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ABSTRACT

A number of equivalent characterizations for the existence and
boundedness of solutions of the linear complementarity problem:
Mx + g9 >0, x>0, xT(Mx+q) =0 where M is an nxn real matrix and
q is an n-vector, are given for the case when M is copositive plus.
The special case when M s skew-symmetric covers the linear program-
ming case. One useful characterization of existence and boundedness of
solutions is given by solving a simple Tinear program. Other important
characterizations are the Slater constraint qualification and the
stability condition that for all arbitrary but sufficiently small per-
turbations of the data M and q which maintain copositivity plus, the
perturbed Tinear complementarity problem is solvable and its solutions
are uniformly bounded. An interesting sufficient condition for bounded-
ness of solutions is that the linear complementarity problem have a
nondegenerate vertex solution. Another result is that the subclass M of
copositive plus matrices for which the linear complementarity problem
has a solution for each g in Rn, that is McQ, coincides with the
subclass of copositive plus matrices for which the 1inear complementarity

problem has a nonempty bounded solution set for each g 1in R,
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1. Introduction

The principal purpose of this paper is to give a number of charac-
terizations for the existence and boundedness of solutions of the
Tinear complementarity problem of finding an x in the n-dimensional

real Euclidean space R" such that
Mx +q >0, x >0, x (Mx+q) = 0 (1)

where M 1is a given nxn real matrix, q is a given vector in R"
and T denotes the transpose. We shall refer to this problem as
LCP(M,q). Existence of solutions for the linear complementarity
problem has been investigated by many authors [7,8,3,15,5]. One well

known existence result [5,2] is that if the feasibie region of (1)

S(M,q) = {x|Mx+q>0, x>0} (2)
is nonempty then the solution set of (1)

S(M,q) = {x|Mx+q0, x20, x' (Mx+q)=0} (3)
is nonempty when the matrix M 1s copositive plus, that is

(a) x >0 implies xTMx > 0 (copositive)

(b) x >0, xTMx =0 imply (M+MT)x =0 (plus)

Copositive plus matrices include positive semidefinite matrices
and positive matrices. Other existence results are given in [5,11,12,17].

Global uniqueness of solution of the linear complementarity problem



has been investigated in among others [15,1,14] and local uniqueness in
[13]. Robinson [20] and Doverspike [4] have characterized nonemptiness
and boundedness of 5(M,q) by the nonemptiness of S(M,3) for all

(M,4) sufficiently close to (M,q) for the cases when M is positive
semidefinite and copositive plus respectively. In addition, for positive
semidefinite M Robinson has further characterized the nonemptiness and
boundedness of S(M,q) by the nonemptiness and uniform boundedness of
5(M,4) for positive semidefinite M and M. One of our characterizations,
(xvi) of Theorem 2, extends this result of Robinson to the copositive
plus M and M. Another characterization of the nonemptiness and
boundedness of S(M.q), (x) of Theorem 2, extends the corresponding
boundedness results of Williams [23] for a dual pair of 1inear program-
ming problems to the linear complementarity problem with a copositive
plus matrix. A useful feature of another characterization, Theorem

2 (vii), is that without knowing whether (1) has a solution and without
knowing any of its solutions we can determine if its solution set

§(M,q) * is nonempty and bounded from the following equivalence

M
- = T T T _
S(M,q) is nonempty foonositive Max {e u|M'u<0, q u<0, uz0} =70 (5)
and bounded plus u

where e 1is a vector of ones in R". MNote that the right hand side
of the equivalence (5) can be easily checked by solving a simple
linear programming problem. Another interesting characterization of

the nonemptiness and boundedness of S(M,q) for copositive plus



matrices, Theorem 2 (iii), is that the feasible region S(M,q) be
stable [19] or equivalently that it satisfies the Slater constraint
qualification [9].

The principal results of the paper are contained in Theorem 2
which gives a number of equivalent characterizations for the nonempti-
ness and boundedness of the solution set S(M,q). The first eight
characterizations of Theorem 2 are stability or constraint qualifica-
tion conditions for the feasible region S(M,q) and they do not require
any assumptions on the matrix M. The last eight characterizations of
Theorem 2 however make essential use of the copositivity plus of the
matrix M. The equivalence between (ix) and (xv) of Theorem 2 is due to
Doverspike [4] and is stated separately as Theorem 1. Corollary 1
shows that whenever a linear complementarity problem with a copositive
plus matrix has a nondegenerate vertex solution, its solution set must
be bounded. Corollary 2 establishes the characterization (5) stated
above. Corollary 3 characterizes the subclass of copositive plus
matrices which is in Q, that is the class of matrices for which the
linear complementarity problem has a solution for each ¢ in R".
Corollary 4 specializes Theorem 2 to the case of a symmetric M and

uses the same condition as that of [10, Theorem 2.2] which ensures the

boundedness of the iterates of the algorithms of [10].

