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Abstract

The methods discussed are based on local piecewise-Tinear secant
approximations to continuous convex objective functions. Such approxi-
mations are easily constructed and require only function evaluations
rather than derivatives. Several related iterative procedures are
considered for the minimization of separable objectives over bounded
closed convex sets. Computationally, the piecewise-linear approximation
of the objective is helpful in the case that the original problem has
only linear constraints, since the subproblems in this case will be
linear programs. At each iteration, upper and lower bounds on the
optimal value are derived from the pjecewise-Tinear approximations.
Convergence to the optimal value of the given problem is established
under mild hypotheses. The method has been successfully tested on a
variety of problems, including a water supply problem with more than

900 variables and 600 constraints.
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1. Introduction

Several classes of "secant" optimization methods will be consid-
ered for convex nonlinear programs of the form
min f(x)

X

(1.1)
s.t. xeCn[f,ul,

where Xx = (X1,...,Xn)Tean, C 1is a closed convex set, [2,u] denotes
the hyper-rectangle corresponding to the constraints & < X < U, and
f 4is a continuous convex function on [2,u]. (To avoid trivial cases
we assume & < u.) The term "secant" is used because the basic idea
of these methods is to approximate f at each iteration by piecewise-
linear functions that, from a geometric viewpoint, are determined by
secants in the graph of f. It should be emphasized that because of
the nature of these approximations, these methods require only function
values of f, and not first or second derivatives. For notational con-
venience we let S = Cn[&,u], and to avoid trivial cases we assume
that S is non-empty. Note that the assumptions made with respect to
(1.1) imply that it has an optimal solution. In the case that (1.7)
has only linear constraints (i.e., C 1is polyhedral), the piecewise-
linear approximation of f is computationally useful because the cor-
responding approximating problem is easily reduced to a linear program.
In Sections 2 and 3 we will consider the case in which f s

n
separable, i.e., f(x) = ) fi(xi)’ and relate our approach to other
i=1

techniques for separable programming and to other local approximation

methods. Section 4 indicates how the techniques may be extended to

differentiable non-separable f. Computational experience in the

Tinearly constrained case and directions for further research are

described in the concluding sections.



2. Global Approximation Methods for Separable Programming

There are many optimization problems that may be stated in the
format (1.1) with f separable, examples being data fitting [Bachem
and Korte (1977)], electrical networks [Rockafellar (1976)], and water
supply applications [Collins, et al (1978)]. Many mathematical pro-
grams under uncertainty (stochastfc programs) may also be converted
to convex separable programs ([Dantzig (1963)], [Symonds (1967)],
[Wets (1966)1). [Hadley (1964)] and [Wagner (1967)] have discussed
the technique of using transformations to convert a problem which is
not separable in its original form to a separable program. Some
problems arising in personnel assignment and logistics ([Gross (1956)]
and [Saaty (1970)]) turn out to be separable.

Although general nonlinear programming algorithms ([Avriel (1976)])
may be applied to the separable convex case, these algorithms do not
take maximum advantage of separability. We will first discuss the
traditional algorithms for separable programming and then consider in
Section 3 some new iterative separable programming algorithms that
have several advantages over existing techniques.

Piecewise-linear approximation for separable programs was
apparently first proposed in [Charnes and Lemke (1954)]. The idea of
this approach is simply to use piecewise-linear functions %1 to
approximate the fi over the intervals [zi,ui]. The problem

n -~
Min ) fi(xi)’ s.t. xeS can then be converted to an equivalent linear
X i=1

program (LP) if S 1S polyhedrat. {Atthough—the—atgorithms—to—be
described below are theoretically valid for the case of non-polyhedral S,
the corresponding nonlinear subproblems would generally not be any easier
to solve than the original problems in such cases, so the algorithms are
practical only for the case of linear constraints. Although piecewise-
linear approximation can also be applied to nonlinear constraints as in
[Thakur (1978)] to yield linear subproblems, the convergence properties
of such an approach have so far only been considered under restrictive
assumptions in the separable case. )
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Two significant questions associated with piecewise-Tinear
approximation are:

(1) How many "grid points" are to be used to determine the ?1?

