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ABSTRACT

Consider solutions (H(x,g),G(x,e)) of the von Kirmin equations for the
swirling flow between two rotating coaxial digks

iv

1.1) t€H + HH"™ + GG' = 0 ,
and
1.2) eG" + HG' - H'G =0 .

We assume that IH(x,e)! + IH'(x,e)l + lG(x,E)l < B. This work considers shapes
and asymptotic behavior as € - O+, We consider the type of limit functiogs

(H(x) ,G(x)) that are permissible. In particular, if (H(x,€),G(x,€)) also satisfy
the boundary conditions H(0,e) = H(l,e) = 0, H'(0,e) = H'(1l,e) = O then H(x)
has no simple zeros. That is, there does not exist a point z ¢ [0,11 such that
Ekz) = 0, H'(2) # 0. Moreover, the case of "cells" which oscillate is studied in

detail.
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SIGNIFICANCE AND EXFLANATION

Under appropriate conditions the steady-state flow of fluid between two
planes rotating about a common axis perpendicular to them may be described by
two functions H(x,e), G(x,g) which satisfy the coupled system of oxdinary
differential equations

en™’ + HH™ + GG'

i
o

eG" + HG' ~ H'G

!
o
.

The quantity € > 0 is related to the kinematic viscosity and % = R 1is usually
called the Reynolds number.

These equations have received quite a bit of attention. First of all, people
who are truly interested in the phenomena modeled by these equations, e.g. fluid
dynamicists, are interested in this problem. However, as these equations have
been studied by a variety of mathematical methods, they have taken on an indepen-
dent interest. The major methods employed have been (i) Matched Asymptotic Expan-
sions and (ii) Numerical Computations. In both approaches technical problems have
appeared. There may be "turning peints," i.e. points at which H(x,e) = 0. Such
points require special and delicate analeis within the theory of (i). As numeri-
¢al problems, these equations are "stiff" - precisely because € is small. The
occurrence of "turning points" only makes computation more difficult.

For these reasons, these equations have become “"test" problems for methods
of "matching in the presence of turning points" and "stiff O.D.E. solvers." How-~
ever, when one has "test problems," one needs to know the answers. Unfortunately
here the answers are largely unknown.

In this report we study the asymptotic behavior as € becomes emall. We
concentrate on two main cases. First, the case where lH(x,s)’ + |H'(x,e)| +
IG(x,s)l < B. These bounds are reasonable because of the physical interpretation
of these values as velocities. Finally we consider the case when the limit func-
tion H(x) oscillates about zero. Such "cell" structure is both interesting and

important.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the authors of this report.
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Heinz Otto Kreiss and Seymour V. Parter

1. Introduction

Consider the von Karman similarity equations for incompressible axi-symmetric fluid flow

-between two rotating planes

1.1) en’’ + HH™ + GG' = 0, 0<x=<1

r
1.2) €G" + HG' ~ H'G = 0, 0<x=<1l .
(A thorough discussion of the derivation of these equations is found in (2}, 11.

in [ 41 we considered the asymptotic behavior (as € -+ 0+4) of solutions

((x,€e), G(x,e)) under the basic hypothesis:

H.1l) lH(x,e)l f'B/E: IG(X,E)‘ <B .

In this paper we consider the asymptotic behavior under the assumption that
H.2) lEx,e)| + |8 (x,0)] + [G(x,e) ] ¢y -

We recall that if q,r dgr qQ, are the components of velocity in cylindrical coordinates

(r,6,x) then

q = SH'(), g =5 G, g = -HEx .

Thus, assumption H.2 merely asserts that the velocities are bounded in bounded regions, i.e.

r < R.

From the results of [ 4] we see that those solutions (H(x,g), G(x.e)) ‘which satisfy H.1

also satisfy H.2. However, in this paper we are concerned specifically with the case where
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H{x,e) #0, 0<x <1 .

Thus we will consider sequences of solutions (HOx,en), G(x,en)) which satisfy

«

H.3) There is a point x_. € (0,1) and a value § > 0 such that

0

0<8< lH(xo,en)l <¢y -

When studying a singular perturbation problem such as (1.1), (1.2),it is natural to con-
sider the reduced equations
1.3) HH™ + GG' =0 ,
1.4) HG' - H'G=0 ,
and the relationship of (H(X,Eﬁ), G(x,en)) to (an appropriately chosen) pair (ﬁ(x),a(x)).
The solutions of (1.3), (1.4) are given by

1.5a) , Glx) = THx)

and, if Ty # 0 then,

H

. 2 -
+ (Hl/ro) sin TO(X xo) + Tz {1 cos TO(X xo)) .
0

1.5b) Hix) = H,

on the other hand, if TO = 0 then

- 1 2
1.5¢) H(x) = HO + Hl(x—xo) + > Hz(x-xo) .

In fact, H.2 implies that there are sequences g = O+ and a continuous function h(x)

such that
max{lH(x,eh) -h(x)]; 0<x<1} >0 as €, T O+ -

In section 2 we discuss the convergence of (H(x,en), G(x,en)) to a solution (ﬁ(x),a(x))

on those intervals on which ﬁ(x) does not vanish.

In section 3 we consider the local behavior of (H(x,en), G(x,en)) near a point g at

which H(R = 0 but H'(B) # 0.



In section 4 we show that if (H(x,en), G(x,en)) satisfy the boundary conditions

1.6a) H(O,En) = H(l,en) = 0, (no penetration) .
1.6b) H'(0,e ) = H'(L,e ) = 0, (no slip) ,
then H(x) cannot have a simple zero, 8.

The results of section 4 assert that if we insist on the boundary conditions (1.6a), {(1.6b)
and the bounds H.2, we cannot expect the limit function H(x) to have nodal zeros. In the case

where one assumes H.l the results of [ 4] show that (after selecting a subsequence €

)

nl

G(x,an) > G, a constant, O < &§' < x < 1-§8'. Furthermore, if G, # 0 one can show that
Hi(x,c )/Ve:n -+ constant, O < §' < x < 1-8' .

On the other hand, the computation of Mellor, Chapple and Stokes [9] and the computaticn of

Roberts and Shipman [10] produced solutions in which H(x,sn)//E; oscillates about zero.
For these reasons the discussion in section 5 is concerned with the following general

sitgatién. Let (H(x,en), G{x,e)) be solutions of (1.1) and (1.2) which satisfy

-p
a
1.7a) | e | e ¥, v=0.1,2,3,45 .

-
1.7b) l(%)vG(x,e)l <Be ¥, v=0,1,2,3,4 ,

for certain fixed constants B, pv, ov with

1.7¢) > -1 .

