also proposed.

TABLE OF

CONTENTS

Executive Overview
1.1 Problem. . . . « &
1.2 Approach.
1.3 Results « &

1.4 Recommendations . .

Introduction
2.1 Background.

2.2 Research Plan . . .

Formal Properties (RR-1)

3.1 1Initial Properties.

3.2 Performance Attributes.

L

3.3 Distributed Simulation/Emulation.

3.4 Real=-time Testing .

3.5 Conclusions

RSL Analysis (RR-2)
4.1 Property Defintions
4.2 RSL Property Tests,

4,3 Conclusions

MRSL Design (RR-3)

5.0 MRSL Semantics., . .

[

5.1 Generatlon or MRobL sStructures

5.2 MRSL Examples . . .
5.3 MRSL Simulation ., .

5.4 Conclusions « « o =

«137
.147
.162

6. DDP Experiments (RR-4)
6.1 Introduction . « « « o = <« @
6.2 CS-1 DPR Development . . . -
6.3 Analysis « « o « o« o o o o o

6.4 ConclusionsS. « « o o o o s o

Appendices
A ° MRSIJ EXamPl es ° a ° o L] ° o °
B. Cs_l DPR. L] L2 o ° L] ° L L3 o L]

C. Egui-Phase Simulation Example

-164
-164
.168

.181

.183
.206

256

1. EXECUTIVE OVERVIEW

This section is intended as a brief summarization of this
report and a listing of the major conclusions. This work was
done under the continuation of the ABMDSC-ATC-P Contract
No. DASG60-76-C-0080, Mod. P00007 during the period from 8
May 1978 to 30 June 1979. This report is the final report on

the work of this contract.

1.1 The Problem

The RSL/REVS requirements methodology was developed to
support specification of large-scale real-time control system
requirements in the context of large centralized computer
systems. Since that development there has been a growing
realization that distributed computing systems offer some
important possibilities as well as some new and not well
understood complications. The extension of the previous
centralized development methodologies to distributed systems
is not simple and many techniques do not work at all.

Our previous work on a formalization of distributed system
development led to a number of important properties that a
distributed system specification should have in order to simplify

the development problems. These properties also support

significant extensions to current development tools,

This current work is an attempt to modify the RSL/REVS
methodology to satisfy these required properties and to support
the new tools for distributed system design.

The Advanced Technology Center has an ongoing set of
experiments in distributed design that provide an opportunity
to apply and test the proposed REVS modifications. We will use
those experiments to validate this work to the extent possible

in the contract period.

1.2 The Approach
The research plan is presented in detail in section 2, The
work was factored into the following tasks:
RR-0 Research Plan (CLN 6),
RR-1 Formal Properties (SOW 3.1),
RR-2 RSL Analysis (SOW 3.2),
RR-3 MRSL Design (SOW 3.3),
RR-3.1 MRSL Semantics,
RR-3.2 MRSL Implementation,
RR-3.3 MRSL V & V Examples,
RR-4 DDP Experiments (SOW 3.4),
RR-4,1 Develop DDP Example,

RR~4.2 Analyze DDP Example,

The planned abproach was followed closely:” The only major
departures were in the implementations. The time and level of
effort did not permit the actual modifications and extensions of
the production RSL/REVS system to be done. Their nature and
feasibility were instead demonstrated and validated by worked

out prototype examples actually run on REVS,

1.3 The Results
The results of carrying out this research plan are summarized
as follows:
RR~-0 Research Plan (CLN 6),
The research plan is given in section 2, and was quite
successful, A way to extend RSL/REVS for distributed
system specifications with the required formal
properties was found and demonstrated.
RR-1 Formal Properties (SOW 3,1),
The required formal properties were developed and defined
in section 3. Their extension to certain types of
performance attributes led to the design of some new
models of distributed simulators/emulators that are
capable of highly parallel execution, with resulting

efficiency for distributed systems. A prototype design

and—implementation—of-one-of-these;—an—"equi-phase"™—

multi-tasking simulator/emulator, was developed and

tested with a non-trivial example system specification.
A classification of real-time systems based on
simulation and testing efficiency was developed. This
work was incomplete, but indicates a way to simplify
the testing of real-time designs, while improving the
reliability of the results.
RR-2 RSL Analysis (SOW 3.2),
The RSL/REVS system was analyzed for the formal properties

as described in section 4, Since it was designed with

.
... I}

other—goals—in—mind,—itis-not surprising that most of
the properties did not hold for it.

RR-3 MRSL Design (SOW 3.3),
The results of this work are given in section 5. The
required modifications to RSL/REVS in order to specify
and simulate asynchronously interacting processes are
minor. The major additions are a standard run-time
simulation package to support a re-~interpretation of the
interface concepts of RSL, and a new source language
translator to the old RSL form. A prototype example of
a distributed system specification in MRSL and the run
time simulation package were developed and run on REVS.
The sdurce language translator is described in terms of

phrase mappings into RSL equivalents.

ﬁ£:4 bDP Experiments (sow 3.4),
The CS-1 DDP experiment was selected and a DPR for it
in terms of asynchronously interacting processes was
developed. A sample system specification in the same
form was hand translated to an equi-phase multi-tasking
program and simulated on the equi-phase simulator/
emulator. Some of the CS-1 DPR processes were analyzed
(by hand) in terms of the equivalent MRSL type R~-Nets.,

These results are given in section 6.

1.4 The Recommendations
The results of this work can be summarized in the recommendations

of this section.

1.4.1 RSL Modifications

If RSL/REVS is to be extended to the specification and analysis
of distributed systems, it should be carried out by designing and
implementing the following:

a. An AIP~type source language.

b. A translator to equivalent R-Net form,

c. Standard simulation packages for modeling the modified

concept of "interface" in RSL. There would be a package

for each mode of simulation/emulation.

d. Additional formal analysis tools for the design data base.
The chacterization and prototype design of the above components

is given in this report.

1.4.2 Distributed Simulation
The work reported in section 3 opens the way for the
generalization of the conventional concepts (linearized event

calendar) of discrete simulation to truly distributed simulator/

emulators of asynchronously interacting processes. Such distributed

simulators can be much more efficient in studying distributed
systems than are the conventional ones.

The development of a hierarchy of process simulation/
emulation models suitable for use at the DPR level should be
continued to provide more analysis tools for a designer than

the conventional simulator.

1.4.3 Real-Time Design

The theoretical work in section 3 may also be extended to
provide formal (and testable) sufficient properties for real-time
systems that will greatly simplify their testing and allow a
designer to avoid unnecessary complications. The presence of
such properties will also vastly improve the efficiency of
simulations.

Theorems based on this work could be used to ensure that the
many and subtle errors freguently introduced into designs and
simulations due to the parallelism would be avoided,

We believe that Ffurther work in this area would be quite
fruitful and that it should be pursued vigorously. The potential

benefits in this very troublesome area are enormous.

-8-

1.4.4 Designer's Workbench

Long experience with the development of programs has led to
the design of many tools to assist in producing and checking
programs. Their collection and integration into development
systems such as "the programmer's workbench” incorporated in the
UNIX operating system can greatly facilitate programmer
productivity. System designers, on the other hand, have had to
do without such syntactic and semantic tools, and make do only
with data base management tools for documentation and report
generation. Even the simulation models for the specified systems
were independently programmed with little assurance of consistency
with the source specification.

The formal specification methodology developed in this and
the preceding reports makes it possible to create (analogously)
an integrated "system designer's workbench" that can be used to
support distributed real-time system development.

The design of large-scale distributed systems is also a
distributed process, and these same techniques can be used in
the workbench design for implementation on networks. Because of
the specialized nature of this workbench, it can be implemented

even on small computers.

The development of a designer's workbench is a direct attack

on the life cycle costs and unreliability of large-scale real—-time

distributed system development processes.

The required investments are relatively trivial in obtain-
ing a working prototype that could be used in real design experiments.
Such a system would also provide a common basis for evolutionary
development of new tools and methodology based on design experience.
The potential payoffs are enormous and this approach deserves
a trial. We have completed all of the theoretical work, and have
started to build a "bootstrapping" prototype using the UNIX

facilities. We believe that this work should be completed and

tested.

] Q=

2. Introduction

2.1 Background

This document represents the Final Report for
the period beginning on 8 May 1978 of the continuation of
BMDSC-ATC Contract No. DASG60-76-C-~0080, Mod. P00007. A
detailed outline of the research plan and the current status
of the research is given in section 2. The main effort falls
into two broad areas as detailed in sections 3-5. The first
is to define a set of formal properties applicable to any
systems specification language (section 3) and to analyze the
Requirements Engineering and Validation System (REVS) software,
especially the Requirements Statement Language (RSL) for these
properties (section 4). The second is to find ways to extend
or modify RSL/REVS so that the formal properties hold true for
the extended or modified language (section 5). Since so much
of the plan is devoted to a study of REVS software we provide

an overview of the organization and intended use of that system.

2.1.1 Requirements Specification Language (RSL)
RSL is a language for entering, modifying, or deleting
information in a data base, called the Abstract System Se-

mantic Model, or ASSM (see [MD]). Information consists of

[MD] Dyer, Margaret E., et al. REVS Users Manual (SREP
Final Report Volume II). TRW Defense and Space
Systems Group, August, 1977.

-11-

"elements," "attributes of elements," and "relationships”
between elements, where the quoted words are reserved in

RSL, each corresponding to a set of types. For example,
"data" and "contains" are individual types of element and
relationship, respectively. (The meanings of these words
generally conform to ordinary usage, as with "data" and
"contains.") The element type "R-Net" is essentially a
simulatable control structure constructed from other element
types, notably "alphas," each of which has a Pascal procedure
executable during R-Net simulation. However, some other
element types as well as attribute and relationship types

are for the purposes of clarifying, documenting, cross-
referencing, and testing specifications and do not affect

the simulation of R-Nets at all. Examples include "originat-
ing requirement," "documents" (a relationship type), and
"description" (an attribute type).

R-Nets have formally conventionalized pictorial repre-
sentations as exemplified by Figure 2-1. (Note that alphas
are denoted by rectangles in the figure.) R-Nets may receive
information as messages through input interfaces from drivers
(Pascal procedures defined externally to RSL, but necessary
for the simulation of R-Nets); likewise, they may pass in-
formation through output interfaces to drivers. Both types
of interfaces are denoted by hexagons in Figure 2-1 with
input interfaces at the top and output interfaces at the

bottom of R-Nets. Flow of control is illustrated by arrows

-12-

SIMULATION EXECUTIVE

N\

EVENT CALENDAR

DRIVER
PROCEDURES

SUBSYSTEM

MODEL 1

SUBSYSTEM
MODEL

N\

SIMULATION EVENT |-

- MANAGER
. SIMULATION DATA|_
- MANAGER

R-NET
PROCEDURES

R_NET,

Figure 2-1.

R_NET

Components in Simulator Produced by SIMGEN
(Fig. 7-1 of [MD])

connecting nodes. Messages passing through interfaces as
well as the data and files which constitute messages are
declared in RSL, of course. RSL is also used to define

the input to alphas and the output from them. For a more

detailed explanation of RSL see [MD], section 3.

2.1.2 Reqguirements Engineering and Validation System (REVS)
As we have already mentioned, R-Nets as defined in RSL
cannot be simulated in isolation by REVS, since drivers (Pascal
routines provided externally to RSL) are necessary to receive
messages from the R-Nets and to generate messages for them.
(Drivers are intended to simulate events in the real external
world.) Passing of a message to a driver or to an R-Net
causes the REVS simulation executive to schedule an activation
of the respective driver or R-Net on the event calendar (see
Figure 1-2). The simulation data manager is responsible,
among other things, for the actual passing of messages back
and forth between the driver procedures on the left side and
the R-Net procedures on the right side. The four rectangles
representing the simulation routines in the middle are pro-
vided by REVS and are influenced only indirectly by R-Nets
and drivers through special language constructs and pre-
defined procedures. For example, events cannot be examined
or removed from the event calendar by user code. In other
words then most of the operation of the REVS simulation soft-
ware is transparent to the user.

some facts about simulation time in REVS are pertinent

-14~

v

‘ REQUEST
<%ROM DEVIC%> DEVICE-DATA
A
\
DETERMINE TO-DEVICE

MESSAGE-TYPE

/T TYPE_MESSAGE
'FAILURE'
OTHERWISE
;\
N\
N e~ STORE_ EXAMINE_
= FACTOR_DATA FACTORS
AN RANGE
h SAFE NP —
TO_NURSES_ \
STATION
TELL_NURSE
OF FACTORS
N\

TO_NURSES_
STATION

Figure 2-2. Example R-Nets (Fig. 6 of [Al]

[A1] Alford, Mack W. "A Requirements Engineering Method-
ology for Real-Time Processing Requirements." Trans. Soft
Eng. SE-3, January 1977.

-15-

to much of our later discussion. For example, in terms of
simulation time R-Nets and drivers are evaluated instantaneous-
ly. However, R-Nets may activate other R-Nets with a delay
in simulation time, yet R-Nets activated in such a way can
never receive messages but only send them. Note that an
R-Net can schedule an arbitrary number of drivers (one per
message output), but drivers, once activated, can schedule
R-Nets at any arbitrary time afterwards. They can also
schedule driver events by means of a special user-defined
exogenous event routine. 1In section 5 we outline a new
interpretation of message passing in RSL/REVS consistent
with our definitions of asynchronously interacting processes.
We will now summarize by briefly mentioning the software
packages that can be called within REVS via its own executive
language. These are illustrated in Figure 2-3 in the approxi-
mate order in which they would typically be used in develop-
ing and testing a set of specifications and requirements.
First one builds a data base with the RSL package and then
analyzes it for inconsistencies, omissions, and other errors
with the Requirements Analysis and Data Extraction (RADX)
package. RSL and RADX may be used jointly any number of
times until the desired data base is achieved. After drivers
and their related procedures and declarations are written
one can then call the Simulation Generation (SIMGEN) function
of REVS. The SIMGEN function generates a Pascal simulation

by inserting user code, appropriately transformed as necessary,

~16—

USER
INPUT

REVS
EXECUTIVE

RSL

RSL

TRANSLATION
FUNCTION
RADX REQUIREMENTS
CONTROL ANALYSTS AND DATA
EXTRACTION
(RADX) FUNCTION
SIMGEN SIMULATION
CONTROL GENERATION
(STMGEN)
FUNCTION
SIMXQT STMULATION
CONTROL EXECUTION
(SIMXQT)
FUNCTION
STMULATION
gg¥g§OL DATA ANALYSIS
(SIMDA)
FUNCTION
LANGUAGE RSL
EXTENSION EXTENSION
(RSLXTND)
FUNCTION

Figure 2-3. Functions Available to REVS Users

(Figure 4-1 of [MD])

-17-

into a host program. Errors may, of course, be detected at

this point, especially during compilation of the resulting
Pascal program. When errors have been removed to the designer's
satisfaction he may proceed with actual simulation. Upon
invocation of the Simulation Execution (SIMXQT) function of

REVS the simulation program is executed and output data from
the program is stored for use by a subsequent analysis function.
This analysis is performed by the Simulation Data Analysis
(sIMDA) function of REVS, All of the REVS functions may be
used again on any subsequent specifications as the designer
produces more detailed or complete approximations to his
desired end product. For a much more thorough description of

REVS software see [MD].

~18-

2.2 Research Plan

The following outline was the basis for the major
portion of a presentation on August 3rd for the Distributed
Data Processing Review conference held at Treasure Island,

Florida.
2.2.1 RR-0 Research Plan (CLN 6)

2.2.1.1 Requirement
The Contractor shall submit a program plan for
meeting the research requirements added by this
modification. The said program plan shall be
submitted to the Government within two (2) months

from the effective data hereof.

2.2.1.2 Current Status
The research plan was completed and presented to
the Government July 10 and 11, 1978. Section 2.2

contains a brief discussion of the resulting plan.
2.2.2 RR-1 Formal Properties (SOW 3.1)

2.2.2.1 Reguirements
The Contractor shall define and document the first-
order set of specification properties that provide
—————————for the precise specification—of DDP-systems
These properties shall be consistent with the
results from previous research but extended as
required through findings during this contract

period.
-19-

2.2.2.2 Objectives

* Revise formal specification properties to improve
their usefulness in supporting development
methodologies and to simplify their application

* Extend the formal properties to include
practical performance attributes required for
dynamic analysis

* Develop algorithms for testing properties in

the modified RSL/REVS system

2.2.2.3 Current Status
The formal properties were revised and extended
to support more efficient distributed simulation
and testing of realtime systems. The results are

in section 3.

2.2.2.4 Schedule

Objectives MJJASONDJFMAMJJ
RR-1 Formal Properti@s —m———m——emmmme e — e — e A A
Revise = —=——=- A
A
Test meee—— A
A
Extend = % memmemeeeecee—————————— A
A
Algorithms = ==—=—- A

Quarterly Reports 1 A 2 A 3 A 4 A

Projected times are shown by dashed lines.
Resulting times are shown by solid lines.

-20-

2.2.3

RR-2 RSL Analysis (SOW 3.2)

2.2.3.1

2.2.3.2

Requirements

The Contractor shall conduct analysis of the BMD
Requirement Statement Language (RSL) to determine
which formal specification properties that it does
not contain. This will include the explicit
specification property for specifying asynchronous
processes and their interactions. The Contractor
shall provide a list of the formal specification
properties not contained in RSL and a recommended
plan for the incorporation of these properties

into RSL.

RR-2.1 RSL Properties
1. Objectives
* Develop formal models of RSL/REVS
* Analyze models for specified properties

* Identify major deficiencies

2. Current Status
A number of formal RSL/REVS models has been
developed and analyzed. RSL/REVS is found to
be seriously deficient in most of the specified

properties. The results of this task are

documented in Section 4.

-21-

2.2.3.3 RR-2.2 Modified RSL (MRSL) Approach
1. Objectives
* Tdentify how RSL/REVS could have the specified
properties
* Develop a research approach to give RSL/REVS
the specified properties
2. Current Status
* We have studied the following approaches:

A. Augment RSL/REVS

B. Specialize RSL/REVS

C. Constrained generation of RSL/REVS

* We have developed a research approach:

A. Identify RSL/REVS specializations
(critical issue: how to map asynchronous
processes?)

B. Design enforcement modifications
(critical issue: generate Or test?)

C. Implement designed modifications
(critical issue: integration into RSL/REVS)

* Task RR-3 is designed to carry out this research
approach.
* The results of this task are described in

section 4.

2.2.3.4 RR-2.3 MRSL Properties
1. Objectives

* Define specified properties in MRSL terms

-2

* Show that MRSL has specified properties to a

——yuseful—extent

Current Status

The MRSL specifications can only be shown
(practically) to have the formal properties
while in a more abstract functional form than
an RSL specifications. The definitions and
testing must be done on a suitable source
language specification that can be translated
into MRSL terms. The translation is complex
but practical. The results of this task are

shown in section 4.

-23-

2.2.3.5 Schedule

Objective MJJASONDJFMAMJJ
RR-2.1 RSL Analysis = ===7=< A
A
RSL/REVS Models -
~___A
RSL/REVS Analysis = = ===-—=~ A
A
A

RSL/REVS Deficiency - =—-———=-

RR-2.2 MRSL Plan ===—— A
A
Giving Properties ———A
A
Research Approach ——=A
A
RR-2.3 MRSL Analysis e e e e e =
A
MRSL Model = mommmmmmTs A
A
MRSL Analysis = —ommwmToTTTws A
A
Quarterly Reports ___i__é-_g__é__é__é__é__é
1 A 2 A 3 A4

Projected times are shown by dashed lines.

Resulting times are shown by solid lines.

-24-

2.2.4

RR-3 MRSL Design (SOW3. 3)

2.2.4.1

2,2.4.2

Requirement

The Contractor shall establish the design ex-
tensions to RSL for the incorporation of those
formal specification properties that were recom-
mended to be incorporated in RSL during this
contract period. These extensions shall include
formal analysis concepts, as well as, the formal
specification properties. The Contractor shall
provide assistance in the implementation of the
design extensions to RSL. This shall include the

validation and verification of the implementation.

RR-3.1 MRSL Semantics
1. Objectives
* Interpret R-Nets as processes
* Interpret interfaces as interactions
* Develop specialized drivers
* Enforce RSL subset constraints
2. Current status

A detailed study of MRSL semantics is given in

section 5. The enforcement of constraints must

be carried out prior to MRSL translation.

2.2.4.3

RR-3.2 MRSL Validation and Test Examples (SOW3.3)

1. Objectives
* Develop MRSL test plan

* Develop MRSL examples

-25~

* Carry out test plan

Current status

The MRSL test plan was specialized to the
development of a system specification example
that would test, demonstrate and prove the
validity of the MRSL concepts. This example

is described in section 5.

2.2.4.4 RR-3.3 MRSL Implementation (SOW3.3)

1.

Objectives

* Implement special drivers

* Implement property analysis algorithms

* Integrate with REVS

Current status

The special drivers and REVS integration were
developed and tested by actual running of the
example developed in RR-3.2. The results are

described in section 5.

-26-

2.2.4.5 Schedule

RR-3 MRSL Design = seeeeee—e—————e——eeee A
A
RR-3.1 MRSL semantics e e e e A
A
R-Nets as processes = ==——————— A
A
Interfaces as drivers = = ==———==-- A
A
Specialized drivers = = = ==-——=---- A
A
RSL constraints 0 Zo =mm—me————— A
A
RR-=3.2 MRSL V&V memmmee————— A
A
Test plan =—=——- A
A
Examples mmmmm———s A
A
validation mm——— A
A
RR-3.3 MRSL implementation = ===seossosos A
A
Special drivers ~ —===== A
A
Analysis algorithms ~ —mmmme A
Integration ____ —mmm——— A
A
Quarterly Reports ___l__é__g__é__§__é__ﬂ__é
1 A A 3 A 4

Projected times are shown by dashed lines.
Resulting times are shown by solid lines.
-27-

2.2.5

2.2.5.1

2.2.5.2

RR-4 DDP Experiment

Requirement

The Contractor shall prepare a formal specification
for the BMD experiment to be designed by either the
distributed processing requirements contractor (GRC)
or the distributed processing architecture design
contractor (TRW). The specification is to be

written using the extended RSL specification language
and the Contractor shall demonstrate the effective-
ness of the language modifications. Additionally,
the Contractor shall show the usefulness of the
extended language in the analysis of the specified

process.

RR-4.1 Develop DDP Example

1. Objectives
* Select DDP experiment specification
* Translate to MRSL equivalent

2. Current status
The selected DDP experiment was Case Study 1
(Revised) of the BMDSC-ATC-P integrated case
studied.
The translation of CS-1 requirement specifica-
tion into MRSL form by hand was impractical.
Instead, a CS-1 DPR in a more abstract (and
testable form) was produced. This specification

is discussed in section 6.

-28-

2.2.5.3 RR-4.2 Analyze DDP example

1. -Objectives

* To demonstrate MRSL capabilities
* To analyze BMDSC-ATC DDP experimental
specifications

2. Current Status
The MRSL capabilities were demonstrated by the
example in section 5. The CS-1 DPR was
partially analyzed by translating a portion of
it into a multi-tasking distributed simulation
that was run on a computer. The results are

shown in section 6.

2,2,5.4 Schedule

Objectives MJJASONDJFMAMJJ
RR-4 DDP Experiment = ==e—————— ———A
A
RR-4.1 Develop example SN A - A
A A
Select specifications = --==—- A
A
Translate =m———c—ee- A
A A
RR-4.2 Analyze example ——=—emees A
A
Quarterly Reports 1 A 2 A 3 A 4 A ___
1 A 2 A 3 A 4

Projected times are shown by dashed lines.
Resulting times are shown by solid lines.

-29-

2.2.6 Summary

2.2.6.1 Current Status

RR~-0 (CLN 6) Research plan: completed.
RR-1 (SOW 3.1) Formal Properties: revised and extended.

RR-2 (SOW 3.2) RSL analysis

RR-2.1 RSL analysis: completed.
RR-2.2 MRSL plan: completed.
RR~-2.3 MRSIL analysis: completed.

RR-3 (SOW 3.3) MRSL design

RR-3.1 MRSL semantics: completed
RR-3.2 MRSL implementation: prototype done.
RR-3.3 MRSL V & V examples: completed

RR-4 (SOW 3.4) DDP experiment
RR-4.1 Develop DDP example: CS-1 DPR done.

RR-4.2 Analyze DDP example: initiated.

2.2.6.2 Schedule

Objectives MJJASONDJFMAMJIJ

RR-0 Research Plan Y - Y A
A A

RR-1 Formal Properties ==—==--— R L— C— A
A A A

RR-2 RSL Analysis = @ m=———=- L— A___..2

A A A

RR-3 MRSL Design N Y S N &
A A A A

. A . A

RR-4 DDP Experiment = —TTsooosssmomoos
A A

Quarterly Report = —m—F-sSe—SomSooSooseososs
1 A 2 A 3 A4 A

Projected times are shown by dashed lines.

Resulting times are shown by solid lines.
-30-

3., Formal Properties (RR-1)

3.1 Initial Properties

The following definitions of specification properties
are a starting point for the development of a formal
development methodology. Not all specifications in any
practical language will have all these properties. We do
require that a specification be testable in a practical
way for them. A formal methodology based on these properties
is described in [Fzl, [Fi781, and [Fi322]. We briefly
present here the revised set of formal properties used in

this study.

3.1.1 Systems

We must first define the concept of a system as a set
of computations.

Let B be a finite alphabet

A system state is a finite string over B.

A computation is a countable sequence of system states.

A computation space is the set of all computations.

[Fz] Fitzwater, D. R., and P. Zave. "The Use of Formal
Asynchronous Process Specifications in a System
Development Process." Texas Conference on Computing

Systems, November 1977.

[Fi78] Fitzwater, D. R. "A Decomposition of the Complexity
of System Development Processes." IEEE Computer
Society's Second International Computer Software and
Applications Conference, November, 1978.

[Fi322] Fitzwater, D. R. "The Formal Design and Analysis of
Distributed Data-Processing Systems," CSTR 322,
University of Wisconsin-Madison, April 1978.

-31-

A system is a non-empty set of computations such
that each state has a finite number of possible
successor states, and the future course of a
computation is dependent only on its current state.

An asynchronous combination of a set of systems is a

system in which computations are an interlacing of
computations of the component systems.

A system, S, is a containing abstraction of another

system, S', if 8' C S.

If a system has asynchronous interactions between its
component systems, the asynchronous combination of
those components will be a containing abstraction

of the interacting combination of those components.

3.1.2 Specification Properties

At least the following formal properties of system
specifications are required as a basis for a formal
methodology.

Let A be a finite alphabet.

A specification is a finite string over A.

A specification language L is the set of all

specifications.

A system space S is the set of all systems.

An interpreter of L in terms of S is a function

I : L ~» S.

—32-

A simulator of &% € L is an algorithm, (A(%,a), which

given any state "a" appearing in a computation in

I(%), will produce the finite set of all immediate
sucessor states.

A component language K is a set of finite strings over A.

A component relation R, = {(%,k)«LxK : k is substring of L},

K

decomposes a specification into substrings.

An abstraction relation Ry C Kx K. 1If a specification
2 has a component k2 and (kl’kz) e R ., we may
substitute kl' for k2 in 22 to obtain a specification

2 If both %. and &. are consistent then I(Rl) is

1 1 2
an abstraction of I(lz).
Formal
In order to have a formal specification system, in which
the required properties are meaningful, we must have the

definitions of the following:

A, B finite alphabets

L a specification language
I an interpreting function
K a component language

Ry a component relation

R, an abstraction relation

A specification is formal—if—it—is—an-abstraction—(i-e¢eyp—
a thing representing only a certain set of properties, instead
of its literal self) such that its represented properties can
be specified precisely. We may thus automate the analysis
and transformations of specifications.

3 Fm

Consistent

A specification & € L is consistent iff I(L) € S.

A specification is consistent if it specifies a unique
formal system that is implementable. All errors such as
condradictions, omissions, or impossible constraints are

automatically detectable.

Effective

A specification & e L is effective iff we have a
simulator of %.

A specification itself may be used to generate auto-
matically a simulation model. Experiments using the
simulation may be used to display and analyze the behavior

or the specified system.

Modular
A specification & € L is modular iff & is consistent,

and there is a substitution for components of & defined by Rp-
A specification is modular if it can be partitioned

into identifiable componenets which could be replaced by

compatible components, while producing only local and

predictable changes in the specified system.

Homogeneous

A specification % € L is homogeneous iff & is modular
and substitutions defined by Ra lead to consistent
specifications.

Every abstraction of a system must also have a formal

specification. The same specification language may be used

~34-

throughout the development process.

Asynchronous

A specification % € L is asynchronous iff I (%) is an
asynchronous combination of interacting systems.

A specification must be able to define systems
composed of asynchronously interacting subsystems. We can
then design and study the properties of the subsystems in
isolation, knowing that their integration will not produce

new or unexpected behavior.

A discussion of these properties in the context of

RSL is given in section 4.

3.1.3 Processes

An initial "solution" to the above constraints can
be formed out of asynchronously interacting processes. A
process serves as a generator of computations of the system
specified by that process. A specific functional inter-

action mode using exchange functions is also included.

A process state is a string over V C A,

A process state space is the set of all process states.

A state successor relation is a mapping from a process

state space to a process state space.

An isolated process is a tuple (f, s) of successor

function and state space.
A process specifies a system by defining a generator

of its computations (£, s) specifies

-35-

2
S ={ci¥s; e s, c=<s5;,f(s;),f (si),...}

Each function may have attributes of

evaluation time interval and space.
Each non-primitive function and set will be defined as
an expression of primitive functions and sets.
Each primitive function and set may be defined as an

expression of still more primitive functions

and sets.

Asynchronously Interacting Processes (AIP)

Let each process (fi,si) specify an interacting
system Si'

The set of asynchronously interacting processes

((fl,sl),..,(fn,sn)) specifies the interacting
combination of the ;-

The only effect of interactions is to eliminate
some of the computations in the asynchronous
combination of the systems Si‘

We can study isolated AIP confident that they will

generate no new behavior when combined with others.

Asynchronous interactions require

* Information exchange between "functions" as
a side effect of evaluation

* Evaluation synchronization of one does not
complete before interacting other initiates

* A set of new primitive "functions" XC, XA, and XS

-36-

* XC: If XCi(A) and XCi(B) are the only two

instances of XC in c¢lass i and an interaction
takes place, we have XCi(A) = B and XCi(B) = A.

* XA: An XA, is treated the same as an XCi except
that XAi will interact only with XC:.L or XSi.

* XS: An XS, will interact only with XA, or XC, .

~ If no XA, or xC, is pending when XSi(A) is
evaluated, it does not wait and completes by

taking A as its value.

The major goal of this research approach is to find
a way to map this form of solution into RSL/REVS structures

with minimal perturbations of the existing methodology.

3.2 Performance Attributes

The large and informal set of all possible kinds of
performance attributes may never be completely formalized.
We can extend our formal properties to include some kinds
of performance. The primary constraint on our extension
is that we must be able to prove automatically that the
formal performance specification is consistent using just
the formal specification itself.

First we will note that, for any system specification,

we may have at least three classes of performance

specifications
(1) of the system computations,
(2) of the system realization, and

(3) of the development process.

-3

Clearly, we can formalize, as a part of a system
specification, only the first class of requirements, since
it is only the system itself that is formally specified.
We may at times wish to study the realization system or
the development system by formally specifying them in the
same fashion. The other classes of performance attributes
can then be treated in the same way we will treat the

first class.

3.2.1 Vvalidation

We can also classify performance requirements by the
way in which they can be verified and validated (V & V) on
a specification. The major ways are informal, observational,
and theoretical. Of course, an arbitrary performance
specification may require the use of all three types of V & V.

Informally validated performance requirements are, by
definition, beyond the scope of our formal treatment unless
the V & V can be somehow formalized. Any acceptable
technique could be used.

Observational validation implies the actual generation
of computations of a specified system in experiments
designed to test the performance requirement.

Theoretical validation implies the analysis of a
system specification itself to show the validity of a
performance requirement.

A performance requirement may be only informally

testable at some stages of the development process, and be

~38-

formally validated at a latter stage. For example, the

amount of performance degradation introduced by resource

contention in a system realization may not be well defined

until the realization system itself is developed.

3.2.2 Primitive Attributes

The simplest (and still quite useful) extension to our
formal properties is the introduction of a formal attribute
of time for each primitive function and of space for each
primitive set in a specification.

Establishing a value for such attributes is not trivial.
The time required in a realization of a function may be
dependent on the actual argument values, data access con-
flicts with other tasks, control conflicts among processors,
and resource allocation conflicts. Thus, to assert pre-
cisely the time it would take to evaluate a function, one
must formally include aspects of the realization of the
system that have not, as yet, been specified. Such a precise
assertion would be impractical. How then can we guarantee
consistency in such performance allocations? It is easy
enough to just assign arbitrary values, but how can we know
that such a system is possible even in principle (no

realization technology constraints)?