We briefly describe now the notation of this paper. A1l matrices
and vectors are real. For the mxn matrix A, row i 1s denoted by Ai
and the element in row i and column j by Aij’ For x in the real
n-dimensional Euclidean space Rn, element j is denoted by X5 A1l
vectors are column vectors unless transposed by the superscript T. For

Ic{l,....,m} and J c{l,....,.n}t, l\I denotes the submatrix of A with



rows Ai’ iel, AIJ denotes the submatrix of A with elements

Aij= iel, jed, and X3 denotes Xj» iecdJd. Superscripts such as

Ai, xi, denote specific matrices and vectors and usually refer to
elements of a sequence. For simplicity we shall write AiT for (Ai)T.

n

The Euclidean norm (xTx)l/2 of a vector x in R will be denoted by

Ixl and the corresponding induced matrix norm max UAxll will be
Ixli=1

denoted by IIAll. The vector e will denote a vector of ones usually
in R". A partition {I,J} of the set of integers {l,.....,n} s

defined as Ic{],..qn},dc{]”..qn},IuJ={1”.,nn}and Ind=d.



2. Principal Results

We begin with a theorem which was established by Robinson [20]
for the case when M is positive semidefinite and extended by
Doverspike [4] to Eaves' class L of matrices [5] which includes the
copositive plus case. This theorem will be utilized in establishing

one of the equivalences of Theorem 2.

Theorem 1 [4] Let M be an nxn  copositive plus matrix and let q
be in R". The following are equivalent:
(i) The solution set S(M,q) of the linear complementarity
problem (1) is nonempty and bounded.
(11) There exists an e>0 suych that the solution set 5(f,q)
of the perturbed linear complementarity problem LCP(M,ﬁ) is
nonempty for max {IM-MI, Ig-gll} < e.
Our principal result which follows establishes the equivalence of
a number of conditions for the nonemptiness and boundedness of the

solution set S(M,q) of the linear complementarity problem (1).

Theorem 2 For any nxn matrix M and any vector g in R" the
statements (i) to (viii) below are equivalent. If in addition M is
copositive plus then the statements (i) to (xvi) below are equivalent.

(1) The system

Mx + gz > 0, x 20, z>0

has a solution (x,z) in Rn+],



(i1) The system

Mx +q>0, x>0

has a solution X

in R™.
(iii) The system

Mx +q >0, x>0

has a solution x in R".
(iv) For each h in R"  the system

Mx +q+vyh >0, x>0, vy>0

has a solution (x,y) in Rn+].
(v) There exists a & > 0 such that the system

Mx +§ >0, x>0

has a solution

x for each g in R" such that Wg-qll < 8.
(vi) There exists an e >0 such that the system
Mx +§ >0, x>0

has a solution x for each nxn matrix M and each § in
R" such that

max {IM-Ml, I§-qll} < e.

(vii) The system

Mu<0,q

u<0,0<u#0

. . n
has no solution u in R



(viii)

(ix)

(x)
(x1)

(xii)

(xii1)

(xiv)

(xv)

Rn+l

For each (a,a) in the set

{ulMTuig, un;g, u>0}

is empty or bounded.

AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
The solution set S(M,q) of the linear complementarity problem
(1) is nonempty and bounded.
{x|Mx>0, qTxip, (T )x=0, 0<x#0} = ¢.
For some or each solution X of the linear complementarity

problem (1) the set
T Ty (yos
{x|Mx+q>0, x>0, q'x<0, (MM )(x-x)=0}

is bounded.

T(x,u) IMxM u<q, x<u} # 0.

For each h in R" there exists a positive y such that
LCP(M,q+yh) s solvable.

There exists a & > 0 such that LCP(M,g§) is solvable for
each § in R" such that Ig-qll < 8.

There exists an € > 0 such that LCP(M,§) is solvable for

each nxn matrix M and each q in R" such that

max {IIf-MlI, I13-qll} < e.