Po
let O < ¢ < 1/2. Suppose there are two intervals [aO,BO], [al,Bl] with
1.8) 0<aO<BO<a1<Bl<1

and a constant R > 0 such that

o
1.9a) H(x,ele " >R,

IA
®
|A
w

0

p

1.9b) H(x,e)e ° < -R, % x =2 Bl ’



We then discuss the possible limit behavior of (H{x,e), G(x,e)) as € =+ 0+. 1In particular,
with an appropriate definition of "limit cell"”, we are able to show that there are at most four

cells in the case where the limit function oscillates about zero.




2. Convergence of (H(x,e ) ,G(x.en)) .

Let (H(x,sn),G(x,en)) be solutions of (1.1), (1.2) which also satisfy H.2. Let

Xq € (0,1) be a point at which

0< 68 < IH(xo,en)‘ ¢

for 2al1l ¢ = €y The major result of this section is the following:

Thesrem 2.1: Let n be a constant with 0 < n < §/2. Let [a,b] © [0,1]1 be the largest inter-
val containing e on which

2.1) lH(x,sn)‘ >n .

Thea there are constants Kv, K\', depending only on Vv, n and CO such that,

2.2) ](de—)"c;(x,en)l + |(§x—)VH(x,sn)| <K, a+ K} elen e < x <b -k elen €| .

Once these estimates have been proven, it is an easy matter to establish

k] - L o
Corollary: Let G(xo,en) -+ GO' H(xo,sn) +H., H (xo,en) - Hl, H (xo,sn)+H2. Let

o]
Ty = GO/H0 .
Let (H(x),G(x)}) be the solution of the reduced equation given by (1.5a), (1.5b), (1.5¢c). Then

2.3) Max{ | (ai‘i;)"[c;(x,en) - G|+ ](%)V[H(x.sn) - Hx)1|, a<x<bl>0 .

We require the following basic lemma which was proven in [3].
Lerc2 2.1: Consider the differential equation
2.4) € dy/dx + a{x)y = F({x), a <x<8

where a, F are continuous functions with Real a > 0 and ¢ > 0 is a (small) positive con-

stazt. The solutions of (2.4) satisfy the estimates

2.5) lyea| < e Y x| Max |Fm)] + sG]y, x > a
a<n<x

w5



2.6) ]y(x)l < max !F(n)/Re a(n)l + s(x—u)‘y(u)l, x>a
a<n<x

where

1 X
s(x-a) = exp{- -e—f Re a(£)dE} .
a

If Real a < 0 the corresponding estimates hold. We have to replace s(x—u)ly(a)‘ by
s(B-x) |y(B)] and o« <n<x by x<n<B8.
Proof: See lemma 2.1 of [ 3].

If H(xo,sn) < 0 we consider the functions
2.7) Alxee ) = -H(l-x,e), Glee) = Gl-x,e) .

These Functions satisfy (1.1), (1.2) and H.2. Moreover
ﬁ(l—xo,en) = -H{xg,e ) > 6§ >0 .
Since estimates on ﬁ(x,en), é(x,en) are easily translated into estimates on H(x,en), G(x,en)
we may assume
2.8) lﬂxyeg >8>0 .

Lemma 2.2: Let 0 < ¢ < 1. Let (H(x,e),G(x,e)}) be a solution of (1.1), (1.2) which satisfies
H.2. Then, for every positive integer p there is a constant Cp which depends only on p

and CO such that

a P
2.9a) [ e <

A
(9]
m

o]

[

112"’"

a p
2.9b) [ v | <

A
0

p = 112"“ .

Proof: Let

Then equations (1.1), (1.2) become



2

4 4 dad _ ~
(di)G-PHdiG—(di)G—0,0f_xf_l/e.
4 3
d 4d 2. 4G ~
(di) H + H(di) H+eG g 0 , 0 c<x <l/e .

Thus, the estimates (2.9a), (2.9b) follow as in lemma 2.2 of [41.

Let [a,b] be the largest interval containing %, on which

H(x,en) >n>0 .

o = max[a - n/(2¢,) , EL&%—Ei]
a*=a + 2 E.L’Q%_-E—-L

14

-

Then (see lemma A.l of [4])

2.10) H(x,en) > n/2, a<x<b .

For any function £ ¢ Cla,b] and any B, x with o < B <x <b let

Nelg o = max{|£(t)|; B <t <x} .

Lemma 2.3: Suppose (H(x,€), G(x,e)) 1is a solution of (1.1). (1.2) which satisfies H.2.

Suppose (2.8) and (2.10) hold. Then for every B8, ', x with o < B < B’ < x < b we have

2.11a) le* (x,e) | < Nezully  lw ly o+ S8 le'(8.e)]|
2.11b) la x,e) | < Ne/mllg, MGt llg,  + s(x=B") [am 0|
2.11c) le"txee)| < lasmlly, Mu"llg,  + s(x-8") luvcs'.e)|

Proof: We obtain (2.1la) from equation (1.2) and lemma 2.l. We obtain (2.11b) from equation

{1.1) and lemma 2.1. Differentiating equation (1.2) we have

€G™ + HG" = H"G .

Thus, (2.1lc) follows from lemma 2.1.

Proof of theorem 2.1: Differentiation of (1.1), (1.2) gives equations of the form




EH(3+k+1) + HH(3+k) (3+k°1)' (k+1)

2.12a) = Hk(H,H',"'H GUG""'G )

(x)

eg(2HEFL) | g (24K) G,G',v+-G" )

(2+k)

2.12b) = Gk(H,H',“'H

where Hk, Gk are quadratic functions of their arguments.
Let
£E=2c¢|tn el/n .

1 .
et B=a, and B' = 5((1+a‘+4£) . Applying (2.1la) of lemma 2.3 and lemma 2.2 we see

that

”G'|l3.’b f_zcz/ﬂ + Cle'l exp{—lzn gl} = ZCg/ﬂ +c, -

Thus, G' is bounded on the interval [B',bl. Let B" = %(B'+a'+65) . Then (2.11b) of lemma

2.3 and lemma 2.2 imply that

. -3
NEl g, < (26/MIGH g, o Cye exp{- 3[n €|} .

Thus la™Il 8", b is bounded. Since 0 < n < §/2 we have
r

b-8">b-x lmin(l-xo,x +n/2C0)‘=L .

(o} 0

Applying Landau's Theorem {5] (lemma 2.1 of [4]) we have

L
" < =
[B: 4l <3C

é "we
8", b + T gl

o] g",b °

Thus, Ha"l B b is bounded. The complete Theorem now follows from a straight forward induction
, :
based on lemma 2.1 and (2.12a), (2.12b).