(2) How "good" is the resulting approximation?

In essence, with a global approximation approach we are faced with
the trade-off between the accuracy of the approximation and the size of
the problem solved. [Thakur (1978)] gives bounds on the maximum devia-
tion between the piecewise-Tinear approximation and a Lipschitz contin-
uous function, and uses them to establish a bound on the optimal objec-
tive value of the original problem. [Geoffrion (1977)] and [Meyer (1977),
1979)7 also give results relating approximation error to optimal value
error in more general cases.

If the error associated with a given approximation is too large,
the traditional approach is to use a finer grid for the approximation
of the fi’ This procedure greatly increases the size of the constraint
matrix of the equivalent LP, and problems of storage and efficiency may
occur. Similar problems may arise when the "interpolatory"” method of
[Beale (1968)] is applied to the grids at each iteration. (The
interpolatory approach also leads to difficulties in obtaining good
error bounds, an issue to be considered in Section 3.) For these
reasons we will consider in the next section an iterative separable
programming method based on local approximations in which the number

of grid points for each variable is never more than three.
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3. Local Approximation Methods for Separable Programming
Rather than using global piecewise-linear approximations to the
objective functions, it turns out to be sufficient to utilize a
sequence of appropriately chosen "local" piecewise-linear approximations
over appropriately chosen "neighborhoods". In order to make these
notions precise, we will introduce nbtation that permits compact de-
scriptions of the type of approximating problems that we will consider.
Specifically, we will employ approximations that correspond to

ordered triples (%,m,u) that satisfy

(3.1) g<2<m<u<u,
(3.2) Ls < m, if & <m, and
(3.3) ms < U if om < ous.

Such a triple will be said to be admissible, and the corresponding
approximating problem P(ﬁ,ﬁ,ﬁ) is defined as
min ) ?.(x-)
X M

s.t. xeSn[%,ul,

where

~ £ ﬁ1)—f1(21) ~ . ~
fo(m,) + (x;=m if L, <%, <m
v ~ A i) iz i

m. = %

i i

?(V\ = "f_-(ﬁ}l_:) -if X.; =m,;

kI =1 1 1
P (0)-F ()] A
f.(m:) + AT 0 Wx,-ms) if M. < xs < O
v ~ i i i =M

. - m,

i i

\

"N ~
for xie[ziaui].



Note that except for the degenerate cases in which zi = Ei = ﬁi or

~

~ Fa)
Uj = Ug = My, fi is the two-segment, piecewise-linear, convex approxi-

mation to fi determined by the values of fi at the three points

~

i and ai (see Figure 1). In the degenerate cases (see Figure 2),
%1 will be an affine funétion determined by two values of fi‘ (From
the definition of an admissible triple and the fact that Li < Ugs it is
impossible to have @i = ﬁi = Gi') For X; not in the interval

[Ei,ﬁi}, ¥1(Xi) is defined by extending the segments to the left and to
the right in the non-degenerate case, and extending the affine function

in the degenerate case. Observe that convexity implies that

f.(x;) < ?.(xi) for any x; that is part of a feasible solution of

iV =

P(2,m,u) and fi(xi) z_fi(xi) for xié[zi,ui]. Letting

~ n/\ ~ A AN

f(x) =} fi(xi) and S be the feasible set of P(2,m,u) we thus
i=1

have f(x) §_¥(x) for all xeS. Since f(f) = f(fi), this property
implies that if X8 and F(X) < F(A), then f(X) < f(m). The latter
inequality guarantees strict monotonicity of the iterates, since in the
algorithms to be developed m will play the role of the most recently
generated feasible solution of (1.1). From this viewpoint f is a
"ocal" piecewise-Tinear approximation in the neighborhood [@,G] of

N Fal

the most recent iterate, and S s non-empty since it contains m.

Before developing additional properties of these approximations, we

will contrast them with related local approximation methods.