-8-

(xvi) There exist €>0 and a>0 such that LCP(M,q) 1is solvable for

each nxn copositive plus matrix M and each § in R satisfying
max {IM-MIl, Ug-qll} <€

and furthermore Uxll <o for all x in 5(M,d).

Proof (i) <« (ii): If x solves the system of (ii) then x and

r =1 solve the system of (i).

(1) = (ii): Let (X,2) satisfy Mx + gt > 0, X >0, ¢ > 0. Because
the open set {(x,z)|Mx+qz>0} contains (2,2) it must also
contain (§,2+6) for some sufficiently small positive ¢ and
hence MX + q(2+6) > 0. The point X/(Z+8) solves the system
of (ii).

(i) < (iii): Obvious

(ii) = (iii): Let X satisfy Mx +gq > 0, X > 0. Because the open
set {x|Mx+q>0} contains % it must also contain X + se for
some sufficiently small positive 6. The point %+ 8e solves

the system of (iii).

(i) < (vii): This follows from Motzkin's theorem of the alternative

[91.

(iv) = (vii): Condition (vii) is equivalent to the system



T T

Mu<0,quz<0,u>0, gTu <0

not having a solution u for each g 1in R".  This in turn is

equivalent, by Motzkin's theorem of the alternative, to the system

My +ac +9g>0,y>0,z2>0

Rn+1 n

having a solution (y,z) in for each g in R,

defining g=q + h, x = T%Ea Yy = T%Z- we have that (iv) follows

By

from this last result, while the converse follows by defining

h=g,y= %w and ¢ = %u

(iv) = (v): Take +y < &/lhll if h # 0, otherwise take vy = 1.

~

(v) = (vi): Set 8§=¢ and M= M.

(vi) = (vii): Suppose not, then there exists a sequence of nxn
matrices {M'} and a sequence of vectors {q1} in R“, i=1,240005
converging to M and q vrespectively such that M1x+-q1;;0, x>0,

has no solution for 1i=1,2... . By Motzkin's theorem of the alter-

T T
native this is equivalent to M' u <0, q' u<0,u>0 havinga
solution u' for i=1,2,... . Since u' # 0 it follows that

T T i
Mt Y <o, g Y—<o0, L—->0, i1,2,...

: , : ,
— 'I —
hull hu'l hu'l

Hence there exists an accumulation u such that

T T- -

Mu<0,qu<0,0#u>0

which contradicts (vii).
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(vii) = (viii): Suppose not, then there exists an (a,o) n+l

such that the set

in R

{u]MTuég, qTq;g, u>0}

is nonempty and unbounded. Hence there exists a sequence of

{u'}, 9=1,2,..., such that u' # 0, llu'll > » and
T <azia®in, gttt <o/, w2 0, 41,2,

Consequently there exists an accumulation u such that

T T

M Uu<0,0#Uu2>0

u<0,q
which contradicts (vii).

(vii) = (viii): Let
MG <0, qa<0,0<i#0, then for A >0, Al is unbounded
as A+ o and

We shall prove the contrapositive implication.

T( -

M () <0 =a, qT(AG) <0=o0, \u2>0.

(iv) = (xiii): Obvious

(iv) = (xiii): Because M

is copositive plus and the feasible region
S(M, q+yh)

is nonempty it follows by Lemke's algorithm [8,3] that
LCP(M, g+yh) has a solution,

(v) = (xiv): Obvious
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(v) = (xiv): Because M 1is copositive plus and the feasible region
S(M,d) is nonempty it follows by Lemke's algorithm that
LCP(M,d) has a solution.

(ix) = (xv): This follows from Theorem 1.

(vii) = (x): By recalling that M 1is copositive plus the contra-

positive implications follow from the following

My < 0 My <0 M Yy = 0
aTu<0)={0<uMu=<o Qu<0
0#u>0 uniO Mu=-MTuio
07u>0 0#u>0

(ix) < (x): We shall prove the contrapositive implication. Suppose
that S(M,q) is empty or unbounded. If it is empty then because
M is copositive plus it follows by Lemke's algorithm that the

feasible region S(M,q) is empty and consequently the system

Mx +qz >0, x > 0, >0

has no solution (x,z) in Rn+]o By Motzkin's theorem of the

alternative it follows that there exists a u satisfying

T

Mu<0,u>0, un < 0.

This however contradicts (vii) which, as established above, 1is

equivalent to (x). Suppose now that S(M,q) 1is unbounded. Hence
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. . i . .
there exists a sequence of points {x 1}, i=1,2,.¢40, 1in R",

x' # 0, Il > = such that
i1 i i1 LIS RO P i .
Mx /I e/ 120, x /1120, (/1) (x Vi x +a/1x 1) =0, i=1,2,....