Proof of the corollary: ILet ﬁ(x,sn) ‘ a(x,en) be the solution of the reduced equations (1.3),

(1.4) determined by H(xo,en), H'(xo,en), H"(xo,En), G(xo,en). Then, from (1.2) we have

G(x.sn) _ Glx,,€ ) . J‘,x G"(t,e) at
a .
H(x,En) H(xorﬁn) xO Hz(t,En)



T = G(xo,en)/H(xo.En) ’

then
®n
2.13a) IG(x,sn) - T H(x,en)| 5'*5-K2C0 ’
n
and
2.13b) G(xo,en) = G(xo,en) .
Moreover
G(x,en) G“(x,en)
] - ' L S e e
G (x,en) H (x,en) H(x,c ) EnlH(x, e '
n n
Thus
2.130) [G'(x e) -t H'(x,e )| < e KC L. Lt
) “n “n’t — 120 n2 n3

Substitution into (1.1) gives

lH"' + TZH'I < 1e M
- n

where M is a constant depending only on K4, KZ' T, CO and n. Hence, in view of the initial

conditions we have

2.14a) B'(x,e ) = B (x,e) + ofte ) » as<x<hb
2.14b) H(x,e ) = Hix,e)) + O(te) » asx<hb
2.14¢) Glx,e) = G(x,g)) + Olte, +e) , a<x<b .

Finally, the conclusion of the corollary follows from the continuous dependence of ﬁ(x,sn),
E(x,sn) on the initial conditions. That is

ﬁ(x,en)'+ H(x) as enﬂ+ o+

Glx,e.) > G(x)_as_e_~> 0+ .
f n




3. Behavior at a point B8 with H(B) = 0O, H'(B) # O.

The purpose of this section is to prove the following fact: Either $§ =1 and H(x,en);
H'(x,cn), H“(x,en), G'(x,en) are bounded for Xy <% <1, or B <1. If B <1 the
H(x,sn) has a "nodal" zero near x = B, i.e. H(x,en) really changes sign about x = B (€)
and H'(é(sn),en) < %—ﬁ'(B). Moreover, H(x,en), H'(x,en), H"(x,en), G'(x,sn) are uniformly
bounded in a fixed neighborhood of x = 8.

The argument is carried out in three steps.

Step 1l: There is a point X, = xz(an) and a K, depending only on the Kv of Theorem 2.1,

such that

3.0 . Xy < x, (e )

3.2) H(x, (e )se)) = ®e

3.3) H(x,en) 3_K/E;, %y L X <%y

and H(x,en), H'(x,sn), H"(x,sn), H"'(x,en), G(x,en), G'(x,en), G"(x,sn) are uniformly bounded

en the interval [XO’XZ]'

Figure 1

-10-



Step 2: We "shoot" through the zero of H(x,en) or we shoot until x = 1. To accomplish this

wve make the change of variables

3.4) ‘ £ = (x-x,)//e n(E) = Hlx,e /e s glE) = Glxsey) .

The solution (h(£), g(£)) is now continued to the right until either x =1 or £ = a where
@ is any fixed constant. The corresponding functions (H(x,sn),G(x,an)) are smooth for

X ix_<_x

5 + a/E;. Tndeed we may take o logrithmically large and still show that H'(x,cn)

2

and H"(x,en) are bounded.
Step 3: If B # 1 one can actually shoot through until reaching a value X, > X, at which

H{x e ) < =83 <0

where 63 is a constant independent of En'

The complete smoothness now follows from “"patching" the results for H(x,sn) < —K/E; with
the results already obtained in steps 1 and 2.
Before beginning this program we observe that - as long as H(x,eg) # 0 - (1.2) can be

rewritten as

3.5) —_—() = - = .

Lemma 3.1: Let n = §/2 and let Kv be the constants Kv(n) of Theorem 1.2. Let

3.6a) T= G(xo,en)/H(xo,en)
and
3.6b) My = Cy/8 > <] .

Assume that
2
MOG

<_._..._.—
n - 2K2

3.7) €

Let [xo,xl] < [xo,ll be the largest interval on which

3.8) letx,e ) Mlxie ) - tf < amy .

-1l



Then

3.9) xl-x0 z_min(é/zco, l—xo) =L .,
3.10a) |e (x,en)l < (2mg + lt])co + lG'(xO,en)‘, Xg X S X

2
3.10b) [ (e ) | < (Mg + lthcy + [ne (xo,en)l, Xg £X <% -
Moreover, there is a constant Ml such that
3.11a) HG'“X el <M

0'"1 0’1
" _E. é, —
3.11b) et x 23%*TH M,
071
3.11lc) |G"(x,sn)| _<__(2MO + }TI)M2 + ]G"(xo,en)[, Xg $x <%
" 3 =
3.114) el < (2My + l<hm, +x, =m, .
01
Proof: Let [a,b]l be the interval on which
H(x,an) >8/2=mn .
Then (3.5) implies that, if x € [xo,b] we have
x Je"(t,e)] 4
‘G(x,sn)/ﬂ(x,en) - Tl e, ~—5~—u~———-dt <z ek -
X H (t,sn) §

Since (3.7) holds, we see that b Ehxl. Thus (3.9) holds. The estimates (3.10a), (3.10b}
follow at once from lemma 2.3. The estimate (3.1la) follow from Theorem 2.l. The estimate
(3.11b) is Landau's Theorem. The estimates (3.1lc), (3.11d) follow from lemma 2.3 and Theorem
2.1.

We now complete Step 1.

Lemma 3.2: TLet

3.12) K = (M3/2M0)1/2 + 1 .

-]2~



Then either x. = 1 or there is a point x

x., < X
1 —_

2t %o < x such that (3.2) and (3.3) hold.

2 1

Moreover,

3.13) letey e | < (] + 2mpx/e .

Proof: Integration of (3.5) yields

x |e"(t,e ) |at
lotx,e ymixie) =<l ce [ —5—Fr

2
XO H (tren)

Suppose that at all points x € [xo,xl] we have

H(x,e_) > K¥e .
n’ - n

Then
en x1
- < .
[ mgae < am

K en x0

letey e ) /e v ) - 7| <

But, because of the strict inequality, either X, = 1 or [xo,xl] cdan.be enlarged to the right
without violating (3.8). However [xo,xl] was chosen as large as possible. Hence if

X # 1, there are points X, € [xo,xll which satisfy (3.2). We choose x, as the first such
point. Then (3.3) holds and (3.13) follows from the triangle inequality.

Having found x, = xz(en) we now wish to "shoot" the right. 1In order to do this we must

2
establish the following facts:

3.14a) xz(en) +~ B
and, for € small enough

H'(B) = -4 .