4=-1n
-

A simple way to answer—these—severe guestions is to
use independent random variables as attribute values. If
the variable reflects an expected distribution of argument

values and resource conflicts it can be considered as a

derived value from some other performance requirements. If

-39~

not, then the random variable can at least reflect

expected distributions of "infinite" (or unbounded) re-
source models of realization. It then becomes an optimistic
(any realization might degrade that performance through
resource contention) value. 1If even the optimistic values
cannot meet the requirement then immediate redesign is
required and many development resources are saved. Without
the assumption of independence, any formal attribute con-
sistency seems to be impractical to demonstrate.

Internal consistency is maintained since the time (or
space) attribute of composite functions (or sets) can be
derived from that of the associated primitives. The
feasibility of a realization of such specifications can only
be informally wvalidated on that specification. A develop-
ment process may, at times, call for a "feasibility
breadboard" realization to establish such informal confidence
in the performance allocations implicit in attribute value
assignment.

A frequent type of performance specification is that
of "port to port" times for response to stimuli. The
validation of such a requirement then consists of an
observation of such times in a simulated computation. The
design of the particular simulation experiments required
to display the information may be a problem, but the
ability to carry them out is guaranteed by the formal
specification properties. Under certain special conditions,

the timing analysis could be carried out on the specification

itself.
-40-

3.2.3 Factorization

The most difficulttask isto-factor-a performance

requirement into the components applicable to each of the
classes in a way that is probably consistent. The resolu-
tion of this problem is beyond the scope of this report.

A possible approach would be to design in each phase
so as to maximize the stability of the decisions to the
perturbations of subsequent phases. For example, a design
that is functionally correct for any execution speed will
be stable to all subsequent allocation and optimization
decisions, while freeing subsequent design choices. 1In
this case, the performance requirements are factored into
the subsequent phases. See section 3.3 for details of such

real-time invariancies.

3.3 Distributed Simulation/Emulation

The extension of the formal properties to performance
requirements requires us to specify simulation and emulation
models that can demonstrate the behaviors of the specified
system. There are two problems involved, the performance
semantics, and the efficiency of the simulator/emulator. 1In
both cases, we really need a distributed simulator for

distributed systems.

3.3.1 Discrete Simulation
The normal discrete simulator is designed to run on a
single processor system using a linear ordering of event

routines to model parallel processes. This reguires the

—t]] -

simulation programmer to make a number of semantically
important assumptions to obtain a valid simulation. Usually,
efficiency concerns require approximation compromises that
may or may not be valid. These assumptions are not a part of
either the specification or of the final simulation program
and are not shown to be consistent with the specifications.
For our purposes, this is not good enough. We want to
specify asynchronous process performance formally and to
validate it formally without dependence on informal (mis-)
understandings as to their interpretations. For efficiency,
simulators may (and emulators do) require distributed
realizations while modeling distributed systems. The normal
way to construct simulations makes it impossible to exploit
a distributed realization, since all events have been
linearly ordered and must be evaluated in that order. We
must first develop models for distributed (rather than

linearized) simulation.

3.3.2 Distributed Simulation

We want to machine translate our asynchronously inter-
acting processes (AIP) into executable code that itself
defines the simulation model for further experiments. The
resulting programs must run validly on a distributed imple-
mentation that allows arbitrary allocation of processes to
components of the implementation. This allocation may be
essential for emulation as well as for improving the

efficiency of the simulation.

-42-

We may have to introduce new formal properties for

] p ec i T i cat i‘o’n’s"’in‘" i) rde r—to eas e'*dAi_st' r'i‘b'ut‘ed“—r e’a‘l"'i" z’a'tfi‘ one T
For now, we will assume only that the specification to be

simulated is consistent.

3.3.2.1 Task Decomposition

The simulation of an AIP primarily consists of the
parallel evaluation of arithmetic expressions. For
simplicity and familiarity, it will be discussed in those
terms.

The usual translation of expressions to sequential

programs involves the assignment of the implicitly required ~—
temporary variables and of a sequential flow of control. For

our purposes, we must be able to specify multiple interacting
control flows, while preserving the integrety of the process

state spaces.

For our distributed realization model (the target
"machines" for our translator) we will assume that each
"machine" consists of one or more processors and a single
shared memory. The set of machines will communicate via a
shared buffer memory. The details are irrelevant to this
discussion.

The current state of each process will be allocated

vprpqqi on defining the state

A o 1
cO—a Dlllg.l.e .l.uac.u.laxe, an & ei3

successor function will be translated into a set of interacting
tasks. A task is a normally compiled program with a

sequential flow of control and a set of inter-task

]y 3

communication functions. Tasks may be evaluated in
parallel. Each task may read the initial state values of
its process and its argument values. After sequential
execution of its associated program, the task will produce
a value to be used as a new state component or as an argu~
ment to another task. When the successor process state
value has been formed, it becomes the new initial process
state value and the process state successor function is
re-evaluated.

The translation to tasks is relatively straightforward

at the current state of the art. The accessing rules above

guarantee that critical access conflicts cannot occur and
that variables remain well defined in spite of the parallel
execution of tasks. With the exception of the interaction
functions in the task program, the task translator is just
that required for parallel evaluation of arithmetic expres-
sions. This is a much simpler job than translating sequential
programs (such as Fortran) into multi-processor form.

Each machine will have a gueue of pending tasks. An
idle processor on that machine will remove and execute the
first task in the queue. Task execution may result in the
creation of more pending tasks, in the creation of next
process state components, oOr in the initiation of interactions
with other tasks. In the latter case, the task will "sleep"
until the completion of the interaction and the processor will
be idled. 1In any case, all pending tasks may be executed at
any time and in any order while preserving the validity of

t+he simulation.

—44-

We have several options in the translation of primitive

sets and functions for our simulation/emulation. A primitive
set is effectively a primitive type, and any function
argument whose value is a member of a primitive set can only
be transformed by primitive functions whose domains are of
that type.

The evaluation of a primitive function by the simulator
will consume time and space resources as well as producing
a value in its range. The resource consumption may be
specified by formal attributes of the function (simulation)

or by the actual consumption during evaluation (emulation).

The value of a primitive function may be obtained by
evaluating one of the following:
(a) a stochastic function with the range of the
primitive function it replaces,
(b) an implementing algorithm at a suitable level
of approximation, or
(c) a standard implementation of an imtrinsic (built
into the interpreter) primitive function.
Each of these choices represents different modes of

simulation.

3.3.2.2 Timeless Simulation

UE-IE B PR
ClI

The Behaviors of a system specification—without—tim

attributes will generally be quite non-deterministic. Each
process state might have many immediate successor states.

A timeless simulation would then produce from a given system

—45-

state all possible successor states reachable at any
evaluation speed. Each such successor state would correspond
to a particular sequence of task interactions. This is the
most general form of simulation, but combinatorial complexity
may restrict its use to a few special cases.

We may simplify the simulation complexity by selecting
a particular interaction sequence to follow, and allowing
the simulator to continue from system state to system state.
Ideally, we would select a member of a large equivalence
class of behaviors and study that one in detail. For

example, if the system were determlnlstlc in all of its

interactions, its behavior at any partlcular evaluation speed
would be equivalent to that at any other speed.

An interesting simulation can be generated by choosing

the interaction sequence as follows:

(a) run all tasks until they go to sleep awaiting
interactions.

(b) when the task pending queues are empty (i.e. nothing
more can be done until an interaction occurs), carry
out the currently enabled interactions and awake
the associated tasks. Go to (a).

The evaluation sequence selected in this way is only a

function of the logical structure of the specification,

and the resulting data can be directly related to that
structure. We will call this an equi-phase simulation. A
phase step consists of one pass through the above procedure,

and all processes will progress at the same rate in terms of

~46-

phases. The resulting data is invariant to the distribution

of the simulator, which may be designed-for-effieieney-

We have not completed a theoretical analysis of this
simulation mode to determine the special conditions under
which it is sufficient to display all system behavior.
Such a theorem would vastly improve simulation efficiency

for suitable distributed real time systems.

3.3.2.3 Timed Simulation

When time (and space) attributes are specified, the
simulation can time stamp each interaction initiation
and completion. Potentially non-deterministic interactions
may be resolved using priority assigned to the oldest
initiated interaction. So long as this principle is not
violated, the equi-phase constraint on simulator operation
can be relaxed to permit still greater simulation efficiency.
The resulting data is again invariant to the distribution of
the simulator, while allowing a maximum degree of parallelism
in the simulation.

The theoretical analysis of this mode of simulation
should lead to recognition of regions of stability
(invariant behavior) to perturbations in the time and space
attributes. The resulting decomposition of the complexity

”‘____"_““‘Wdf“reai—time-behavierwsimuiations_will_imprnye_bghh the

efficiency and the reliability of such testing.

3.3.2.4 Emulation

If the simulator uses the actual (simulator) expenditure

-47-

of time and space to control the interaction sequences, it
becomes an emulator. This mode is possible even if the
specification is timeless. The emulation is even more
efficient than the timed simulation, since it never needs
to wait in completing an interaction until simulated "now"
catches up to simulator "now". The resulting data is, of
course, not invariant to the distribution of the simulator,
and studies of the behavioral stability must be carried out
by other means.

The most significant point to these modes of simulation
is that the only implicit assumptions being made are
standard and independent of a design. Thus a designer
can be confident that the simulation model validly reflects
the design decisions, while providing a variety of tools
for behavioral studies. Note that all of these simulation
modes may be used on any AIP specification at any point of
the development process. This freedom of choice will greatly
simplify the designers analysis of the design and prevent

many types of complex and expensive errors.

3.4 Real-Time Testing

Even when the simulation model is free of invalidating
assumptions, the study of real-time behaviors is complex
and expensive. The relative speeds of each process are
independent (and continuous-valued) variables that produce
too large a space to be blindly surveyed by experiment. We

must use information in the specification to aid in the

-4 8-

experiment design and interpretation. The problems in

testing an arbitrary specification are truly prohibitive;
and we must somehow avoid then.

Some applications may intrinsically require worst-case
types of real-time interactions, and we may never be certain
of the correctness of such designs. We can isolate such
interactions to a few specially treated modules, while doing
a much more through analysis of the remainder. Many real-time
systems do not require such complexity. If we carefully
design them to meet certain constraints, we may greatly
simplify our testing problems.

A study of constraints sufficient to simplify the
testing problems could start with a classification scheme
for real time systems, such that with increasing constraints
testing is easier. The designer would then meet these
constraints as much as possible in the design. An optimal
theory of such constraints has not been attempted as yet.
Indeed, it could not even be studied without some formaliza-
tion of asychronously interacting processes such as our AIP.
The following classification is a beginning and will
illustrate the approach.

3.4.1 Type of Invariancy

We will first classify real-time systems by the proper-

ties that remain invariant as the realization speedsS change.
These properties are the partial order of the interacting

function pairs, and the messages exchanged in each interaction.

—~49-

Totally Deterministic Real-Time (TDRT)

The behavior of the system is totally determined by the
initial state of the system. The only real-time aspects of
the system are the performance requirements on the timing of
interactions. An example of such a system could be a report
generating system, or a pre-programmed real-time controller.
"port-to-port" performance requirements can be factored from
the functional specifications into the realization
specifications. The behavioral testing of a TDRT specifica-
tion thus reduces to the simpler case of testing a non-real-
time specification by simulation/emulation in any mode and
at only one rate. No other behaviors are possible and the

real-time aspect of the testing can be done exhaustively.

Pairing Deterministic Real-Time (PDRT)

The partial order of the pairing of the interacting
functions is invariant to the realization speed. The actual
messages exchanged may change. An example of this type of
system could be a real-time clock or a proportional con-
troller whose response is dependent on the contents of the
stimulus message. In this case there is an intrinsic
functional dependence on relative process rates.

The testing of a PDRT specification could be reduced to
the totally deterministic (TDRT) case above for each possible
message value. This is essentially the same as non-real-time
testing on function argument ranges. PDRT also eliminate the
complexity of speed ratios and qualitative changes of

behavior with speed changes.

-50~

Non-Deterministic Real-Time (NDRT)

Neither the interaction pairing partial order nor the
message values are invariant to changes in realization
speeds. The behavior of the system may be totally
dependent on the realization speeds. BAn example of a NDRT
system could be an adaptive control system that changes
modes under some circumstances.

The testing of NDRT specifications may involve the
worst case problems. However, the designer might be able
to partition the space of the relative rate values into a
set of classes such that for each class, the specification
becomes either TDRT or PDRT. The testing of the NDRT
specification then reduces to the testing of a set of TDRT
or PDRT specifications. Any residual partitions that can
not be reduced in this manner must be tested the hard way,
if at all.

The above partitioning analysis might disclose that
some behaviors are unexpected and undesirable. 1In this case,
the designer could introduce additional precedence con-
straints into the functional specifications that would
eliminate that speed dependence and simplify the partition of
the relative rates. Proceeding in this manner, the designer

could isolate the worst case testing problems to only the

truly complex interactions. Perhaps, once identified, many
of these complex cases can be eliminated by a redesign for

improved testability.

-51~—-

3.4.2 Behavioral Decomposition

We can also simplify the real-time testing problem by
factoring the processes of a specified system and studying
a part in the context of the possible behaviors of the
others. For example, many real-time systems can be divided
into environment and controller processes. 1In the limit,
each process in the system could be considered the controller
process for the others. The behavior of the system from
the point of view of the selected part of the system may be
much simpler. A number of special cases lead to significant
easing of the real-time testing problems. Some of them will

be discussed below.

Totally Non-Interacting Reflex Arcs

The response to a stimulus is a TDRT type behavior
with a functional interaction pattern that is independent
of the other system activities except for performance
degradation in a realization due to resource contention.
The performance requirements can be factored into a
specification stimulus to response (port-to-port) time and
a realization part. The specification requirement part
gives isolated performance requirements with a safety factor
for realization degradation. The realization requirement
part is the limit on permissible degradation due to
realization resource contention. The only correlations
between the reflex arcs are via the realization resource

contentions. Many data acquisition systems are mainly

—52—

formed of such arcs, as are nultiplexed controllers.

The real time testing of such-reflex arcs-can-be

carried out as for TDRT specifications with behaviors
restricted to the point of view of the selected part of

the system.

Partially Non-Interacting Reflex Arcs

The response to a stimulus is a PDRT type behavior
that has an interaction pattern independent of other
system activities. Many real-time control systems are
almost completely composed of such reflex arcs. The
interaction messages themselves may be dependent on the
overall state of the system. The performance requirements
on the reflex arc may be factored, as above, into a
functional stimulus to respond (port-to-port) time and a
degradation limit on resource contention in the realization
of the system. The only correlations between the reflex
arcs are via message values and the realization resource
loadings introduced by parallel contention.

The testing of such reflex arcs can be carried as

described above for PDRT specifications.

3.5 Conclusions

The extension of the formal specification properties

to include performance requirements not only is practical
put also can provide new and powerful tools for

specification analysis.

~53-

We have developed a family of distributed simulator
models for simulation of distributed systems that can
significantly improve the simulation efficiency for real-
time systems while preventing the introduction of many
kinds of subtle errors in the model.

We have developed a real time classification scheme
that can be used as a basis for real-time testing
simplifications and new analysis tools. Real-time testing
is so difficult and expensive that a designer must use
analyzable interaction structures where possible. The
current state of the theory suggests that models for such
analyzable structures can be created and used practically.

This work on performance requirements has initiated
several important theoretical guestions whose resolution

could significantly aid in improving the current state of

design theory. These qguestions should be pursued.

-54-

4., RSL Analysis (RR-2)

4.1 Property Definitions

We start our analysis by postulating in subsequent sections
a series of properties of specifications, each of which must be
practically testable on any specification. These properties do
not include all properties that could ever be formalized; how-
ever, they can all be plausibly justified for any discrete
system development and are essential for most other properties.
They were selected because of their significance in making
specification language design decisions. Furthermore, they
have been defined to be generally applicable to any potential
discrete system specification. The properties can thus be used

to characterize and compare different specification languages.

4.1.1 Formality

In keeping with our emphasis on very large systems we must
restrict ourselves to specifications and techniques that can be
formally defined -- automated tools and supports being our only
hope for taming complexity beyond what a single human mind can
handle. Although this means that human factors in design will
not be addressed directly, the potential impact on them is still
considerable. We cannot force a customer to understand

completely all of his requirements at the outset, for instance,

but we can hope to provide him with useful feedback at early
stages of design, and to facilitate graceful evolution when

requirements do change.

—~55—

A specification is formal if it is an abstraction (i.e., a
thing representing only a certain set of properties, instead of
its literal self) such that its represented properties can be
specified precisely. The imposition of formality as a require-
ment on our specification language implies that specifications
will be abstractions rather than realizations. The relevant
properties of the abstraction are precisely specified and
potentially susceptible to automated analysis and transfor-
mation.

Our specifications must be formal if we are to develop a
formal design theory. We must be able to specify our problems
and potential solutions precisely if we are to provide
significant extensions to current methodologies. In particular,
we must specify approximations to the desired systems formally.
Note that there is a vast difference between an informal and a
formal approximation. The former prevents most automated
analysis while the latter can be designed to make such analysis
possible. Formality is essentially equivalent to testability.
Without testability, our design theory becomes only a set of
wishful prescriptions.

There are a large number of automatable analyses possible
because of this property alone. For example, if a specification
is proffered, it can be "syntactically" checked by a "parsing"
algorithm to decide that it is completely specified and

correctly formed. Even this testing is not possible in some

—56—

currently used specifications. We can provide to a designer
the type of feedback from a "compiler" which is currently
obtained by an ordinary programmer. The utility is obvious.
Our formal properties will be based on specifications,
computations, systems, and the relations between them. We will
require the following definitions.
If RCR, xR then we define R[rl] = {r

— 1 2
{rl : (rl,rz) € R}.

5 ¢ (rl,rz) € R}

It

and Rurﬁ]

Let A and B be finite alphabets. A specification is

a finite string over A . A specification language I is a

set of specifications. A computation is a countable segquence

of states, where a state is a finite string over the alphabet

B . The computation space € is the set of all computations.

€ _ 1is the set of all infinite computations. Note that we
interpret finite length computations to be blocking computations.
A system is a set S such that:
(a) S is a non-empty subset of C
(b) For any state a, {a'e B : 3x y({x,a,a',y’ € 8)}
is finite
(¢) For any state a, if (x,a,y? € S and
(w,a,z) € S8, then (x,a,z) e S.

The system space & is the set of all systems. An interpreter

is a relation in ILx ©. These definitions state that there
is a specification language I whose semantics are sets of

computations in € as defined by I . (Representing the

-5 -

states of a system as strings over some alphabet entails no loss
of generality, since the formally defined system is only a stand-
in for the informally defined, realized one anyway. The formal
system is a set of computations, the same as would be obtained
by observing and formalizing all possible computations of the
corresponding realized system.)

Property (c) in the definition of a system says that the

subsequent behavior of a system depends only on its present

state, and not on the past. This is characteristic of digital
systems, simply because information about the past cannot be
used unless it is encoded in the present state. Property (b)
in the definition of a system says that any state has only a
finite number of successor states. Finally, property (a) says
that the system is cyclic, i.e., does not halt. This entails
no loss of generality simply because a system which is intended
to halt can go into a "null" state whose only successor is
another "null" state. The purpose of defining systems in this
way is to be able to distinguish inconsistencies in the
specification by cases where a state has no well-defined
successor. Thus the concept of a "halting state" is an
interpretation by the user. This definiticn also accommodates
both systems with single initial states and systems in which
every state is a possible initial state of a computation.

In summary, our system definition is very general; it is

hard to imagine any "digital system" which could have been left

-~58—~

out. The reason that only state sequences appear explicitly in
the definition, without mention of the processing between
discrete states, is that this is enough for us to define the
required "logical" or "functional" properties. Computation will
have to appear explicitly in the system definition on the next
iteration of the meta-method when performance properties will

be added.

4,1.2 Consistency

\We will also require that a specification does in fact
specify a system. This is a nontrivial property since it can
easily be violated by specifications. For example, if the
specification consisted of a set of equations whose solution
specified a system, we would have to have an algorithm to
decide whether or not there existed a solution. This is in
general not possible, and requires very severe constraints on

the nature of the equations.

For each L in L, I. is consistent iff I [L] ¢ $.

Consistency of a specification means that its image under
interpretation is a system. It is a very important property
because it precludes both "syntactic" errors (missing parts,

- ————Jouble—definitions,ete.)—and "semantic' errors—(infinite loops
and deadlocks) which would prevent computation of a successor

state to any state. Thus any consistent specification specifies

~59~

validly some system.

This definition of consistency also subsumes the unambiguity
of the specification of L. Namely, each specification will
specify a unique system. The property of consistency is
possessed by few of the current forms of system specifications.

A designer has an obvious interest in whether system

specifications possess this property.

4,1.3 Effectiveness

The property of effectiveness means that a specification,
regardless of how abstract it is, is "runnable," i.e., can be
used as a simulation model of the specified system -- to the
level of the properties that have been specified. This idea
has been in circulation at least since Zurcher and Randell
([ZR]) recommended that a system evolve from simulations of
itself. It is realized in the SREM project ([BB], [Al]l, [DV]),
in which the "functional" or "analytic" properties of a require-

ments specification can be simulated by providing simulations

[ZR] Zurcher, F.W., and Randell, B. "Iterative Multi-Level
Modelling - A Methodology for Computer System Design."
Information Processing 68, A.J.H. Morrell, ed. North-
Holland, 1969.

[BB] Bell, Thomas E., Bixler, David C., and Dyer, Margaret. "An
Extendable Approach to Computer-Aided Software Requirements
Engineering." Trans. Soft. Eng. SE-3, January 1977.

[A1] Alford, Mack W. "A Requirements Engineering Methodology
for Real-Time Processing Requirements." Trans. Soft. Eng.
SE-3, January 1977.

[DV] Davis, Carl G., and Vick, Charles R. "The Software Develop-
ment System." .Trans. Soft. Eng. SE-3, January 1977.

-60-

of private processing functions with behavioral or performance
attributes, respectively.

Effectiveness is of fundamental importance because it
provides early feedback to the designer and his customer about
the behavior of the specified system. It provides the only
possible handle on those properties not chosen to be guaranteed
by the design method: as soon as the specification is elaborated
to a point where those properties are defined, they can be tested
by any conventional means.

It seems that the most useful formulation of effectiveness

would make it always possible to generate all the states which
could follow a given state in a computation of the specified
system. This corresponds most closely to our idea of "running”
a system.

A specification L e L is effective iff L is consistent
and there exists an algorithm which, given any state o
appearing in a computation in T[L], will produce the set of
all states o' which are immediate successors to O in
computations of §S.

Informally, the possession of this property ensures that
we can provide a universal (for all specifications in IL)

procedure for evaluating a specification and generating initial

sequences of the instances of the computations of the specified
system, i.e., a universal system simulator running directly on

the specification itself. There can thus be no discrepancy

-61-

between the specification and the "simulation" model. The
designer can thus obtain test computation data directly and
automatically from the specification itself. Debugging design
decisions are now possible, even with abstract specifications.
A trivial way to obtain this property is to specify systems by

programs that can be compiled and interpreted.

4,1.4 Modularity and Homogeneity

We must have some way to localize design decisions and
control the complexity of the design. A modular specification
is one with identifiable components which can be replaced by
compatible components, producing only local and predictable
changes in the specified system. Modularity is essential in
the specification of complex systems; because it makes it
possible for one person to understand parts of the specification
[BH], and for many people to work on parts of a large design
data base.

There may be many forms of modularity, but only one is
sufficiently basic and language independent to be defined here.
It is the concept that elaboration, or replacing a component by
a less abstract one, creates a specification which is less
abstract -- in the sense that the system specified by the former

is an abstraction of the system specified by the latter. To

[BH] Brinch Hansen, Per. The Architecture of Concurrent
Programs. Prentice-Hall, 1977.

~62-

formalize this, we must define "component" and "abstraction."
*
Let E {B and let Cﬁ be the set of all countable
*
sequences of strings in B U {E}. Let mg : C, »C be a

mapping that eliminates elements with the value E from

computation sequence.

A system S is an embedded abstraction of a system S'

iff there exist functions £, Pgr Pg and symbol E such that:
(1) £ : 8' - S vwhere f is a bijection

* * *
B » B U {E} where E ¢ B and

’e

(2) pg
Pg is primitive recursive

c - Gﬁ where pc((al,az,a3,...)) =

(3) p
(4) for any C' e S' there is a C e S such that
' = —]
£(Cc") C and C mE(pc(C)) .

Informally f£ pairs up computations in S and S'. The
function Pg takes the states in the S' computations and
either changes some state information or indicates that the
state is to be eliminated entirely (by mapping it to E). The
function p, serves merely to apply Py to each state in an
S' computation. The paired computations are related in that

— ' 3 — 1
f(Cc) = C iff C mE(pc(C)) .

By way of illustration let S be a system modeling

execution of a program (where its states are values of the
vector of variables, and its steps are statement executions),

and let S' be a system modeling the implementation of the

-63—

programming language on a computer (where its states are

machine states, and its steps are instruction executions). Then
S is an embedded abstraction of S', with Pe removing all
states of S' that arise during execution of language statements,
and Pg removing all state information except the user-defined
program variables.

The definition of a system S being an abstraction of a
sytem S' reads the same as the definition of embedded
abstraction except that f need only be 1-1.

A component K is a finite string over the global

alphabet A. The component language K is a set of components.

Within a program a component might be any substring generated
from a nonterminal of the context-free grammar.

The component relation R]K CL x K contains a pair

(L,K) if and only if K is a substring of L and is also a

component.

An abstraction relation RA CK x K contains a pair

(Kl’KZ) only if for any L2 € R]K[[K2 11, the string Ll

(formed by textually replacing any one occurrence of K2 in
L, by Kl) is in L and either (a) one of L, or L, is
not consistent or (b) Ll and L2 are consistent and I [Ll]
is an abstraction of DZ[LZ].

The reason that Ll can be inconsistent, even though Kl

is a valid abstraction of Ky» is that consistency is

intrinsically global. For instance, Kl might be a primitive

—64—

function, and K2 might be an elaborated version in which an
interaction with another part of the system (perhaps to obtain
control information) is specified. Then substituting K, into
a consistent specification containing K2 (which must itself
have a specification on the other half of the interaction in
order to be consistent) will create an inconsistent specification,
in which the other half of the interaction is left hanging.

A specification L e L is modular iff L is consistent
and | RI([L] is not empty, and for any K € Rﬂi[L]’ the set
given by RAH K]} - {K} is not empty. A specification L e IL

is homogeneous iff L is modular and for any K eRI<[L] and

K' € RA[K], the specification L' (formed by textually
substituting XK' for any one occurence of K in L) 1is
consistent. Informally, homogeneity says that for L e L. any
substitution defined by RA leaves us with a consistent

specification.

4.1.5 Informal Extensibility

A specification language needs to provide for comments and
other information expressions of the designer's choice. The
distinguishing characteristic of such informal expressions is

that they do not affect formal interpretation of the specification.

Thus the definition must distinguish between pairs of
specifications which differ only in uninterpreted attributes,

and pairs of specifications which specify the same system via

—65—

different interpretations. This is done by associating
uninterpreted attributes only with modular components. Informal
attributes may often become formal ones during subsequent
iterations of the meta-method.

An informal attribute set T is a finite string over the

global alphabet A . An informal attribute set language T

is a set of informal attribute sets.

The informal attribute relation Rﬂ? C Kx T contains a

pair (K,T) if and only if T 1is a substring of K which is

an informal attribute set.

A specification L e L is informally extensible iff for

every K € Rﬁ([L] and every T € Rm?[K], the specification
L', formed by substituting T' for T in L, is such that
ITr[L] =oI([L'].

Because our formal specifications do not include all
properties of interest, we must provide some way to include
uninterpreted (informal) attributes that convey the desired
information. Our methodology will not analyze such attributes
since they are not formally expressed. However, any informal
methodology may be used with respect to these uninterpreted
attributes. We will not provide much assistance other than
that of a controlled data base, but on the other hand we will
not hinder that which can be done by the designer. In
conclusion, the extensible property provides an "open end"

where properties we do not yet wish to formalize may be included

—66—

informally in our specification. A component seems to be a

very natural "unit" to possess such attributes.

4.1.6 Distributed

A specification must be able to define distributed systems
if it is to address the essential DDP design problems. A formal
definition of the "distributed" propérty is developed below.
Distributed systems are unigue in that the system computations
are composed of asynchronously interacting computations of
distributed system components. Distribution is also important
for decomposing complexity in a nondistributed system. At a

low level of abstraction, most systems are distributed.

Asynchronous Subsystem Compositions

Many formulations of asynchronous interactions have been
proposed, but what we need here is a definition of this property
which is independent of the mechanism of its implementation.
The essence of "being composed of asynchronous processes" seems
to be that the specification can be factored into separately
interpretable specifications, and that the aggregate
computations of the system are composed from computations of
these parts, taken at all possible relative rate combinations.

The essence of interaction between these "processes" seems to

be to constrain the computations just described. The information
received by a process in an interaction serves to rule out some

otherwise possible computations, just as the information gained

oy

by elaborating a primitive function rules out some mappings from
elements of its domain to elements of its range.

The asynchronous combination of systems Sl""’sn is the

system whose computations are sequences of states
(Al'Az’AB"") where:
(1) Al encodes (lal,...,nal) and for any
ie {1,...,n} we have that 121 is an

initial state (first element) of some

computation sequence in S.

l’
(2) for any 1 > 1, Ai+l encodes <lai+l""’nai+l)
and Ai encodes (lai,...,nai) where

for some j e {1,...,n} we have

(a) ja; =, a;,, for ke {1,...,n}, k # 3,

(b) is a successor state of .a, 1in system

jai+l j i
S'.
J
In effect, this notion of composition produces a new
system whose joint computation sequences correspond to all
combinations of computation steps by the n subsystems. The

subsystem sequences are preserved by embedding them in the

composed system sequences.

Asynchronous Specifications

A specification L e L is asynchronous iff L 1is

consistent and there are n > 2 consistent specifications

Lyresesly € RI<[L] (where Ll,...,Ln are disjoint substrings

1

-58~

of L) such that the asynchronous combination of
I [Ll],...,ﬂZ[Ln] is an abstraction of I [L].

The asynchronous system is thus contained in the
corresponding asynchronous combination. The effect of an
interaction between subsystems of the asynchronous system will
be to eliminate certain computations from the corresponding
asynchronous combination. If no interactions occur, the
asynchronous system is the same as its asynchronous combination.
By defining asynchronism without defining interactions, we
avoid making any restrictions that might exclude distributed
systems. Even the most general discussion of distributed
sytems ([La2]) acknowledge that a distributed system has a
well-defined global state; it is just that in a distributed
system, knowledge of the global state on which to base
decisions is harder to come by.

A fixed process structure seems to be the inevitable result
of reasonable definitions and manipulations of asynchronous
systems. There are other sound arguments for static process
structures, especially since dynamic reconfiguration can be
built in -as an evolution (see also [BH]). Multiprogramming
systems, for instance, usually have I/0 processes and user

processes. But the I/0 processes correspond to a fixed

configuration of devices, and the degree of user multi-

programming is fixed or bounded.

[La2]Lamport, Leslie, "Time, Clocks, and the Ordering of Events
in a Distributed System." Massachusetts Computer
Associates, Inc., March 1976.

-69—

We can thus design and study the properties of the sub-
systems in isolation, knowing that their integration will not
produce new and unexpected behavior. Subsetting of the
computations is all that can occur. This property of
distributed systems will be quite important for any development

process in which subsystem integration is attempted.

4,1.7 Generality

An interesting property of a specification language is
completeness: having at least one specification for every
system.

A specification language IL is complete if for every
S ¢ &, there exists an L ¢ IL such that I [L] = S. This is
not a product property at all, but rather a property of a
design process. It seems that completeness needs to be proved
in a theorem as a part of the design principles, especially
since completeness may be deliberately compromised. For
instance, as hinted in the section on effectiveness, we have
no intention of allowing the specification of systems with

infinite state spaces.

~70~

4.1.8 Conclusions

We have defined an abstract set of properties for
specifications and specification languages. A suitable
specification language for distributed systems must have at

least these critical properties in a useful form. 1In fact, we
may use these prbperties as requirements for specification
language design. Further, we will clearly add further
properties as required to support subsequent development of our
design theory. These will be introduced subsequently.

Figure 4.1 is a precedence graph of the required
product properties. Pl precedes P if the definition of P1

2

is needed to define P2, and "L has P2" implies "I has

Pl'

formality

A\

consistency

informal extéensibility

\%

modularity asynchrony effectiveness

homogeneity

Figure 4-1: The required product properties.