‘A heuristic two-segment approach was proposed in the early

separable programming paper, [Dantzig, et al (1958)]. This method reduces
the size of the interval for each variable by a factor of at least %
at each iteration, but need not converge to an optimal solution except

in the case that S 1is the product of intervals. (See [Meyer (1980)]



Figure 1. fi and fi in the non-degenerate case




Figure 2. The two degenerate cases
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for details of the method and an example in which this heuristic does
not converge to the optimal value.) In essence, the convergence
problem associated with this method is a consequence of the fact that
the intervals are forced to shrink too quickly.

[Dantzig (1963)] describes a local approximation algorithm related
to "generalized programming". This technique uses line searches in
descent directions generated via the local approximations, but no
convergence proof is given, and the efficacy of this algorithm appears
to be unknown.

The two-segment methods developed in [Meyer (1977)], [Meyer and
Smith (1978)], and [Meyer (1979), (1980)] were shown to be finitely
convergent to optimal solutions of certain fine-grid approximating
problems, and the algorithms to be developed in this section may be
thought of as extensions that ensure convergence to the optimal value
of the given problem (1.1).

Related local approximation algorithms include the boxstep method
[Marsten, Hogan, and Blankenship (1975)], the MAP method [Griffith and
Stewart (1961)], and the method of hypercubes [Fletcher (1972)].

The boxstep method also employs additional bounds on the variables,
but keeps the corresponding "box" fixed in size, and optimizes the
original function (rather than an approximation) over the resulting
restriction of the feasible set. The MAP method uses variable "box"

sizes that are selected in an adaptive manner, but uses first-order

[inear approximations to the objective—and-the constraints~—rhe

method of hypercubes employs quadratic, quasi-Newton approximations

of the objective in a hypercube centered about the current iterate.



In the algorithms and convergence proofs to follow, error bounds

~

play a crucial role. Since fi is a piecewise-linear approximation

determined by (ﬁi,ﬁ.,ﬁ-) note that the error bound defined by
E. = max, [f (x )-f ( 1.)] satisfies Ei < max f.(xi) - min f.(x.)

~ ‘ 1 ~ E 1 1
DL <X.<U, [Qi,ui] [Zi,ui]

< max f.(x;) - min f.(x,). Similar results of course hold for each
— AR TN AT TN
[zi’ui] [21’ui]

segment of ?i if fi has two segments, and the bounds for the segments
may be combined to obtain a sharper bound for Ei' Note, however, that
even the crude bound above implies that Ei must tend to zero as the

. ”~ .
size of [%i,ﬁi] tends to 0. Moreover, since

A AN AN Pl n A
E(2,m,u) = max [f(x)-f(x)] = ) E;s we have the following result; where
[%,u] i=1
k k ky . . k k
E(2",m",u") 1is defined to be the maximum over [% ,u"] of the

k k k)

difference of the approximation generated by (2, and the

function f.

(2 k k k)} is a sequence of admissible triples such

k’ k k)

Lemma 3.1: If {

that zk - M, mk +m, and uk >m, then E(& ,m 0.
In the convergence results to be developed, error estimates éi are

used to provide bounds on the optimal value z** of (1.1).

Theorem 3.1: If X 1is an optimal solution of an approximating problem
P(%,%,u) where (%,X,u) is an admissible triple, then the following

Tower and upper bounds hold for the optimal value z** of (1.1).

f(x) -

es1S

e, < z** < f(x),

i=]

where e, > max _ (fi(xi)'fi(xi))'

1 -
< .<
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Proof: Because of the convexity of C and the admissibility of
(R,%,u), it is easily verified that for any xeS, Ax + (I-A)x is
feasible for P(%,x,u) for all sufficiently small positive A. From
this property it is easily seen that X 1is also optimal for the

problem min F(x). Thus, if x** s optimal for (1.1) we have

XeS
- - — n _
F(X) < F(X) < Fxx*) = fx**) + [F(x**)-f(x**)] < z** + ) &, from
- - - i=1
which the lower bound follows. A

These error bound results lead to the following necessary

and sufficient optimality conditions for the separable case.