N

3.14b) H'(xz(sn),en) <=

To do this we use a slight variant of the Ascoli-Anzela lemma. Let

"
H (x,en) ’ xo < x ﬁ_xl(en)

3.15a) Q(x.en) =

fA

H" (xl'sn) v xl(sn) X _<__ 1 .

-13~



Let

1, 2
q(x.en) = H(xo,cn) + H'(xo,en)(x—xo) + 5 H (xo,en)(x—xo) +
3.15b)

x t s
[ ] ] o0uearasac .
X0 %o *o

The functions q(x,e ) € C3[x0,1] and q"'(x,en) are uniformly bounded. Thus, a subsequence
n

converges on [xo,ll in the Cz[xO,l] topology. Moreover, on any interval [xo,b] on which

the limit function is strictly positive, that limit function is H(x). Thus, since we may

assume that

and H(xz(an),sn)'+ 0+ we see that

3.16) X, =8 .

Moreover,

1

[o Geyre) = B ) | = |qtCeype ) - Bx) | +0

Thus we obtain (3.14b).
Let us summarize our results at this point.

Theorem 3.1: Let (H(x,sn), G(x,en)) be a sequence of solutions of (1.1}, (1.2) which satisfy

H.2 and (2.8). Suppose

HGxe) » Hix), Glxse ) + Gx)

as in the corollary to Theorem 2.1. Suppose that there is a point B > Xy such that

3.17a) ﬁ&)>0, inx<g

3.17b) H(B) =0, H'(R) =-24<0 .

Then7~f0r—‘s;“‘sufficient1y small there is a point X, = xz(en) > x such that (3.2), (3.3),

hold. Moreover, there are constants Ml, M2, M3 such that

0

-14-



3.18a) IIG’IIx % + llH"'llx <M

0'*2 0¥2 T 1
3.18b) "l <M
xo,x2 2

G" <M N
3.18¢) I "xo'xz My
Finally
3.19a) x2(€n) + B
3.19b) H' (x,,6) < -8 -

We are now ready to shoot to the right. We make the change of variables (3.4) and note

that we have the differential equation

3.20a) 9 +hg-gh=0 O0<EZ<E

[}

(1-x) /e o

ease ceon ° -

3.20b) h°  +hh +gg=0, O

|A
™

{A
oy
-

together with the initial conditions

3.21a) h(0) =K, h(0) < -A, h(0) = ot/e), "h{0) = Oe)
3.21b) g(o) = o/e ). g(o) = o(/e) G (0 =ole) -
Furthermore

3.21c) lhee ] + lgd| <cy -

We require two basic lemmas.

Lemma 3.3: Consider a function r(E) which satisfies

3.22) Y +hn=£ 0<E .
Let
3.23) A(E) = exp{(K + CBIE} .
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Then
3.24) 2| < ls@|aE +ea@ndly o -
proof: Observe that
Ine) ] <x + cE
and solve (3.22).

lLemma 3.4: Consider a function r (£) vwhich satisfies

3.25a) ' r+hr+Ur=£ , 0<E

where

3.25b) ey < vy -

Iet

3.26) B(E) = exp{[1l + Uy +k + CEIE} .

Then

3.27) k@] + |x@] < deo] + [zo ] + gllgll, gBe) .

Proof: We write (3.25a) as the first order system

4] -1

vhere
- [o 1]
-2
Thus
llAIl2§UD+1+K+COE

and (3.26) follows from well known estimates.

Theorem_3.2: For every N > 0 such that xz(e ) + NVe ' < 1 there is a constant B, = Bl(N)
IY Pty

such that

3.28) lH"(x,en)l + lH"'(x,en)l + 'G'(x,en)[ + [G"(x,en)l S By x, X% <x, N/E; .
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For every D > 0 such that

1+D+K
3.29) Xy (e ) + .S____A..._.?. e <1

there is an € = EXD) and an x3(en) such that

3.30a) xy(e ) < k() € xy(e) + L) /e
and for O < En E_E we have

3.30b) Hixye ) = —D/E; .
Mareover,

3.30c) H'(xg,e ) < -8+ BV - N/ .

Proof: Consider the functions g(&), h(E) given by (3.4). Let U(E) = R(E)- Let r(g) = g(E).

Rpplying lemma 3.4 obtain

3.31) lg@ ] + la@| = omm/e) .

Iet (&) = };(E). Consider the equation (3.20b) together with the initial conditions (3.21a).

2oplying lemma 3.3 and the estimate (3.31) we have
3.32) 'R ®] <o’mame) .

21 integration, together with the initial conditions (3.2la) gives
3.33) I 5] _<_0(B2(N)A(N)N/€~r:) .
Differentiation of (3.20a) gives

‘g +hyg = hg .

Let T(&) = é(&). Lemma 3.3, together with (3.21la), gives

3.34) |5 @] = os®mamine) .
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Returning to the variables H(x,en), G(x,en) we obtain (3.28).

Suppose (3.29a) holds. Let

- 14+D4K S
x—-xz(en) + ( A ) €y

Then

- - -2
B(X,e) < K/E, - Bli-x)) + g, Gexy) o

That is

H(X,e ) < -(14D)Ve +O(e)) -

Thus, for € small enough, H(;,E ) < -p¥e_. Since H(x,,£) = k/e_ and H(x,e ) is a
n n - n 2 'n n n

continuous function there exists an appropriate x3(en).

If there are no D's so that (3.29) holds, then B = 1 and we have established smooth-

ness on the entire interval [xo,l]. In any case, we have now completed step 2.

Lemma 3.5: Assume that there is a value D > 0 such that (3.29) holds for all sufficiently

small . If B =1 let H(x,en) satisfy the boundary condition
3.35) H(llen) =0 .

Then there is an Nl and an E > 0 such that

(LB}
s

3.36a) 1 _<_x2(sn) + lee—n, 0<e <

n

In that case Theorem 3.1 asserts that H(x,en) € CB[xO,l], G(x,en) € Cz[xo,l] uniformly.

That is; H, H', H", H™', G, G', G" are all uniformly bounded for x0 <x < 1.

If B8 <1 there is a point X, > %q and a positive constant 63, independent of €n’
such that
3.36b) H(x4,en) 5_—63 <0 .

Proof: Suppose the lemma is false. 1In either case we have the following situation; given an

N> 0 there is an ¢ = E(N) such that

3.37) x,(e) + N <1, 0<e < ey .
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Let N be fixed and let x, = x3(en) be chosen so that

0 3
3.38a) H(XB'En) =-—NO/E;
3.38b) H'(x,,e ) < - L A .
3" n 2
Since the lemma is false there must be a point Xg = xs(en) such that
3.39a) H(xs,sn) <> 0- as en -+ 0+
3.39b) H'(x_,c ) = 1-H'(x g ) < - l'A
5'"n 2 3'"n 4

3.39c) H'(x,e ) < l-H‘(x € ),y X, <x <x .