-7

The property definitions are interesting in their own
right. Being formal yet independent of any specification
language, they can serve as verifiable requirements on the
design of a specification language. For instance, in [Al] the
following desirable properties of a specification are named:
"completeness, consistency, correctness, testability,
unambiguity, design freedom, traceability, communicability,
modularity, and automatabili@y." Alford goes on to say:

As a result of the foregoing analyses,
three goals were then identified for an SREM:
(1) a structured medium or language for the
statement of requirements, addressing the
properties of unambiguity, design freedom,
testability, modularity, and communicability;
(2) an integrated set of computer-aided tools
to assure consistency, completeness, automability,
correctness; and (3) a structured approach for
developing the requirements in this language, and
for validating them using the tools.

Using our results, these requirements for a specification
language and its associated tools can be evaluated as follows.
Probably everyone would agree that although "communicability"
is a desirable goal, it is intrinsically subjective, and thus
subject only to personal evaluation. On the other hand, our
definitions put "automatability," "modularity,” and
"testability" into precise terms as the properties of formality,
modularity, and effectiveness, respectively. The importance
of this should be clear from the vagueness of a term like
"modularity" without a formal definition. "Modularity is
enhanced by the maintenance of the requirements . . . in a

centralized data base . . ." ([Al]) is simply not enough to

-72—

determine whether a given specification language has
"modularity," or whether such "modularity" is really worth
having. To the extent that "design freedom" means naturalness
to a human designer, it falls in the same subjective category
as "communicability;" to the extent that it means that every
system can be designed, it is defined precisely in the next
section as completeness. In either case, the text is not

sufficient to distinguish which was meant.

The other four properties addressed are "consistency,"
"completeness," "unambiguity," and "correctness," with decision
algorithms for "completeness" and "consistency" being mentioned
explicitly. Our analysis shows that in all formal senses,
these are one and the same property: consistency. A consistent
specification specifies, under a formal interpretation, a valid
system (although that system may be very abstract, i.e.,
unelaborated). The specification must be internally consistent
and "complete" (have no parts missing); it then unambiguously
and correctly specifies that system. The system may not be
what the user wanted, but this is not subject to automated
verification.

The most significant omission from these specification

requirements is that of performance properties. Our research

approach is first to develop a design theory of what a
distributed system does and only then to address questions of
how well it operates. We can provide substantial payoffs even

prior to considerations of performance. The extensibility

-3

property required of our specifications may be used to include
performance requirements in our formal specifications. Our
initial design theory may assist (through its formal analyz-
ability) performance analysis, and will certainly not prevent
a designer from using any otherwise feasible performance
methodology. The required specification properties are
sufficient to resolve most of the difficult design decisions

involved in producing a DDP specification language.

Y=

4,2 RSL Property Tests

We set out here to determine for any L e IL whether or
not we can test for the following properties: informal
extensibility, consistency, effectiveness, modularity, homo-

geneity, and asynchronicity.

4,2.1 Definitions
Before we conduct the analysis we must define the

following:

(1) specification language I,

(2) state of a computation,

(3) state successor function,

(4) interpreter I,

(5) component language X,

(6) informal attribute set T,

(7) abstraction relation RA'

Once we have done 1-7 we can then perform the RSL analysis.

Define Specification Language

Actually we will define two languages. We define 11. to
be the set of RSL sentences as defined by Appendix D of the

REVS User Manual [MD]. We define IQ to be the set of RSL

——gentences with thelir associated drivers and exogenous event

routine. Thus Ij_ is a pure RSL language while I? sentences
have both RSL and Pascal. This would seem to exhaust the

reasonable choices of "RSL specification language." We will see

-75—

that each language has its drawbacks.

Define State of a Computation

The state in a computation generated by an Iﬁ‘ specification

contains an encoding of all data, files, entities, time, and
the event calendar. The state in a computation generated by an
]L2 specification contains an encoding of not only all data,
files, entities, time, and the event calendar, but also the
states of the drivers, the exogenous event routine, and any

other user-defined or system procedures. The initial state is

as defined by RSL and Pascal.

Define State Successor Function

For both L, and I specification languages we give a

1 2
choice of two state successor functions. 1In choice (1), we
pass from one state to the next state via the evaluation of an
R-net (11 pmz), a driver (I?) , or the exogenous event
routine (I?) as defined by REVS and Pascal. The state
successor function is that mapping that applies an R-net,
driver, or exogenous event routine to a state. 1In choice (2),
we assume that time is discrete. We pass from one state to the
next state when all computation at one time is completed. The
state successor function is that mapping that applies the
R-nets, drivers, and exogenous event routine until nothing more
is left to do at one time so we can advance to the next time.
These two choices would seem to exhaust the reasonable choices

of successor function.

-T76=

Define Interpreter

Because we have two languages and for each language we

have two choices for state successor function, we will define

four interpreters. Let Hz,l CL, x@€ be the interpreter
for specifications in I? using choice (1) for state successor
function. Let H2,2 - I? x @ be the interpreter for
specifications in I? using choice (2) for state successor
function.

We next define Hl,l C Eﬁ_X(C (the interpreter for
specifications in Iq_ using choice (1) for successor function).

First we assume that the alphas are functional, that is, they
are some primitive mapping from inputs to outputs. Now, note
that the specification has not specified enough information on
the order and timing of R-net execution; the drivers and
exogenous event routine are not specified. So, to get one of
the computations in El,l , we choose some recursive set of
drivers, a recursive exogenous event routine, and recursive
functions to replace the primitive alphas and then run that
I? -like specification on a simulator to get a computation.
We do this for all legal choices of recursive drivers,
exogenous event routine, and functions to get all the

computations generated by the Ij_ specification. We can

similarily define Hl 5 - Kﬂ. x @ : the interpreter for

14
specifications in Iﬂ_ using choice (2) for state successor
function.

-]

Define Component Language

We will define one component language X for both Ij
and I? . This means that the drivers and exogenous event
routine will not be part of any component. This is no serious
restriction as it is very difficult to define any general form
of substitution of one Pascal driver for another Pascal driver.

The actual components will be strings of terminals
(occurring in some specification in Eﬁ_ or I?) that are
derived from the nonterminals (node), (new element definition),
and (element definition sentence) appearing in Appendix D of
the REVS Users Manual. Basically, (node) derives the different
kinds of nodes in an R-net; (element definition sentence)
derives the attributes, relations, paths, and/or structures
associated with a given element; (new element definition)

derives the definition of an element. It seems reasonable that

the component language K include at least these strings.

Define Informal Attribute Set
Again, we will define one informal attribute set T for
(causing us to ignore the informal attributes

both IL and IL

1 2
associated with Pascal). Let M be the set of all strings of
non-quote characters enclosed within quotes that do not
represent a Pascal routine. It is important to note that the

elements of T embedded within components do not affect the

interpreter.

-78=

Define Abstraction Relation

Before we describe the actual abstraction relation, we
begin with a comment about RSL. RSL was designed for specif-
cation at individual points in the requirements development
process. They do not discuss transformations of specifications
that allow us to go from one point in the development process
to another while guaranteeing subset or superset behavior. This
is roughly what the abstraction relation addresses. The design
of the abstraction relation ideally should have been done by
the original RSL language designers. Such transformations can
be a difficult task when the alphas are procedurally interpreted.

For the purposes of this analysis we will describe a very
simple abstraction relation. Let (Rl'RZ) € Ry where R2 is
a legal R-net definition and Ry is a legal R-net definition
that refers to no more global items than R2 can. Further,

R differs from R2 only in that before some node that is not

1
the first node in an R-net we insert an or-node and some

non-blocking extra paths from the or-node.

-7

Figure 2 -1. Insertion of or-node and additional non-blocking
paths into a single path.

We can add other pairs to R, without altering later

proofs provided:

(*%) for any K ¢ XK, we can test if RAH K]l is
empty or not, and

(***) if K e Ry [L], (X',K) ¢ Ry, and
I [L] is a system, then oT[L']l] is a
system, where L' is formed by substituting

K' for K in L.

4.2.2 Analysis

We remind the reader that the properties we wish to apply
to RSL are: formal, informally extensible, consistent,

effective, modular, homogeneous, and asynchronous. The main

{0

concern of our analysis is to determine whether or not we can
test any specification for these properties. We will only
attempt crude estimates of how many specifications actually

have a particular property (e.g., none, some, all).

Formal

We assume that all specifications in both Ij' and I? are
formal because we have given a definition of a specification
language, interpreter, component language, informal attribute

set, and abstraction relation.

Informally Extensible

Every specification in either Iq_ or I? under any of the
defined interpretations is informally extensible because the
informal attributes do not affect the simulation. 5o then we

can test for informal extensibility.

Consistent
For Hl,l we can test for consistency. Unfortunately,
this is because no specification is consistent. For any
L e Ij_ there are finite length (blocking) computations for
the SSSTARTUP driver that schedules nothing on the calendar.
Therefore I [L] cannot be a system and L is not consistent.
NUte—that~the~othef-prepe%ties-e£_e££ectivef_asyngiuxnunuiF________________
modular, and homogeneous all depend upon a specification being

" consistent. Therefore under El 1 we can test for these
14

-81~

other properties because no specification in Ij_ has them.
For jﬂl,z we can test for consistency, unfortunately
because no specification is consistent. For any L € Ij
there are finite length (blocking) computations for the
SSSTARTUP driver that schedules the exogenous event routine
which schedules itself with no delay, which possibly schedules
other calendar events with no delay, and so on ad infinitum.
Time never advances so a next state is never reached. So
I [L] is not a system and L is not consistent. See the
note in the previous paragraph.
For Hé’l and H2'2 we cannot test for consistency. The

pacal drivers allow us to reduce the halting problem to testing

for consistency.

Effective

The analysis will be done for I? only. Now we claim
that L € 1? is effective iff I is consistent. If L is
effective then by definition it is consistent. If L 1is
consistent, there are a finite number of next states. The
definition of RSL and Pascal gives us an algorithm to generate
the next states (and allows a simulator to be construced for
RSL and Pascal). So then a test for effectiveness is equivalent

to a test for consistency in I? .

—82~

Modular

The analysis will be done for IQ only. If we can test
for consistency then we can test for modularity. The testing
procedure would parse an RSL sentence I, and find the components.
If RR([L] is empty then L is not modular. Otherwise for any
K € RI<[L]’ we test whether or not RAH K]] is empty. (We can
do this by (**).) If there is an empty RA[[K]] then L is

not modular. Otherwise L is modular.

Homogeneous

The analysis will be done for I? only. Now we claim
that L e€ I? is homogeneous iff L is modular. If L is
homogeneous then L is modular by definition. If L is
modular then by (***) we are guaranteed that L 1is homogeneous.

So then a test for homogeneity is equivalent to a test for

modularity.

Asynchronous

The analysis will be done for I? only. Yes we can
test for asynchrony, unfortunately because for a trivial reason
no specification is asynchronous. More than two specifications
can never be disjoint substrings of one specification because

in each specification there is exactly one copy of the

SSSTARTUP driver.
Even if we assume all the syntactic difficulties away,

due to the nature of RSL the sub-specifications must be

—83-—

totally isolated from one another. The sub-specifications would
have no interactions; this would not be an extremely useful
notion. A more serious difficulty is that when trying to
partition R-nets up into separate specifications, it is
undecidable if they both use (e.g., read or write) a global
variable. We could then devise a specification that has two
sub-specifications iff two R-nets do not use a global

variable.

-84~

4.3 Conclusions

There are some deficiencies that stand out in RSL. First
is the use of Pascal to specify the external environment.
Pascal is too unconstrained to guarantee many properties.
Secondly, RSL has no explicit encoding of interactions. RSL
does not have asynchronously interacting specifications.
Thirdly, RSL does. not discuss transformations on specifications
that guarantee subset or superset behavior. This potentially

could be of great help to RSL users. The results are summarized

in Table 4-1.

(a1
o i
H > H
3 o = 5 8
>) o ¢ oD o >~ o0
+ “ i - 8 B (ol e Y
Y o Q Q o w © o
) (¥ I o B A E ®
o3 0] + £ 2 ow L w
0 5 5 | ¢85 5 8
0 0
ah - 3] =5 © O o % ﬁ
IE Any Yes Yes Some
C,E,M,H
B,M, 1,1 1,2 Yes Yes None
C,E,M,H r, . I, , No Yes Some
L e Lo A
A Any Yes Yes None

Table 4.1 Summary of analysis of RSL/REVS for formal properties.

—85—

The above deficiencies in RSL from the point of view
of distributed systems are not surprising and do not reflect
deficiencies in RSL designers. Rather, they reflect the
fact that RSL was intended for non-distributed system appli-
cations and tailored to these applications. It is precisely
in the area of asynchronous "internal" interactions that
distributed control systems differ markedly from centralized

applications.

-86—~

5. Task RR-3: MRSL Design

5.0.1 MRSL Semantics

One important task which we have undertaken as part of
our current analysis of RSL is to determine how the language
might be modified in order to insure that the new language would
possess the formal properties described in sections 3 and 4. We
have used our formally defined asynchronously interacting processes
(see the paragraphs below for definitions and explanation) as the
entities to be modelled by the modified RSL (referred to concisely
as MRSL). Several methods for modifying RSL have been examined,
either by restricting RSL syntax or by augmenting it. In either
approach the resulting MRSL could be used as a source language
for writing specifications, or alternatively, the specifications
in MRSL could be generated from specifications in another source
language. In any case the semantics of MRSL will differ from that
of RSL since constructs for synchronization of message passing
between R-Nets are lacking in RSL and yet are essential for
modelling AIP. A brief, informal description of the semantics
of MRSL immediately follows our formal definitions of AIP in this
same section.

We first define individual processes. A process state is

a string over V C A. A process state space is the set of all

process states. A state successor relation is a mapping from a

process state space to a process state space. An isolated process

is a tuple (f, s) of successor function and state space. A process

-87—

specifies a system by defining a generator of its computations

S {C-VS' € s C <S. f(s‘) f (S') '-'>}
i 14 J' 1 ’] r °

Each function may have attributes of evaluation time interval and

space. Each non-primitive function and set will be defined as
expressions of primitive functions and sets. Finally, each
primitive function and set may be defined as expressions of still
more primitive functions and sets.

We now define asynchronously interacting processes (AIP).
Let each process (fi'si) specify an interacting system Si' The

set of asynchronously interacting processes ((fl’sl)""’(fn'sn))

specifies the interacting combination of the Si‘ The only effect
of interactions is to eliminate some of the computations in the
asynchronous combination of the systems Si' Thus we can study
isolated AIP confident that they will generate no new behavior
when combined with others.

We now define a class of primitive functions which will allow

the designer to specify interactions. These exchange functions have

the unique property that under certain conditions they will exchange
values of arguments with a matching exchange function elsewhere in
the specification. The exchange of arguments between a pair of
matching exchange functions is accomplished by having each of them
evaluate to the argument of the other. Exchange functions are
labelled with subscripts and only exchange functions with the same
label can match. The set of exchange functions with a given

subscript is referred to as a class.

-88-

The three exchange functions XC, XA, XS are defined as

follows:

XCi(&) = B if there is an outstanding XCi(B) or XAi(B) which
has been waiting for a matching exchange function, or if this
XCi(a) has been waiting for a matching exchange function and an
XCi(B), XAi(B), or XSi(B) is evaluated. .

XAi(a) = B if there is an outstanding XCi(B) which has been
waiting for a matching exchange function to be evaluated,bor
if this XAi(a) has been waiting for a matching exchange function
and an XCi(B) or XSi(B) is evaluated.

XSi(a) = B if there is an outstanding XCi(B) or XAi(B) which
has been waiting for a matching exchange function to be evaluated,

and = « otherwise.

An important conculusion of our previous contract work was
that asynchronously interacting processes (AIP) are a powerful
way to define DDP requirements, designs and implementations.
AIP also form a suitable basis for the development of an exten-

sive and highly automated design methodology.

RSL allows the specification of "interactions" via inter-
faces to the "outside" (non-RSL described) world. These inter-

faces define only the message types passing the interface and

do not model synchronizations or message corrections as requir-
ed for DDP specifications. Further, no "internal interfaces"”

exist beyond those implied by uncorrelated use of shared variables.

-89

-

If we are to model AIP, using RSL, we must re-interpret
the semantics of an RSL interface and add some new attributes
to messages. We can then model an exchange function by a
coupled pair of interfaces, one to represent the initiation of
an interaction (termination of an R-Net) and another to repre-
sent the completion (initiation of an R-Net) of an interaction.
The drivers associated with interfaces now simply model
the exchange interactions and become standard modules, indepen-
dent of the specific application. We thus introduce a standard-
ized interaction scheduler that will initiate events for the

usual task scheduler.

Each AIP will now be represented by a set of R-Nets operat-
ing on shared data local to that process and interacting via the
re-interpreted interfaces with other R-Nets in the same or dif-
ferent processes. Each R-Net defines the non-interacting proces-
sing from R-Net initiation event (all interactions are represent-
ed as scheduled events) to R-Net termination event.

The state successor function that is defined in terms of
exchange functions will be decomposed into a set of functions
that may interact only at their initiation and termination.

These functions can be grouped into R-Nets such that the R-Nets

have interface initiation and termination.

The problem of how to model asynchronously inter-
acting processes (AIP) via RSL/REVS [MD] has been studied

in some detail. The principal concerns lie in (1) choos-

~90-

ing a method for representing AIP in RSL/REVS, (2) pro-
viding automated analysis tools to insure that the formal

properties described in Section 3 are satisfied by the

specifications, and (3) generating all necessary code for
the REVS simulation of specifications satisfying these
properties. In the remainder of section 5.0 we are concerned
mostly with examining the merits of various possible ways of
representing AIP in RSL/REVS. For any choice of representa-
tion it is a relatively straightforward matter to provide

the additional standardized software necessary to perform a
simulation for any given set of specifications.

We now discuss four possible schemes for modelling
AIP with RSL/REVS software (in sections 5.0.2 to 5.0.5).
The first three of these (table model, message model,
and augmented RSL model) employ modifications to RSL/REVS
to produce source languages for specifying AIP, and so
these languages are referred to collectively as modified
RSL, or MRSL. (A source language based on a mixture of
the three techniques is also possible but not discussed
here.) The last scheme, the AIP model, employs a subset
of RSL/REVS merely as an intermediate language, so that
the original source language for defining AIP would need
to be translated into RSL/REVS. The AIP model (section
5.0.5) has already received some testing by way of the

prototype—examples—in-section 5.2. Results-have provided

significant insight into the feasibility of RSL/REVS as
a vehicle for representing AIP, and these observations

are reported in sections 5.0.6 and 5.4.

-9]-~

5.0.2 Table Model

It has been noted in the beginning of section 5
that RSL/REVS does not have any explicit provision for
representing message passing between AIP, whose computa=
tions are modelled by R-Nets (see [MD]), and likewise
synchronizations associated with message passing. In fact,
the concept that a collection of R-Nets models an individual
ATIP is not expressible in RSL/REVS. A principal motivation
for MRSL has been to remedy this situation. One intuitively
simple solution is to store the information not semantically
expressible by RSL syntax in (non-RSL) variables accessible
to the simulation procedures of REVS. Data structures con-
sisting of list and pointers (hence the name "table model")
can then be used to keep track of pending messages, message
contents, activations and scheduling of R-Nets, simulation
timings, and so forth. Both static and dynamic information,
both types of which require initialization, are involved.

With the table model the drivers (see [MD]) for
individual R-Nets can be of a uniform structure, where the
only differences in code (Pascal, of course) are due to the
size of respective messages transferred between R-Nets. A
standard exogenous event routine (see [MD]) then makes
access to the simulation information in the data structures
between R-Net activations in order to decide which messages
to exchange and which R-Nets to activate next. (The code

of the exogenous event routine changes depending on the

-99-

number of R-Nets in the simulation, but this amounts only

to a kind of parameterization.) It is important to note

that all the code for both drivers and exogenous event
routine can be automatically generated from the combined
RSL (i.e., strictly R-Net) specifications and the user-
supplied data structures accessible to the simulation
routine.

The main drawback of the table model is that the
designer must not only perform by hand the highly special-
ized AIP decomposition described in section 5.1.2, but must
also be fully cognizant of the actions of the simulation
routines, for example, the synchronization and activation
aspects of simulation. (The complex detail makes even the
simplest examples too unwieldy for presentation here.)

Thus a great deal of the designer's effort must be expended
in decomposing AIP for R-Net modelling and then restoring
the interrelationships between individual R-Nets by filling
out data structures with coded information. The designer
can, of course, be aided by analysis tools which discover
errors in the R-Nets and data structures so obtained.
However, such aid does not eliminate the inconvenience and
difficulty of initially obtaining specifications which can
be analyzed. On the other hand, this is an improvement

over conventional design in RSL/REVS, since only a subset

of RSL is used and details of REVS simulation routines are
shielded from the designer through a specialized encoding

(in the simulation data structures) from which simulation

-93-

routines can be generated automatically. In either case

the designer must be conversant in Pascal so that detailed
AIP computations can eventually be simulated (specifically
by the alpha nodes in R-Nets). In the AIP model (section
5.0.5 below) a homogeneous specification language to replace
the combination of RSL (with or without supplementary data

structures) and Pascal as source languages will be discussed.

5.0.3 Message Model

Our second technique for modelling AIP is named
"message model" by analogy with the table model above,
namely in that information contained in the (non-RSL) data
structures in the table model is instead included within
RSL messages (in addition to the actual AIP message contents)
in the message model. In this way both the static and
dynamic information discussed in section 5.0.2 is passed back
and forth between the R-Nets and simulation routines. This
technique eliminates the data structures of the table model
and permits AIP specifications to be written entirely in
RSL (and Pascal for alphas, of course). As before, all
necessary parameterization of standardized REVS simulation
routines can be performed automatically. Thus the message
model merely shifts the mode of handling information neces-
sary for analysis and simulation, and so the analysis tools
developed for the table model would not differ significantly
from those in the message model. However, the inconvenience

to the designer in writing specifications is even greater

—-04 -

than in the table model because he must now encode data

structures somewhat clumsily and redundantly in the body

of messages. Efficiency in simulating the specified AIP
also decreases because variables must be passed from the
RSL routines where they are encoded and then must be copied
over by the simulation routines, possibly altered, and
finally returned to the RSL routines whenever an AIP

message (i.e., true message) is sent.

5.0.4 Augmented RSL Model

By augmenting the syntax of RSL to create a new type
of MRSL we can express all the necessary relationships
between R-Nets and their messages in MRSL syntax alone.
This is in contrast to coding the same information in
(non-RSL) data structures (table model) or R-Net messages
(message model). However, as in the previous models the
drivers and exogenous event routine could be generated
automatically for the purposes of simulation. Furthermore,
the additional MRSL syntax features could be translated
into a combination of data global to all simulation routines
and data local to drivers. (This arrangement is somewhat
simpler than the coding of simulation data in the table
model and does not require designer intervention.)

The RADX data base and anlaysis package of REVS could

be used to extract the syntactically expressed R-Net and
message relationships from the MRSL source language. How~-

ever, RADX is completely inadequate for the purposes of

analyzing specifications for compliance with the formal
properties which they must exhibit (sections 3,4). Thus
RADX would be superfluous in our analysis scheme since

the entire MRSL source code would have to be considered,
not only with respect to the new language constructs of
MRSIL but also those shared with conventional RSL. Very
importantly, though, REVS software does permit new language
features to be added to RSL without affecting the ability
of the remainder of the REVS package to perform simulations,
as with conventional RSL. For the type of RSL modification
anticipated here, the new MRSL syntax features would
essentially be ignored by REVS for the purposes of simula-
tion. The work of interpreting MRSL in the augmented RSL
model would then depend upon non-REVS software to a
slightly greater degree than in the table model or message
model. That is to say, in the table model and message
model non-RSL code is required primarily for semantic
checking of MRSL specifications and generation of para-
meterized simulation routines. In addition, in the
augmented RSL model new syntax constructs must be translated
into data for the simulation routines.

Extensions to RSL syntax would presumably be in the
form of new elements, relationships, and attibutes (see
[MD]) with self-explanatory or otherwise suggestive names
for the aid of the designer. However, in spite of the
homogeneity of the specification medium the designer still

must be able to perform the same AIP decomposition as in

-96-

the table model and message model and also must be familiar

with the same technical details of R-Net activation and

synchronization as in those two models.

5.0.5 AIP Model

If we choose to use RSL/REVS only as an intermediate
language in writing AIP specifications then we are free
to use a source language totally independent of R-Nets and
simulation routines. Instead the AIP specifications would
be translated into RSL/REVS without designer intervention
so that the specifications could again be translated into
simulatable form by REVS. Checks for compliance with the
formal properties discussed in section 3 could be made
directly on the source language in the AIP model. We
could expect the analysis tools in this case to be simpler
than in the models of sections 5.0.2-5.0.4 since the source
language would be deliberately chosen to reflect more
closely the intended AIP. Furthermore all of the follow-
ing could be performed automatically by reference to the
source language: AIP decomposition, generation of R-Nets
themselves (unlike previous models), and generation of
all necessary simulation routines. Thus in the AIP model
the designer need not know anything about RSL/REVS software,

the technical details of message passing, or AIP decom-

position. He is then free to write AIP specifications 1in
a language designed for that purpose and unbiased with

respect to the software employed for subsequent analysis

-9~

and simulation. In addition, practical experience in
writing specifications in the AIP model as opposed to
the table model (section 5.0.2) shows tha AIP model to be
much more concise, in fact, by a factor of at least ten
in the sheer amount of source code which must be written

for the same AIP,

5.0.6 Comparison of the MRSL Models

Comparison of the four models above for specifying AIP
(sections 5.0.2-5.0.5) shows that from the point of view
of ease and comprehensibility for the designer that the
AIP model is by far superior. This results from the
simplicity of syntax and semantics possible in an AIP-
oriented source language, which can be far more concise
than any MRSL language. Likewise, the analysis of
specifications for the required formal properties, such
as consistency and completeness, is simpler in the AIP
model. Finally, it is to be translated into a subset of
RSL/REVS and so does not necessitate any change in the
RSL/REVS software. However, it is the most complex of
the four models from the standpoint of implementation.

Of the remaining three models the augmented RSL
model uses the most homogeneous source language and hence
is more comprehensible to the designer than the table
model or message model. All three models are roughly of
the same difficulty to implement, although the table model
is slightly simpler in this respect. (As we have already

mentioned, the -AIP model has been used for testing of

-98—

the prototype examples of section 5.1 and Appendix A,)

Each of these three models (and also the ATP model) allows

standardized simulation routines to be essentlally para-
meterized for any particular set of MRSL specifications.
Thus the differences among the three models lie primarily
in the method by which the respective models store and
handle information on the scheduling and synchronization

of R-Nets based upon the messages they pass to each other.

The remainder of section 5 will detail and formalize many
of the specification and simulation concepts found in this

overview. Further conclusions are drawn in section 5.4.

5.1 Generation of MRSL Structures

Several alternate methods for modifying and reinterpreting
RSL/REVS to serve as a medium for specifying asynchronously
interacting processes (AIP) were described informally in
sections 5.0.2-5.0.5. The name MRSL (modified RSL) was applied
to each resulting specification model. 1In the AIP model MRSL
would serve only as an intermediate specification language while
some source language such as that developed in section 3.4.3.2

of [Fi322] would serve as the primary source language for

[Fi322] Fitzwater, D. R. "The Formal Design and Analysis of
Distributed Data-Processing Systems," CSTR 322, University
of Wisconsin-Madison, April 1978.

~990..

specifying systems. In this model then the MRSL specifications
could be further translated by REVS software for the purposes
of testing and simulation. Since the semantics of the source
language of [Fi322] has been already (informally) stated and
example of its use have been presented, it is convenient to
indicate the semantics of MRSL simply by translating AIP
specifications into MRSL. This is especially true because
RSL/REVS has no syntactic or semantic contructs corresponding
to process definitions and hence interprocess interactions and
synchronizations (at least under the formal definitions
employed here). The result is that the semantics of MRSL

(in any model) is somewhat obscured by the artificial and
rather arbitrary structures and conventions that must be
introduced in order to represent AIP., Finally, MRSL in the
AIP model provides an excellent framework for explaining MRSL
in the other models because the differences are primarily
notational in character,

The remaining subsections of 5.1 deal with translations
of AIP specifications into that portion of MRSL which can be
represented strictly in RSL. This includes the structures
necessary for the evaluation of the state successor functions
for individual processes exclusive of the evaluation of exchange
functions. Evaluation of exchange functions, synchronization
of computations specified in MRSL, and all other details

relevant to the simulation of the original AIP specifications

-100-

will be presented in section 5.3 dealing with MRSL implementation.

5.1.1 AIP Precedence Relations

We will focus now on transformations of AIP specifications
into MRSL specifications which can be directly modelled in REVS.
More specifically we will detail a sequence of transformations
which need to be applied in sequence in order to go from AIP to
MRSL specifications. It is important to note that there are
many possible ways of writing MRSL specifications and further-
more within each of these there are in addition many satisfactory
ways to perform the necessary transformations on AIP specifications.
The transformations chosen here are thus quite arbitrary but have
been chosen with the particular goals of simplicity, clarity, and
ease of implementation. Similarly a great deal of use has been
made of graphical methods in order to draw attention to the
features of greatest interest and to convey the effect of applying
the transformations more clearly than in words alone. Note will
be taken wherever specification information not critical to the
transformation has been omitted. It should be understood, of
course, that all such non~critical information will remain
unaltered by the transformations in question. The initial

discussion draws heavily on material from section 3.4.3.2 of

[Fi322],
In an AIP specification the processes are defined by a
state successor function which may be arbitrarily complex and

may involve one or more definition statements in the AIP

-101-

language. If the state successor function consists of more than
a single primitive function (which is not elaborated any further
than the specification of its domain and range) than it can
ultimately be described in terms of primitive functions (including
exchange functions) which must be evaluated in some order consistent
with the definitions of the process. For example for the state
successor function h, where h(x,y) = £f(g(x),g(y)), the
evaluation of g(x) and the evaluation of g(y) may be done
in any relative order, including in parallel, but each must be
evaluated before f(g(x),g(y)) can be evaluated. The immediate
goal of this section is, in fact, to show how such precedence
information can be inferred individually for each process by
means of its definitions,

Since we will be mainly concerned with flow of control
during simulation of ATP specifications we will represent
function definitions (which are little more than ordinary
algebraic expressions) by means of directed graphs. For
example, the definition:

Let fl + N X N+ N x N x N where
fl(u,v) = (hl(u),hz(u),h3(V))

can be rendered graphically as simply:

-102—~

[ul [ul [v]

[£,]

Similarly, the definition:

Let f2 : N x NXxN->NxDN x N where

fz(x,y,z) = fl(gl(X:Y),gz(Z))

can be rendered as:

[x,v] [z]
IN 92

Y

[£,]

Here the symbols enclosed in square brackets are not the names
of vertices but instead merely labels associated with them.
(There is no need to name vertices in this somewhat informal
presentation,) Similarly, arcs need not have distinct function
names associated with them. Intuitively, the direction of the
arcs shows that in the first example hl’ h2, and h3 must be

evaluated in order for £f(u,v) to be obtained. Similarly, in

the second example N and 9, must be evaluated before fl
which yields fz(x,y,z). Arcs will in later discussion be
labeled with a function name if they denote computation or, in

cases to be explained later, they will be unlabléd and will

-103-

merely express precedence information. These latter arcs will
be called "dummy" arcs for obvious reasons. Vertices will
generally remain unlabeled except where exchange functions are
involved, and the role of these special vertices will be
described shortly. It should be noted that a great deal of
information is not indicated in the graphs, fér example, the
domains and ranges of functions. Furthermore, even though the
function arguments have been shown in their correct order in
the figures above, this information is not encoded as part of
the graph. Thus the graph does not have any information on the
order of function arguments. However, all information lost is
irrelevant to the subsequent discussion of 5.1 (which depends
primarily on flow-of-control information) and has been
intentionally ignored in order to highlight features of interest.
On the other hand all such information is to be subsequently
encoded in the final MRSL specifications.

Exchange functions will be represented differently from
other types of primitive functions (e.y., primitive functions
in the examples above), in that two arcs are employed, where the
vertex joining them (rather than an arc) is labeled with the
exchange function name. For example if g, were instead XCl
in the second example above then we would have the following

graph for fzz

-104-

[£,]

Note that the arcs incident on the vertex labeled XCl are
dummy arcs. These are included purely for convenience in later
graph transformations, and eventually many of these arcs will
be discarded.