Theorem 3.2: Let {(Ek,i,ﬁk)} be a sequence of admissible triples
such that K - X, iK > %. A point XeS is an optimal solution of
(1.1) if and only if it is an optimal solution of each problem in

the family of problems P(ik,i,ak), (k=1,2,...).

Proof:( <) By the previous theorem we have
f(x) - E(Ek,i,ik) < ZF* < f(x). However, by Lemma 3.1,
E(Ek,i,ﬁk) +0 as k- 4o, so that f(x) = z*¥*.
(=) Since the objective function of P(ik,ﬁ,ﬁk) is at least
f(x) on [@k,ak], but coincides with f(x) at X, it follows that

% also solves each problem P(ik,i,ﬁk). A

We Wil Tefer—to—the—preceding—eptimatity conditions as secant

optimality conditions at X. These optimality conditions are the key
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to the algorithm, which uses a corresponding search procedure at each
iteration in order to obtain a feasible solution with an improved
objective function value if the current iterate is non-optimal. That
is, if X ds the current iterate, a sequence of approximating

problems satisfying the conditions of Theorem 3.2 is considered. If

X 1is optimal, its optimality is established; otherwise a new iterate is
obtained by selecting the "best" solution to the sequence of approxi-
mating problems. We will first state the most basic and straight-
forward algorithm of this sort, prove its convergence, and then
indicate a number of refinements that are computationally important.
Although an arbitrary procedure may be used to generate a starting
feasible solution for the algorithm, note that one possibility that is
in keeping with the spirit of the algorithm is to solve the two-segment
approximating problem P(%,%(2+u),u). (However, if information is
available that leads to estimates for optimal values of some variables,
these may be used instead of the corresponding midpoint values
%(21+u1).) The parameter oe(0,1) to be employed in the algorithm

will be called the contraction factor for obvious reasons, and the

search procedure that uses powers of o will be termed a contraction

search,

Algorithm 1:

(a) Let oe(0,1) and let x be the feasible solution available at

the start of the current iteration.
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(b) Denoting by x(A) an optimal solution of the problem
P(AL+(T-2)X, X» Au + (1-1)X) = P](x) for Xe(0,1) (with the
understanding that Xx(A) is taken to be X if x 1is optimal

for P](A)), determine Xx(A) for A =<x,a2,... .

(c) If Z(uk) =% for k=1,2,..., then X is an optimal solution

of the given problem (1.1) by the secant optimality conditions.

(d) Otherwise let o be a power of o such that Xx(a) is the
"hest" point generated by the search procedure in the sense that
if w](x) denotes the optimal value of P](A), then
w](&) f_m](uk) for k=1,... . The point Xx(a) is used as

the starting feasible solution for the next iteration.

Theorem 3.3: If Algorithm 1 generates a sequence of points {xj},
then f(xo) > f(x1) > ... , and f(xj) + z¥*_ the optimal value
of (1.1). Each accumulation point of {xj} is an optimal solution

of (1.1).
Proof: See Appendix.

The basic idea of the proof is a principle frequently used in
convergence analysis. If x* 1is an accumulation point of {xj} and
x* does not solve (1.1), then the search procedure of the algorithm,
applied at x*, would produce a feasible solution whose objective

function was strictly less than f(x*). Because of continuity

properties of the approximating problems, this would imply that the
search procedure would produce similar solutions near x*, contra-

dicting the fact that f(x*) < f(xj) for a1l j. (In the case that
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S 1is polyhedral, some rather strong continuity properties of the
approximating problems are developed; but in the case that S is
a general closed convex set, some weaker (but nonetheless adequate)

continuity properties are established.