"“n 2 3""n" " 73— 5

That is, take x as the first point after x at which (3.39b) holds. If there is no such

5 3

point then either H(l,en) # 0 or (3.36b) follows from an integration of H'(t,en). If (3.3%&)

does not hold then (3.36b) holds and furthermore H.2 implies that x, <1 - 63/C0 which im-

4
plies that B # 1 (because of (3.14a)). Thus, (3.39a) must hold.

Moreover,

3.3%84) xS(en) - x3(en) >0 .

If not,an integration of H'(t,an) from x5 to Xg would once more imply (3.36b).

Finally, (3.37) and the fact (see theorem 3.2) that H" is bounded on [xz,x2+N/E;] to-

gether with (3.39b) implies that !H( (e ) )'
XS €n Isn 3

3.3%e) Lim = 4o
€ =0 VE;
n
Consider the change of variables
H(x,en)
3.40) T = (x—xa)/IH(xs,en)], ult) = Glx,e ), v(1) = m—l— .
~-Substitution—into—{l+1)— 2} gives
3.41a) En"v" +vv +ua=0
3.41b) En'u' +va -vu=0

-19-



where

3.41c) E = en/lﬂz(xs,sn)l +0 as e +0 .

The initial conditions are

3.42a) v(0) = =N /E, V(0) = H'(xgeE), V(0) = H'(xgie) [uGxge )|
LN . " 2 -
3.42b) v (0) =H (x3,en)[mx5,en)l , u(0) o(/é;lmxs,en)l)
3.42¢) u(0) = G'(xy,e ) [Hxg e )]
At T = (xs—x3)/‘H(x5,an)[ we have
3.43) (10) = =1, v(10) = H'(xe,e) = = H'(x,€)
- v 15) = =1, vitg) = Xge€ ) =35 X30€ .
Moreover
*5
H(xg,e ) = Hxgse ) -»{( H' (t,e )dt .
3

Since H(xs,en), H(x3,en) are both negative and (3.39¢c) holds we have

In(xs,en)! > IH(XB,en)| + IH'(xS,en)[(xs—XB) .
Using (3.39b) we have

lieegre ) | 2 3 [0 (xgre ) | Gegmxy)

Therefore
‘B(xs,sn)|—N0/E; . } . 2|H(x5,en)!
S =% T ST GG e ) |
and
3-40) 1-Ng Ve /luixge ) | e 2 4
< TS S TE Gy e )] — b

Thus, (v(r,gn), u(r,gn)) are solutions of (1.1), {1.2) on an interval of finite length

[0,15] satisfying the conditions (3.42a)-(3.42c) and (3.43).
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We wish to apply Theorem 2.1 and Theorem 3.2. Consider the change of variables

3.45) V(T,En) = ~v(15-1,sn), u(r,an) = u(T5~T,En)

These functions now satisfy all the hypotheses of Theorem 2.1 and Theorem 3.2. Expressing the

results directly in terms of the original functions v(T,En), u(T,En) we may assert the

following. There exists a subsequence which converges uniformly on [O/?S] where Ty is

the limit of Ts(en). Moreover, if G(T) and ;(T) are the limit functions, then

v () > V() , 02T T
v (T,En) =+ :\7 (t) , 0=+ _<_Tl'—5
.Vﬁﬁg+.gu), OiTi%
u (te) ?.I(r) , 02T,

'u.(T.sn)-* uit) , 0<T<T -

These results, together with the initial condition (3.42a), (3.42b), (3.42c) imply that

3.46) T(1) = V() + v.T, 0<T<T

i 5

for some constant Vl'

However (3.43a) and (3.42a) imply that

3.47) v(0) = ?r‘(?s) .

N

Since (3.46) and (3.47) are in contradiction, the lemma is true.

We have now completed step 3.

We conclude this chapter with the following summary and extension of these results.
Theorem 3.3: Let (H(x,sn), G(x,sn)) be a sequence of solutions of (1.1), (1.2) which satisfy

H.2 and (2.8). Suppose

H(x,en) SHE), G(X.en) + G(%)

in an interval [xo, x0+a].
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Suppose there is a point B > «a such that (3.17a), (3.17b) hold. The functions
(H(x) , G(x)) are the solutions of the reduced equations (1.3), (1.4) and are given by (1.5a),

(1.5b), (1.5¢), depending on the limit values of G(xo,an), H(xo,sn), H‘(xo,en), H“(xo,en).
If B = 1 assume that

3.48) H(l,en) =0 .

In this case there is a constant B such that

3.49a) lH(x,en)} + ]H‘(x,en)l + ]H"(x,en)| + IH"'(X,En)‘ <B, x <x<1

3.49b) lG(x,en)l + \G'(x,en)l +lc;"(x,en)| <B, x,<x<1 .

If B <1, let Bl be the next zero (if one exists) of H(x) and let

3.50) 82 = mln(Bl,l)

Then, for any constant dq, 0 < g < %(82—8) we have the uniform convergence

]

0,1,2, x <x<B,-9 .

3.51a) (-%E)kﬂ(x,en) > (—a@x-ﬂ)kﬁ(x), k o

1

' 4. 5= .
3.51b) (ad;)JG(x,sn) > (78w, 3= 0.1, x) <x<By - -

[¢]

Proof: It is only necessary to establish (3.51a), (3.51b). Howevexr, once

H(xs,en) < —63 < 0 we may apply Theorem 1.2 on the interval on which Efx,sn) < 0. Theorenm
3.2 assures us that H"'(x,en) and G“(x,en) are bounded in a transition layer in which
H(x,en) goes from K/E; to —i/E; for any K. Arguing as in lemma 3.5 we consider the
change of variables (2.7). The region where H(x,e) < 0 now becomes a region where

ﬁ(x,e) > 0, and B, which was to the left of the negative values, goes over to g =1 - B
which is to the right of the positive values. Therefore, we may apply Theorem 3.2 and match

bounds in the overlapping regions to see that H“'(x,sn) and G"(x,en) are bounded on

[xo, Bz-q]. Thus, (3.5la), (3.51b) follow at once.
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4. Non-Existence Theorems

In this section we consider solutions (H(x,en), G(x,en)) which satisfy the boundary
conditions (1.6a), (1.6b) and prove a basic non-existence result: there do not exist limit
solutions H(x) which satisfy (3.17a), (3.17b). Our first result is an immediate consequence
of theorem 3.3.