Hence there exists an accumulation point X such that
. - T _ . LI PO PR LW P
Mx >0, 0# x>0, xMx = 0. Since g x/lixll=-x" Mx/lx'll<0,
it follows that qTi < 0. Because M is copositive plus
(MMT)% = 0 follows from $Mx = 0 and X > 0., The existence
of this X satisfying the conditions Mx > 0, q'% <0, (1% = 0,

0<x#0 contradicts (x).

(ix) = (x): We shall prove the contrapositive implication. Let x

satisfy

Mx > 0, q'x < 0, (MM)x =0, 0<x#0
and let X be a solution of LCP(M,q). Then for any X >0,

M(x+x) +q >0, X + Ax > 0

and

0 < (k) T(M(xHx)+q) = X (Mxeq) + AX) (M1 )x

+ xszMx + AqTx

AqTx <0

Hence X + Ax solves LCP(M,q) and is unbounded as X - o,

Hence S(M,q) 1is unbounded whenever it is nonempty.

(x) = (xii): By Tucker's theorem of the alternative [9] condition (x)

is equivalent to the system



(x)

(x)
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My - qz + (MM)z <0, v >0, ¢ >0

having a solution (v,z,z) in R2n+], and because the set

{(v,z,c)lMTv - qg + (M+MT)z < 0} ds open this is equivalent to

Mz + MT(v+z) <q,v>0

having a solution (v,z) in Rzn. Defining x = z and

u=v+z gives (xii).

= (xi): We shall establish (xi) for each solution of LCP(M,q)
by proving the contrapositive implication. So let x be some
solution of LCP(M,q). Then the set defined in (xi) is nonempty
because M s copositive plus, qTZ = %M < 0 and hence X
is in the set. Let this set be unbounded. Then there exists a
sequence of points in rR", {xi}, i=1,2,...., such that

xi # 0, Hxiﬂ » o and
/b + o/ttt >0, x>0, qTx /Xl <0
MDY i =% = 0, 9=1,2,....

Hence there exists an accumulation point X satisfying

MX >0, 0#%>0,q"

% <0, (MM)% = 0.
This is a negation of (x).

< (xi): We shall establish (x), with (xi) holding for some solution

of LCP(M,q), by proving the contrapositive implication. So let
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X be any solution of LCP(M,q). Let x satisfy

Mx > 0, q'x < 0, (M)x =0, 0 <x # 0.

Then for any A > 0, X + Ax 1is unbounded as A =+ «,

M(%#AX) + G > 0, X + Ax > 0, g (R+Ax) < -X'MX < 0 and
(M+MT)(§+kx-§) = 0, Hence the set defined in (xi) is unbounded.
This is a negation of (xi) with X taken as some solution of

LCP(M,q).

(xiv) = (xvi): Set 8§ =¢ and M= M

(x) = (xvi): Since we have already established the equivalence of (x)
and (xv) we have from (xv) that for some e > 0, 5(M,§) is nonempty
for max {IM-MI, I§-qll} < e. Suppose now that (xvi) does not hold.
Then there exist sequences {Hxiﬂ} + @, {Mi,qi} +~ (M,q) such that

X\ # 0 and M' are copositive plus and

|
o

.. . . T . . .
Wﬂ+q‘;mx‘;mx1muh&)-

Consequently

i, i i T 1 iy
Mx 4+ 9 50, %50, g2 X o

T T e Ty Ix' =

i

I T .
AP I
I ' e ux

=0

Since {lix'l} = =, it follows that there exists an accumulation

;
Xi } such that
hx

point z of the bounded sequence {:
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Mz;0,0%z;;mcﬁz;O,imz=0
which contradicts (x). 0

We note that the jmplication (vii) = (vi) also follows from
[19, Part 1] and the equivalence (vit) > (viii) follows from
[22, Chapter g]. We have included simple proofs of these relations
here to make this paper more se]f—contained and accessible.

The following corollary gives among other things a simple suffi-
cient condition for the boundedness of the solution set of the Tinear
compWementarity problem (1) when M is copositive plus. The first part
of this corollary which is established from elementary arguments of
perturbation theory of linear equations can also be established by using

much more general perturbation results for comp1ementarity probiems [211.