Selector functions will be drawn as follows where we
substitute for 91 above the selector function

[g3(x) : g4(y), gs(y)], that is, "if gB(X) then g4(y)

else gs(y)":
[x] [z]
s
e Taa
[v] [y] A
941 Ig 2

-105-

Tf the selector function had had more paired expressions (e.g.,
[exp1 P exp,, exp, : exp4,...,expn]) then they would take the

following graphical form:

exp,

exp,

where the dotted line indicate that additional pairs of
expressions may be substituted. The dashed arcs must always
occur in multiples of four by construction, and they will be
considered as distinct from other arcs for the purposes of
transformation. They indicate simply that only one path
following the bifurcating dashed arcs will be evaluated,
depending upon the Boolean result of the expression preceding
these arcs. The labels for these arcs (e.g., expq and exp4
above) will be omitted whenever the expression is simply a

constant.
-106-

It is now possible to combine precedence information from
disparate graphs in order to express state successor functions
entirely in terms of primitive functions. This is done by
successively eliminating, via substitution, all non-primitive
functions from our graphs. For example, if f2 above is
considered as a state successor function and gir 9y hl’ h2,
and h3 are all primitive then we negd only eliminate the
non-primitive fl. This is done by drawing dummy arcs from
each argument of fl in the definition of f2 to the

corresponding parameters in the definition of £ to yield:
g 1

[x,y] [z]

Q
'._I
Q
N
ey

Note that gl(x,y) is used in the evaluation of both

hl(u) = hl(gl(x,y)) and hz(u) = hz(gl(x,y)) as indicated in

the definition of fl and is calculated only once.
By repeated application of the type of substitution shown
above a single directed graph for each distinct process in an

ATIP process can be obtained. It is important to realize that

-107-

the semantic requirements of AIP specifications from this
substitution at each step to yield an acyclic graph, namely

in that "circular" definitions are not permitted. One final
step is taken in order to simplify the algorithms and
transformations which follow. It is simply to draw dummy arcs
from a single vertex to each vertex labeled with state variables
for a given process. This gives a graph which begins at a
single vertex and ends at a single vertex. For the preceding

example this step yields:

[

[x,v] [z]

91 92

v
N
hlx h%y
[c,]

5.1.2 AIP Decomposition

Whenever a process from an AIP specification is defined
in part by means of exchange functions then we can model the
process by means of a single R-Net only where all exchanges
are defined to occur exclusively at the beginning or end of

a process step. (A single R-Net will also suffice wherever

-108-

_a process 1is defined without exchange functions. Of course,

in such instances the process in question does not interact
with any other processes.) If an exchange takes place anywhere
else within a process step, however, then we must use more than
one R-Net so that computations both preceding and following
exchange functions can be modelled. This is because an R-Net
can receive a message only at its initiation point and can

send messages only at its termination point(s). The actual
transmission of messages and scheduling of R-Nets during a REVS
simulation run is performed by Pascal routines, that is, non-
RSL code. (The reasoning and motivation behind the previous
statements as well as further details on REVS have already been
given in section 5.0.)

Out of the many possible ways to decompose state successor
functions based upon occurrences of exchange functions in AIP
specifications the particular method chosen for MRSL has been
to minimize the number of R-Nets generated. This decomposition
method has the result of simplifying the non-RSL code necessary
for a simulation package by placing as much precedence and
scheduling information in MRSL (versus Pascal) as possible.
Since one of the primary purposes of RSL is in fact to represent

flow-of-control information RSL seems like the most natural

medium within REVS for expressing precedence information in the

[Fi78-~3] Fitzwater, D. R. "The Formal Design and Analysis of
Distributed Data-Processing Systems," Report DASG60~76-C~0080-3,
August, 1978.

-109-

case of ATP. The first step in the decomposition is most easily
presented as an algorithm whose input consists of the directed
graphs (and associated vertex and arc labels) obtained in
section 5.1.1 above. Two relationships among vertices and arcs
which will be used extensively in the following material must
be noted first, however.

We say that one arc precedes another arc if there exists
a directed path from the first to the second. In this case we
also say, alternatively, that the second follows the first. For

example, in the graph:

1 2 3 4 5
A \B C4 E
D

arc A precedes arcs B, C, D, and E, arc B precedes C and E, and
both C and D precede E. Also arcs B, C, D, and E follow A,
and so on. Likewise, we say that vertex precedes an arc if the
arc is incident on the vertex and is directed away from it or

if the arc in question follows another such arc. For example,
in the graph pictured above vertex 1 precedes all arcs
(similarly all arcs follow vertex 1), vertex 2 precedes B, C,

D, and E, and so on. Finally, we say that a vertex m

precedes another vertex n if m precedes an arc that

~110-

precedes n. Since we are dealing only with acyclic directed
graphs, a vertex or arc can either precede or follow another
vertex or arc (but not do both), or do neither. Intuitively,
the computations associated with non-dummy arcs can be performed
only as soon as (1) the computations for all arcs preceding it
have been performed, and (2) all exchange functions associated
with vertices preceding it have been evaluated. We now present
the decomposition algorithm (Algorithm 5.1) which partitions
precedence graphs obtained from AIP specifications as described
in section 5.1.1; Each of these (directed acyclic) subgraphs
will eventually be transformed into an R-Net as explained in
5.1.3. The partition algorithm uses ordinary set notation and
control structures familiar from a number of algorithmic
languages. Comments are included with quotation marks. The
algorithm is to be applied separately to each process in an

AIP specification.

n: = 1 "n is the number of subgraphs currently identified
by the algorithm"

R,: = {a | a € SO, a precedes some X € XO and follows
no x € XO}

"R, is the set of arcs in the ith subgraph. So is

the set of arcs in the entire graph for the process
and X, is the set of vertices labeled with exchange
function names in that graph.

Algorithm 5.1

~111-

Xy = X, - {x | x ¢ X, and x immediately follows some
member of Rl}
Sl: = S0 - Rl

while Sn # ¢ do
begin
m: = n

for i: =1 step 1 until m do

begin
if X = ¢ then
n
T: = S
n
else
T: = {s | s € Sn' s follows some member of Ri

but no member of X and s precedes some

member of Xn}

if T # ¢ then

begin
n: = n+ 1
Rn: = T
Spt T Sn-—l Rr
X0 = X 4 - {x | x ex _; and x immediately

follows some member of R !

end

end

end

end

Algorithm 5.1 (cont.).

-112-

Tt has been mentioned before that this algorithm decomposes
the precedence graph for each process into the minimum number of
subgraphs which can be modelled in RSL (with one R-Net per
subgraph) . These subgraphs consist of those arcs in sets Ri’
1<4i<n, above and their associated vertices. Even though n
represents a minimum, however, the algorithm above does not
represent the only possible partition scheme for this minimum.
From the point of view of REVS though any partitioning of the
graph works as well as the others since each R-Net is considered
to be evaluated instantaneously in simulated time. (Details on
simulation will be given in section 5.3). Specifically in the
algorithm above the inclusion of the phrase "and s precedes
some member of Xn" in the last statement above where T 1is
assigned a set value has the following consequence. Each R-Net
will compute all that is logically possible from the point where
exchange of a message or messages enables an R-Net to the point
where all subsequent computation requires that one or more
exchanges of messages be performed. The only exception is at
the end of a process step where all computations have been
completed and a new process step is ready to begin.

This completes the decomposition phase of the translation

from AIP specifications into MRSL., The remaining transformations

in the next section convert each subgraph obtained here into a
R-Net structure. A detailed example which employs the transformations

of this section and the next will be given in 5.2.

=113~

5.1.3 Modelling AIP with R-Nets

Tt has been shown in previous sections how AIP specifications
can be reduced to precedence graphs which can be decomposed into
subgraphs suitable for modelling in MRSL. In this section we will
list five transformations necessary to convert each subgraph into
an R-Net structure. An example illustrating these transformations
will follow in section 5.2. In the following discussion, as
before, graphs are described almost exclusively in terms of arcs
rather than vertices since arcs represent computations and vertices
are merely synchronization points, This lack of rigor permits us
to highlight the main points of interest without obscuring them in
unnecessary detail. The purpose of each transformation will be
provided as an aid in understanding the overall scheme of converting
ATP specifications to MRSL.

(1) In the first transformation a new directed acyclic
graph is generated for each of the subgraphs R:» 1 <i<mn,
produced for some process by the algorithm of section 5.1.2 above.
This is done in each case by deleting a different set of arcs and
arc labels from the original precedence graph. The arcs deleted
include the following for each i: (1) any arc that does not
precede or follow an arc in R,y and (2) any arc a, such that
for some arcs a, and az, no two of the three arcs are in the
same subgraph, ag follows ayr @, follows agy and a; € Ri‘
In addition all labels are removed from those remaining arcs and

vertices which are not part of Ri‘ The only exception is that

~114-

the labels T and F on the dashed dummy arcs associated with
selector functions remain. Note that the new graph Gi created
in this way is a subgraph of the original precedence graph, and
similarly Ri is a subgraph of Gi' The purpose of this
transformation is to leave enough of the control structure
"context" for each Ri intact so that the R-Nets for MRSL can
be constructed. Actually the subgraph Ri alone contains
enough information to generate a suitable structure for
constructing an R-Net. However, the rules for doing so are
more complicated than in the present approach. In many cases
the dummy arcs produced for each Gi can be eliminated by means
of transformation (3) below and simpler structures will result.
(2] A study of the finer points of RSL syntax and semantics
is beyond the scope of this discussion. However, it is necessary
to explore how precedence relations may be expressed in RSL
because of the impact that this aspect of RSL has on MRSL,
primarily in necessitating the inclusion of transformation (2),
which will be presented below after a considerable digression
into the motivation behind it. In AIP specifications we have
permitted arbitrary precedence relations to be expressed, but
unfortunately the block structure of RSL allows only a subset

of these relations to be expressed. For example, in the simplest

case we could have generated the precedence relation:

-115-

from some ATP specification, but this cannot be modelled directly
in RSL. This problem has been solved in MRSL (at least insofar

as the fidelity of the simulation model to be described in

section 5.3 is concerned) by simply calculating the time necessary
to simulate the computations of an R-Net based upon the original
precedence constraints (as represented in each Ri) independent

of the R-Net structure wherever the two conflict. The R-Net
structure is then only an approximation of the original precedence
constraints in such instances. It should be noted that these
simulation times must be calculated in any case because R-Nets

are considered within REVS to execute instantaneously in simulated
time, The only disconcerting issue is that R-Net structures may
be misleading if viewed independently from the precedence
constraints which they attempt to model.

Transformation (2) will seem much clearer when we realize
that the relationships "precede" and "follow" from the previous
section induce a partial ordering on the computations modelled
as arcs 1ln a precedence graph. For our purposes any newly
derived precedence graph which does not violate this partial
ordering, that is, which may introduce new constraints without

altering any old ones, will provide a suitable compromise

-116-

between precedence relations and RSL syntax requirements. Thus

any of the following would be suitable transformations of the

graph above:

C B B
E v

D
Y

E

where the first corresponds to the algorithm to be given below
and the last is a more extreme solution. (Incidentally, each
of the four transformed graphs can be realized as an R-Net
structure.])

Before giving transformation (2) we need one useful
definition, Recall that each selector function from an AIP
specification is translated into one or more nested gquadruples

of dashed arcs (see section 5.1.1). In the following algorithm

(and also transformation (3)) an arc cluster is defined as the
set of all arcs which follow one vertex and precede another under
the following condition: if an arc cluster contains one dashed

arc from a quadruple of such arcs than it must contain all four

-117-

of them. For example in the following graph:

P
& RN
q
£ S
¥
« . S
. 1
h Y~ e

the sets {al}, {b}, {d}, {e}l, {d,e}, {£,g}, {b,c,d,e,f,qg,h,i},
and {a,b,c,d,e,f,g,h,i} are the only arc clusters. We will
use a wavy arrow to depict each arc cluster in the algorithm
for transformation (2) which we present at last: Repeat the
following until the transformation can no longer be applied
to the original or succeeding graphs. If a precedence graph

contains (as a subgraph) either of the following configurations:

7

S\
~118-

(where capital letters are labels of arc clusters for the
purpose of identification in this algorithm only), then non-
deterministically choose one such configuration and construct

a new graph by changing the arc cluster configuration to:

2/ e VA

C 3
M‘Q or ""‘“‘-qu
W

D K

E

AW

as the case may be, and leaving all other precedence relation-
ships unchanged and all labels unchanged.

(3) The third transformation is aimed at reducing the
number of unnecessary dummy arcs resulting from transformations
(1) and (2) above.

Perform the following two steps in either order to

any portion of the (original or any succeeding) graph

until neither is applicable anywhere in the graph.

(a) If an arc cluster consists entirely of two or more

dummy arcs (including dashed arcs) then replace it with
a single dummy arc. If this replacement results in the

loss of one or more vertices labeled with an exchange

-119-

function name then label the vertex following the new

dummy arc with those names in addition to any labels

that the vertex may already have.

(b) If an arc cluster consists of two arcs where a

labeled arc either precedes or follows a dummy arc,

then replace it with the labeled arc alone. Retain

vertex labels as in (a) above.

(c) If an arc cluster can be partitioned into two

arc clusters where both have the same initiation

and termination vertices and one cluster is a single

dummy arc, then delete the dummy arc and leave the

rest of the graph unchanged.

(4) This fourth transformation produces graphs which can
be converted directly into R-Nets by transformation (5). The
dummy arcs introduced here are essentially for the sake of
uniformity of appearance in graphic R-Net representations since
the arcs correspond to no syntactical construct in RSL source
language.

(a) Repeat the following until it is no longer

applicable to the original or any succeeding graph:

If a vertex o 1is preceded by zero arcs or more than

one arc and is also followed by zero arcs oOr more than

one arc then create a new graph identical to the first

except that two new vertices o' and a'' with a

dummy arc from o to a'' replace a such that all

-120-

(if any) arcs that preceded o now precede a'

and all (if any) arcs that followed o now follow
a''. Any vertex labels of o are retained by a''’.

Two pictorial examples help to illustrate this change:

LW VLY

N

(b) Also insert a dummy arc at any vertex which is
the initial vertex of a maximal terminal arc cluster
unless there is only one such cluster (i.e., the
entire graph). Retain vertex labels as in part (a).
(A terminal arc cluster is any arc cluster having an
arc followed by no other arc. In addition, it is
maximal if it is not properly contained in any other
terminal arc cluster.) If a vertex serves as the

initial vertex for more than one maximal terminal

arc cluster then a dummy arc is inserted for each

cluster.

-121-

In the example below there are three such clusters, two at

vertex R and one at vertex Y,

>~ P T \F
R & 7 Ta
~ e
~ Pe
slz
(c)] Repeat transformation 3. (Some unnecessary

dummy arcs may have been introduced at step (b)
above and so are withdrawn immediately here.)
Taking the results of the example for step (b) above we obtain

the following graph, where only one of the dummy arcs remains:

-122~

(5) The fifth and final transformation of this section
converts the directed acyclic graph from step (4) above to an
R-Net structure. We will be little concerned with labels on
R-Nets since we have dealt mainly with control structures so
far. The missing information would, of course, be presented
in the RSL source language to which AIP specifications would
be translated internally for the purposes of simulation. It
should be noted, however, that R-Net drawings are an alternate
and formally acceptable way to represent RSL control structures
within the REVS methodology.

The following steps are to be applied in order once,

where each succeeding step is applied to the result

of the preceding step.

(a) If no arc precedes a vertex then designate it

as an input interface (symbolically, a hexagon) plus

an entry symbol (triangle, see later examples). (There

is precisely one input interface per R-Net.)

(b} Similarly, if no arc follows a vertex then

designate it as an output interface (also a hexagon).

There can be one or more output interfaces per R-Net.

(c) If a vertex not already designated in (a) or (b)

above is immediately preceded or immediately followed

by a pair of dased arcs then designate it as an OR node
(symbolically as a ®) otherwise as an AND node

(symbolically as a) .

-123-

(d) For any pair of dashed arcs (from the same
guadruple of arcs) position the T arc and all

arcs following it (but not following the F arc)

to the left of the F arc and all arcs following

it (but not following the T arc). By "left" we
mean that traveling counterclockwise from any arc
immediately preceding the pair we first encounter

the T arc and then the F arc. Since all R-Nets
are planar graphs this is always possible. In addition,
if a single dummy arc follows the T arc or F arc
and also immediately precedes one of the other dashed
arcs in the same quadruple then replace it with the
following configuration:

|

null

d

where the rectangle labeled "null" specifies that no

computation takes place along that path. The rectangle
(but not the "null" label) stands for an "alpha" in
RSL. An alpha specifies a computation to be performed
by a Pascal procedure. In the case of "null" alphas,
which are inserted here only because of RSL syntax

rules, the procedure is simply "BEGIN END".

-124-

(e) TLet all dashed arcs "shrink" to a point, that is,
merge the two vertices immediately preceding and
following the dashed arc, thus eliminating the arc.
The OR nodes above now serve the purpose of modelling
selector functions from AIP.

(f) Replace each labeled arc by two arcs and an alpha

with the same label, thus:

|

a becomes []

l

This means that a Pascal procedure will be uséd to
compute each primitive function from the AIP
specifications. TIf the labeled arc is not followed
by any other arc (and hence precedes a vertex which
is an output interface by (b) above) then include an
additional alpha with a unique label preferably to
include the names of all exchanges associated with or

preceding the interface, as in the following example:

/®

tﬂ“/

gk

¢;y \; i
XS XC

O o |
O

Q8
e----I\J

-125-

These alphas have the dual purpose of assigning state
variables their newly computed values for the next
system step (in those R-Nets which actually terminate

a system step) and also for forming messages (for each
exchange function named by vertices preceding the alpha)
to be sent through their corresponding output interfaces.
Thus an output interface may send more than one AIP
message per RSL message. Any group of such messages,
however, causes values obtained from evaluating these
AIP exchange functions to be used only in a single R-Net,
which in simulation runs will be executed subsequently.
However, there is only one input interface per R-Net
and so such an interface may receive exchange messages
from one or more distinct R-Nets. It should be mentioned
that additional information besides actual AIP message
contents may be included in RSL messages. For example,
execution times for various computation paths through
the R-Nets may be included. Such topics will be

treated in more detail in section 5.3. This transfor-
mation concludes the construction of R-Nets from AIP
specifications. Section 5.2 will provide a detailed

example showing the use of these transformations.

-126-

5.1.4 Data Flow in MRSL

Sections 5.1.1 to 5.1.3 have emphasized the representation
of flow of control in MRSL models of AIP specifications and
have dealt only peripherally with representations of AIP state
spaces, state variables, evaluation of primitive functions,
and treatment of messages within MRSL. Fortunately, these
topics require far less detailed explanations than the MRSL
control structures did. Much of this simplicity derives from
the fact that AIP specifications are guaranteed to be complete
and consistent, so that elaborate checks and cross references
do not need to be made in translating from AIP specifications
to MRSL. That is, we assume that the source code written in
the syntax of section 3.4.3.2 of [Fi322] has been analyzed
for adherence to the properties also listed in that section.
(Other MRSL models will be discussed in section 5.3.5.). These
properties guarantee that the source code actually constitutes
a valid AIP specification.

Because of the many differences between MRSL and the AIP
specification language some information which is explicit in
AIP specifications (for example, state spaces, domains and
ranges of functions, state successor functions, and some types

of precedence information) is represented only implicitly in

MRSL. Conversely, some information which must be an explicit
part of MRSL is implicit in ATIP specifications (for example,
temporary variables, that is, for evaluating the state successor

function, and the ranges of values which each state variable

-127-

may attain). It will become clear through later discussion
and examples, however, that AIP specifications tend to be far
more compact than corresponding MRSL specifications because
the latter must be stated on the whole in a more semantically
distributed and redundant way. For example, as we have already
stated, every temporary variable in MRSL (including all variables
used merely to send messages) must be declared individually
as to its range of possible values, its locality of use, and
its role in the data flow scheme of the R-Net in which it
appears. All such information is implicit or meaningless in
AIP specifications and temporary variables (which must in any
case be created in order to simulate AIP specifications) are
never mentioned. The remaining paragraphs of this section give
the correspondences between AIP and MRSL language structures
exclusive of flow-of-control structures.

State variables constitute the only type of variable in
AIP specifications, but they represent one among several types
of variables in MRSL, However they are readily distinguishable
from other types in MRSL in that they are defined to be global
(since they are shared among the R-Nets modelling the process
of which they are a part, although they are not the only type
of global variable) and further in that they are assigned values,
by convention, only within the last alpha to be executed in a
process step. They may be regarded as read-only variables during
the initial portion of the process step. (Note that they are

global variables only with respect to one particular process and

-128~

are never shared among processes.)

We have already mentioned that in AIP specifications the
state space for each process is indicated explicitly, whereas
in MRSL it is indicated only implicitly, namely by denoting the
range of possible values which each state variable may take.
In AIP specifications state variables may take values of type
Boolean, integer, or string, and furthermore the range of values
which they may take can be expressed in terms of unions of
finite subsets of the above types. Since in MRSL we may declare
variables of type "enumeration", thus in essence defining finite
sets, we can represent all sets from AIP specifications by means
of type "enumeration" in MRSL, where there exists a unigue one-
to-one correspondence between the members of the respective sets.
It should be noted that sets in AIP specifications can also be
defined in terms of cross products of sets, thus giving rise to
n-tuples of variables. Although RSL has the capability of
expressing hierarchical data structures, it gains us nothing to
use this facility in MRSL to represent the tuples. This is
because each state variable in MRSL must have a unique name and
its mode of calculation must be given explicitly and individually.
Thus the inclusion of a hierarchical ordering of MRSL variables

is superfluous. In ATP specifications on ithe other hand a

state variable does not have a specific name and need not be
referenced uniquely or even explicitly. It is simply a
component of the domain and range of some state successor

function.

-129-

There are three remaining types of variables used in MRSL.
The first of these comprises the global temporary variables. They
consist precisely of all those global variables which are not
state variables. Recall that state variables are assigned values
only in the last alpha executed in a process step. Thus global
temporaries may be assigned values anywhere else during the pro-
cess step and are in fact identified as temporaries by being so
assigned. The second type of variable not yet mentioned con-
sists of those temporary variables which are locally defined
(that is, created and used entirely within a single R-Net) but
not used in any message. We will consider these temporaries
in the same way as we do global temporaries in the following
discussion because declaring them as global instead of local
would have no effect on the MRSL specification. The third
remaining type of variable consists of the local variables
used to pass messages between R-Nets and drivers. These
variables must by RSL (hence MRSL) semantic rules be declared
as local. In section 5.2.2 we will provide an extended example
which will illustrate the role of each type of variable in
MRSL specifications. (Since this example was developed before
all four MRSL models had been considered, its use of wvariables
is not so strict as indicated in the scheme below which is
applicable to each of the models. All deviations from this
scheme will be noted.) Meanwhile we will give a brief outline

of the uses of each of the respective types.

-130-

State variables in MRSL have already been described above.
They correspond exactly to components in the domain and range
of the state successor functions in AIP specifications. State
variables in the example of section 5.2.2 are identified by their
initial letters "SV" rather than by where they are assigned a
value. On the other hand global temporaries represent all
outputs of primitive functions modelled in MRSL. Each such
output for any occurrence of a primitive function must have a
unique name. Naturally some of these outputs are inputs to
other primitive functions according to the precedence relations
already established in section 5.1.1. (Other inputs to primitive
functions are messages and state variables.) All global
temporaries in the example of section 5.2.2 begin with the
letters "IV". The third type of variable, namely local
temporaries not used in messages, are used as necessary to
store temporary results and timing information in the Pascal
procedures that calculate primitive functions and also in those
that form messages immediately before output interfaces. 1In
the example of section 5.2.2 variables beginning with "LV",
"EX", and "ELAP" are of this type as are variables beginning
in "TIME" which are not used in messages. Finally, local

temporaries—used-in-messages merely provide buffer space

(local to R-Nets) for messages passed between R-Nets and drivers.
(Other message buffers to be explained in section 5.3.3 are

provided separately by the Pascal simulation routines.)

-131-

In the example of section 5.2.2 these variables are listed
for each message in the message definition statements of
MRSL.

Tn the whole of section 5.1 we have dealt with those
aspects of simulating AIP specifications which would be
similarly represented in MRSL independent of which of the
four models (given in section 5.0) is chosen for our AIP
specifications. Those aspects which must be expressed in
non-MRSI, code or which are dependent on the choice of model
are reserved for section 5.3. We will not describe the
syntax of RSL here but instead refer the reader to [MD] for
background information and section 5.2 of this report for
examples. Since only a subset of the most transparent
constructs of RSL is used in MRSL, the examples of this report
will be virtually self-explanatory. The only exception is
for R-Net structures, which we have expressed so far only in
graphical terms, In the example of section 5.2.2 the textual
representation of the R-Net structures derived in section 5.2.1
are given without explanation. The formal correspondences
between the two representations are given in section 3.3 of
[MD] .

We now list all of the language constructs of MRSL which
must be included in a valid specification. In MRSL information
is expressed by means of what can be considered a declaration

plus its corresponding definitions. We present the possible

-132-

declaration-plus-definition types in the order in which they
occur in the example of section 5.2.2. This order is completely
arbitrary and of no special significance. There is enormous
flexibility within MRSL for reordering and restructuring lists
of definitions without changing the overall MRSL specification
in any respect.

(1) Input interfaceé and output interfaces must be declared
and defined in MRSL. They have been mentioned already in connec-
tion with R-Net structures. Input interfaces receive messages
from the exogenous event routine during a simulation run, and the
associated R-Net is considered to be entirely executed at the
simulation time when such a message is received. (See [MD] for
details. 1In RSL messages may be sent to input interfaces from
any Pascal driver procedure, not merely the exogenous event
routine.) In RSL terms the input interface is said to "enable"
its associated R-Net, and in MRSL in particular every R-Net has
such an interface. The MRSL message contains some simulation
timing information and possibly one or more AIP messages (that
is, exchange function arguments). Similarly, output interfaces
pass MRSL messages to simulation drivers and thus schedule them
for execution. An R-Net in MRSL may have one or more (in RSL,

zero—or-more) output interfaces. Each output interface corre-

sponds to passage of control from the current R-Net to one other
R-Net (possibly itself) as determined by the decomposition

algorithm of section 5.1.2. In addition, of course, the output

-133-

interface also passes one or more AIP messages (except possibly
at the end of a system step) via a single MRSL message, which
also transmits some simulation timing information (to be ex-
plained in section 5.3.5). In conclusion, the declaration of
an output interface has the purpose of relating an R-Net and

a unique message name and a unique driver name.

(2) Declarations of R-Net structures come next in the
example of section 5.2.2. As we have already mentioned these
correspond to the graphic examples of section 5.2.1. The
correspondences between the two representations can be found
in section 3.3 of [MD] and will not be discussed further.

(3) Each message passed by the input and output inter-
faces described in (1) above must have its constituent variables
listed as part of its definition. These variables must likewise
be declared as local to the R-Net which receives or sends the
messages. In MRSL each message corresponds to precisely one
interface, and further (unlike RSL) each interface corresponds
to precisely one MRSL message definition. The distinction has
already been repeatedly made between an AIP message (originating
from an exchange function) and an MRSL message which may contain
zero or more AIP messages plus some additional information
depending upon the choice of AIP model (see sections 5.3.3 and
5.3.5).

The particular exchange functions involved in each MRSL
message can easily be obtained from decomposition algorithm 5.1

in section 5.1.2. The exchanges for all the output interfaces

-134-

for the ith R-Net in a process are contained in the set

st
~

! X - X., where X, . and X. are obtained from the
i i-1 i =1 i

algorithm. We partition Xi into subsets so that each subset
is the set of all exchanges immediately preceding arcs in Rj
for some Jj, where all Rj are likewise obtained from the
algorithm. The exchanges represented by each such subset con-
tribute to an individual MRSL message. (At the end of a
system step the Xi is not partitioned.) It should be noted
that because of selector functions not every AIP message will
be sent by its containing MRSL message on every system step.
This eventuality must be included as part of the message. In
addition, the time that the AIP message becomes pending must
be included in the MRSL message so that it can be placed

on the simulation event calendar. The above information is
the minimum that can be placed in an MRSL message. In some
AIP models additional information is included. Section 5.3.5
expands on these topics.

(4) The next set of definitions which must be included
in any MRSL specification is for alphas. So far, alphas have
been discussed principally as the type of node within R-Nets
which is associated with computation of primitive functions
and not merely with flow of control. Additional alphas used

immediately before output interfaces are for the utilitarian

purpose of (1) baicu%ating—%iméngsuiax_use_in_scheduling;_____________w__
exchanges and R-Net executions on the simulation event calendar,
(2) forming MRSL messages for the output interface, and at the

end of a system step, (3) assigning newly calculated values

-135-

to the state variables with which the containing R-Net is
associated. The methods by which alphas calculate simulation
timing values is straightforward and will be given in section
5.3.2. However, the fact that an alpha forms a message is
simply stated as part of its definition and does not require
any other MRSL code since REVS instead generates the necessary
Pascal code automatically.

All computation within an alpha (of either the primitive
function type or the output type) is specified by a single
Pascal procedure. This procedure, given within double quotes
in MRSL, lacks arguments and a heading. The heading is
instead supplied by REVS when the procedure is inserted into
the Pascal simulation program. In addition, REVS also inserts
a procedure call within this code if the alpha forms a message.
Finally, it is necessary to declare all variables used as
inputs to the procedure (that is, previously assigned variables)
and all variables which are outputs of the procedure (that is,
variables assigned a value within the procedure) as shown by
examples in section 5.2.2.

(5) Finally, all data used in the MRSL specification must
be declared as to type, locality, and (in some cases) initial
value. The data will consist precisely of all the variables
listed as inputs and/or outputs in (4) above. The attributes
of type and locality have already been discussed at length.

The initial value of a variable is required for state variables
in order to define the system state at the beginning of a

simulation.

-136~

5.2 MRSL Examples

5.2.1 R-Net Generation

Many of the graph operations and characterizations
given in section 5.1 were introduced without examples in
anticipation of the more unified presentation of this
section. Here the precedence graph for the state successor
function for one process specification will be carried
through the entire set of operations of sections 5.1.2
(decomposition) and 5.1.3 (MRSL structures). For another
process which interacts with the first via exchanges we will
provide only the final results of applying all the transfor-
mations in order. (Since this second process is much
simpler than the first, very little can be gained by labori-
ously stepping through all the transformations after it has
been done already three times for the first process.) Recall
that the final graphs obtained are mere flow-of~control
abstractions of true AIP specifications. (The missing infor-
mation includes the state variables and state space for each
process as well as the procedure for computing each primitive
function and assigning a simulation timing value to each

computation. None of this information is relevant to the

current discussion and so is postponed—until—section—5+3+)
The two example processes have, on the other hand, been

tested in their completely specified final form by means of

simulation runs with existing REVS software. These examples

were prepared for testing entirely by hand, although the

-137-

algorithms of section 5.1 are quite straightforward and
could be easily automated.

We begin our examples with precedence graphs which are
assumed to have been already derived from AIP specifications
as shown in section 5.1.1 (which already has examples for all
the graph transformations contained therein). Thus only the
information required for the operations of decomposition and
subsequent transformations has been extracted from the original
AIP specifications. For the purposes of the decomposition
algorithm of section 5.1.2 the dummy arcs in the graphs below
have been labeled D1,D2,...,D18 whereas non-dummy arcs are
labeled 2l,A2,...,Al7. The labels for the dummy arcs will be
dropped for all subsequent transformations in order to avoid

confusion.

Figure 5.2.1. Precedence Graph for Process 1.

-138-

P

17
XC XC

2 1
Al3 Al4
XS, XCy
AL £ R16

&

Figure 5.2.2. Precedence Graph for Process 2.

We now give a complete trace through the algorithm
of section 5.1.2 for process 1 above. S, is the set of all
arcs {Al,A2,...,Al2,Dl1,D2,...,D16}, and X, is the set of
all vertices labeled with the name of an exchange function,
hence {XAl(after A2), XAl(after A3), XCZ'XSZ}' In the trace
below, logical decisions which dictate the choice of the
next instruction are given in parentheses.

s <« {a1,r2,...,Al2, X2+¢

0 D1,D2,...,DL6}
(8,#m<2, i+l

X0<~{XA1(A2),XA(AB),XCZ,XSZ}

(X,=0)
n<«1 2
Rl+-{Al,Az,A3,A4,Dl,D2,D3,D4} D5,D6,...,D16}
xl<-{xsz} (T#@)n <« 3
sl<-{AS,A6,...,Alz,Ds,DG,...D16} R3<-{A8,A9,...,A12,
m<l, i<1

S, <8
(xl%ﬂ) T « {A5,A6 ,A7} >

x3+ﬂ
(T#F)n <« 2

m=< 2
R2+-{A5,A6,A7}

T+ @

Sz+{A8,A9'o-o,A12

D5,D6,...,D16} (T=¢,S3=¢r algorithm halts)

l Figure 5.2.3 Trace of Algorithm 5.1 for Process 1.

The results of the application of algorithm 5.1 to
process 1 are that three subsets of arcs have been identified

for eventual transformation into R-Nets, namely:

R {al,A2,A3,A4,D1,D2,D3,D4},

1
R, = {a5,A6 ,A7},
and R3 = {A8,A9,...,A12,D5,D6,...,D16}.

Likewise, if the algorithm is applied to the precedence graph

for process 2 then we obtain the three subsets:

Ry = {p17,D18},
R2 = {Al13,Al4},
and Ry = {a15,a16,A17}.