Theorem 4.1: Let (H(x,en), G(x,en)) be a sequence of solutions of (1.1), (1.2), (1.6a),

(1.6b) which satisfy H.2 and (2.8). Suppose that

4.1) H(x,e ) > H(x)

uniformly on [0,1]. Suppose that B8 =1 is the first zero of H(x) with B8 > Xy. Then

4.2) H'(1) = 0 .

Proof: From the form of H(x) given by (1.5a) or (1.5b) we see that either (4.2) holds or
(3.17b) holds. Suppose (3.17b) holds. Then we may apply Theorem 3.3. However, k3.49) of
Theorem 3.3 and (1.6b) imply that we may extract a subsequence which will converge to a limit
ﬁ(x) and this convergence will be C]Txo,ll convergence. Hence ﬁ'(l) = 0. But, of course,
ﬁ(x) = H(x) and the theorem is proven.

We now turn our attention to the case where 8 the first zero of H(x) greater than

x satisfies

0'
xq < g <1 .

In this case we make use of the properties of the function

4.3) (x,e) = [6'(x,e)1% + " (x,e)1° .
The basic result is due to Mcleod [71, I81.

Lemma 4.1: The function &(x,e) satisfies the differential equation

4. 4) o + HO' = 2e[(cM 2 + (™7

and the function
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1 X
&' (x,€) exp{; [ H(t,e)at}

*0

has at most one zero. Thus the behavior of the function ¢(x,e) 1is described in one of the
following three ways

(a) ¢ is monotone decreasing on its interval of definition,

(B) ¢ is monotone increasing on its interval of definition,

(v) there is an interior point y such that ¢' < 0 for x <y and ¢' > 0 for x > y.

Lemma 4.2: Let (H(x,sn), G(x,en)) be a sequence of solutions of (1.1), (1.2) which satisfy

the hypotheses of theorem 3.3. Let f, the first zero of H(x) greater than Xqr satisfy

< B < .
X, B 1

As in theorem 3.3 let 81 be the next zero of H{x) and let 82 be given by (3.50). Let

a the first zero of ﬁ(x) to the left of xo. Let

4.5) a' = max(a,0) .
Then, H(x) is a quadratic of the form (1.5¢) on the open interval a' < x < 82.

Proof: From theorem 3.3 and theorem 2.1 and its ¢orollary we see that it is sufficient to
show that H(x) is a quadratic on a subinterval of (a,Bz). We focus our attention on an

interval [xo,x0+p] on which
ﬁ(x,an) > 8/2 .

Suppose the lemma is false and H{x) is given by (1.5b) with T # 0. We claim that, if

€ is sufficiently small,

4.6) Q'(x,en) >0, x5 <x< x40 .

To-see—this-we-observe—that—theorem—2+1-and—the—form-of—H{x)—together with-the-differential —

equation (4.4) imply that

] —
¢ (x,e) = O(e:n). Xg L X 2 Xgtp -
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Thus, since ¢'"' is bounded on that interval, Landau's theorem implies that

1/2
n

e (x,e ) = Ofe )

and

3/2

L R "2 |l'2
H ¢ —2en[(c) + (H )]+0(z-:}n ) .

Thus, we have (4.6). From lemma 4.1 we see that

@'(x,sn) > 0, Xq <x <1 .

However, let [5 Db'l ¢ (8,32) be an interval on which H(x,en) < 0. Applying the

argument above, we see that
' (x,e ) < O, a<x<b' .
Thus the lemma is proven.
Remark: As we shall see, the results of section 5 show that the quantity

e (xie )| + |Gz, + |G (xve ) |

is exponentially small (in an) on (a'+5',82~6').

Theorem 4.2: Let (H(x,en), G(x,sh)) be a sequence of solutions of (1.1), (1.2), (l.6a)
which satisfy H.2 and (2.8). Suppose that (4.1) holds uniformly on [0,1]. Let B8, with

0 < B <1 be the first zero of H(x) with B > x5. Then

4.7 H(B) = 0 .

Proof: Suppose the theorem is false. Then we may apply lemma 4.2 to see that H(x) is a
quadratic in the interval [a',82]. Since H(B) = 0, H(x) can have only one other zero. Thus,
either H(x) >0 for all x < B or H(x) <0 for all x > B. Whichever case occurs, the

boundary condition (l.6a) is violated either at x = 0 or at x = 1.
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5. Oscillating Solutions

In this section we consider the situation described in the introduction by (l.Za)»(l.?:),

(1.8), (1.9a), (1.9b). Notice that we specifically give up the hypothesis H.2. The problan

is illustrated in figure 3.

—~*-‘_~\\\\
DO ~
€ H(x,g) ~
N
) ] \\
' T ! \
' R 1 \
[} \
1 t \
! l’ 1 \ ‘
. 1
%o Bo z(e) oy T e
o
Lol
[ NS SE—,
o
FPigure 3

p P o)
. . . 0
Our first goal is to establish the fact that EnOH(x,sn), € H'(x,sn), EnOH"(x,sn),

P P
€, G(x,en), enOG'(x,an) are uniformly bounded on [a0+6', 81—6‘] for any &' > 0. Thus,

after extracting a subsequence, we may assume that

P

0,d d

5.1) e (30 HGx,e) > (h0), g+ 8 <x < B) = 8%, v =01,
o

5.2) €, G(x,sn) -+ g(x), a, + 6" <x 5'81 - &' .

Our major result is that h(x) is a piecewise quadratic with at most two pieces. Mecre-

over

Po
e Dl )|+ etxe )]
is exponentially small in any sub interval on which h(x) is a quadratic.
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Since (1.7¢) holds, i.e., N > -1 we may normalize the problem so that for appropriate

constants C0 >0, 0>0 we have

5.3) lnx,e)] < c a <x <8

o' 0 17

L Y e | + l(%)vG(x,e)l <c

5.4) ax

-
OE , v=0,1,2,3,4, ao < x 5'31 .

To see this we observe that if

- Py
H(x,e) = € H(x,£)

- Py
G(x,g) = € G(x,€)

2p
then multiplication of (1.1), (1.2) by € 0 shows that (H(x,€), G(x,te)) satisfies (1.1),

(1.2) with € replaced by €. Moreover, E+0 as € =+ 0.
Let Y = y(e) be the point at which &(x,e) assumes its minimum. Let 2 = Z(g) be
the first zero of H(x,e) greater than BO. Since we may always apply the transformation

(2.7), we may assume that

5.5) B, < 2(e) < vy(e) .

0

Throughout this section we will assume O < ¢ < 1 and that (5.3), (5.4) and (5.5)

hold. In particular, the situation depicted in figure 3 holds with oo = 1.