Corollary 1 Let the linear complementarity probiem (1) have a non-
degenerate vertex solution x, that is x +Mx+q>0 and % is a
vertex of the feasible region $(M,q), then assertion (xv) of Theorem 2
holds. If in addition M s copositive plus, assertions (i) to (xvi)

of Theorem 2 hold as well.

proof Since x is a nondegenerate vertex solution of (1) there exists

a partition {1,3} of {1yeooasn) such that MJ‘J is nonsingular and

Myg X ¥ %7 0
My Xy *ap >0

X3 > 0

By the Banach perturbation lemma [16, P- 457 for any nxn matrix M

satistying M =Ml < HM“xH"], M 15 nonsingular and
Jd " dd Ju Jd
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. I3
I <
1= v
1,2
IO TR
W= i gm

Jd” JJ

Hence for a sufficiently small perturbation of M and g, say

max {IM-MI, ig-qll} < e for some e >0, we have

SO S R
Xy = iy by = Xy - My(Egmay) - (M) 5-M5 )T, > 0
and
M>”<+?i=ﬁb7!']+
IR S 10 Mag 90 T 91

= (Mg Xg+ap) + My (Rg-x%)

N-] ~ ~
MIJ)(—M]J qJ) + (qI"qI) > 0.

-+

Mpg-

Hence (%J,OI) is a nondegenerate vertex solution of LCP(M,q) when
max {IM-Ml, I§-qll} < e, and consequently (xv) of Theorem 2 holds.
By Theorem 2, the other assertions (i)-(xvi) hold also when M is

copositive plus. 0

The following example shows that the nondegenerate vertex condition

is not necessary for the boundedness of the solution set.
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Example 1

Here M 1is positive and hence copositive plus. In fact M 1is also posi-
tive semidefinite. The solution set S(M,q) ={(x],x2)|x]+x2=1, x}io,xzip}
is bounded but does not contain a nondegenerate vertex.

The following two examples show that when M s not copositive
plus the existence of a nondegenerate vertex solution to the Tinear

complementarity may or may not imply boundedness of the solution set.

Example 2

Here M 1is not copositive plus and the unbounded solution set
S(M,q) = {(1,0)} v {(x],x2)|x1=0, Xzip} contains a nondegenerate

vertex, (1,0).

Example 3

—
o
o

Again M is not copositive plus, but the bounded solution set
S(M,q) = {(1,0)} v {(x],x2)|x1=0, OéXZéJ} contains a nondegenerate

vertex, (1,0).
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The following example shows that the copositivity plus assumption

on M in (xvi) of Theorem 2 cannot be dropped.

Example 4

0 1 -1 0 1 -1
-1 0 1 -1 -c 1+¢

Here M is skew-symmetric and hence is positive semidefinite but ﬁ
is not copositive plus. For this problem §(M,q) = {(1,1)} and
3(M,g) = 1(1,1), (0,14-%0} which is not bounded for e e (0,e) for any

2> 0. However if we take the copositive plus perturbation

1 -1

=
il
+={m
Kal)
i
Kol
1l

4
» 0 < £ i._.
-T+e =5

ESTY

which however is not positive semidefinite for positive e we have that

- +he -
S(M,q) = ]6 de 5 , 16 20e 5
16-16e+e 16-16¢e+e

which is bounded by the Euclidean ball of radius 7 around the origin.

The following corollary, which establishes the equivalence given by
(5) in the Introduction, follows by paraphrasing (vii) of Theorem 2 as a

1inear programming condition (6).

Corollary 2 Let M be copositive plus. The Tinear complementarity

problem (1) has a nonempty bounded solution set if and only if

Max {eTUIMTu;p, unip, u>0} = 0 (6)
u
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The following corollary characterizes the subclass of copositive
plus matrices for which the Tinear complementarity problem has a solu-
tion for each q in Rn, that is those copositive plus matrices which
are in the class Q [6]. The equivalence between (ii) and (iii) below

has been given by Pang [18, Theorem 11] for a copositive plus M.

Corollary 3 Let M be an nxn matrix. Statements (i) and (ii) below are

equivalent. Statements (i) to (iv) below are equivalent when M is
copositive plus.

(i) For each q in R" the system
Mx +q>0, x>0

has a solution x in R".
(i1) The system
Mx >0, x >0
has a solution x in R",
(iii) For each q in R" the solution set 5(M,q) of the linear
complementarity problem (1) is nonempty, that is MeQ.