Algorithm 1, while easy to state, has some obvious computational
disadvantages. One of these is the placing of the bounds at fractions
of the distance to the left and right endpoints. This is generally
not desirable in those cases in which, e.g., ii = for some i,
so that the trial values of the upper bound for X; would be Tlocated
far to the right of ii until the contraction factor ak became
quite small. A more reasonable alternative is to use multiples of
some fixed step Gi in placing the lower and upper bounds to the left
and right of 210 This is the approach used in Algorithm 2 below, in
which the problem P1(x) is replaced by Pz(x), defined as follows:
P,(A) = P(R(A), X, (1)), where Z.(1)=max {855 572857 u;(2) =
min {ui, §i+xai}, and & is a fixed positive vector. The optimal
value of Pz(x) is denoted by wz(x)o A second drawback of Algorithm
1 is the consideration of an infinite collection of approximating

problems in step (b) of the Algorithm. From a computational viewpoint

this may be circumvented by specifying an improvement tolerance u>0

such that X(a") is accepted as the next iterate if r 1is the first
integer such that the optimal value of Pz(ar) is less than f(X) - .

maller than the smallest positive number

representable on a given computer, use of such an improvement tolerance
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is computationally equivalent to letting r be the first integer

such that X s non-optimal for Pz(ur)o In practice, X is
generally not optimal for Pz(a), so the next iterate is usually
obtained by solving Pz(a), using X as a starting feasible solution.
(The necessity of considering an infinite number of problems in part
(b) of the algorithm if x is optimal for (1.1) may be averted by

specifying an optimality tolerance e* such that the algorithm

terminates if the condition f(X) < z** + e* is known to hold. The

use of error estimates in achieving finite convergence to an e*-optimal

solution will be discussed below in connection with Algorithm 3.)

Algorithm 2 (fixed step; improvement tolerance)

(a) Let ae(0,1) and Tet §>0 and u>0 be given. Let x be the

feasible solution available at the start of the current iteration.

(b) Denoting by x(A) an optimal solution of PZ(A) for xe(0,1)
(with the understanding that X(A) 1is taken to be x if x is
optimal for P,(A)), X 1is optimal for (1.1) if X(a)=% for
k=1,2,.05

(c) Otherwise, let & be the first power of o such that
wz(&) < f(X) - u, provided that such an a4 exists. If such an
& does not exist, choose & as a power of o such that

0y(8) < wy(oX) for k =1,2,... . The point X(8) is used

atthe—startingfeasibte—sotutiomrfor—the—next—iterations &

The convergence properties of sequences generated by Algorithm 2
coincide with those described in Theorem 3.3. See the Appendix for

details.
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After a problem PZ(A) is solved, it is possible to derive with
little additional computation an error bound e(x(1)) for the cor-
responding solution, i.e., e(x(1)) may be constructed so that
f(X(1)) < z** + e(x())). Note that since F(x(2)) < f(x), we may
assume that e(X(1)) < e(X). (Keep in mind that this notation does
not reflect the fact that the error bound is computed using the data

of Pz(k), so that if X(A) = X, we may expect e(x(})) < e(X).)

The basic property of convex functions used in the computation of the
error bound is the lower bound for fi provided by the extension of a
segment of a secant approximation beyond the interval in which it
dominates fi‘ With such linear lower bounds, the error bound 51 of
Theorem 3.1 is easily obtained by computing the maximum difference
between two linear functions on [Ei,ﬁi]. (By performing a post-
optimality analysis as described in [Meyer (1980)], bounds 2 and u
may be constructed for each iterate X so that x will be optimal

for P(Z,x,u), where (%,x,u) fis an admissible triple.)

Algorithm 3 (finite convergence to an e*-optimal solution) (See Fig..3)

(a) Let ae(0,1), let u>0, and e*>0 be given constants, and
let 6>0 be a given vector of R". Let X be the feasible

solution available at the start of the current iteration.

(b) Let X(A) be as in Algorithm 2, and let e(x(x)) be the

corresponding error bound. If i(ak) =x for k=1,2,...,S,
where o° is the first power of a such that e(x(a®)) < g*,

then the algorithm terminates with X as an e*-optimal solution.
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(c) Otherwise, let & be the first power of o such that
wz(&) g_f(i) - u, provided that such an o exists. If such an
5 does not exist, choose 4 as a power of o such that
mz(&) f_wz(uk) for k =1,2,... (as noted below, only a finite
number of wz(uk) need to be calculated to obtain @&). If
e(x(a)) < e*, then the algorithm terminates with X(G) as an

e*-optimal solution. Otherwise, x(a) is used as the starting

feasible solution for the next iteration.