In order to obtain the desired uniform bounds and (5.1), (5.2), (5.3) we make use of the
function ©¢(x,e) given by (4.1). The basic result is: if H(x,e) is bounded away from zero

on an interval and

o' (x,e)H(x,e) < O

then

[B" (x,e)| + |G(x,e)| + |G"(x,€)]

is exponentially small.
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Lemma 5.1: Let (H(x,e), G(x,e)) be a soluticn of (1.1), (1.2) on [aO,Bl]. Let 61 be

a fixed constant with

1
0 < 51 5_5'(30“00)

and let Yy be the first point greater than 80 - if such a point exists - at which

Yy
5.6) [ m(t,e)at = RS, .

%o
If no such point exists, then Yy = Bl' Let
5.7) y = min(yl,Y) .
Then there is a constant K, depending only on CO, such that, on the interval [u0+5l,y]
we have the estimates

\ -20
5.8a) |e* (x,e)| < ke exp{-R$, /e}
5.8b) lnc,e) |+ 6" (xie) | < Ke%exp{-Rs, /4¢)
5.8¢) |G'(x,e)lf_KEUexp{~R61/16e}
5.8d) [r* xoe) | + [ (x,e) | < k(1 + e exp{-RS, /4e}) .
Proof: From (4.3) we see that
[e*] = 2]g"m™ + G'c" _§_4C(2)s_26 ]

Applying lemma 4.1 we have

x
o] 3_¢'(x,e)exp{%~{c H(t,e)at} > @'(xo,e) .
0

Since

X
f H(t,e)dtg_RcSl, a + 8 <x <y

%
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we obtain (5.8a). Thus Landau's theorem implies that

l¢“| j_CEzoexp{—Rél/Ze} .

The differential equation (4.4) now yields (5.8b). In order to prove (5.8c) we consider two
cases.

Case l: There is a point, say a € [aQ+61,y] at which (5.8¢) holds. 1In this case (5.8c)
holds on the entire interval [a0+61,y] by virtue of (5.8b) and an integration.

Case 2: There is a constant, say E, so that: at every point x € [a0+61,y] we have

5.9) le' (x,e) ] Z_Ezdexp{—R6l/163} .
However, {(5.8b) and (5.4) together with Landau's thecrem imply that
v -
|2 (x,0) | i.CEUexp{—RGI/Be} .

Substitution into (1.1) now yields

iG(x.e) G'(x,g) | < chexp{~Ral/8e:}

Thus, (5.9) implies-that

5.10) letx,e)| < S exp(-RS,/166} .

However, if (5.10) holds, (5.8c) follows from (5.8b) and Landau's theorem.
Finally (5.8d) follows from (5.8b) and Landau's theorem.
Having obtained these estimates we are able to establish the basic bounds.
Theorem 5.1: Let (H(x,en), G(x,sn)) be a sequence of solutions of (1.1), (1.2) on the in-

terval [uo,Bl]. Suppose that (5.3), (5.4) and (1.9a), (1.9b) hold (the problem has been

normalized so that po = 1). Let

5.11) 8 <

(S

min(BO—aO, Blnal) .

Then there is a constant M > 0, depending on 61, such that, on the interval

[uo+61, 81—611 we have
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a k
('E;) G(x,en) <M, v=10,1,2, k=0,1 .

+

d v
5.12) |(5§9 H(X:En)

Moreover, on the intexrval [a0+61,y]

5.13) IG(x,en)I §_Me;0exp{—R61/16en}

provided that € is small enough.

Proof: We consider two cases.

Case 1: Y 5_81~6' .
In this case, after the change of variables (2.7) we may apply lemma 5.1 to find that

1
Slxie) <Ky By -8 Sx<B -6 .

1 1

That is, using Landau's theorem,

5.14) lc'(x',sn)] + [H"(x,en)l + IH'(x,en)l <K,y B -8 <x<B - —;— s .

27 1
Applying lemma 4.1, i.e., the fact that @(x,en) assumes its maximum at the end points, ws

have - using Landau's theorem -

5.15) lc"(x,sn)l + IH"(x,en)] + ]H'(x,en)| <M, oy + 8 <x< B -8 .

1’ (0]
The function H(x,en) is converging to a gquadratic function on [ao+6', y] which has

at least one zero in the interval [Bo,y]. Thus, there are points in the interval [ao+5'.Y]

at which [H'(x,e )| > R. The estimate (5.13) follows from (1.2) and (5.8b), (5.8¢) .

Finally, the complete estimate (5.12) follows from (5.15), (5.13) and an integration.
Having established this basic result, we may apply the theory developed in sections 2, 3,
and 4.

We now analyze the limit functions H(x), a(x). Let

5.16a) H(x,e ) + H(x) @)+ 8 <x< B -8

5.16b) Glx,e ) > G(x) a g+ & <x < B -8 .
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Let

5.17a) y-*y
5.17b) Z(En) > 2y e
5.17c) Y(En)‘+ Y .

Finally, let z z.ZO be the first “crossing” zero of H(x). That is, there is a positive

constant p > 0 such that

5.18a) H(x) >0, oy <x <2
5.18b) H(Z) = O,

5.18c) H{x) <0, Z <X 5_5 + p
5.184) H(Z+p) < 0 .

Theorem 5.2: Let the hypothesis of theorem 5.1 hold. Let (5.16a) - (5.18d4) hold. Suppose

5.19) Z<y .
Then
5.20) H'(Z) <0 ,

and H(x) is a piecewise quadratic with at most two pieces. Furthermore
5.21) lamr x,e )| + [etee) | + le* (xve) |
is exponentially small in en on a proper subinterval of the interval on which H{x) is a

quadratic.

Proof: From the definition of y in the construction of lemma 5.1 we see that
Z<y<y -
Thus, the estimates of lemma 5.1 hold on the entire interval [a0+6',~%(2+§)]. Therefore,

ﬁ(x) is a quadratic on this interval. If (5.20) did not hold, 2 would not be a crossing

zero. Hence, (5.20) holds. Moreover

H(x) >0, a.<x< 2

A(x) <0, Z<xc< %—(z+y) .



Thus we may apply lemma 4.2 to see that a(x) is a guadratic until the "next" zero (after z)
of H(x). Moreover, from the estimates of lemma 5.1 and (5.13) we see that (5.21) is
exponentially small on the interval [a0+6', %{§+§)]. A standard singular perturbation argu-
ment now shows that, in fact, this quantity is exponentially small in an interval

[uo+6', 82—62] where B, is the next zero of H(x) (if it exists) and 52 is any positive

2

constant.
Case 1: Z is the only zero of H(x) on the interval [ao,Bll. In this case H(x) is a

quadratic on the entire interval (ao,Bl] and the theorem is proven.