The remainder of this section illustrates the graph
transformations of section 5.1.3 almost entirely by means of
figures. The operations will not be repeated in words here
and so several references to section 5.1.3 will be necessary
for an understanding of each figure. In each figure we name
the transformation(s) which transform one graph to another
graph over a double arrow. If we place a number n in
parentheses following a transformation or step of a transfor-
mation it means that the transformation has been applied n
times. Also if a transformation is omitted in a sequence,
for example, if we apply transformations 1 and 3 but not 2,

then the omitted transformation is not applicable to the

graph. Another way of saying the same thing is that the

transformation omitted has no effect or is a null transfor-
mation. The same explanation holds when a transformation
contains several steps, that is, if only transformation
steps 3a and 3c are shown (steps a and c of transformation
3) then step b is not applicable.

For process 1 we have already shown that the decomposi-
tion algorithm yields three subsets of arcs, each of which
will eventually yield an R-Net structure. Each one departs
from the graph of figure 5.2.1, which will not be redrawn.
We name the subsets of arcs and the final R-Nets for process
1 with the letters A, B, and C, respectively. Without
further explanation we present the figures illustrating the
transformations of section 5.1.3 on each of the subsets of

arcs A (Fig. 5.2.4), B (Fig. 5.2.5), and C (Fig. 5.2.6).

Fig. 5.2.1 =

\E(Al A A

aw,,
T/’ ‘E
”

Figure 5.2.4. Generation of R-Net A.

1T AT

A2 A3 ad . Al A2 A3 .V =
LA N
l l l
| |
) i 4 =
R B R

—————

. 1 3a(3 A5
Fig. 5.2.1 =),
J A3\ £76 \/

o\
<———-Nk\g//
ﬂ;::-
&
/\
N

(=

)«
o

5f

&
¢ SN
__<:>

!
E

&
<
7
N
hd

S

(e

Figure 5.2.5. Generation of R-Net B.
~-143~

Fig. 5.2.1 =

4

Figure 5.2.6.

y

Generation of R~Net C.

~144-

3a(4),3b

All

()

5a;b,c 5e,f

e
\@\ ,

1

OB ERE)

Figure 5.2.6(cont.) Generation of R-Net C.
We now give two more R-Nets derived from process 2
(Fig. 5.2.2). Note that although three subsets of arcs

are obtained for process 2 via the decomposition algorithm,

the first contains only dummy arcss tead of creating a

dummy R-Net for this subset we simply allow it be be absorbed
into the simulation routines described in section 5.3. We
label the two R-Nets obtained from process 2 as R-Net D

(Fig. 5.2.7) and R-Net E (Fig. 5.2.8).

-145~

Q<0

\@
/

2

Al3

/
R

[T

B
Oé— “i%

Figure 5.2.7. R-Net D for Process 2,

(=<1

®
/

N

E |

Al6

\

O«

Figure 5.2.8. R-Net E for Process 2.
5.2.2 MRSL Specifications
Many references have already been made to the example
here in section 5.1.4. Also the code was explained there to a
level where no further discussion is necessary. Thus we end

the section by referring to the listing A.l of Appendix A.

5.3 MRSL Simulation

5.3.1 Overview

In sections 5.1 and 5.2 we have discussed MRSL in
isolation from the remainder of REVS. Recall that MRSL is
a subset of RSL in three interpretations of MRSL (the AIP
model, the table model, and the message model) and is a
superset of RSL in one other interpretation, namely the
augmented RSL model, in which the language is expanded in
order to express relationships and constructs necessary for
AIP but unavailable in RSL. In none of the models above
can a REVS simulation, based upon MRSL code alone, be carried
out (via SIMGEN). 1In every case, as we have indicated pre-
viously, it is necessary to supply Pascal routines to drive
the simulation by passing AIP messages and by placing items
on the event simulation calendar. In the case of the message
model and the augmented MRSL model these routines can be
supplied automatically from an analysis of the MRSL specifica-
tions. However, in the AIP model and the table model the MRSL
specifications are incomplete because the accompanying Pascal
routines for the simulation, although standardized, must be
parameterized in order to express relationships among R-Nets

ané messages which form an integral part of the overall AIP

specification.
It will be seen in section 5.3.5 that the differences

among the four models are not great; they merely represent

-147-

alternative notational conventions. We continue to pursue
primarily the AIP model in this section, providing in
section 5.3.3 examples of the Pascal simulation routines
and in section 5.3.4 some sample output from an actual
simulation run. The other MRSL interpretations are then

compared in section 5.3.5.

5.3.2 Time in REVS Simulations of MRSL Specifications

Before we can introduce the Pascal drivers for inclusion
in a REVS simulation program for a given set of MRSL
specifications we need to discuss the role of simulation
time in MRSL itself, a subject only briefly mentioned in
section 5.1.4. We assume that we begin with a precedence
graph of the type obtained in section 5.1.3 after the first
transformation. We further assume that every primitive
function requires a finite amount of simulated time to
produce an output once all of its inputs have been calculated.
This elapsed simulation time in general may be considered as
a function of the input values just as in complexity theory.
However, the internal calculations of the primitive functions
and the times necessary to perform such calculations are
beyond the scope of our discussion.

Given the fact that each primitive function requires a
finite amount of time for evaluation, we can easily calculate
the time necessary to traverse any computation path within
the precedence graph. Here we consider a computation path

between two vertices to consist of all arcs which fall on any

-148-

two vertices along the path. We take the calculation time

between them to be the maximum obtained for any of the
parallel branches. On the other hand wherever computations
are constrained to be performed serially the computation
times for the individual subpaths are simply summed. (The
two schemes for parallel and serial computation apply
recursively to the precedence graph, of course, as we shall
see from the more formal presentation below.)

The ideas of the preceding paragraph can be formalized
as follows. We consider dummy arcs which do not immediately
follow a vertex labeled with an exchange function name to
have an execution time of zero. For those dummy arcs
appearing immediately after an exchange label we consider the
time necessary to perform the exchange to be the "computation"
times of the arcs. 1In addition, all arcs along a branch of a
selector function which is not selected are never evaluated
and so are considered to have an execution time of zero without
exception. Intuitively then for a particular choice of state
variables and temporary variables the execution time for a
computation path (defined between two vertices) is the
maximum value obtained for any directed path (between the two
vertices) by summing the computation times for the arcs on

that path. For example, consider the precedence graph below

where the arc labels represent computation times.

149-

/

/

oL
a b
d e
c f
Vi 14
&~ \‘s
h]
g v
~ -~
Nae”
k
i

B

The computation time for the computation path defined by

vertices o and B is:
t(a,B) = max{(a+tc+g+i), (a+cth+i), (b+e+g+i),
(b+e+h+i), (ate+j+k), (b+f+j+k)},

where each sum represents a directed path from o to B.
Actually, it is not necessary to consider each directed
path in the precedence graph for any particular state
successfor function. If we consider only those computations
paths which proceed from the initial vertex of the state
successor function then a simple induction argument gives a

more useful result. We can in fact compute for any arbitrary

-150-

vertex B the time corresponding to the computation path

from the unique initial vertex o toO the vertex B simply
by considering (1) the times associated with those vertices
immediately preceding B (which we will assume by induction
to have been already calculated) and likewise (2) the
computation times for the arcs immediately preceding B.
Formally we define a new function T such that T(a) 1is
assigned the time value 1 for the beginning of the system
step corresponding to the precedence graph of which o 1is
the initial vertex. We define T for other vertices as
follows. Let 61,82,...,Bn be those vertices immediately

preceding some arbitrary vertex 8. Then let
T(B) = t(a,B) + T = max{t(oc,Bl)+t(Bl,B) lt(OLIBz)"'t(Ber)I
ceert(o,B)+ (B, ,B)]

Note that t(Bi,B) is for 1 <i<n simply the computation
time for a single arc. Also by calculating values of T in
any order which preserves the partial ordering induced by

the precedence relations inherent in the graph each

t(a,Bi) = T(Bi) in the above equation will have been cal-
culated previous to the calculation of T(B). Thus we need

compute T(B) only once for each vertex B and the

calculation itself is almost trivial.
This latter formulation for calculating computation
times is very useful after the partitioning of the precedence

graph for the state successor function has been accomplished

-151-

by means of algorithm 5.1. 1In general, several subgraphs
will result from the decomposition. For the subgraph
containing the initial vertex o we need only know T(a)

in order to compute time values for the other vertices in
the subgraph. (When a vertex is both preceded and followed
immediately by arcs of two different subgraphs then it is
considered to be part of the following subgraph.) For all
other subgraphs we need to know the values of T only for
those vertices immediately preceded by arcs in some other
subgraph and further we need the total simulation time
elapsed during the exchange of messages whose labels fall

on vertices in the subgraphs in question. (The latter
information, just like T(oa), is supplied by simulation
routines and is not calculated internally by code reserved
for modelling computations of which precedence graphs are
abstractions. More details on simulator routines follow in
section 5.3.3.) For example if <y 1is one such vertex in
some subgraph V then let Bl'Bz""'Bm be the arcs not in
Vv which immediately precede Y, let bl’b2'°"bm be their
respective computation times, and let 81,82,...Bm be the
respective vertices which immediately precede them. For those
arcs Cl'CZ""Cn which are in V and immediately precede
y (if they exist) let CqrCyreesCy be the respective
computation times and YyrYqreeeYy be the respective vertices.

Also let

T'(y) = max{T(B))+by ,T(By)+byy ... T(By)+bp]

-152-

and T"(y) = max{T(Yl)+cl,T(Y2)+c2,...,T(Yn)+cn}.

where T"(y) = 0 1if no arcs Ci exist. By the definition

of T we have immediately that
T(y) = max{T'(y),T"(y)}.

Thus the only information on simulation times which is not
local to a subgraph consists of T'(y) for every Y in V
which has one or more vertices outside V preceding it and
also those times denoting receipt of AIP exchange messages.
Since R-Nets correspond one-to-one with the subgraphs under
discussion we have the result that the timing information
just mentioned is all that needs to be saved between R-Net
executions during a REVS simulation run.

We have described computation times so far only in
terms of the original precedence graphs for a state successor
function rather than in terms of the R-Nets generated from
these graphs. This is done out of necessity because the
precedence graphs can express precedence information with
greater generality than can t+he R-Nets, as we have mentioned
previously in connection with transformation (2) in section
5.1.3. 1In other words we must capture the correct precedence
relationships with respect to simulation timings for the

modelling of AIP computations before those precedence relation-

ships are possibly altered during R-Nets generation. In RSL
terms the correct computation times are first supplied

individually by each alpha (which corresponds to a labelled

-153~-

arc in the precedence graph) and then the alphas inserted
before each output interface collectively calculate T'
values for succeeding R-Nets. These values are then passed
between R-Nets via MRSL messages which also contain true
AIP exchange messages. However, the simulation timing
values are not "exchanged" as such but instead are used by
simulation drivers for scheduling purposes and then passed
to the appropriate R-Nets. More detail on the role of
computation times will be provided in the following section

on simulation routines.

5.3.3 Pascal Simulation Routines

All the routines which must be included within REVS in
order to run a simulation of MRSL specifications must be
written in Pascal. The SIMGEN function of REVS receives
both the MRSL code and the Pascal code, then translates
the MRSL code into Pascal code, and finally inserts all of
the application-dependent code into a standard host Pascal
program. This host program is equipped with a large
number of procedures for dealing with RSL constructs and
also with simulation tasks which may be called from non-host
code. Actually MRSL does not make use of all these
standardized routines, and furthermore the Pascal routines
are themselves in standardized forms which (in the AIP model)
are essentially parameterized in order to encode interrelation-

ships concerning R-Nets which are not expressible in MRSL.

-154-

reference to the data structures they manipulate. Example
code is located for reference in Appendix A, section A.2.
The simplest of these standardized procedures is for
the purpose of initializing the simulation. Its name,
SSSTARTUP, is fixed by the conventions of REVS. In the AIP
model for MRSL specifications its only purpose is to
activate the first R-Nets to execute in the simulation, that
is, those corresponding to the beginning of a system step.
This is done by sending an MRSL message to each such R-Net
with the simulation timing variables set to the appropriate
values. In our examples (Appendix A, sections A.2 and A.3)
the initiation time is zero. (The simulation timing
variables used for initiating the simulation are precisely
those variables which take values corresponding to the T(a)
of section 5.3.2. This holds true for any of the four MRSL
models.) The initialization procedure also sets the simula-
tion tables so that they indicate that no R-Nets have yet
executed and that no AIP messages are pending. (These tables
will be discussed more fully below.) Recall that the values
of the state variables of AIP specifications are initialized

in MRSL itself and so are not involved with the SSSTARTUP

routine.

The next group of standardized simulation procedures is

associated with output interfaces and so according to REVS

-155-

terminology they are called drivers. There is one driver per
output interface and furthermore each driver is scheduled
for execution whenever its corresponding output interface
passes an MRSL message. Since, as we have already noted,
R-Nets are executed instantaneously with respect to simulated
time, each MRSL message contains zero (only at the end of a
system step) or more AIP messages along with the simulation
times at which they will be considered to have become pending.
These time values are simply T'(a) values (see the preceding
section) which happen to be associated with message-labeled
vertices. Additional T'(o) values may be contained in an
MRSL message, of course, depending on the R-Net structure.
The function of the drivers is to place the AIP messages
and timings in the appropriate simulation tables for future
reference by the exogenous event routine (to be explained
shortly) which serves in MRSL principally as a scheduler and
message router. In the example code of Appendix A, section
A.2, the drivers (procedures SAEl_2 through SEE) accomplish
this by calling two very short preceding routines (1) MESBUF,
which merely places the contents of each AIP message in a
reserved buffer location along with the type of exchange
function from which the message originates and the exchange
class, and (2) CAUSE, which takes note (in a table of
parameterized size, cf. SSSTARTUP) of the fact that the AIP
message will be considered at some future simulation time and

schedules an event on the internal REVS simulation calendar

-156—~

an MRSL message because its originating exchange function
has not been evaluated in an R-Net, then special note is
taken of this fact and no corresponding event is scheduled.
(Note that in the drivers of section A.2 all assignment
statements are vestigial remains of earlier types of
simulation runs. They could be removed here without effect
since the exogenous event routine nullifies their action.)
The last and most complex of the standardized simulation
procedures is called the exogenous event routine (code name
SSEXOG) by REVS convention. (It is special in REVS in that
its execution is event driven and not the direct result of
the passing of any RSL message.) This routine is always
activated in MRSL as the result of the scheduling of an AIP
message for exchange or as the result of the termination of
a system step for some process. It is perhaps best to
explain the major steps that this routine performs by means
of an informal algorithm owing to the opacity of the Pascal
code in section A.2. This algorithm is performed each time
an event on the REVS calendar activates the exogenous event
routine and steps (1)-(5) below are executed sequentially,

of course.

(1) Locate an event scheduled to be examined at the
current simulation time and flag it as having been so
selected. (This is necessary because two or more events
may be scheduled simultaneously, and each must be treated

individually) .
-157-

(2) If no messages are associated with the selected
event (i.e., in case of the termination of a system step)
then schedule the next R-Net immediately and skip the
remaining steps (3)-(5).

(3) If the message (event) selected in (1) above can
be found to match another message of the same class which
became pending previously and the match is of type
XC - XC, XC -XA, XS -XC, or XS -XA then select the earliest
such message, exchange the contents of the two message
buffers, skip step (4), and perform step (5) twice, once
for each exchange message. Messages which have been matched
are then excluded from any further consideration and the
buffer space is freed for future messages.

(4) If the message selected in (1) is of type XS then
it is allowed to perform a self-exchange. It is removed
from further consideration, its corresponding buffer space
is freed, and step (5) below is executed once. On the other
hand, if the message is of type XC or XA then the algorithm
terminates with this step.

(5) Place the contents of the message from step (3) or
(4) in the buffer for the input interface of the R-Net to
which the message is to be dispatched. The current simulation
clock time is the correct T' value associated with that
message and should also be placed in the buffer. If the
buffer is full then activate the R-Net for execution immediately
by "posting" the MRSL message for the R-Net's input interface
and then free the buffer for the next system step.

-158-

"5.3.4 Example Simulation Run

The entire Pascal program for simulating the sample
MRSL specifications derived in section 5.2.1 takes up over
2800 lines of code, only a fraction of which are specific
to the current example. Most of the latter are in section
A.2 or else consist of the Pascal code (for alphas) embedded
in the MRSL code shown in section A.l of Appendix A. We do
not reproduce the entire listing of the simulation program
generated by REVS here, but we do provide the first 250 or
so lines of output for a run of that program. This output
contains rather readable REVS—generated output which is
almost obscured by lists of unlabeled numbers generated by
the simulation routines in their debugging phase. Each
block of eight rows of numbers and Boolean values corresponds
to one of the eights exchange function occurrences in the
MRSIL specifications. However, we will not elaborate on any
details of the simulation run. The output is merely intended
to illustrate the sequence of events that take place during
a simulation and the large number of variables which play a
role in going from one process step to the next even for

these simple specifications.

~159-

5.3.5 Implementation of Various MRSL Models

Sections 5.1 and 5.2 have shown by rules and examples
the major steps (exclusive of analysis) which would be
performed upon MRSL specifications if an actual implementa-
tion of the AIP model had been produced. We can now make
more concrete some of the observations concerning the other
three MRSL models already made in section 5.0 and show how
the implementation of these other models would compare with
that of the AIP model.

As we noted before, certain information concerning
messages, R-Nets, and their interrelationships must always
be encoded by the final REVS-interpretable RSL-plus-Pascal
code into which the MRSL specifications are eventually
translated, no matter which of the four models is chosen.
We have no choice then but to insert constants into the
combined RSL-plus-Pascal code, that is, if we wish also to
have a standardized simulation package so that the designer
does not have to worry about low level details of the
simulation. There are basically three ways to perform this
parameterization: (1) to encode information as constant
parameters to routines which can interpret them, (2) to
initialize reserved variables and arrays with constant
values (via assignment statements, e.g. in the SSSTARTUP
routine) so that the standardized simulation routines can

access the information as necessary during the course of a

-160-

simuiation, or (3) to pass constants as part of MRSL
messages so that the information can be interpreted and
routed by the standardized drivers receiving the messages.

We might, of course, also want to use a combination of the
above three techniques.

The four models can now be viewed in terms of their
implementations rather than the source code forms, as in
section 5.0. The three techniques above characterize the
AIP model (constant parameters to simulation routines),
the table model (constants assigned to reserved variables
and arrays), and the message model (constants in MRSL
messages), respectively. The fourth model, the augmented
RSL model, could use either technigque (1) or (2) above
with the difference that the constants would be automatically
supplied during the translation of source MRSL to RSL-plus-
Pascal.

In the table model and message model the designer must
keep track of these constants by himself. The only real
difference, however, between these two and the augmented
RSL model is that the designer has at his disposal reserved
words and language constructs which are little more than

disguised versions of the constants he would otherwise be

dealing with in the table model or message model. In any
of these three models our standardized simulation procedures,
helpful as they may be, relieve only a fraction of the burden
from the designer in his tedious remolding of AIP concepts

by means of a series of relatively primitive structures and

~161—-

encodings. Only the AIP model, which would use a source

language far removed from RSL/REVS and uncontaminated by

its conventions, can serve as part of a reasonable design
environment. This conclusion was drawn previously, of

course, in section 5.0.6.

5.4 Conclusions

We will not list again the merits of using a design
language allied to AIP concepts with MRSL playing an
intermediary role. The advantages of this approach and
shortcomings of other MRSL models have been adequately
summarized in sections 5.0.6 and the immediately preceding
5.3.5. However, we can discuss implementation of the AIP
model from a broader perspective than in most of the pre-
ceding text of section 5. As we noted much earlier in
sections 1 and 2 we did not undertake the development of
analysis tools for MRSL to insure the formal properties of
sections 3 and 4. Certainly if we adopted the AIP model
as we recommended then we would not want to develop such
tools because we could analyze the original source language
for semantic errors much more easily. We could then
translate source code obeying the formal properties into
MRSL form and thus guarantee that adherence to the formal
properties would be carried over automatically. Indeed,
the major steps necessary for performing this translation

were outlined in algorithmic form in section 5.1.

-162-

If we were instead to use the table model, message
model, or augmented RSL model for writing AIP specifications
then not only would we impose great burdens on the designer,
as we have pointed out repeatedly, but also we would find
the job of analyzing the source code much more difficult.

The analysis would be equivalent to an attempt to
abstract non-existant AIP specifications from the low-level
MRSL primitives and then to analyze the abstracted
specifications for validity with respect to the criteria
of consistency, completeness, and sO on. This is the
strongest argument that can be mode to show that develop-
ment of analysis tools for MRSL itself, in any model, would
be a futile exercise.

There is at least one AIP specification language,
section 3.4.3.2 of [Fi322], in which the formal properties
are guite accessible to verification. The checks which
must be performed on the source code written in the syntax
given in [Fi322] were listed informally along with the
language. Such a 1ist of semantic checks for MRSL (in any
model) would be vastly more complex. This observation only
serves to reinforce the claim that MRSL is not a suitable

medium for the designer to write AIP specifications, although

it is suitable as an intermediate language.

-163-

6. DDP EXPERIMENT (RR-4)

6.1 Introduction

The ongoing CS-1 DDP experiment by ABMDSC-ATC was selected
as the vehicle for this research task. By using the preliminary
results of that work, we were able to produce a prototype Data
Processing Requirements (DPR) specification in the form of
asynchronously interacting processes (AIP) suitable for translation
to MRSL for RSL and REVS.

The AIP form of DPR was then partially translated to R~-Net
form to demonstrate both the MRSL suitability and the relationship
between R-Nets and AIP. Each AIP translates into several R-Nets.
An MRSIL type interpretation for such R-Nets was also developed.

The partial translation of a AIP DPR into a form suitable
for the equi-phase simulation discussed in section 3 was carried
out by hand, since the required translator has not been implemented.
The results of this translation and simulation are described below.
They demonstrate the basic simplicity of distributed simulation of

the AIP form of specification.

6.2 CS-1 DPR Development

The CS-1 experiment is the first in a series to study
specification methodologies in the context of realistic but
simplified portions of ABMD constructs. The results should form

an unclassified test bed for subsequent research in development

methodology.

-164-

The CS-1 system is a representative underlay (terminal) defense
system for BMD which is capable of detecting targets within an
assigned search region, rejecting from consideration objects
which are obviously non-threatening, and transferring potentially
threatening objects to a yet unspecified tracking system.

The radar used by the CS-1 designers was previously designed
and a simulator for it already exists. The experimenters plan to
use the existing SETS capability at the BMD-ATC Advanced Research
Center for both radar and threat environment modeling.

The unclassified documents referenced in Appendix B
were studied in order to understand the engineering design decisions
made by the experts in that field. Due to the preliminary nature
of these documents and the experimental character of the
specifications, numerous inconsistencies, ambiguities, and
omissions were discovered, We do not have specific engineering
or design experience in the field of radar data processing to
enable us to second guess on such specification problems.
Consequently, where we were forced to make decisions, we attempted
to find the simplest common denominator among the conflicting
documents.

One of the advantages of our more formal approach to

speeifications soon became obvious. Inconsistent or missing

information could not be overlooked. At the same time, we were

able to develop comparable specifications with essentially the

-165~

same information contained in the existing documents. Our first
goal was not to extend the design, but was to specify the design
at the same level of informational detail in order to demonstrate
that formality of expression does not imply an increase in the
informational detail.

The importance of the exchange graph (as shown in Appendix B)
became obvious in the early stages. The information encoded in such
a graph is precisely that which is required to factor the development
of the interacting processes without forcing the specification of
as yet unknown details. The consistency of the exchange graph with
the subsequent design specification can be readily and automatically
shown by deriving it from the specification., Although the exchange
graph is a formal abstraction of the specification, it plays an
important role in the decomposition of the complexity of the
development process for the specification. It thus precedes the
system specification in our development process. The exchange graph
is not itself a system specification since it only defines some of
a systems properties.

The specification takes the form of a set of definitions for
the processes, sets, and functions required to formally specify the
cs-1 system in terms of AIP. These are defined in terms of a set
of primitive functions and sets. We deliberately chose to leave
these primitives at as high a level as possible, while still

allowing the formal process decomposition., The elaboration of

-166-

these primitives is left to subsequent phases of development. This
choice is consistent with the purpose of requirement specifications
as well as illustrating a very high level formal (but not detailed)
system specification.

The automated analysis tools for the formal specification
properties are still being developed and are not available for
current use. Consequently, the AIP type DPR in Appendix B may
still have some errors in it. Their complete elimination will await
the analysis tool implementations. Note that it is well within the
current state of the art to ensure that such a specification does
completely and consistently specify the CS~1 system to the level
of detail of the primitive sets and functions. This ability alone
can prevent many kinds of errors at an early stage of development.

The performance requirements for CS-1 are treated informally
and could be incorporated unchanged from the source documents. An
approach to formalizing performance requirements was discussed in
an earlier section of this report. Those results have not been
used, as yet, to improve on our informal approach.

The elaboration of the primitives and node allocation based
on performance requirements will lead to a data processing
architecture requirements (DPAR) specification that can be

automatically shown to be consistent with the DPR and subjected

to the same kinds of analysis. This ability automatically
eliminates many kinds of errors, and guarantees that decisions

in the DPR are preserved in the DPAR. Of course, the DPAR work

-167-

may lead to changes in the DPR, but they can at least be kept up
to date and consistent.

The AIP type DPR in the appendix is well suited for formal
property analysis. Indeed, it was designed to be so. It is also
a suitable starting point for the automatic generation of the MRSL
equivalent as described in a previous section of this report. That
translation, however, is too elaborate to carry out correctly by
hand, and the translator has not as yet been implemented. Instead,
we will present some manually generated R-Net control graphs for
the equivalent forms into the next section. Similarly, we will
manually generate an equivalent multi-tasking program (suitable
for equi-phase simulation) for a simple example system. The results

of that simulation are in Appendix C of this report.

6.3 Analysis

Our analysis of the CS-1 DPR is restricted by the lack of the
analysis tool implementations based on the DPR form. We have
postponed such implementations until there is agreement on the
form of the specifications. We have manually carried out two
types of analysis. Although human fallibility may have introduced

or left undetected errors, the results are illustrative and useful.

6.3.1 AIP Relationship to RSL

The connection between the AIP model and the RSL model may
be clarified by using a part of the CS-~1 DPR as an illustration,
We will show the results of the transformation of AIP to interface

nets (similar to R-Nets) for the processes BFP and ROG.

-168-

First we must give an interpretation to the AIP. For this
illustration we will assume that evaluation time for a process
is an attribute of a realization of that process. Thus the AIP
is itself timeless (a non-deterministic (ND) interpretation) and
all possible interactions will occur at some relative process
rates. (The inclusion of time as a formal attribute of AIP is
being carried out in task RR-1.) Subject to this interpreation,
the following shows equivalence transformations of the AIP into a
purely mathematical function (to be evaluated in the ND interpreter)
and into interface nets that correspond to the R-Nets of REVS

(to be evaluated in the REVS simulator) .

6.3.1.1 BFP Process Transformations

The BFP process of the CS-1 specification can be described
as an exchange graph, as a control graph, as an equivalent
algebraic function control graph, or as an equivalent interface
net similar to R-Net structures, All of these forms are shown in
Figure 6.1. The corresponding specifications in mathematical form

are given below.

-169-

BFP-2

d) Control Graph for Interface Net

Figure 6-~1: ND Interpretation of BFP Process

-170-

1.
I
i RET T “;RA'I"EINFC
1
XS 1 XA v /
XA ----- 151;-5 XsBFP [~ | BFPA
Jp— <« o
: T XARETAD @ T | xapps
i
' 3
—| P} |
a) Exchange Graph b) Control Graph for Process
| 2N ey
T N
EQ TUPLE @
go DL @ BFPA TUPLE |
ehe >v | mupiE @ @
TUPLE TUPLE
c) Control Graph for Function
BFP-0 BFP-1 BFP-2

BFP-2

Process Form:
The process form is given in the CS-1 DPR.
Non-Deterministic Function Form:
set: Ijnp: ({0},RATEINFO)
U({1},RATEINFO,{('XS','BFP',T)} U RET)
U({Z},RATEINFO,{('XA',RETAD',T)} U RETAD,

{('xa','DPS',T)} U DPS)

z} + I}

3 - t .
Function: FBFP * Lppp BFP

[6,=0: (1,0,, ('XS','BFP',T)),

01=O:[o3eRET:UBFPA(02,o3)),(1,02,03)]

[G3ERETAD A c4eDPS:(0,02),(2,02,03,04)]]

UBFPA: (RATEINFO,RETAD,DPS) -~ ({2},RATEINFO,{(‘XA‘,'RETAD',T)},
{('xa','DPS',T) })

(2,01,[02%T:('XA','RETAD',OZ),],[03¢T:('XA','RETAD',03),])

Interface Net Form:
Net : BFP 0
;nterface : RATEINFO

Outerfaces: BFP_1

Procedure : QUTERFACE BFP 1:= (INTERFACE BFP 0,('XS','BFP!, T))

-171-

Net : BFP 1
Interface : (RATEINFO,{('XA','BFP',T)} U RET)

Outerfaces: BFP_Z

Procedure : (01,02):=INTERFACE_BPF_1
[c2eRET:(cl,03,04):=BFPA(01,02);

OUTERFACE_BFP_2:=(01,[03#T:('XA‘,'RETAD',03),],

[04# T:('XA','DPS',04),]),(01,02)]

Net

oo

BFP_2

Interface : (RATEINFO,{('XA','RETAD',T)} U RETAD,
fﬂ'XA','DPs',DPs)}kJDPS;mé

Outefféces: DFP 2,DFP_2 |

Procedure : (01,02,03):=INTERFACE~BFP_2

[0,€ RETAD A 0,¢DPS:OUTERFACE_BFP_0:=0,,

3
OUTERFACE_BFP_2:=(04,0,,03)]

6.3.1.2 ROG Process Transformations

We can similarly transform the ROG process and obtain the

following results, as shown in Figure 6~2,

=172~

?IO ROGQ T XSHXLD |—3| ROGB

§S _HXLD X / Y
F

XC HXLR
XSHXLD 5| ROGA @

XCRIO ———)' XC};[{LR
eFC

a) Exchange Graph b) Control Graph for Process

EQ > ,T TUPLE
F
T
o T T ___; TUPLE TUPLE

F F F T
TUPLE NEQ ST @
T
—_— ROGA TUPLE
T T
ehe TUPLE —
LF
TUPLE TUPLE

¢) Control Graph for Function

Fig. 6=27 KD Trrterpretation——o

=173~

TROG-T "ROG-2

d) Control Graph for Interface Nets

Process Form
The process form is given in the CS-1 DPR.
Non-Deterministic Function Form:

Set: If..: ({0},ROGW,HXLQ)

u ({1},{1},('xXs', '"HXL',T)VHXL,HXLQ, ('XS', 'HXLD' , T)UHXLD)
U ({1},{2},ROGQ,HXLQ, ('XS"', '"HXLD' , T) UHXLD)
U ({2}, (ROGQ,EXLQ) , ('XC', 'RIO',RIO)UBOOLEAN,

('XC','HXLR',HXLR)UBOOLEAN)

-174-

ion: Bl e 71 !
Function: FROG' ZROG“*“ZROG
[ol=0:[02=T:(l,l('XS','HXL',T),HXLQ,(‘XS',‘HXLD‘,T)),
(l,Z,ROGQ,HXLQ,('XS','HXLD',T))],
cl=l:[02=1:[036HXL A oseHXLD:(0,03,ROGB(64,05)),(1,1,03,04,05)],

[o.e HXLD: ROGA(ROGA(G3,G4,OS),(1,2,03,04,05)]],

5
[03eBOOLEAN A c4eBOOLEAN:02,(2,02,03,04)]]

UROGA: (ROGQ,HXLQ,RIO,HXLR) - (ROGQ,HXLQ)

(2,(ROGQ,HXLQ),[RIO#T:('XC','RIO',RIO),],

[HXLR#T: ('XC', 'HXLR',HXLR) , 1)

Interface Net Form:
Net : ROG 0
Interface : (ROGQ,HXLQ)

Outerfaces: ROG 1

Procedure :
(6,,0,) :=INTERFACE_ROG_0
OUTERFACE_ROG“13=[01=T:(l,('XS‘,'HXL',T),02,('XS’,'HXLD',T)),

(2,01,02,('XS',‘HXLD',T))]

-175-

Net : ROG_1

Interface : ({1},('xs','HXL',T) UHXL,HXLQ, ('XS", "HXLD',T) UHXLD)
U ({2},ROGQ, HXLQ, ('XS',HXLD",T) UHXLD)

Outerfaces: ROG_0,ROG_1,ROG 2

Procedure :

(0110,,03,0,) :=INTERFACE_ROG_1
[cl=1:[ozeHXL A 0, €HXLD: OUTERFACE_ROG_0:=(0,,ROGB(04,0,)),
OUTERFACE_ROG_1:=(1,0,,045,0,)],
[04eHXLD:(01,02,03,04):=ROGA(62,O3,O4);
OUTERFACE_ROG_2:=((01,02),[OB#T:('XC','RIO‘,G3),],
[o,#T: ("XC", "EXLR' ,0,),],

OUTERFACE_ROG_l:=(2,0,,05,0,)]]

Net : ROG_2

Interface:((ROGQ,HXLQ),('XC','RIO',RIO)LJBOOLEAN,

('XC','"HXLR' ,HXLR) U BOOLEAN)

Outerfaces:ROG_O,ROG_Z

Procedure :

[0,eBOOLEAN A 0 ,e BOOLEAN: OUTERFACE_ROG_0:=0

3 1’

OUTERFACE_ROG_2:=(0,,0,,04)]

~176-

6.3.2 Multi-Tasking Analysis

The CS-1 DPR transformations to RSL forms are well suited to
conventional (sequential) discrete event simulation. Each event is
linearly ordered in simulated (as well as in simulation) time, If
we want to carry out our simulation of the intrinsically distributed
CS-1 system using a distributed simulator, the linear form is a very
bad starting point since we can evaluate only one event at a time.