To see that only a finite number of values of k need be con-
sidered to establish & in the second part of step (c), note that
failure of the Algorithm 3 to terminate at step (b) implies the exis-
tence of a power & of o such that wz(&) < f(x). The availability
of lower bounds on f then allows the computation of a t with
the property that wz(&) i.wz(“k) can be guaranteed for k > T, so
that at most wz(a),..., wz(u(f'1)) need be computed.

It is easily seen that Algorithm 3 is finitely convergent to an
g*-optimal solution under the assumption that f(xj) + z¥* implies

e(xj) - 0.
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Generate starting _
feasible solution x

Terminate

with
g*-optimal
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X .
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ws () iwz(ock)
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Figure 3. Flowchart for Algorithm 3
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4, Extensions to the Non-Separable Case

The approach of the preceding section may be extended in a
relatively straightforward manner to the case in which the
objective function f of (1.1) is not assumed to be separable.
Suppose that f 1is finite and convex on all of R" and that the
set of vectors D = {d],o..,dq} has the property that the convex
cone generated by D s Rn, i.e., any vector in R" may be
expressed as a non-negative linear combination of the vectors of
D. (If q=n+1, then the vectors of D are the vertices of
a simplex in n-space, but it is not necessary to construct D in
this way. In fact, the two-segment method of the preceding section

corresponds to setting D = {e],-e],.o.,en,-en}, where e' is the

ith unit vector.) An analog of the objective function of Pz(x) is
obtained by using the following convex, piecewise-linear approximation

of f, where D 1is analogous to &:

q

f(2,D,X,x) = min f(R)eO + ) f(i+xdj)e.
0 =1 J
N
i q
(4.1) S.t. X6y + ] (x+XdJ)6j = X

j=1
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Using (4.1), the problem (1.1) is approximated by
i qa
min f(X)e, + J f(x+ad))e,
X0 j:] J

q :
X0, + ) (x+ad?)e.,
0 i=1 J

(4.2) s.t. XeS, x

; 85 =1, 8; >0 (§=0,....q),

Il ~1.0

J

so that (4.2) is analogous to PZ(A). (Note that the problem (4.2)
is an LP is S 1is polyhedral.) Moreover, since the constraints of
(4.2) include those of (4.1), the objective function of (4.2)
dominates f(x) for all x feasible for (4.2). By substituting
(4.2) for Pz(x) in Algorithm 2, a local piecewise-linear approxima-
tion method is obtained for the non-separable case. It should be
pointed out, however, that the error analysis essential to establish
the validity of this method in the non-separable case requires more
than just continuity of f. In particular, examples are easily
constructed to show that the analog of Algorithm 2 for the non-
separable case may actually stall at a non-optimal point in step (b).
However, it may be shown that if f dis assumed to be differentiable,
the ervor bound behavior and convergence analysis in the non-

separable case are analogous to the separable case.
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5. Computational Results

The secant approximation methods described in Section 3 have
been applied to a variety of test problems with uniformly excellent
results. Here we will cite only cases of particular interest. The
first set of test problems cited arose from a statistical application
and contains non-differentiable functions. The second example s a very

large problem involving more than 900 variables and 600 constraints.

[Test Problem 1].

This class of problems is obtained from the calculation of the
"Large deviation probability" of the Wilcoxson and the
Yates test in statistics [Teng (1978)]. Such problems can be

reduced to convex separable programs of the form:

n
min €+ 0.5 ] x;-log X;

i=]

s.t. Ax = b

where e = (1,...,]
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Because of the X; - log X5 terms, the objective function is
non-differentiable at any point having any X; = 0. Even though
an optimal solution x** will satisfy x** >0, the non-
differentiability property leads to difficulties in methods requir-
ing derivatives, since the iterates may have some 0 com-
ponents. Moreover, these problems were supplied to us by Teng after
the use of a commercial separable programming package (FMPS), employ-
ing a fixed grid approach, produced results that were unsatisfactory.
(The solutions that were generated by the package had some x; = 0,
a value that was unacceptable to the problem formulator given the
interpretation he attached to the variables; the optimal values of
the fixed grid approximating problems were also clearly not close to

the values that were anticipated and were shown by this study to be

as much as 35% too large when a grid size of 0.1 was used.)