Case 2: There is a 82 with

5.22a) 7 < 82 < al

and 82 is the next zero of H(x), i.e.,

5.22b) H(B,) =0 .

In this case, since ﬁ(x) is a gquadratic on the interval (2,82) and ﬁ’(x) is continuous,
H'(8,) = -H'(Z) #0 .
Furthermore, there must be a third zero, say 83, with

By < By <oy
and

H(x) >0, B, <x < 83 .

2
However, from theorem 2.1 and its corollary we see that

H'(8,) = -H'(B,) = H'(Z) #0 .
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Figure 4
Thus we may apply lemma 4.2 to see that H(x) is a quadratic on the interval

82<x<8

where B is the next zero of H(x) beyond 83. But, of course, H(x) is a quadratic which
vanishes at 82 and 83. Hence there is no B. Thus, H(x) is a piecewise quadratic with

a break in H"(x) at 82. Moreover, the quantity (5.21) is exponentially small in any inter-

val [a0+6', 82“62]-

It remains to show that the quantity (5.21) is exponentially small on [82+52, 81—6'].
We sketch the argument.

Case 2.1:

Y < By

In this case we apply the change of variables (2.7) and repeat the above arguments.

Case 2.2: 63 < ; .

1 1

In this case we apply lemma 5.1 on the interval ([B, + 62, B

5 5 6.] to obtain the initial

372 %2

exponential bounds on the quantity (5.21). Then, we merely repeat the above discussion.
Case 2.3: 83 = ? .

In this case we must match the exponential bounds to the right and left of 83. To complete

the proof "at 83" we use a "shooting" argument as in section 3.

Theorem 5.3: Let the hypotheses of Theorem 5.1 hold. Let (5.16a) - (5.184) hold. Suppose

5.23) Z =y

and
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5.24) H'(Z) <0 .

Then the conclusions of Theorem 5.2 hold.

Proof: 1In the proof of Theorem 5.2 the condition (5.19) is used only for two purposes, to
prove (5.20) - which we have explicitly assumed in (5.24) and to prove that (5.21) is exponent-
ially small on a non vanishing interval beyond Z. Thus, we need only prove that (5.21) is
exponentially small. However, (5.21) is exponentially small whenever H¢' < 0. Thus, if

ﬁ(x) has only one zero, 2, we match the exponential decay on either side of 7. If there

are at least two other zeros, BZ < 63 < a we apply the transformation (2.7) and apply the

1

above argument.

Theorem 5.4: Let the hypotheses of Theorem 5.1 hold. ILet (5.16a) - (5.18d) hold. Suppose

5.25) 2= .
and
5.26) B'(z) =0 .

Then H(x) 1is a quadratic on [ao+6',§] and H(x) is a quadratic on (z, 81—6']. Moreover

(5.21) is exponentially small on every interval [a0+6', §~62], [§+6?, 81—6'].

Figure 5

Proof: Apply lemma 5.1 on every interval [ao+6', 5—62]. Thus, H(x) is quadratic on
[u0+6', z] and (5.21) is expenentially small on [a0+6', 2—62}. To complete the proof we

apply the change of variables (2.7) and argue on the interval
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1- (z+a) <x<1-2 .

Thus, to the right of Z, H(x) is a quadratic as long as it is negative! However, since

and H(x) is negative a bit to the right of Z, it is always negative.

A simple argument shows that the case
Y <z

is impossible. Thus, we have established the major result of this section: On the interval

[ao, Bl] the function H(x) is a piecewise quadratic with at most two pieces. Moreover, on

any proper subinterval of an interval on which H(x) is guadratic, (5.21) is exponentially

small in € .
—— T

Now, let us turn to "oscillating cells".
Definition: Let (H(x,an), G(x,sn)) be a sequence of solutions of (1.1), (1.2) which

satisfy (1.7a), (1.7b). Suppose that

p

snOH(xlen) +h(x), 0<¢8 <x<1l-2¢8" <1

for every &', 0 < &' < %u A "cell® is an interval (o,B8) with 0 <a < B8 <1 such that;

5.27a) either o=0 or h{(a) =0, and
5.27b) either 8=1 or h(B) =0, and
5.27c) Ihex)] >0, a<x<B .

Note: As an example, the solutions obtained in [8 ] satisfy (1.7a), (1.7b) with Po =~ %.
The results of [ 8] show that those solutions converged to a function h(x) with two cells.

In this context, theorems 5.2, 5.3, 5.4 assert that if h(x) has two cells, (aO,BO),

(a,,8,) and

5.28a) h{x) > 0, ao <x < BO

5.28b) h(x) < 0, al < x < Bl R
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Then h(x) has at most four cells. To see this, let (uo,Bo) be the "first" interval o-
which h(x) > 0 and (al,Bl) be the "last" interval on which h(x) < 0. Applying Theorzas
5.2, 5.3, 5.4 we see that h(x) is a piecewise.quadratic with at most two pieces.

Case 1: h(x) 1is a quadratic on the entire interval (ao,Bl). Then since h{x) has an 24
number of zeros in (aO,Bl), h(x) has exactly one zero, say B, in a_ < x < Bl. We no:zs

0

that h(x) remains a quadratic for x < a, as long as h(x) > 0 and h(x) remains a guzdra-

tic for x > 81 as long as h{x) < 0.
Case 1.1: h"(x) > 0, uo < x < Bl .

In this case h(x) > 0 for 0 < x < 8 and we have two or three cells depending on whether

‘or not h(x) becomes positive to the right of Bl.

Case 1.2: h"(x) < 0, e < x < Bl .

In this case h(x) < 0 for Bl < x <1 and we have two or three cells depending on whether

or not h(x) becomes negative to the left of ag-

Case 2: There is a point é € (aO,SJ) and h"(x) Jjumps at é. That is

h.(x), o <x <8
heo = {1 %
hy(x), B, <x <8

and hl(x), hz(x) are quadratic polynomials.

Case 2.1: h*'(B) = 0 .

In this case we have

h;(k) >0

h;(x) <0

hy), 0 <x<B8
h(x) = h, (x), B<x<1

and we have a two cell solution.
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case 2.2: h'(B) £0 .

Applying lemma 4.3 we see that B is the second zero of h(x) for uo < x < Bl.

Thus

hy>o

and h{x) > 0 for 0 < x < aO. Also, there must be a third zero, say 63 and

hix) >0, B <x< 83 .
Hence

"
h2 <0

and h(x) < 0 for Bl < x < 1. In this case we have a four cell solution.
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