The AIP specifications constrain only required precedences
without forcing an arbitrary evaluation control sequence on the
events. We can transform the AIP into multi-tasking programs suitable
for evaluation on distributed systems and exploit the potential
parallelism of the simulated system. Each possible parallel
evaluation forms a task that is scheduled for independent execution
when its precedences are satisfied.

We have developed a "quick and dirty" single processor simulator
of such a multi-tasking program on the PDP 11/45 under the UNIX
operating system. This implementation is only intended to support
experiments in distributed simulation concepts, and will have only
a transient existence.

The simulator is based on a doubly linked list structure in a
shared memory, multi-processor machine (that currently has only one

processor). The AIP are translated to a sequence of program

statements in the C programming language. These statements are
then combined with the simulator program (also written in C) and

compiled to form the simulation program.

-177-

The interpretation of exchange functions is done in an equi-
phase mode. All processes that can run, will run to their next
interaction prior to any interactions taking place. Thus the
effect of an infinite number of processors is simulated, without
introducing time of events.

The execution of an exchange function simply makes an initiation
entry in a list and its containing task goes to sleep until the
interaction is completed in a subsequent phase of evaluation,

The translation is unnecessarily inefficient and most of the
parallelism is not, in fact, used by the current simulator program,
The results, however, are independent of the simulator parallelism
or lack thereof.

The details of the multi-tasking form are not important, but
a flavor of them can be obtained from the following, informal,
description of the translated codes.

The simulator program provides a small set of service functions
used by the multi-~tasking statements to manipulate task structures.
The purpose of each is briefly described below,

newtask will create a new task list with i current entry

index and actual parameter list j,

par will return with the index to the i actual parameter

for the current task.

res will return with the index to the i result list cell.

-178-

awake puts task i at end of PEND list

sinit will scan its argument string.

The character array x will be decoded to control the creation

of a list from the standard input.

retinit initializes for birth of sub-tasks by creating a

result list of i NL cells.

pinit initializes i new processes as sub-tasks to the main
routine. j is index to make entry points unique,

x is a 'formatting' string.

tiinit initializes i sub-tasks for a tuple.

j is an index to make entry points unique.

supdt moves step results state to initial state of the process.

stuff returns to sub-task parent with results.

done returns a function value to invoker.

dot will set current task entry point to m and initialize

o

a new task.

rval returns the actual parameter i as current task results.

The translated statements are described as the results of
applying a "value" function to the corresponding AIP form, as
follows:

value (specification)

n is the number of processes, en is the defining expression
for the corresponding process.,

% is a string that specifies the creation of the initial—states
of the processes.

The specification is evaluated by creating and executing a
task tree for each process.

-179-

tel: ;
pinit(n,x);
goto sched;
te(2+1): value(el); A
if (t[p[task]]!=NL){supdt();go to te(2+1);}
stuff(l); go to te2;
te(2+n): value(en); }
if (t[p[task]]!=NL){supdt(); go to te(2+n);}
stuff(n);
te2: if (g[task)]go to sched;
value (tuple)

If the tuple is of size 0, nothing is generated.

If the tuple is of size 1, the value ((el)) is value (el);

If the tuple is larger than 1, we generate multiple sub-~tasks
to evaluate components in parallel.

n is the size of the tuple. m 1is an index to make task entry
points unique. tem is a unique label.
tinit (n,m);
go to sched;
te(m+l): value (el); stuff(l); go to tem;
te(m+n): value(en); stuff(n);
tem: 1if (g[task]) go to sched;

value (selector)

n is the number of expressions in the selector.

pli] are the predicates. e[i] are the associated expressions,
tem is a unique label.

value(pl); .

if (d[p[task]]){value(el); go to tem;}

value (en);
tem:;

value (parinvoc)

i indexes the i-th parameter.

rval (i);

value (function)

f is the name of the function and e is the definition expression
for £. If f is a primitive function, the defining expression will be
supplied by translator.

f: value (e);

done();

go to retsw;

value (funct-invoc)

tuple is the actual parameter list for this invocation of function
f. n is an index used to generate a unique label for retsw.

-180-

value (tuple);

dot (m);

go to f;
tem: ;

If the function invoked is a 'built in' one, the code will
be

value (tuple);

£();

If the function invoked is an exchange function, instead of
transferring to the function name as entry point, the registers
are located with type t, and class ¢, values and control is
transferred to exchange as

value (e);

dot(m) ;

val=t; tmp=c; go to exchange;
tem: ;

Because of the hand labor involved (and the resulting invalidating
uncertainties) in the manual translation to the multi-tasking form,
we developed, translated, and simulated a simpler, but non-trivial,
example system. The results of that work are given as Appendix C
to this report, and serve to illustrate the concepts of the equi-
phase (timeless and distributed) simulation/emulation developed in

section 3.

6.4 Conclusions

The major conclusion from this experiment is that AIP
specifications can be used at the DPR and DPAR level without
extraneous details. The equivalent RSL or multi-~tasking forms

can be automatically produced by machine and are far more suited

for machine usage than they are for interfacing with a designer.

-181~

A corollary to the above conclusion is that the RSL/REVS
system can be used for distributed systems with few changes. The
major changes is only the addition to an AIP translator to R-Net
form. This translator is required because the direct generation
of the R-Nets for asynchronously interacting processes is much
too complex for a designer to carry out reliably. We need the AIP
form also for efficient analysis. We can let the computer generate
the R-Nets and obey all the rules to keep them asynchronously
consistent. The additional analysis tools required can be
included using the data base extension mechanisms already
supported by RSL/REVS.

The equi-phase simulator/emulator can be used to analyze
specifications, even at the DPR level, and provide valuable
feedback to the designers. Its use (with the translator above)
is simple, quick, and automatic since it operates only with the
specification itself and the designer's selection of intializations.

The use of the translator and the equi-phase simulator/emulator
now gives the designer the same ability to check the specifications
syntactically and semantically that programmers have had using
compilers. This ability is even more important to designers than
it is to programmers.

The final conclusion from this experiment is that it is far
from complete. We have only begun to exploit its possibilities as
a research and demonstration vehicle, It has already been a valuable

experience,

~-182-

Appendix A--MRSL Examples

All of the listings reproduced in this appendix were
taken from a single continuous listing made by a printer
which unfortunately changed certain special characters in
the character set from their original representations. The

following correspondences should be cbserved:

character intended representation
' [
' 1
¥
¢ <

-183-

A,1 Sample MRSL Code

11
10

W st O 3

e

XX 000 REVS RASELINE VERSION

125

(DATE=02/02/78, TIME=1B+03035)

RSLo

XX 001 FUNCTION RSL INITIATED.

INPUT INTERFACE:

HARKFRRNE KR KN EHA XA R R A KRR H AR HNN

IABe
CONNECTS TO: SUBSYSTEM:

SABoe
PASSES: MESSACE:

AB.
OUTPUT_INTERFACE:

TAET 2%
CONNECTS TO: SUBSYSTEM:

SAt1_2e
PASSES: MESSAGE:

AET 2.
OQUTPUT_INTERFACE:

TAEZ bo
CONNECTS TO: SUBSYSTEM:

SAE3 4.
PASSES: MESSAGE:

AE3 4o
INPUT_INTERFACE:

TBBe
CONNECTS TO: SUBSYSTEM:

SBBe
PASSES: MESSAGE:

BB
OUTPUT_INTERFACE:

-TBE e
CONNECTS TO: SURSYSTEM:

SBE.
PASSES: MESSAGE:

REoe
INPUT_INTERFACE:

ICBa
CONNECTS TO: SURSYSTEM:!

SCBs
PASSES: MESSAGE:

CB«
OQUTPUT_INTERFACE:

ICEe :
CONNECTS T0: SUBSYSTEM:

SCEe
PASSES: MESSAGE:

CEe
INPUT_INTERFACE:

IDRe
CONNECTS TO: SUBSYSTEM!

SDBe
PASSES: MESSAGE:

DB
OUTPUT_INTERFACE:

IDE1_Zoe
CONNECTS TO: SUBSYSTEM:

SDE1_2¢
PASSES: MESSAGE:

DE1__2¢

~184~-

INPUT_INTERFACE:

T1EBe
CONNECTS TO: SUBSYSTEM:

SEBo
PASSES: MESSAGE:

EBe
OUTPUT_INTERFACE:

" IEEe
CONNECTS TO: SUBSYSTEM:

SEEs
PASSES: MESSAGE:

FEo
R_NET: As

ENAELED BY: INPUT_INTERFACE:
TAR.

STRUCTURE:
INPUT_INTERFACE: IAB

H 0O N O -

|

]

}

i

}

I

i

I

!

I

)

I

|

]

|

I

i

0o |

Do i

AUPHAT ALKT I

AND |

ALPHAT ALAZ I

END i

AUPHAT ALET_Z |

OUTPUT_INTERFACE: TAET_2 |

AND I

po]

ALPHAT ALA3 T

AND [

ALPHAT ALAL I

END 1

ALPHAT KLA3Z 4 T

OUTPUT_INTERFACE: TAE3_4 i

END I

ENDoe i
R NET: Be i i

ENABLED BY: INPUT_INTERFACE: {

. IBB. i

STRUCTURE: }

INPUT_INTERFACET IBF I

Do 1

KCPHAT ELBT I

AND t

ELCPHAT ALB? I

END i
ALPHKAT ALBS I

ALPHA: ALRT |

OUTPUT_INTERFRCET IBE)

ENDe |

R_NETT Co I

ENABLED BY: INPUT_INTERFACE: !
TER = —

STRUCTURE: !

INPUT_TRTERFACET ICE I

po }

TF (CONDAEZ = 1) I
: ALPHA: ALC1 t B

OR (CONDAEZ = 2) i

~-185-

ALPHA: ALCZ

OTHERWISE
ALPHA: ALC3
END B
AND
ALFHAS ALCY
END

ALPHA: ALCS
ALPHA: ALCT

OUTPUT_INTERFACE: ICE
ENDe

R_NET: Do
ENABLED BY: INPUT_INTERFACE:

IDBe
STRUCTURE:

INPUT_INTERFACE: IDB
DO

AUPHAT ALDA1
AND

ALPHAT ALDZz
END

ALPHA: ALDT

OUTPUT_INTERFACE: IDE1_2

ENDo
R_NET: Ee

ENABLED BY: INPUT_INTERFACE:
IEBo

STRUCTURE:
INPUT_INTERFACE: IEB

ALPHAT ALET
ALPHA: ALET

OUTPUT_INTERFACE: IEE
ENDe

MESSAGE: AE1_Ze
MADE BY:

DATA: TIMEAET
DATA: TIMEAE?Z

DATA: CONDZ2
DATA: LVAZ,

MESSAGE: AE3_4e
MADE BY:

DATAT TIMEAE3
DATA: TIMEAES

DATA: EXE3
DATA: EXE4,

MESSAGE: ABo
MADE BY:

DATA:T TIMEAB,
MESSAGE: BB»

MADE BY:
DATA: TIMEBB1

DATAT TIMEBBZ
DATA: EXA1

DATA: EXAZs
MESSAGE: BE»

MADE BY:
DATA: TIMEBE

! m] -]] -] — -] o — o] o] e o] e e e] e o -] v] -] o]] -] -] -] -] — - |

DATA: LVA7.

-186-

MESSAGE: CBo

MADE BY:
DATA: TIMECB1

DATA: TIMECRZ
DATA: CONDAEZ2

DATA: EXA3
DATA: TIMECB3

DATA: EXAbe.
MESSAGE: CE,

MADE 8Y:
DATA: TIMECE.

MESSAGE: DB,
MADE BY:

DATAT TINEDBT
DATA: TIMEDB2

DATA: EXE1
DATA: EXBZ2e

MESSAGE: DET_Z2»
MADE BY:

DATAT TIMEDET
DATA: TIMEDEZ

DATAT LVET
DATA: LVB2e

MESSAGE: EB.
MADE BY:

DATA:S TIMEEBT
DATA: TIMEEB?2

DATAT EXB3
DATA: EXBho

MESSACE: tEs
MADE BY:

DATA: TIMEEET
DATA: TIMEEEZ

DATA: EXE1
DATA: EXEZ2e

AUPHAT ALAT.
GAMMA:

"BEGIN
IVA1T = SVAT + 13

ELAPAT = 33
WRITELN (OQUTPUT,

T END AURTHs IVATY:

WRITELN C(OUTPUTs Il +++++3+++t+4l)

END; Ve
INPUTS:

DATEY SVAT.
OUTPUTS:

DATAT IVAY
DATA: ELAPAT.

KUPHAY AUAZ.
GAMMA:

YREGIN

LVAZ = SVAZ + 13
i= SVAZ HOD 3 + 73
ELAPAZ2 := 2;

WRITELN (OUTPUT),
i END ALA2%» LVAZ2s COND2);

YRTTELN (GUTPUTs # +3++++1+++++0)

— — — — — — o
— — — — — — o] o] -]] e e] o] e] G] - o e] e ot e ol e —nd -] v w— o —] —] — -] —t

~-187~-

12
t
10

[P ST I SRS

END3 %,

INPUTS:
DATA: SVAZ2e

CUTPUTS:
DATA: LVAZ

DATA: CONDZ
DATA: ELAPAZ.

ALPHA: ALA3,

GAMMA:

"BEGIN
IVA3 3= SVA3 - SVA2 + 1003

ELAPA3 = 1;
WRITELN (OUTPUT,

I END ALA3H, IVAZS;
WRITELN C(OUTPUTs I +4++++4++++40)

END; Ve
INPUTS:

DATA: SVA3
DATA: SVAZ,

OUTFUTS:
DATA: IVA3

DATA: ELAPAZ,

ALPHA: ALAL,

GAMMA :
"BEGIN

SVAA1 = SVA4L - SVAZ + 7;
IVAL 3= SVAL - SVA3 + 200;

ELAPAL := 13
HRITELN (OUTPUT»

O END ALAZUs SVAATs IVRALY;
HRITELN COUTPUTs 1 +4+++++++++4])

END3 Mo
INPUTS:

DATAT SVA3
DATA: SVAbo

QUTPUTS:
DATA: SVAA1

DATA: VAL
DATA: ELAPAL

ALPHA: ALAT_ 2.

GAMMA :

WBEGIN
TIMEAET := TIMEAB + ELAPAT;

TIMEAEZ = TIMEAB + ELAPAYZS
WRITELN (QUTPUT,

0 END ALA1T_Zf&s TIMEAETs TIMEAEZ);
WRITELN (QUTPUTs # 4+++4+++++++0)

END3 Y
INPUTS:

DATA: TIMEASB
DATA: ELAPAY

GATAT ELAPAZ.
OUTPUTS:

DATA: TIMEAED
DATA: TIMEAEZ.

FORMS: MESSAGE: AE1_2.

ALPHA: ALA3 _4bo

GAMMA:S

o] oo | v v -] ond] - -] -] - —] v -] -] o] - -]] -]] v o -] cww v] — oo] - -] o | o] — -] - —] o

-188-

ngEGIN

TIMEAES t= TIMEABE + ELAPAS;
TIMEAEL 1= TIMEAB + ELAPAL;

EXES = TVA3;
EXE4L 3= IVAL;

WRITELNCOUTPUT,
END ALA3_L4#s TIMEAE3s TIMEAEL);

WRITELN (OUTPUTs I ++++++++4+++0)
ENDs; "

INPUTS:
DATA: TIMEAB

DATAT ELAPAS
DATA: ELAPAL,

OUTPUTS:
OATA: EXE3

DATA:T EXES
DATA: TIMEAE3

GRATAT TINEAEGS
FORMS: MESSAGE: AE3_be

RCPHAT ALETS
GAMMA:

“BEGIN
LVAG6 = EXA13

ELAPET = 33
WRITELN (DUTPUTs

7 END ALBTE, LVAGY:
WRITELN C(QUTPUT, 5 +++++++++444l1)

ENDs3 Y
INPUTS:

DATAT EXATS
OUTPUTS:

DATA: LVAS
DATA: ELAPB1.

ALPHA: ALBZe
GAMMA:

WEEGIN
LVA7 3= EXAZ;

ELAPREZ = &3
WRITELN C(OQUTPUTs

i END ALEZHYs LVAY7);
WRITELN (QUTPUTs H +++++4+++4+41)

ENDI" e
INPUTS:

DATAY EXALZS
OUTPUTS:

DATAT TVAY
DATA: ELAPEZ.

—KCPHE: ACE3«
GAMMA:

WEEGIN
SVA3 = (LVA6 + LVA7) MOD C(IVA3 + 1)3

EFLAPR3 = T3
VRITELN (OUTPUTS,

BEND ALE3HW, SVAIY:
WRITELN C(OUTPUT s I +++4+++++4431)

END;"s
INPUTS:

] —— — a— — —ad -t
— - -t —f — — el . omel wmr] o] wa] omm v wn] W o] we v -] o - e o o and ww el s el e o v o] - - - ——— -

DATA:T LVAG

-189-

ATA: LVA7
DATA: IVA3.,
QUTPUTS:
DATA: SVA3
DATA: ELAPR3,
ALPHA: ALBT.
GAMMA:
"BEGIN
TIMEALBT := TIMERRYT + ELAPB1;
TIMEALB? := TIMEBBZ2 + ELAPBZ;
IF TIMEALB1T > TIMEALBRZ THEN
TIMEBE TIMEALST + €L APB3

ELSE TIMERE

= TIMEALBT + ELAPB3;

WRITELN (OU
B END ALRTH

TPUT s
» TIMEBE):;

WRITELN (OU
END;Y e

TPUTs H ++++++++++++1)

INPUTS:
DATA:

TIMERB1

DATA:
DATA:

ELAFET
TIMERBZ

DATA:
DATA:

ELAPBZ
ELAPB3,

ouTPUTS:
DATA: TIMEA

LB1

DATAT TIMEA
DATA:

LB2
TIMEBE

FORMS ! MESS
ALPHA: ALC1e

AGE: BEe.

GAMMA:

"BEGIN

SVAZ2 = IVAZ + EXAZS
LVAS = SVAZ;
ELAPC1_2_3 = 53

HRITELN (OU

TPUT»

I END ALCTH
YRITELN (0QU

y» SVAZ);
TPUTs I ++++4++++4+3441)

END; W,
INPUTS:

DATA:
DATA:

IVAZ
EXA3e

QUTPUTS:
DATA: LVAS

DATA:
DATA:

SVAc
ELAPC1_2_3.

ALPHA: ALCZ.
GAMMA 2

"BEGIN
(1v

A2 + EXA3) MOD (SVA3 + 1);

SVAZ :

LVAS = SVAZ;

ELAPC1_ 2.3

t= 63

WRITELN (OU

TPUT»

END ALC?2Hs SVA2);

WRITELN (OUTFUT, I ++F+++++++++0)

ENDi"o

INPUTS:
DATA:

1VA2

DATA:

EXA3

b Bt S ey Bt sty B e L I B Il B i g S IS e S R I [E " Sy R SN DENpU: DI, SO DU FRN N

-190-

DATA: SVA3,

OUTPUTS:
DATA: LVAS

DATA: SVAZ
DATA: ELAPC1_2_3»

ALPHA:T ALC3.
GAMMA:

WRBEGIN
SYA? = (IVA2 + EXA3) MUD (SVAL + 133

LVAS = SVAZ3
ELAPCY1 2.3 = 73

WRITELN COUTPUT »
END ALC30, SVAZ);

WRTTELN (OUTPUTs § +++F+++++4+++01)

END3"e
TRNPUTS:
DATA: IVAZ
DATAT EXAS
DATA: SVAbe
OUTPUTS:
DATA: LVAS
DATA: SVAZ

DATA: ELAPC1_2_ 3.

AUPHAT ALClhe
GAMMA:

TBECIN
JVAR == IVAL MOD C(EXA4 + 1);

ECAPCL = &3
WRITELN (OUTPUT,

T END ALT&ds TVAB)DS
HRITELN (QUTPUTs H# +++t+ti+++441l)

END5 "o
INPUTS:

DATAT IVAL
DATA: EXAb.e

OUTPUTS:
DATA: IVASB

DATAT ELAPCALS
ALPHA: ALCSe

GAMMA:

WBEGIN

SVAT = SVAATS

SYAL t= C(IVAT + IVA8) MOD (LVAS + 1);

ECAPCS = 13
WRITELN (OUTPUT>

T END ALCSHs SVAL)S
WRITELN (OUTPUTs I ++++4+ti++441)

END3 Ve
INPUTS:

DATAYT _SVAA]

DATA: IVAB

DATAT VA1
DATA: LVASe

OUTPUTS?
DATA: SVA1

DATAT SVAL
DATA: ELAPCS.

ALPHA ALCTo

-191-

GAMMA :

WBEGIN
TIMEC13 := TIMECRZ2 + ELAPC1_2_3;

TIMECL := TIMECB3 + ELAPCLS
IF TIMECB1 > TIMEC13 THEN

TIMECE = TIMECB1
ELSE TIMECE := TIMEC13;

IF TIMEC4 > TIMECE THEN
TIMECE := TIMEC4L:

TIMECE := TIMECE + ELAPCS;
WRITELN COUTPUT

0 END ALCTH,s TIHECE)Y:
WRITELN C(OUTPUTs 1 ++++++++++++1)

END; Ve
INPUTS:

DATAT TIMECHT
DATA: TIMECBZ2

DATA: TIMECB3
DATA: ELAPCA

GATAT ELAPCS
DATA: ELAPC1_2_3e

OUTPUTS:
DATA: TIMEC13

DATA: TIMECA
DATA: TIMECE

FORMS: MESSAGE: CEo
ALPHA: ALD1,

GAMMA ¢
WREGIN

LVBT = EXBT ¥ 713
ELAPDT = 10;

WRITELN (OUTPUT s
& END ALD1#s LVB1);

WRITELN (OUTPUT, o +¥++++++F+3+1)
END;i e

INPUTS:
DATA: EXB1e

OUTPUTS:
DATA: ELAPDI

DATA: LV31e
ALPHA: ALD2,

GAMMA :
WREGIN

Lvee = EXBZ + 13
ELAPBZ = 12;

WRITELN (OUTPUT,
t END ALD2#s LVB2);

HRITELN COQUTPUTs B ++++++++++4+0)
END; "

INPUTS:
DATA: EXB2.

OUTPUTS:
DATA: ELAPDZ

DATA: LVBZ,
ALPHA: ALDT.

GAMMA:
"BEGIN

TIMEDET := TIMEGBT + ELAPDT;

-192~-

TIMEDEZ2 := TIMEDRZ2 + ELAPDZ;

WRITELN COUTPUT,
1 END ALDTH, TIMEDE{, TIMEDEZ);

WRITELN COUTPUTs H ++++++++++++0)
ENDsV,

INPUTS:
DATA: TIMEDBA1

DATA: TIMEDB?
DATA: ELAPD1

DATA: ELAPDZs
OUTPUTS:

DATAT TIMEDET
DATA: TIMEDEZ.

FORMS: HNESSAGE: DET_Zo

ALPHA: ALE1.

CAHMAS

"BEGIN

SVBT = EXB3 + EXB4S
SVB2 := EXB3 - EXB4s;
EXET = SVBT;

EXE2 := SVBZ2;

ECAPET = 63
WRITELN C(OUTPUT»

T END ALETHSs SVRTs SVBZ);
WRITELN (QUTPUTs Il +++++++++4447)

ENDs ¥
INPUTS?

DATA: EXB3
DATA: EXBé&o

OUTPUTS:
DATA: SVB1

DATK: SvBz
DATA: EXE1

DATA: EXEZ
DATA: ELAPET.

RAUPHRY ALET.

GAMMA:

TREGIN

IF TIMEEB1 > TIMEEBZ THEN
TIREFET = TIWMEEBT ¥ ELAPET ELSE -
TIMEEE1 := TIMEEBZ2 + ELAPE1;

TIWEEEZ = TIMEEETS
HRITELN (OUTPUT,

W END ALETH, TIMEEET): .
WRITELN (QUTPUTs B +++++d+++44+l)

END; T
INPUTS:

JATAT TTHMEEDT
DATA: TIMEEBZ2

DATAI ELAPET,

QUTPUTS:

DATA: TIMEEET
DATA: TIMEEEZ.

DATA:

FORWET MESSAGE: EEe
SVA1s

INTTTAL_VALU::
1000

USE: GAMMA

-193-

— i - - — — — ——
— —, —— -] — - — - — ey - o] v o - o | o | - o] o — v] o | o wd e ond o el w] g] ool o o] e -] —] —) —

LOCALITY?

GLOBAL »

TYPE:
DATA:

INTEGER
SVAA1.

USE:

GAMMA
LOCALITY:S

GLOBAL.

DATA:

TYPE:

INTEGER

SVA2a

INITI

AL_VALUE:
2000 o

USE:

GANMMA,
LOCALITY:

GLOBAL s

DATA:

TYPE:
SVAZ

INTEGEK.

INTTI

AL_VALUE:
3000 o

USE:

GAVMA,
LOCALITY:

GLOBAL.

DATA:

TYPE:
SVAL

INTEGcR

L]

INITI

AL_VALUE:
4000

USE:

GAMMA,
LOCALITY:

GLOBAL «

DATA:

TYPE:
IvAal

INTEGERS

USE:

GAMMA S
LOCALITY:

GLOBAL o

DATAR

TYPE:
IVA2

INTEGER

USE:

GAMMAS
LOCALITY:

GLOBAL»

DATA:

TYPE:
IVA3

INTEGER

USE:

GAMMA«
LOCALITY:

GLOBAL .

DATA:

TYPE:
IVAL

INTEGER»

USE:

GAMMA .
LOCALITY:

GLCBAL »

DATA:

TYPE:
IVAR

INTEGER

®

USE:

GAMMA
LOCALITY:

GLOBAL

DATA:

TYPE:
SvB1

INTEGER.

INITI

AL_VALUE:
100000 o

USE:

GAMMA .
LOCALITY:

GLOBAL

DATA:

TYPE:
SVB2

INTEGER

INITI

AL_VALUE:
200000 &

USE:

GAMMA.
LOCALITY:

GLOBAL .«

DATA:

TYPE:
LVA2

INTEGER.

*

] - oo ot e .] wv] mme] e can] oo O] e o] o mm] o wo] e] v e o] o o] mme md o cww] - o m— e o] W el e v e - —] — - o o] — o] - —] -

USE:

GAMMAS

-194-

TYPE: INTEGERSs

LOCALTITY: LOCAL
DATA: LVAS,

USE: GAMMAS
LOCALITY: LOCAL.

TYPET INTEGER.
DATA: LVAG,

USE: GAMMA.
LOCALITY: LOCAL,

TYPET INTEGEKS
DATA: LVAT7.

USE: GAHMA,
LOCALITY: LOCAL.

TYPE? TINTEGEK.
DATA: COND2Z2e

USET GANMAS
LOCALITY: LOCALo

TYPE: INTEGERS
DATA: CONCAEZ2.

USET GAMMA.
LOCALITY: LOCAL.

TYPET INTEGERs
DATA: EXAle

USET GAMMA,
LOCALITY: LOCAL

TYPET INTEGERS.
DATA: EXAZe

USE: GAMHMA.
LOCALITY: LOCALs

TYPET TNTEGER.
DATA: EXAZ,

USE: GAMMA.
LOCALITY: LOCAL,

TYPE:T INTEGERSs
DATA: EXAlLs

USET GAMFA.
LOCALITY: LOCAL.

TYPE: ITNTEGEcR.
DATA: EXB1.

USE? GANMMAS
LOCALITY: LOCALs

TYPE?T TNTEGER
DATA: EXBZe.

USET GAMNAS
LOCALITY: LOCALo

TYPET INTEGER.
DATA: EXB3,

USET GAVNA,
LOCALITY: LOCALs

L 2

5L b A 0 r ol)
TYPET—TRTEGTRY

DATA: EXBé,

USE: GAMMAS
LOCALITY: LOCAL.

TYPE: INTEGER
DATA: EXETe

USE:T GAMHA,
LOCALITY: LOCALo

—] — a| owm] wn qund w — -] — — — —
— — — -t — el wm vl] o e vl] o el o] o o] o o el w— v — o o] o] —

TYPE:T INTEGER.

-195-

LOCALITY: LOCALo

TYPE: INTEGERo
DATA: EXE3.

USE: GAMMA.
LOCALITY: LOCAL

TYPE: INTEGERs
DATA: EXElo

USE: GAMMA,
LOCALITY: LOCAL

TYPE: INTEGERe
DATA: LVBI.

USE: CAMMA.
LOCALITY: LOCAL

TYPET INTEGERo®
DATA: LVB2.

USEYT GAMMA.
LOCALITY: LOCAL.

—YYPET INTEGERs
DATAS ELAPA1,

JSE: GAMMA.
LOCALITY: LCCALo

TYPE: REALs
DATA: ELAPAZ,

USE: GAMHAS
LOCALITY: LOCAL.

TYPE: REALs
DATA: ELAPAZ,

USE: GAMMA.
LOCALITY: LOCALa

TYPE: REAL.
DATA: ELAPAL,

USE: GAMMA
LOCALITY: LOCAL.

TYPE: REALe
DATA: ELAPET.

USE: GAMMA.
LOCALITY: LOCAL.

TYPE: REAL.
DATA: ELAPBZ.

USE: GAMMA.
LOCALITY: LOCAL.

TYPET REAL
DATA: ELAPB3,

USE: GAMMA
LOCALITY: LOCALe.

TYPE: REAL.
DATA: ELAPC1_2_ 3.

USE:T GAMHA.
LOCALITY: LOCAL.

TYPE: REALS
DATA: ELAPCAhs

USE:T GAMMA.
LOCALITY: LCCAL.

TYPE: REALs
DATA: ELAPCS

USE: GAMMAS

-196~-

LOCALITY: LOCAL.

TYPE: REALS
DATA: ELAPDI,

USE: GAMMA.
LOCALITY: LOCAL

TYPE: REALS
DATA: ELAPDZ2.

USE: GAMMA,
LOCALITY: LOCAL.

TYPE: REAL.
DATA: ELAPET.

USET GAMNMA,
LOCALITY: LOCALe

TYPE:? REAL.
DATA: TIMEAGB.

USE:T GAMHA,
LOCALITY: LOCAL

TYPE: REAL.
DATA: TIMEAET.

USE: GAMMA
LOCALITY: LOCALe

TYPE? REAL.
DATA: TIMEAEZ.

USET GAMMA,
LOCALITY: LOCALo

TYPE: REAL.
DATA: TIMEAE3.

USET GAMMA.
LOCALITY: LOCAL.

TYPET REAL.
DATA: TIMEAEL.

USET GAMMA,
LOCALITY: LOCAL.

TYPE: REALo
DATA: TIMEBB1.

USET GAMMA,
LOCALITY: LOCALos

TYPE?: REAL.
DATA: TIMEBB2.

USET GANMFA.
LOCALITY: LOCALs

TYPE? REAL
DATA: TIMEALB1.

USET GANMAS
LOCALITY: LOCAL.

TYPE: REAL.
DATA: TIMEALEZ.

USET GAMNHAS.
LOCALITY: LCCALs

TYFE:T REAL

DATA: TIMEBE.

USE: GANMFA,
LOCALITY: LQCAL.

TYPET REKLS
DATA: TIMECR1.

USE: GAMHA.
LOCALITY: LOCAL.

-197-

DATA: TIMECBZ.

USE: GAMMA.
LOCALITY: LOCAL.

TYPE: REAL,
DATA: TIMECB3.

USE: GAMMA.
LOCALITY: LOCAL.

TYPE: REALs
DATA: TIMEC13.

USE: GAMMA.
LOCALITY: LOCCALS

TYPE: REAL.,
DATA: TIMECA.

USE: GAMMA
LOCALITY: LOCALo

TYPE: REAL.
DATA: TIMECE.

USET GAVMAL
LOCALITY: LOCAL

-

TYPEY REAL.

~KTA: TIMEDE1,

USE?: GAMMA.
LOCALITY: LOCAL.

TYPE: REAL.
DATA: TIMEDB1.

USE: GAMMNAS
LOCALITY: LOCAL.

TYPE: REAL.
DATA: TIMEDEZ.