We have tested three problems of this class, and obtained the

following results:

Case|Iterations|Contractions C Ayb Upper Lower |Finall Error bound
bound bound X

N 1 oaseozal ALl bl | .26304222|.26394222| x| |.199060x107"°

2 8 2 | 1924368| a2| b2 |.167257560. 167257558 x° 218307x10°°

31 16 0 | s519357| a3| b |129400878 . 149400876 x° .243360x10°°
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where
0.6285 0.225 0.5 0.825 0 0 O
0.45 0.5 0 05 0 0
bl= | 0.2 al=1 o 0.5 0 0 0.5 0
0.35 0 0 0.5 0 0.5
1.0 1.0 1.0 1.0 0 0
< =(.12801  .23888  .63310  .77199  .16112  .066895)',
0.6475 0.25 0.625 0.8375 0.9625 0 0 0 O
1.0 1.0 0 0 0 1.0 0 0 0
, | 0.5 , |0 10 0 0 0 1.0 0 0
be= A2
0.35 0 1.0 0 0 0 1.0 0
0.15 0 0 1.0 0 0 0 1.0
1.0 1.0 1.0 1.0 1.0 0 0 0 O
x2 = (0.23242 133226 ,29809 13722 76758 16774
.051906  .012777)7,
646875 0.175 0.4375 0.6125 0.7625 0.875 0.9625 0
0.7 1.0 1
0.35 1.0 1
0.35 | . 1.0 1
b3= =
0.25 1.0 1
0.2 1.0 0 4
0.15 1.0 1
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0
- (0.13440 15211  .21945  .19170  .16893  .1334]
56560 19780 .13055  .058303  .031071  .016585)T .
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[Test Problem 2].
This is a model of the Dallas Water supply network with data
provided to us by Jeff Kennington of SMU. A detailed description of
the formulation of this problem as an optimization problem is given in
[Collins, et al (1978)]. This problem has 666 constraints, 906 variables,

and an objective function involving 18 Tinear functions, 16 integrals

([Z _ /B(A-t0)dt

- -%'(X' x/A-x2 + Asin'] 7%%:)) and 872 terms of

|2°85° In 19 iterations a feasible solution with

the form C;| x.
1 i
objective value -206156 was obtained along with a Tower bound on the
optimal value of -206162, This lower bound was obtained via an
estimation technique that used only the three final available values
of each fi’ and could be improved through the use of first and
second derivative information on the fio (Our objective values

differ from those in the Collins report because of certain scale

factors that were introduced into nonlinear objective terms.)

A rough comparison of these results may be made with the numerical
studies reported in [Collins, et al (1978)1. In that paper results for
four different approaches were presented for a smaller version of the
problem containing 452 constraints and 530 arcs. The four methods
compared were piecewise-linear approximations (with a fixed grid of
points chosen by an error minimization approach), the Frank-Wolfe

method, and Newton's method. The authors

of that paper concluded that their piecewise-Tinear approximation method

was superior to the Frank-Wolfe and convex simplex methods because of
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its significantly smaller computer time, and was superior to the
commercial (Systems Control, Inc.) version of Newton's method because of
the frequent failure of the latter to converge when started outside of a
small (%5%) neighborhood of the optimum. We believe that our piecewise-
linear approach has several advantages relative to that of Collins, et al.
In our method, the number of segments is limited to at most two, so the
size of each approximating problem is smaller than that of Collins, who
employed 8 segments. Rather than using an a priori selection of grid
points, most of which will be of 1little ultimate value because of their
distance from the optimal solution, we employ an adaptive strategy for
grid point selection that adds only grid points in a neighborhood

of the most recent estimate of optimal solution. Finally, when a
relative error bound significantly better than 1% is required, the number
of points required by an a priori approach will be prohibitive, whereas