(iv) For each q in R" the solution set S(M,q) of the linear

complementarity problem (1) is nonempty and bounded.

Proof (i) = (ii): Take gq

fl
1
]

(i) < (ii) = (iv): If MX >0 and X >0 then obviously for each
q in R" there exists a A > 0 such that M(AX) + q > 0 and
A > 0. By the equivalence of (i) and (ix) of Theorem 2 it

follows that the solution set 5(M,q) 1is nonempty and bounded

for each g in R,
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(iii) « (iv): Obvious.
(i) « (ii1): Obvious. 0

The following result complements Theorem 2.2 of [10] for symmetric
copositive plus matrices. In a related result [18, Corollary 10] Pang

has shown that when M is in Q, symmetric and copositive plus, then

it is strictly copositive, that is xMx > 0 for 0% x > 0.

Corollary 4 Let M be a symmetric copositive plus matrix. Assertions

(1) to (xvi) of Theorem (2) hold if and only if Mx +q > 0 has a

solution x in Rn.

Proof When M s symmetric condition (x) of Theorem 2 is equivalent

to

MTu = 0, un <0,0<u # 0 has no solution ueR".

By Tucker's theorem of the alternative [9] this is equivalent to

Mx + gz >0, £ >0 has a solution (X,%) e Rn+1

Because the set {(x,z)|Mx+qc>0, (x,z) eRn+]} is open, the last
condition is equivalent to the set {(x,z) |Mx+qz>0, £>0, (x,7) eRn+1}
being nonempty, which in turn is equivalent to Mx +q > 0 having a
solution x in R". Hence condition (x) of Theorem 2 holds if and
only if Mx +q >0 has a solution x 1in R". The corollary now

follows from Theorem 2. O

Remark 1 The equivalence between (ix) and (x) for the case when M is a

. 03 t
skew-symmetric and hence copositive plus matrix degenerates to Williams

characterization [23, Theorem 3] of bounded solutions to a pair of

dual programs. For the pair of dual Tinear programs
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(a) Min {cTylAy;p, y>0}

y i (7)
(b) Max {b'z|A'z<c, z>0}

z

Williams' boundedness characterization for both the primal and dual

solutions sets is that

(a) Ay >0, CTy <0, 0#y2>0 has no solution vy

and (8)

(b) ATz:; 0, sz:; 0, 0 # z >0 has no solution z.
We establish now that the negation of (8) is equivalent to the

0 -A! c y
negation of (x) of Theorem 2 with M =(A NER =(Tb and  x =137] -

The negation of (8) is

(a) Ay >0, cTy <0, 0%y >0 has a solution ¥y

() ATz <0,b'z2>0,0#z20 hasa solution z

We show now that (9) is equivalent to

T

Ays0, Alz<0, =cly+b'2>0, 0#(y,2)20 has a solution (y,2) (10)

which is the negation of (x) of Theorem 2 for the linear programming

case. If (9a) holds take z =0 in (10), if (9b) holds take y =0
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in (10), and hence (9) implies (10). Suppose now (10) holds. If

either y or z 1is zero then (9) holds. If both y and z are
nonzero then again (9a) holds when cTy <0, and (9b) holds when

cTy > 0 because sz:; cTy > 0. Hence (9) and (10) are equivalent
and condition (x) of Theorem 2 degenerates to Williams' condition (8)
when M and q are specialized to the linear programming case.

It is worthwhile to point out an interesting subtlety in connec-
tion with conditions (8). Taken together conditions (8a) and (8b) are
equivalent to condition (x) of Theorem 2 and hence guarantee the exis-
tence and boundedness of the solution sets to both of the dual linear
programs of (7). However, taking (8a) or (8b) one at a time merely
guarantees the boundedness but not the existence of a solution set to
the corresponding linear program. For example, for A =0, c = -1,

b = -1, condition (8a) is satisfied by y = 1, but the linear

program (7a) has no solution because its objective is unbounded below.

Remark 2 From the proof that (ix) = (x) in Theorem 2 we conclude
that if the linear complementarity problem (1) with a copositive
plus M has an unbounded solution set then each of its solutions

%X lies on a ray of solutions X + Ax where X >0 and x 1is any

nonzero element of the convex cone

tx|Mx20, q'x<0, (M#M!)x=0, x20}.
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Remark 3 It can be shown that Cottle's Theorem 3.1 [2] relating a

solution ray of LCP(M,q) and the complementary cones of M follows

from the equivalence of (x) and (xiii) of Theorem 2.
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