USE: GANMA»
LOCALITY: LOCALo

TYPE: REAL.
DATA: TIMEDBZ.

USE: GAMMA.
LOCALITY: LOCALS

TYPE: REALS
DATA: TIMEEB1T,

USE: GAMMAa
LOCALITY: LOCALo

TYPE: REAL,
DATA: TIMEEBZ.

USE: GAMMAS
LOCALITY: LOCAL.

TYPE: REAL.
DATA: TIMEEE1.

USE: GAHMA.
LOCALTITY: LNCAL.

TYPE: REAL.
DATA: VTIMEEEZ2,

it

USE: GAMMA.
LOCALITY: LOCAL.

10

TYPE: REAL,

XX 002 FUNCTION RSL
SIMGENS

COMPLETED.

K*****************************

w e 0N g o

XX 001 FUNCTION SIHMGEN

INITIATED,

-198-

XX*%X*******X********X**********&*

A.2

Standardized Simulation Procedures

000027 (% SETS PROCEDURES OR HEADERS SDF ®) 00002047
T00027 PROCEDURE CAUSE CACTNO» GEVNET: INTEGERS ACTTIMES: REAL)DS 00002048
000006 BEGIN EXOBOOL'ACTNOI := TRUE3 00002049
0060012 EXNCTEXVACINOT 3= TRUES 000020650
000015 EXOTIMEVACTNO] 3= ACTTIME} 00002051
nooG20 DEVNOGTACINGT = DEVNETS 0u002052
0co023 ESECAUSE(EXSTRs ACTTIHE) 00002053
TU0U24 END: gue02058
000042 PROCEDURE MESEUFC(ACTs EXCLAs EXTYPs» MESCONT? INTEGER) 3 00002055
DO00U7 BEGTN EXTLARYATTI = EXCLAG 00002056
000013 EXTYPAR'ACTI 3= EXTYPJ 00002057
goT0Té WESERVACT T 3= RESCONT 00002058
000020 END3 00002059
UC00 32 PROCEVURE SSSTARTUPS 00002060
000003 VAR Jt INTEGERS 06002061
000004 BEGIN 00002062
000004 FOR J TO0 9 DO EXOBOOLYJ) t= FALSEj 00002063
oU00T4 FORJ 169 DO EXNOTEXYJT &= FALSE] 00002064
000024 FOR J T0 5 DO CURDEVS'JI = 03 00002065
G00034 FOR 4 105 DO TOTOEVSYIT == 43 V000208606
000044 JOTDEVS = 13 00002067
000045 TIVEEET 0a0; 00002068
000046 TIMEERZ Ca03 00002069
000046 EEPSTHESUERY 04003 R A Y S
000052 TIMEAB 3= 0403 00002071
000053 FEPSTHES(AB S G0 Ugu0207<4
000056 ENDJ 00002073
§000%2 PROCEBURE SAET & gui02074
000003 BECIN EEFSTMES(IAE] 22 FFLAG)S 00002075
§000190 TTAECBT §= TIREAE1T T0TU02078
000012 TIMECRZ2 = TIMEAEZ2: 00002077
Hoe0T3 CORBALZ ¥= CONDZS 0U002078
000014 MESBUF(151515LVAR)S 00002079
5000716 TKUSECT, 35 TIHEAEZ) 3 MR
000021 EENXTHESC(IAE1_2sTRUELFFLAG) 00002081
506027 ERDS TU00208Y
000032 PROCEDURE SAE3 43 00002083
T0GOU3 FEGIN EEFSTRESCIAES 4y FFLAG)HS U00U0Z084%
000010 TIMERBY 3= TIKEAE3; 00002085
000012 TIRERRZ = TIWEAELS PUT0Z086
0onnN13 HESBUF(25151,EXE3)S 00002087
F06015 MESBUF (3,22 00EXELD G UUTUZTUBE
000020 CAUSEC2s 25 TIMEAE3); 00002089
G0002¢ CAUSE(S, 2s TIREAESL) Uo0062090
000025 EENXTHMESCIAEZ _4sTRUESFFLAG) 00002091
000033 END3 To00205<
000036 PRCCEDURE SBE?: 00002093
GOO003 BEGIN EEFSTHESCIBES FFLAG): 000020948
000010 TIMECB3 := TIKEBE} 00002095
0000712 FESBUF (23 ~12LVAT)S 000020906
000015 CAUSEC 4 3, TIMEBE) 3 00002097
600020 EENYTHES CIBE STRUESFFLAG) gou020938
000026 ENC3 00002099
B000 3T PROCECURE SCES goo0zZT60
000003 BEGIN EEFSTMES(ICES FFLAG); 00002101
EUEREY TTHEEE v= TIRETUES po0T02T0<e
000012 HESBRUF(950s0,EXE3); 00002103

~199-

000014 CAUSEC9, 1» TIMECE) 3 00002104
000017 EENXTMESCICE »TRUESFFLAG) 00002105
G000 25 ENDS Tu002T086
| 000030 PROCEDURE SDE1_23 00002107
TUUO03 BEGTN TEFSTRESCIDET_Z> FFLAG)S 0002108
600010 TIMEEB1 = TIMEDE1} 00002109
TOT0T 2 TIWEEBZ f= TIFMEDEZF TOUTZTT0
000013 HESPUF(5,2s-1,LYB1)3 00002111
TOUUTE T FESBUF(E5150sLVBZYT 700UZTT2
000021 CAUSEC(Ss S» TIMEDE1): 00002113
TUT02E TKUSETE7 55 TIHEDEZY TOU0ITTS
000027 EENXTMESCIDE1_2,TRUESFFLAG) 00002115
GU0U35 ENDS TUT02TT6
0N004L0 PROCEDURE SEE; . 00002117
TUOU03 BEGCTN EEFSTHES(IEE, FFLAG)T TUTTZTTS
000010 TIMEDB1 = TIMEEE1} 00002119
TUUTTZ TTRECEZ 7= TINEEEZT TUU0ZTZY
000013 MESBUF(7,2,0sEXE1); 00002121
TO0UT TS FESBEUF (R 10 EXEL)S DR P44
£00020 CAUSECT7s &4» TIMEEE1)S 00002123
guuUTd3 TEUTETEY 475 TIWEEEZY ¥ LR Y
000026 EENXTMESCIEE sTRUESFFLAG) 00002125
~—UTUU 3L END TO002T2E
000037 PROCEDURE SSEXO0GS 00002127
GTOCOY VER KCTIVEs [t INTEGERS UT002ZTZE
000005 UEVLs MESTEMPs Ks L: INTEGERS 00002129
GO001T WINACTTIRE: REALT TO00ZT30
000012 BEGIN ACTIVE := 03 00002131
TU000S T FOR T T= 1 Y0 9 00 TO0U2T32
000006 IF CCEXOTIME'I| = CLOCK_TIME) AND EXNOTEX'Il) THEN ACTIVE 3=1% 00002133
TUTUES T WRTTELK (DUTPUTS & ACTIVEWs; ACTIVES CLUCK_TIHE)? TUUUZT3L
600041 IF ACTIVE > 0 THEN BEGIN 00002135
TUTTLS R T= DEVNOVACTIVET] TU0UZT3%
000047 YRITELN (OUTPUT» Ks CURDEVS?'Kis TOTDEVS'KI)] 00002137
TUOT7T EXORCGOLTATTIVET 7% FALSES TOUUZT38
000075 EXNOTEX'ACTIVE! i= FALSE: 00002139
JUOTTO DEVCARTTT ¥= ACTIVES TUU0ZTLD
000101 DEVECHK 21 = 0; 00002141
TOOTOT IF EXCUARTVECTIVET T3 O TREN BEGIN TH0T2TEZ
000105 MINACTTIME $= CLOCK_TINES 00002143
TUOT0B FOR K 5= T 7079 00 TUD02TLE
000107 IF K ¢> ACTIVE THEN BEGIN 00002145
0C07TT4 VERTTECN COUTPUTY K EXCLCARYXT, EXTYPARTKTS NESARTKT» EXCLAR? U0TULTL G
000142 ACTIVELs> EXTYPARVACTIVEls MESAR'ACTIVEIs EXOBOOL'KI» 00002147
) EXOTIPETR T EXROTEXYKTD ¥ . UU0U0LTLE
000215 IF CEXCLAR'K] = EXCLARVACTIVE!) AND CCEXTYPARVKI # EXTYPAR! 00002149
TU0276 ACTIVETYE 1) ARU CEXUTIRAEYRT &= WINACTTIFREY AND EXUBOULT OG0 ZLTOHV
000240 Ki THEN 00002151
U024 BEGIN g0T0LT5<
000244 MINACTTIHME := EXOTIME'KI3 00002153
TUUZLY TEVCHRYZT ="K U0002TSS
000247 END 00002155
PoUZ250 END T00U2T50
000252 K = DEVCHK'213 00002157
o025 TF K> 0 THEN BEGIN UUT0ZTS8
000255 MESTEMP t= MESARVACTIVEILS 00002159
000267 AESARVACTIVET 1= RESARTKTS TUTUZTE0
000267 MESAR'KI i= MESTEMPS 00002161
T00274 EXOBO00LTKT = FALSES 00002762
000275 EXNOTEX'K] 3= FALSE 00002163
500277 END U000 TER
000300 ELSE 00002165
00360 TP EXTYPARTVACTIVET 5 -1 THEN BEGIN 00002765
060305 DEVCHK'11 = 0; 00002167
(LIERL) EXOBOOCTVACTIVET ¢= TRUE UUTUZTSEE
000310 END) - 00002169
000311 END} 00002170

-200-

000311 FOR L := 1 T0 2 DO 000602171
000312 TF DEVCRE LT > 0 THEN BEGIN 00002172
l 000320 GEVL = DEVNO'DEVCHK'LII; 00002173

00326 EXSCHIDEVCHKILT] f= CLOCK_TIME; 600027174

006334 CURDEVS'DEVL) := CURDEVS'DEVLI + 13 00002175

TGG542 VRTTELNCOUTPUT, DEVLs CURDEVSIDEVL1s TOTDEVS'DEVLI JOEVCAK'L1)» 00002176

000372 3 00002177

600373 TF CURDEVSTDEVLI = TOTOEVSIDEVLI THEN BEGIN 00002178

000402 CURDEVS'DEVL] := 03 00002179
000405 TASE DEVL OF 00002780

00064611 13 BEGIN 00002181

600511 TIMEAB := EXSCH'91} 06002182

000413 EEPSTMES(ABSCLOCK_TIME) 00002183

600416 END3 00002784

000417 2% BEGIN 00002185
T TYMEBRY F= EXSCHYZT3 TOV0ZT66

000421 TIMERB2 := EXSCH'313 00002187

000422 EXA]1 = MESARYZI; 000027188

000423 EXA2 := MESAR'3|; 00002189
"“m)'O'L'?r""‘“‘”"—”"’EEPSTMES'(BE;CLOCK_TIME) LAY

000427 END3 00002191
TTEOOL30 ITTBECIN (UL FARTA

000430 TIMECB2 == EXSCH'113 00002193
- TTRECES §= EXSCAVATT TUT02ZT9E

000433 EXA3 3= MESAR'113 00002195
TTTGE06 34 EXHL T= MESARTLTS 00002796

060435 EEPSTMES(CB,CLOCK_TIME) 00002197
RO UEET ENDT TUO02TYE

000642 43 BEGIN 00002199

Go04Ge TIWEDBT = EXSCHI71S 000022070

000444 TIMEDB2 := EXSCH'813 00002201

TO6L45 EXET "T= RESAR'YTIS 07002202

000446 EXB2 := MESAR'81; 00002203
TTYOOLLET TEPSTRESCDESCLOCK_TINED T000220%

060452 END; 00002205

TGOL5E 5T BEGCTN TUT02208

000456 TIMEEB1 := EXSCH'SI} 00002207

000456 TIWEEBZ = EXSCHTSTS 00002208

000457 EXB3 = MESAR'SI; 00002209
TTHO0LED EXBL T= HMESARTETS UUTU22ZTO

000461 EEPSTMES(EB,CLOCK_TIME) 00002211

00464 END TO0T22T2

000455 END 06002213

00%73 END T00T0221%

000473 END 00002215
TTR00L T3 END 0TU2276

000475 ENG3 (% SIMULATION INITIALIZATION PROCEDURES RISF) 00002217

-201-

Sample MRSL Simulation Output

A.3

357v3

- OO W nen

EERAF] 0 0oLt { 13 0- 0- 0- é
3Nyl 000+30000000000000°9 3NY¥L 0o0tt €. L 0 0 L 8
nyy 000+30000000000000%9 3N¥L oottt i 13 0= . 0 Z A
38V 4 li] 38v 4 00LL i |3 [15ed 0= Q- 9
387v 2 0 383 gottL i 13 0- 0~ 0~ S |
3S1¥4 ¢ 351¢4 001t L 3 0= 0~ 0~] i
3STvd 000+30000000000000%L 3N¥L oottt i { oozt 0 2 ¢
ETR A 000+30000000000000°2 301 00tL 3 L 1002 13 L L
4] 2
000+30000000000000°%% 2 JALLDY
38Tvd 0 381V 4 0ozt 0 K4 0- 0~ 0- 6
3N 000+30000000000000°9 _3A0HL 0021 0 2 0 9 L 8
3nyi 000+360000060000000°9 3N¥1 oozt 0 Z 0- 0 2 A
387%d 0 381y d 0021 0 2 [\E 0= 0= 9
387v4 0 387v 4 002t 0 2 0- 0= 0- S
387v¥ 4 Q 387v 4 002 0 2 0- 0= 0- 9
3n4lL 000+30000000000000°L 3Nyl 0ozt 0 k4 00tLlL i 13 2
anul 000+30000000000000%2 _30HUIL 0024 Q z 1002 L L I
2 0 2
000+30000000009000°L € JALLDY
SAN3 NOIINJ3x3 v 13N
©31073X3 ¥~¢avl 3DV INAINTITIOALING
EZ XSRS RS 02
000+30000000000000°L 000+30000000000000%k % §YIY (N3
$3iN23X3 YTEYIY VYHJITY
R Rl N i i 24
002t 1001l 7YY GN3
§31023X3 _9¥1Y _YHAIY
I RIS SR
00.LL cYIY QN3
§31n23X3 E€VIY VHJLIY
S31023X3 273V 32V ANIINITIALIN0
IZ XTSI L R
0008+30000000000000°7 000+430000000000000°¢ 27LY3Y (N3
$3LN23X3 ZTLYIV YH4TY
+4+ 4ttt e Ty
4 1002 2Y1¥Y ON3
§31023%3 2¥1¥ VYH4IY
XSS RS S
1001 LYY QN3
$31033X3 LYY YHJTY
§31023%3_8YI _FIVAHIINITLIO4NT
0 = JHIL - 31A33X3 0L SNIS33 ¥ 1387y
SONI NOILNJ3X3 3 L3N ¥
$31N23x3_331 IIY¥ ANIAINITINLI00
4+ttt dr e
000+30000000000000°9 137Y (NI
$3LInJ33IXI L3IV VHITV
Rl o B o e s .4
0 0- 137¥ GN3
$31003%3 L3I¥_YHLIY
$31033X3 831 3JVAYIINITLIAINI
Q = 3IWIL - 3iN23X3 04 SNI93G 3 L3NTH
000°L = 3WIL GN3 NOILVINWIS

200+30000000000

0
L2*L0®gL 3WIL €62/92/70 :31VC

= JRIL_LYYAS NOILYINWIS

FOITNAY ¥OLVIAWIST LAY3I30 :01 NOY

Q1-LInY43071S3L/¥01VIAKIS OI HLIA 26%66*2L LV 624/92/%0 NO Q31v3¥d YOLYTINHIS

104400 NOILYINRILS

~202-

AR Ll s bk

160+30000000000000°4

$31NJ3X3 197V VHJV

187y GN3

+ribttrir s

0 €871y OGN

$3LN33X3 €87V VYHJV
tratrbrbbb e
[287y aN3

$31023X3 287Y YHJIV
P e T
] L8 ON3

$310A03X3 L8V _YH4TY

$31023X3 Ul 3DVINIINIT LNJNI

000+430000000000000°9 - = 3IWIL

- 31033X3 Ol SNI33E

g 13IN7¥

SQAN3 NOILNJ3X3

SFIN23X3 274301 FIVIHIINITINGLNO

a 13INTY

100+30000000000008°%

100+30000000000009°L

EX XIS RS RS

107y QN3

$31nJ3X3 L1Qv VYHJIY

+4+++d bt i it

101t 207y ON3
S3103X3F 207y YHAY
R e R
021 107Y GN3
$31Nn23X3 0TIV YHITY
$3L0D3XA 80T 3IIVANIINTINGN]
000+3000000000000049 = 3WIL - 3LNI3X3 OL SNIS3A8 ¢ 13N ¥
€ 4 Z Z
P 2 F4 2
3svs 0 EERAF] 0~ 0 [4 0= 0~ 0~ -]
38y ¢ 000+3000000000000029 . 387V 4 0= 0 2 00LtE 2 i g
387V 4 0 387vd 0- 0 Z 0~ 0~ 0- 9
387y 4 0 381yJd Q- 0 2 0~ 0= 0= S
387vd 0 387v4 0~ 0 4 0= 0~ 0= 9
J81¥d 000+30000000000000¢L 3ARYL Q= 0 z 00zt 0 2 g
387v4 000+30000000000000°%F 3STV4 0- 0 4 0 3 3 4
387 4 000+30000000000000°2 30YL 0- 0 2 2002 3 i L
Z 3 ki
000+30000000000000°9 £ 3A110Y
2 4 i 2
g z 3 2
38Tvd 0 38V 4 0 0 3 0- 0- 0~ 6
AL 000+43000000000000029 3081 0 [1]) 0= [t] 2 2
387v4 0 38V 4 0 0 2 0~ 0~ 0~ 9
3SAv 4 1] 35¥ 4 0 0 k 0= 0= 0= S
ERNLE 0 38vd 0 0 2 0- 0- 0- 7
387v 4 000+30000000000000°%% 3NML i} 0 L 6024 0 2 <
ELRLE] 000+30000000000000°%L 3N¥L 0 0 13 ootl 13 L 2
38y 4 000+30000000000000%2 30N¥L 0 0 L 1002 L 11 i
4 0 7
000+30000000000000°9 8 3A1L0Y
387vd 0 387v4 1002 13 4 0- 0- o- 6
E11-¥] 000+3000000000000049 3NHL £002 } L Q g 3 8
3Nyl 000+30000000000C00°9 3Nyl 1002 L L 0- 0 Z A
ERNLE Q 387vd 1002 3 3 Q- 0- 0~ 9
387vd 4} 3s1vd 1002 4 3 0~ 0= 0~ S
480%d 0 387¥ 3 £002 L b 0= 0= 0- 2
387 4 000+30000000000000°t 3NHL L1002 3 L oozl 0 2 £
337094 000+30000000000000%L 3NN 1002 L b 00LE 13 3 4
4 0 £
000+30000000000000°2 % JALLIY

-203~

$4rb bbb iitt

100+30000000000009°2
S31n23x3 121y YHAIY

137y QN3

PRI AT IR RS A4

Lot S21y (N3
$34M33%3 SI1Y VHAY
+r et bttt E
Q 737y QN3
$31033¥3_ 92y _YHAIY
FERT R R E R
Lotk £y (N3
$31n33x3 MQ4<I<ImJ<
§33023%X3. B3 3DV ANIINT TINANT
L00+30000000000008°¢L = IWIL - 3ILA33X3 0L SNIS3E 2 13NTY
SON3 NOILND3X3 3 L13NTW
§31033¥%3 331 3J¥ANIINITIOALO0
FEELEFEE LRSS
100+43000000000000%7°2 137 QN3
S3LNIIXT L3V VHLTY
+Ettr bt EEEEE
008~ 202¢ 137y GN3
$31023X3_L3TY_VYHLIY
$31033X3 831 3FOVINIINITINGNI
LO0+30000000000008%1] = 3Wli - 31023%X3 0J SNI93f6 3 13NTH
i 2 2 <
9 2 2 S
ERRVE] 0 SV 4 LoLE 1] L 0~ (1 0= 6
ELRLF] 000+30000000000000°9 38TV Lottt 0 1% 00ttt 0 12 8
ERNLE] 000+30000000000000°9 _3571Y 4 1ott 1] 3 Q021 1} 2 yA
38V 100+30000000000009°%i 3STVvd Lottt 0 L 102t L= 4 s
381v4 Lo0+30000000000000%L HSVd Lt0i L i L 0~ 1% 2 Vi
3svd 000+30000000000000°L 3S1Y4 Lottt 0 L 0- 0 Z €
38v¥d 000+430000000000000°%% 3Sav 4 10LL 4] L 1] b 3 2
387vd 000+30000000000000%2 3N¥L Lot 0 L 1002 b i i
2 5 S
100+30000000000008¢L 9 3ATLDY
4 rd i S
ISV 0 ERRL K 102t [ad 4 0- 0- 0~ 6
387v4d 000+30000000000000%9 3873V 4 021 b= rd antt] L 2
ERRAKE] 000+30000000000000%9 3I57V4 tozgt L- 2 eo2L 0 2 A
IANL L0N+3000000000000R* L IFONL 1024 i= 2 Lol Q L 2
387V 100+30000000000000°1 ISV 1021 - 2 0- L= 2 ki
ISy 4 000+300000000600004 397Y.3 Loz24 b= 2 0= Q 2 g
38V 4 000+30000000000000°L 3S7V4d 1ot L= 2 0 3 3 2
A8y 4 000+30000000000000°%2 3Nyl 1024 b~ 2 £ Q02 3 L |3
2 0 S
£100+30000000000009°% . & JALLIJY
v [4 [€
383yd 1] 38774 fi= 5 rd Q- [15d Q- Y
ERNLE 000+30000000000000°9 3S7Vd 0~ L~ 4 0oLt 0 i 8
387¥4 000+30000000000000°%9 3ISI¥4 Q- L= 4 002t 0 2 PA
3nyL 100+30000000000008* L 3N¥L [i- 4 iottl [} t 9
E113-851 100+430000000000009°%% J0US Q= L= 2 £202% L= 2 S
38v 3 000+30000000000000°¢ 3STVJ 0~ | 2 0~ 0 2 €
3873y 4 000+30000000000000°%% JS1¥ 4 0=~ 5 2 0 L 11 2
387v4 000+30000000000000°%2 3n¥l 0- i- : 2 Lo02 14 L i
Z 0 <
©100+30000000000000°%: ¥ JATLIY

SONI NOILND3X3 8 13N
$31NJ23%3 3ISI IIVIUIINITLALLAD

-204-

2 2 i 1
¢ 2 3 2
387v3 L60+30000000000009°2 38TV 102t 0 2 0 0 4} 6
381y 4 100+3000000000000%%2 30MY L2t 0 2 098~) 3 2
ELRLE] 100+230000000000007°2 3INYL Lozt 0 F4 202¢ [2z I3
387y 4 L00+30000000000009%L 357V4 1021 [2 1002 0 3 9
333 L00+30000000000009°L 3STv4 102t 0 2 102t L 2 9
337y¥d L00+30000000000000*% ISV 021 0 2 0= L- 2 L3
3Nl L00+30000000000002°2 3n¥L 102t 0 2 L0014~ L L 2
30%L 100+30000000000008%2 IONL 1024 0 2 201L) L L
2 0 4
L00+30000000000002°2 ¢ IAILDY
SONI NOILND3X3 v L3N M
$31023X3 973V _IIVANIINITINLI00
IEET TSR RS
100+430000000000002°%7 100+30000000000002°2 976¢¥1Y ON3
S3LNIJXI 7 EVIV YHAY
44 bbb dbre it b
Lozt 2001 7YY ON3
S31023X3 _2Y¥IY YH4IY
X RS E RS RS
L00L~ €YY _ON3
S3LN33X3 €YY YHJIY
S31ND3X3 2TL3¥I FOVAHIINITLN4LN0
XXX IE L LS
100+20000000000008%2 100+30000000000006%2 27 LVIY QON3
$34023x3 2TEVIV VHAY
R ARl B
3 2oL 2Y1Y aN3
$31n33%x3 2Y1Y YHJIY .
4+ EEFE LSS
2001 LYY ON3
S31A33X3 LvY VHdIV
§31023x3 Ayl 3IYAHIAINITLIOANT
L00+30000000000009°2 = 3WIL ~ 3LND3X3 OL SNIS93E ¥ L3INTH
6 i i L
L 0 1}
L00+300000000000092 6 EYS %1}
3Inul 100+30000000000009°2 3ONL 202¢ 9 2 0 0 0 6
351v4 L00+30000000000007°2 3N¥L 202¢ 0 2 008~ (i} L 8
I$3Y4 100+30000000000008%% 3SIVJ 202¢ (1] 2 1002 0 L 9
EERLE 100+300000000060009°L 3SIV4 2028 0 2 1024 L- 2 S
38193 L00N+30000000000000°L 3S7¥4 202¢ 1] 4 0~ L 2 Y
EERLE] 000+30000000000000%L 3S7¥d 202¢ 0 2 0~ 0 2 3
387v4 000+30000000000000%4 353V3 2028 0 A Q L L 2
ERRLF 000+30000000000000%2 387¥4 202¢ 0 2 [L L L
2 9 g
160+300000000000607°2 2 3AL1LDY
ELES 100+30000000000000%2 30UL 008~ 0 L 0 0 0 6
3Nyt L00+30000000000007%2 3INHL 008- 0 8 202¢ 0 2 L
28794 L00+300000600000008°1L 3S7¥4 008~ 9 L 1002 9 L 9
387v4 L00+30000000000009°L 387v3 008- [L 102t i- 2 3
3sava L100+30000000000000°L 38TV 008- 0 i 0= L= 2]
387V 4 000+30000000000000°1 3S7¥J 008- 0 L 0- 0 k4 €
3Sv4 000+30000500000000°L 38TV 00y~] 3 i L L F4
3Isnvd 000+30000000000000°2 387V4 008~ 0 3 LoLt L L L
T 4 0]
LOU+ d000U00L000000YE 8 EYSERT *
.. .. . S4N3 NOIIN3IXI 3 AINU oo
$31N33%3 331 3JIvIHALNIT LINLLNO H

1
E43

-205-

Appendix B - CS-1 DPR

The following DPR example is presented in its original

form with page numbers in the upper right hand corner of

each page. The table of contents following the title page
refers specifically to this numbering. Numbering of report

pages continues uninterrupted at the bottom of each page.

-206-

DISTRIBUTED DATA PROCESSING
INTEGRATED EXPERIMENT DEFINITION

CASE STUDY 1

DATA PROCESSING REQUIREMENTS
(DPR~-1)

September 1978
D.R. Fitzwater
Dept. Computer Sciences
University of Wisconsin
Madison, Wisconsin

-207-

CONTENTS

ABSTRACT

INTRODUCTION

OVERVIEW

PROCESSES

3.1 Bulk filter processing (BFP)

3.2 Designation returns processing (DRP)
3.3 Designation return update (DRU)

3.4 Handover message generation (HMG)
3.5 Known object recognition (KOR)

3.6 Radar control (RC)

3.7 Radar order generation (ROG)

3.8 Radar pulse scheduler (RPS)

3.9 Radar queue determination (RQD)

3.10 Radar return processing (RRP)

3.11 Radar signal reception (RSR)

3.12 Return smoothing and state estimate (RSSE)
3.13 Radar signal transmission (RST)

3.14 Search return processing (SRP)

3.15 Time associated detections (TAD)
3.16 Treat simulation (TS)

MESSAGES
4.1 Designation pulse scheduling (DPS)

4.2 Hand over message (HOM)

4.3 History transmit/listen (HXL)

4.4 History data demand (HSLD)

4.5 History data response (HXLR)

4.6 History transmit/listen specification (HXLS)
4.7 Signal return specification (SRS)
4.8 Return (RET)

4.9 Return and time associated data
4.10 Return measurement data (RMD)

4.11 Radar transmitted pulse (RTM)

4.12 Time associated data demand (TADD)
4.13 Time associated data response (TADR)
4.14 Time associated data sequence (TADS)
PERFORMANCES

REFERENCES

-208-

PAGE

10
12
13
15
17
19
22
24
26
29
31
32
33
35
37

40
40
40
40
41
41
41
42
42
43
43
44
44
44

45

46

ABSTRACT

BMDATC plans to use a series of case studies to focus and
integrate current DDP research. This report is a preliminary
version of a DPR for CS-1. The DPR is intended to illustrate
the use of asynchronously interacting processes at the DPR level
of specification. This DPR is based on (and guite similar to)

the TRW generated DPR for CS-1.

-209-

1. INTRODUCTION

This Data Processing Requirement (DPR) specification is based
on the Required Capabilities Description (RCD) [4] for the CS-1
experiment. The contents of the RCD should be considered a part
of this introduction, and only the briefest summary follows.

A baseline radar [2] as modeled by SETS [3] will be used to
search and designate threatening objects to be handed over for
tracking by an unspecified (outside CS-1 scope) system.

The DPR should express requirements without prejudicing
subsequent DDP design as far as possible. The requirements
should be unambiguous and testable to the specified level of
detail.

The form of the specifications should maximize the possibility
of automated analysis for desirable formal properties [5].

The following DPR is a first attempt to use asynchronously
interacting processes (AIP) [5] on a real experiment. This report
will illustrate a possible approach as well as providing a common
formal example for clarifying the CS-1 issues. Our intent is to
prepare a corresponding data processing architecture requirement
(DPAR) report that will be demonstrably consistent with this DPR.

The methodology for generating and analyzing a specification
such as this is presented in [5]. We will include brief,
explanatory, appendices for the interpretation of exchange graphs

and process specifications.

-210-

The CS-1 DPAR's in [6,7] were used (in this development) as
a source of more detailed information about radar signal processing

since the author has no previous experience in that area.

-211-

2. OVERVIEW

The decomposition of the CS-1 processes and the nature of
their interactions is described in Figure 2.1.

The processes TS, RST, RC, and RSR represent the threat and
radar sub-system as modeled by SETS [2,3]. The threat simulation
(TS) drives the entire set of processes and closes the feedback
loop between the radar order generator (ROG) and the radar returns
process (RRP).

ROC maintains a history of the outstanding radar orders for
use by RRP. There may be as many RRP processes as required to
meet performance specification. RRP will analyze returns,
evaluate quality, and supply detection information for futher
procession.

Search return processing (SRP) will generate the first
designation pulse requests for valid search detections. As many
SRP can be used as are required.

Designation discrimination Set (DDS) will discriminate
threatening objects via bulk filtering and a sequence of
designation pulses time associated detections are stored in the
TAD data base. DDS represents the set of processes described in
Figure 2.2.

Known object recognition (KOR) correlates threatening objects
with those already in track, and drops known objects from further
processing hand-over message generation will supply any new

threatening object states to the track network.

-212-

Request gqueue determination (RQD) will select radar requests
to be scheduled in the next cycle. Radar pulse scheduling (RPS)

will schedule the requests and send radar order specifications

to (ROG).

-213~

- ~
RTP -~ ~_ SRS
.
xc_ 7 ~XC
N Rox o _ R
RST)3t xcxc xc_ RSR
XC! XS
i I
IRIO | RMD
XCi XA !
(e == T e
| — = . — XC / |
XC HXLR XA '
g -_— - - I RET
// RET ; ,
XS 7 | XS
XC TADD_ | __ XA ;
TAD =~ = = @— DDS SRP |
XC TADR XC -
: i {
e - Tfé — e e XA .
y TADS : HXLS
XS/ HXL XS
(e =1 | '
XC '
T Txa || | xc | l
1
' TaADS | | | HXL |
I
[| XC ; XAl
HMG o - —%={ Rps >~
: ‘ .
iXC TIR | TID
IHOM
to
Track to
Net Track
File

FIGURE 2-1: CS-1 DPR-1 Exchange Graph

The boxes are processes. The dashed lines represent interactions. The
terminal labels identify the type of interaction (i.e., the type of
exchange function used). The mid-line labels identify the message type
involved in the exchange. Processes included in braces are replicated
sets of identical processes. DDS is a set of processes described in
Figure 2-2.

-214~-

(;
n
wn
n
—
jant
~
ol
wn

FIGURE 2-2: Exchange Graph for the replacement of DDS (See Figure 2-1)
"process by" the above set of DRP, BFP, DRU, and RSSE

processes.

-215~

3. PROCESSES

The general format of a process specification in this
document will be as follows:
Process: Name of process

Multiplicity: Can it be replicated for performance?

Inputs: The message types that can be received in an

interaction

Outputs: The message types that can be transmitted in an

interaction

State: The local state components that can be referenced

by the process function

Function: The defining arithmetic expression for the

process state successor function. References
to a state components are references to their
current value in a given process step.

Sqguare brackets in an arithmetic expression denote conditional
evaluation. For example, [Pl:El,PZ:EZ,E3] implies that only
the expression E. associated with the first (from left to right)
true predicate will be evaluated.

The protection function Pg selects from a j-tuple the i
element. For example Pg(A,B,C) = B.

Auxiliary Functions: Functions used in defining expression

for function above.

Interactions: A summary of interaction messages

Comments: English text description of process.

The following processes are arranged alphabetically.

-216-

Process: BFP

Multiplicity: OQuantity sufficient

Inputs: RET
Outputs: RETAD, DPS
State: RATEINFO 'Constant State'

Function:

UBFPA (BFPA (RATEINFO, XSBFP (T))

Auxiliary Functions:

UBFPA : (RATEINFO, RETAD, DPS) - RATEINFO

Pi(RATEINFO,[RETAD # T : XARETAD (TAD),],

.

[DPS # T : XADPS (DPS),])

Interactions:

XSBFP : BOOLEAN -~ RET
XARETAD : RETAD -+ BOOLEAN

XADPS : DPS - BOOLEAN

Comments: Bulk Filter Processing
BFP discriminates potential objects in TAD. If this
detection is null, objects that should have appeared will

be dropped. Objects that do appear and cannot be

discriminated as yet will produce a new designation pulse
via DRU. Objects that can be declared threatening will be

passed to RSSE. BFP will use and update TAD history data.

-217-

Function: BFPA : (RATEINFO, RET) - (RATEINFO, RETAD, DPS)

(Primitive)

Comments:

Implements an n-pulse non-coherent, sequential algorithm
to discriminate threatening objects. Ghost and
non-threatening objects will be dropped using velocity

filtering based on RATEINFO.

-218-

10

Process: DRP

Multiplicity: Quantity sufficient

Inputs: RET
Outputs: RET, HXLS
State: Null

Function:
UDRPA (XSODD (T))

Auxiliary Functions:

UDRPA : RET - NULL

[Qual (RET) = Degraded : XARQD (DRPA (RET)), XABFP (RET)]

Interactions:
XSODD : BOOLEAN -+ RET
XARQD : HXLS - BOOLEAN

XATAD : TADD - BOOLEAN

XABFP RET -~ BOOLEAN

Comments:
DRP will route returns according to quality. If degraded,
DRP will reissue designation order. Otherwise, the return

will be passed on to BFP.

-219-

11

Function: QUAL : RET -+ {Degraded, Null, Normal}
(Primitive)
Comments: Quality of return

QUAL extracts value from RET

Function: DRPA : RET - HXLS
(Primitive)
Comments: Designation Return Processing A
DRPA will regenerate a designation pulse request (HXLS)

to replace the degraded return.

Function: DRPB : RET - TADD
(Primitive)
Comments:. Designation Return Processing B
DRPB will form a delete order to TAD for the TAD

sequence that gave rise to this detection return.

-220-

12

Process: DRU

Multiplicity: Quantity sufficient

Inputs: DPS
Outputs: HXLS
State: Null

Function:
XARQOD (DRUA (XSDPS (T)))

Auxiliary Functions:

None

Interactions:

XSDPS : BOOLEAN - DPS

XARQD : HXLS - BOOLEAN

Comments: Designation Request Update

DRU will generate the radar request for new designation pulse.

Function: DRUA : DPS -~ HXLS
(Primitive)
Comments: Designation Request Update A
The designation range gates and the transmission pulse

parameter specifications will be generated.

-221-

Process: HMG

Multiplicity: Unique

Inputs: TADS
Outputs: HOM
State: Null

Function:
P:?i (, XCTN (HMGA (XCKOR (T))))

Auxiliary Function:

None

Interactions:

XCKOR : BOOLEAN - TADS

XCTN : TADS - BOOLEAN

Comments: Handover Message Generation
HMG will generate an appropriate handover message for
each uncorrelated threatening object.

Function:

HMGA : TADS - HOM

(Primitive)

-222-

13

14

Comments: Handover Message Generation A
BEMGA shall
a) generate state and covariance estimates of
threatening object
b) generate initial track pulse information

1) beam\position
2) transmit pulse length
3) allowable window

~223~

15

Process: KOR

Multiplicity: Quantity sufficient

Inputs: TADS
Outputs: TADS
State: Null

Function:
UKOR [KORA (XSTADS (T)))

Auxiliary Functions:

UKOR : TADS - TADS

plz_(,[TADs # o : AROR(TADS),1)

Interactions:

XSTADS : BOOLEAN - TADS

XAKOR : TADS -+ BOOLEAN

Comments: Known object recognition
KOR shall attempt to correlate TADS object with a known
object already in the track file for the network of which
Ccs-1 is a part. Known objects will be dropped.
KOR uses track file with the interactions

XATID : TID - BOOLEAN and XCTIR : BOOLEAN -~ TIR.

-224-

16

Function: KORA : TADS = TADS
(Primitive)
Comments: Known Object Recognition A
KORA shall
a) correlate TADS with track file of known objects
b) terminate processing if correlated.

-225-

17

Process: RC

Multiplicity: Unique

Inputs: RIO
Outputs: RCL, RCX

State: RSTATUS 'Radar Status Information'

Function:

URCA (RCA (XCRIO (T) ,RSTATUS))

Auxiliary Function:

URCA: (RCL,RCX,RSTATUS) - RSTATUS
Pi(RSTATUS,[RCL # T : XCRCL(RCL),]

,[RCX # T : XCRCX(RCX),])

Interactions:

XCRIO : BOOLEAN - RIO

XCRCIL : RCL -+ BOOLEAN

XCRCX : RCX - BOOLEAN

Comments: Radar Control

RC simulates radar control, accepts radar orders, and
generates the appropriate transmitter (RCX) and receiver
(RCL) controls. The radar status, RSTATUS, is maintained
locally, and invalid orders or duty cycle conflicts will

be checked. The radar to be used is specified in [2,31.

-226—

18

Function: RCA: (RIO,RSTATUS) - (RCL,RCX,RSTATUS)
(Primitive)

Comment: Radar Control A
RCA generates transmitter (RCX) and receiver (RCL)
controls and monitors radar status (RSTATUS) to obey
operational constraints. This is specified and

simulated by existing CS-1 radar SETS [2,3].

-227-

19

Process: ROG

Multiplicity: Unique

Inputs: HXL, HXLD
Outputs: RIO, HXLR
State: ROGQ, HXLQ 'Pending Order, Outstanding Orders'

Function:

[ROGQ = T : (XSHXL (T) ,ROGB (HXLQ, XSHXLD(T)) ,

UROGA (ROGA (ROGQ, HXLQ, XSHXLD (T)))]

Auxiliary Functions:

UROGA : (ROGQ,HXLQ,RIO,HXLR) - (ROGQ,HXLQ)
Pi((ROGQ,HXLQ),[RIQ # J : XCRIO(RIO),],

[HXLR # T : XCHXLR(HXLR),])

Interactions:

XSHXL : BOOLEAN -+ HXL
XSHXLD : BOOLEAN - HXLD
XCRIO : RIO - BOOLEAN

XCHXLR : HXLR - BOOLEAN

Comments: Radar Order Generation
ROG will generate, encode, and transmit all radar orders.
ROG will also maintain a history queue of outstanding orders
(whose returns have not been processed) and supply data

from ROGQ to requesting RRP.

-228—-

20

Function:

Comments:
ROGA
a)

b)

c)

ROGA : (ROGQ,HXLQ,HXLD) = (ROGQ, HXLQ,RIO,HXLR)
(Primitive)

Radar Order Generation A

shall

format the transmit/listen orders as RIO

monitor time and, when appropriate, terminate so
that RIO will be transmitted

if there is a history demand (HXLD) evaluate ROGB.

-229-

Function: ROGB : (HXLQ,HXLD) - HXLQ
(Primitive)
Comments: Radar Order Generation B
If there is a demand (HXLD) uppdate history file

PXILQ and generate HXLR response.

-230-

22

Process: RPS

Multiplicity: Unique

Inputs: HXL
Outputs: HXL, HXLS
State: RPSQ 'Pending Orders to be Scheduled'

Function:
URPS (RPSA (XSRP (T) ,RPSQ)

Auxiliary Function:

URPS : (RPSQ,HXI,HXLS) - RPSQ
Pi(RPSQ,[HXL # T : XCHXL(HXL),],

[HXLS # T : XARQD(HXLS),])

Interactions:

XSRP : BOOLEAN -+ HXL

XCHXL : HXL - BOOLEAN

Comments: Radar Pulse Scheduler
RPS will schedule radar pulse transmissions and
corresponding receive windows in compliance with
radar operational constraints. If HXL cannot be

scheduled, it will be returned to RQD.

-231-

23

Function: RPSA : (HXL,RPSQ) =+ (RPSQ,HXL ,HXLS)
(Primitive)
Comments: Radar Pulse Scheduler A

RPSA shall

a) subject to operational constraints the requested
radar order HXL will be scheduled

b) check for overlap of transmit and receive operations
and of receiver time gates

c) check for short term overlap

d) unscheduled requests will be returned to RQD for

subsequent attempt.

-232-

24

Process: RQD

Multiplicity: Unique

Inputs: HXLS

Outputs: HXL

State: HXLQ, MAP 'Pending Radar Requests, Noise MAP'

Function:
URQDA (RQDA(HXLQ,MAP,XSRQD(I)))

Auxiliary Functions:

URQDA : (HXLQ,MAP,HXL) - (HXLQ,MAP)

Pi((HXLQ,MAP) , [HXL # T : CRP(HXL),])

Interactions:

XSRQD : BOOLEAN - HXLS

XCRP : HXL -~ BOOLEAN

Comments: Request Queue Determination

ROD shall establish which requests are candidates for

scheduling during this radar cycle, and shall determine

for all requests (search, designation) the pulse

parameters to accompany the radar orders.

~233-

Function:

Comments:
RODA
a)

b)

c)

25

RODA : (HXLQ,HXLS) -~ (HXLQ,HXL)

(Primitive)

Radar Queue Determination A

shall

maintain a Queue of radar requests HXLQ

schedule next radar request

1)
2)

3)

4)
5)

6)

establish current cycle

select candidate requests

establish raster points and originate
search requests

validate request parameters

implement search modifications

generate radar transmit/listen order

maintain a map of noise information from RRP

~234-

26

Process: RRP

Multiplicity: Quantity sufficient

Inputs: RMD, HXLR
Outputs: RET, HXLD, HXLS
State: (RMD, HXLR)

Function:

[RMD = T : URRPC (RRPC (URRPE (XARMD(T))))),

URRPA (RRPA (RMD, HXLR))]

Auxiliary Functions:

URRPA : (RMD,HXLR,RET) -~ (RMD, HXLR)
P2 ((RMD, HXLR) , XAODD (RET))

URRPB : (RMD,HXLD) + (RMD,HXLR)
(RMD,XCHXLR(XAHXLD(RRPB(RMD))))

URRPC : (RMD,HXLR,HXLS) -+ (RMD,HXLR)

Pi((RMD,HXLR),[HXLS # T : XARQD (HXLS) ,])

Interactions:

XARMD : BOOLEAN - RMD

XAO0DD : RET -» BOOLEAN

XAHXLD : HXLD -» BOOLEAN

XCHXLR : BOOLEAN - HXLR

XARQD : HXLS - BOOLEAN

-235~

Comments: Radar Returns Processing
RRP processes contend for RMD from RSR. The winning
process will generate the appropriate return. RRP
will assess noise content and detection quality.
Detections outside of beam will be eliminated.

RMD contains unprocessed detections.

Function: RRPA : (RMD,HXLR) - (RMD,HXLR,RET)
(Primitive)
Comments: Radar Return Processing A
Analyze detection for quality and then form range,

angle, and range uncertainty.

Function: RRPB : RMD - (RMD,HXLD)
(Primitive)
Comments: Radar Return Processing B
RRPB simply extracts the associated radar order
identification from return measurement data (RMD)
and forms a request (HXLD) for relevant information

(HXLR) from radar order generation.

-236-

27

28

Function:

Comments:
RRPC
HXLS
a)
b)
c)

d)

RRPC : (RMD,HXLR) - (RMD(HXLR,HXLS)
(Primitive)
Radar Return Processing C
will leave RMD, HXLR invariant and will generate
for RQD with
order execution
RMD wvalidity
RMD noise

RMD quality of radar performance.

If search return and no detections, terminate.

Suppress redundant detections.

-237-

29

Process: RSR

Multiplicity: Unique

Inputs: SRS, RCL
Outputs: RMD
State: Null

Function:
Pi(,URSR(RSRA(XCRCL(T)))

Auxiliary Functions:

URSR : RCL -+ BOOLEAN

XSRMD ((RSRB (RCL,XCSRS (T))))

Interactions:

XCRCL : BOOLEAN -+ RCL

XCSRS : BOOLEAN -+ SRS

XSRMD : RMD -+ BOOLEAN

Comments: Radar Signal Reception
RSR, under control (RCL), will transform signal response

(SRS) to return measurement data (RMD). The radar receiver

is specified in [2,3].

-238~-

30

Function: RSRA : RCL = RCL
(Primitive)
Comments: Radar Signal Reception A
RSRA will accept receiver control information for SRS
reception. This will be specified and simulated by

existing CS~1 radar SETS [2,3].

Function: RSRB : (RCL,SRS) - RMD
(Primitive)
Comments: Radar Signal Reception B
RSRB will transform signal return specifications into
digital return measurements (RMD). This will be
specified and simulated by existing CS-1 radar SETS

[2,3].

-239-

31

Process: RSSE

Multiplicity: Quantity sufficient

Inputs: RETAD
Outputs: TADS
State: Null

Function:
XATADS (RSSEA (XSRETAD (T)))

Auxiliary Functions:

None

Interactions:

XSRETAD : BOOLEAN -» RETAD

XATADS : TADS - BOOLEAN

Comments: Return Smoothing And State Estimation
The return and TAD sequence for a threatening object

will be analyzed to produce a smoothed state estimate.

Function: RSSEA : RETAD - TADS
(Primitive)
Comments: Return Smoothing And State Estimation A
RSSE transforms measurement data from bulk filter sequences
to coordinates and variances. These are then smoothed
using polynomial equations, From the smoothed data,

initial state and uncertainty estimate are derived.

-240-

32

Process: RST

Multiplicity: Unique

Inputs: RCX
Outputs: RTP
State: Null

Function:
P (, XCRTP (RSTA (XCRCX (T))))

Auxiliary Function:

None

Interactions:

XCRCX : BOOLEAN -+ RCX

XCRTP : RTP » BOOLEAN

Comment: Radar Signal Transmission
RST simulates a radar transmitter and generates an RTP
subject to the controls contained in RCX. The radar

transmitter is specified in [2,3].

Function: RSTA : RCX -+ RTP
(Primitive)

Comment: Radar Signal Transmission A

RSTA generates a radar pulse (RTP) as specified by

transmitter control (RCX) information. This will be

specified and simulated by the existing CS-1 radar SETS

[z,31.

-241-

Process: SRP

Multiplicity: Quantity sufficient

Inputs: RET
Outputs: HXLS
State: Null

Egnction:
USRP (SRPA (XSODD(T')))

Auxiliary Functions:

USRP : HXLS - Null

Pi(,[HXLS # T : XARQD (HXLS) ,])

Interactions:

XSODD : BOOLEAN - RET

]

XARQD : HXLS - BOOLEAN

Comments: Search Return Processing

SRP processes will contend for RET from RRP.
process will reassess the gquality of the detection,
detections will be ignored, however pulse parameter

modifications for the next scan may be requested.

33

The winning

Invalid

Valid

detections will cause the generation of a radar command

for the first designation pulse,

~242—-

34

Function: SRPA : RET - (RET,HXLS)
(Primitive)
Comments: Search Return Processing A
a) for degraded returns, determine pulse modifications
and notify RQD wvia HXLS
b) for nominal returns insure that range, angle, and
range uncertainty estimates for the detection are
valid
c) for nominal returns specify the first designation

pulse and corresponding range gates in HXLS

-243-

Process: TAD

Multiplicity: Unique

Inputs: TADD

Outputs: TADR

35

State: TADV 'TAD History'

Function:

UTAD (TADA (TADV ,XCTADD(T)))

Auxiliary Functions:

UTAD : (TADV,TADR) - TADV

p2 (TADV, [TADR # T : XCTADR (TADR) , 1)

Interactions:

XCTADD : BOOLEAN - TADD

XCTADR : TADR - BOOLEAN

Comments: Time Associated Detections

TADV is a set of detection sequences that potentially

describe an object.

TAD is a data base process that will

supply detection history information to the requesting

designation return process,

—244-

36

Function: TADA : (TADV,TADD) - (TADV, TADR)
(Primitive)
Comments: Time Associated Data A
The current file of active time associated detection data
(to be used by DRP) is maintained by processing a request
(TADD) against the current file (TADV) and producing an

updated file and a response (TADR).

-245-

37

Process: TS

Multiplicity: Unique

Inputs: RTP
Outputs: SRS

State: (TSS,RTPA) 'Threat Status, Generated Pulse Queue'

Function:

(TSA(TSS), UTSB (TSB (XSRTP (T) ,RTPQ,TSS)))

Auxiliary Functions:

UTSB : (RTPQ,SRS) - RTPQ

Pi (RTPQ, XSSRS (SRS))

Interactions:
XSSRS : SRS - BOOLEAN
XSRTP : BOOLEAN -» RTP

Comments: Threat Simulator.
TS simulates the threat (as defined in RCD[17])and processes
radar pulses to form signal returns. TSS defines the
current threat status., RTPQ is the queue of the radar
pulses for which returns are still pending. The step time
of TS will be a "constant" that definés a unit of real time.

TS is thus a clocking process and does not wait to interact,

-246-

38

Function: TSA : TSS - TSS
(Primitive)
Comments: Threat Simulation A
78S defines threat status change for one time unit. The
threat is described in RCD [1]. This will be specified

and simulated by the existing CS-1 radar SETS [2,3]1.

Function: TSB : (RTP,RTPQ,TSS) - (RTPQ,SRS)

(Primitive)

Comments: Threat Simulation B
Given the current threat status (TSS), the pending radar
pulse specifications (RTPQ), and a new radar pulse (if
any), TSB will update RTPQ and generate the appropriate
signal return specifications (SRS) for transmission to
radar receiver (RSR). This will be specified and

simulated by the existing CS-1 radar SETS [2,3].

~247-

39

4, MESSAGES

The general format for a message specification in this

report is as follows:

MSG: Name of message type

[EORRE

ATTRIBUTES: (ATTR.1,...,ATTR.n) where each attribute is a

message type or a value name.

VALUES: A list of value names (local to this message typel

and their description.

COMMENTS: English text description of message type.

—248—-

40

MSG: DPS

ATTRIBUTES: (Primitive)

COMMENTS: Designation pulse specification
DPS will contain all information required for DRU to

determine appropriate HXLS.

MSG: HOM

ATTRIBUTES: (Primitive)

COMMENTS: Hand over messade
HOM will contain an estimated target state and uncertainty.
HOM will also contain beam position, transmit pulse length,
and allowable transmission windows for the initial track

pulse.

MSG: HXL

ATTRIBUTES: (Primitive)

COMMENTS: History of transmit/listen
HXL will contain the information required by the radar

pulse scheduler for a transmit/listen command .

MSG: HXLD

ATTRIBUTES: (Primitive)

COMMENTS: History data demand

HXLD requests radar orders from ROG for associating with

returns by RRP.

-249-

MSG: HXLR

ATTRIBUTES: (Primitive)

COMMENTS: History data response

HXLR contains radar order information requested by a

preceding HXLD.

MSG: HXLS

ATTRIBUTES:: (RRP,HXLR,RCONF,VALIDITY,NOISE,QUALITY)

(SRP, SPM)

(XL,BIC,TYPE,ET,TPD,RGD,RCP, RMGCP)

VALUES:
RRP,SRP,XL = MESSAGE SUB-TYPES
BIC = BEAM IDENTIFICATION CODE
TYPE = OF RADAR REQUEST
ET = DESIRED PULSE TIME
TPD = TRANSMIT PULSE DURATION
RGD = RANGE GATE DURATION
RCP = RADAR CONTROL PARAMETERS
RMGCP = RMG CONTROL PARAMETERS
SPM = SEARCH PULSE MODIFICATIONS
MSG: SRS

ATTRIBUTES: (Primitive)

COMMENTS: Signal return specification
SRS is a specification of a radar signal return, that

will be interpreted by the radar receiver RSR.

-250-

42

MSG: RET

ATTRIBUTES: (HXLS,AVENOS,QUAL,AMPL,RMRNG,ACOOR,ERRS)

VALUES:
HXLS = ORIGINATING RADAR ORDER
AVENOS = AVERAGE VALUE OF VIDEO NOISE
QUAL = NULL, DEGRADED, GOOD
AMPL, ACOOR = SEE RMD
RMRNG = RANGE MARK RANGE
ERRS = ERROR ESTIMATES FOR RMRNG, ACOOR.
COMMENTS :
Return defines a radar order and a subsequent detection

for further processing.

MSG: RETAD

ATTRIBUTES: (RET,TADR)

COMMENTS: Return and Time associated data
RETAD summarizes data from bulk filter on a threatening

object.

-251-

43

MSG: RMD

ATTRIBUTES: (LNAME, RRCONF, RRBOF, AVENOS, NRMS, DET, ..,DET)

VALUES :

LNAME = NAME OF ORIGINATING LISTEN ORDER

RRCONF = TRUE IF ORDER WAS EXECUTED
RRBOF = TRUE IF MORE THAN MAXIMUM DETECTIONS
AVENOS = AVERAGE VALUE OF VIDEQ NOISE
NRMS = NUMBER OF RANGE MARKS
DET = (AMPL, RMT, ACOOR)
AMPL = AMPLITUDE OF RANGE MARK VIDEO
RMT = RANGE MARK TIME
ACOOR = ANGULAR COORDINATES RELATIVE TO
BEAM CENTER

COMMENTS: Return measurement data
A radar order (LNAME) has produced a set of detections

whose digital characterization is defined by RMD.

MSG: RTP

ATTRIBUTES: (Primitive)

COMMENTS: Radar transmitted pulse
RTP specifies a radar pulse that will be interpreted by
the threat simulator (TS) to produce appropriate signal

returns (SRS).

~-252—

44

MSG: TADD

ATTRIBUTES: (Primitive)

COMMENTS: Time associated data demand
TADD will be interpreted by TAD to request or store TADV

state data.

MSG: TADR

ATTRIBUTES: (Primitive)

COMMENTS: Time associated data response
If a previous TADD requires a response, TADR will contain

the requested TADV data.

MSG: TADS

ATTRIBUTES: (Primitive)

COMMENTS: Time associated detection sequence
TADS will contain the smoothed state estimation of a

discriminated threatening object.

-253~

[TBS]

NOTE:

45

5. PERFORMANCES

The performance requirements in the TRW DPR could be

considered part of this specification. We have not

had time to do a performance analysis of this CS-1

DPR.

-254~-

46

[1]

[2]

[3]

[4]

[5]

[6]

[71

REFERENCES

DDP Integrated Experiment Definition, Case Study 1,
Required Capability Description (RCD) TRW Report
No. 32304-6921~003, 21 March 1978.

Baseline Radar Interface Performance Specification, Systems
Development Corporation, Doc. No. 22944-9765~-LE00-001,
8 January 1974.

Baseline SETS IRTSW Interface Reguirements Specification,
Systems Development Corporation, Report No. TM~-HU~-144/000/01,
11 November 1974.

DDP Integrated Experiment Definition, Case Study 1, Data
Processing Requirements (DPR), TRW Report No.32304-6921-004,
21 March 1978.

The Formal Design and Analysis of Distributed Data-Processing
Systems, Univ. of Wisconsin-Madison, CSTR 322, April 1978.

DDP Integrated Experiment Definition, Case Study 1,
Distributed Architecture Requirements (DAR), TRW Report
No. 32304-6921~005, 21 March 1978.

Distributed Processing Architecture Requirements for
Case Study 1, GRC Technical Report No. IM~2170 (Draft)
August 1978,

-255-

1. Hul

tel:

te3:;}

te7:

APPENDIX C: Eaqui-Phase Sinulation Fxamnle,

Ne can define a three orocess system that includes
a real time clrck, a user orncess, and an off-loaded,
shared transformation orocess as:
clk(n)=PI20 (n<CLKMALIN+1, 01, xiCKT(N))
a(n)=P12(n+1,xcGR(sum{xchD(II))
f(nl,n2)=(xcGR(erD((n1,erKT()))),

xCOR{xrGN{ (N2, xrNKT())I)),

This system consists of a "real time" clock clk, a computa-
tional orocess f, and an off-loaded function orocess g. The
3 orocess simoly accepts a two conponent messaae: adds the
conponents, and returns the result to the reauesting
orocesss while countino the numper of times it has been
invoked. The real time clock ticks to CLKMAX and recycles
to zerns, while providing a current time message to any
reouesting orocess., The f orocess simply carries two
indeosendent sums involving times of orocess steos,

This non=trivial, but small system was translated into
the multi=taskina code below, The simplicityv, previtys
and clarity of the AIP form is clearly demonstrated by
the eguivalent proaram below.

ti=Tasking Proaram.

oinit (3, " ((iNCIIi)I");
apto scheds?

tinit(P,6);
goto sched?
jf(dloar(1)1<CLKMAY) {rval (1)
++d[p[taskll:
aoto teg:
}
else{dloftask]l1=0;

te9:

te8:

teld:

teb:

teli:

t o rasklI=TN;

}

7 .

stuff(1); aoto teb;

H

rval (1);

dot (10);

val=¥l?: tmo=CKT; gote exchanae;

14
stuff(?):

;.
if(altask)) noto sched?
oldlc(renovelres(2)));
if(tloltasklli=nNL) fsupdt(1); qoto ted;}
stuff(1): aoto tec:

14
tinit(?,11); qoto scher;

r
rval (1Y
{+ﬂ[o[ta§k1]7
stuff(1): acto tell;

-

[4

-256-

dot (14)3

valz=XC: tmo=GD: aoto exchange;
tellls 7

dot (15);

J0to Sum;

tel5: ¢

dJot (16)3

val=XCi tmo=GR: ooto exchange;
telb: ¢ _ .

stuff(2): aoto tell;
telt: ¢

iflglftaskl) aoto sched;
oldlc(redovelres(2)));
if(t[o[task]1!=NL)(supdt(2); goto tel;}
stuff(?); aoto tel:

te5: 7

tinit(2,17); aoto sched;

tel®:

tinit(?,20); aoto sched;

tel2t: 7

rval (1);

stuff(1): aoto tel0;

te2?: i}

dot (23);

val=XR; twn=CKT; goto exchange?

te2d: ¢ _
stuff(2)s
teels: ¥

jf(altask)) aoto sched’

dot (24);

val=XR: tmo=GD; aoto exchange;
tel2l: 7

dot (?25);

valz=XC: tmo=HRR; aoto exchanae;
te25: 7

stuff(1); ooto tel?;
tel®: 7 ..

cherd;

w

; UIU{!'.\I

T

r
); aoto telb;
te2h: ¢

dot ()7

val=¥R: tao=C(KT; goto exchanaes
te29%: ¢ .

stuff(2):
tecbt i

if(alftask)) agoto sched?

dot (307

val=XR; tan=GD! ocoto exchange;
te30: 7

dot (31)7

v X e t =GR ooto exchanqge;

tedt: 7
stuff(?): noto tel?;

tel7: 7
it(alftask]l) aoto sched:
if(g[oftask]1!=Nl)(suodt(3)7 goto teSi}
stuff(3): aoto teld:

te2: ¢
iflaltask]) noto scheds

-257-

The orngram above was then combinerd with the
sinulator srogram and comoited into executable code.

2. Eaui-Phase Simulation Results,

The corpiled system specification was then executed
in the eaui=ohase simulator to oroduce several tyoes
of analysis data, as shown in the table below of edited
sinulator outout., The first colunn traces the process
state values in their comoletion seauence. The second
cotumn traces the task execution sequence, The third
column traces the exchanae function interactions in
their initiation sequences for each of the phase steos.
The columns are corrmlated by ohase steo numbers,
A ohase consists of the execution of all pending tasks
until no more can be done without interactions petween
the tasks (exchanae function comoletions), Then all
possible interactions are completed, and a new ohase
is initiated. Thus, the relative rates of execution
are controled hy the interaction freauencies of the
orocesses,
~ The initial nrocess state values were all set to zero
in this simulation run, Nf course, any other values
could have been used.

--‘.—-—-n--—--—----—---——-———-—---—-----———--qa-n----——----—---—--—-

Exchanae

Ppracess State Task o, Type Class Ret.
done steo 1) done step 1

1 G0 4y 2r 3, 10
done sten 7 3 1, 3, °9
1 2 19 i, 3, 23
done steo 3 18 3y 5¢ 14
1 (3) 13 done stepo 7

2 (1) 12 1, 3 23
4one steo # f 2r 3 10
i) 7 3, 5 14
4one stea S °8 1, S5 30
1 (3) 27 done sten 3%

3 (1,0) 22 2 3, 10
2 (2) 21 3, 4, 16
done steos b done steo 1 3, 4, 21
1 (6) 0 1, Se 24
done steo 7 0 done steo 4

1 (7) A 2e 3. 10
done sten R 7 1s Se °4
1 (8) done steo 2 3, 5 14
2 (3) 0 done steo S
done steo 9 n 2 3 10
i () 0 LY’ G, 25
4one sten 10] 3 bs 16
1 ()) done sten 6

3 (7,5) 7 2 3, 10
2 a) done sten 3 1, 3. °9
Jone sten 11 0 i, 3y 23
1 (o) 0 3 Se 14

-258-

done steo 12 0 done sten 7
i 1) ! 1s 3, °3
done sten 13 7 2 3, 10
1 (2) 13 3, Se 14
2 (5) 12 ir Se 30
4one steos 14 done steo U done sten A
{ (3} n 2 3, 10
done steo 15 0 3, 4, 16
1) 0 3, 4, 31
3 (7,15) R 1, 5 24
c (6) 7 done steo 9
done sten 16 done step S 2 3 10
i (5) 0 1, 5, 24
done sten 17 0 3, 5, 14
1 (6) n done sten 10
done sten 18 R 2r 3, 10
1 (7) 7 3, 4, 5
2 (7 19 3, U, 16
done steo 19 18 done sten 11
1 8) 13 2r 3, 10
done steo 20 12 1, 3, 29
1 (N ’8 1, 3, 23
3 (12,19) 27 3, 5 14
2 (8) 22 done step 12
4one sten 21 °1 1 3, 23
1 (im) done steo 6 2 3, 10
done steo 22 0 3 S 14
1 (0) 0 1, Sy %0
done steo 73 f done sten 13
1 (1) 7 2 3, 10
2 9 done steon 7 LY U, 16
done steos 24 0 3, U, 31
i (2) 0 i, Sy °uU
done steo 25 0 done steo 14
1 (3] 2 3, 10
3 (22,28) R 1, 5 24
2 (10) 7 3, Sy 14
done steo 26 done step R done s tep 15
i (4) 0 2 3, 10
done sten 27 0 3, 4, 25
1 (5) 0 3, 4, 16
d4one steo °8 R done steo 16
i (6) 7 2 3, 10
2 (11) 13 1, 3, 29
4done steo 29 12 1, 3 23
i (e done step © 3, Se 14
done steo 30 0 done s teo 17
1 (8) 0 1, 3 23
3 (25'31) 0 2" 3' 10
2 (1?) A 3 Se 14
done steo 3l 7 1. Se 20
1 (9) done steo 10 done s tep 18
done steo 32 0 2r 3, 10
{ -n) 0 3, 4, 16
done steo 33 0 3, 4, 31
1 0) R 1 S 24
2 (1%) 7 done s teo 19
done sten 34 19 Zr LY’ 10
1 1 18 i, 5, 24
4one steon 35 13 3, 5¢ 14
1 2) 12 done s teo 20

-259-

3

2
done
done

done

fone

done

done
done

done

done

done

done
done

done

done

done

done
done

done

done

done

done

(35,39
i)
sten 36

(3)
steo 37
(/)
sten 38
(s5)
(15)
sten 319
(6)
sten 40
(7
(398,41)
(16)
steo 41
(8)
sten 42
(9
sten U3
(10)
(17)
steo 14
0)
steo 85
1)
(45;48)
(18)
steo f6
(2)
sten 47
(3)
steo 48
4)
(19)
sten 49
5)
sten S0
(6)
(4R, U49)
(20}
steo 51
(7
steo 52
(8)
sten 53
()
(21)
sten 54
(1n)
steo 55
0)
(55,55)
(2?2)
steo 56

do

NP DODDOINDIODDO
(53

—
[AV RV

done

Q
(o]

NI ODODI NDDDD
o

done
0
n
A
7

done
1]

?D DD

step 11

sten t2

steo 13

sten 14

step 15

sten 16

steo 17

-260-

3.

Conclusions.,

The eqgui=-phase simulation of ATP specifications of
system requirements is fast and easily exploited to
conduct analvsis experiments on the behavior of the
specified system. This tyoe of desian feerdback is
sractical at any level of the develooment process.

Further, this is just one of several possible modes of

specification interpretation,

-261-