this goal poses no difficulties for the iterative piecewise-linear method.
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Iteration Upper Bound Lower Bound Error Bound Objective Decrease
1 -165263
2 -175262 99999
3 -185379 10117
4 -193969 8590
5 -201536 7567
6 -203809 2273
7 -205177 -273963 68786 1368
8 -205780 -220676 14896 603
9 -206052 -211212 5160 272
10 -206130 -207352 1222 78
11 -206147 -206728 481 17
12 -206153 -206313 160 6
13 -206155 ~206242 87 2
14 -206155 -206206 51 0.7
15 - 206156 -206205 49 0.2
16 -206156 -206167 11 0.2
17 ~-206156 -206167 11 : 0.2
18 -206156 -206164 8 0.1
19 -206156 -206162 6 0.02
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6. Directions for Further Research

There are numerous issues related to the preceding discussion
that are currently under investigation. From a numerical viewpoint,
a key question is how best to conduct the "contraction search" at
each iteration. For example, additional computational experience is
needed to determine what contraction factor o should be used, and
how accurate a search should be performed for an approximate minimum
of the function wz(x). Another possibility for a further refinement
in the search procedure is to use the outcome of the contraction

search as a descent direction along which a line_search could be

performed to determine the next iterate. (One disadvantage of this
refinement would be the difficulties that this would cause with
respect to the current error estimation procedure, which is applicable
only at solutions of problems in which the objective function of (1.1)
has been replaced by an approximation. However, the error estimates
are really useful only in the terminal iterations, so these line

searches could be employed in the initial iterations.) Interpolation

or extrapolation could be used to determine "initial" bounds at each

iteration, i.e., 61 could be allowed to be iteration-dependent,

with its value chosen so that 21 +af; or Ri - af; would

coincide with an estimate for the optimal value of x.. For example,

3
single-variable quadratic interpolation (which is superlinearly

convergent in the unconstrained case) could be applied term-by-term

to a suitable Lagrangian.
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In order to reduce the computation time per iteration, specialized
variants of the simplex method could be used to take advantage of the
two-segment structure in the case that S 1is polyhedral. Since the
two variables associated with the segments of each piecewise-linear
approximation correspond to columns (in the simplex tableau) that are
nearly identical, it is certainly not necessary to deal with these
columns as if they were completely distinct, and existing network and
separable programming techniques such as those described in [Beale
(1968)] and [Muller-Merbach (1970)] take advantage of this property.

Alternative procedures for computing lower bounds should also be
considered. In particular, it might be possible to obtain tighter
bounds by generating feasible solutions to a suitable dual of (1.1).
The relationship between the "primal" error analysis approach of
[Meyer (1979)] and the error bounds obtainable via duality theory
should be investigated in order to assess the potential for computa-
tional improvements in this area.

Bounds may also be derived on the optimal values of the variables
by generalizing the approach of [Thakur (1978)]. Additional computa-
tional experience is needed in order to determine if these bounds
are tight enough to be useful.

The algorithms may also be generalized in a straightforward
manner to handle nonlinear constraints under suitable convexity

assumptions (see, e.g., [Dantzig (1963)], [Miller-Merbach (1970)1),

but the convergence properties and computational efficiency of this
generalization of the two-segment approach and its non-separable

extension are yet to be determined.
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Finally, it appears that the secant optimality conditions
(Theorem 3.2) and their generalization to the non-separable case
may be further extended to local optima in the non-convex case by
taking into account the values of the function f at the optimal

solutions of the piecewise-linear approximations.
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Appendix
Continuity properties of the objective and the feasible sets of
the approximating problems are essential to the convergence proofs
of the algorithm. We will first establish continuity of the objective

approximations, and then consider the continuity properties of the

feasible sets.

Lemma A.1: Let {(xj,mj,uj)} be a sequence of admissible triples
with corresponding piecewise-linear approximations fj, and let

zj S mj - m*, and uj + u*, where (&*,m*,u*) form an admissible
triple whose corresponding objective function is denoted by f*. If

{y?} s a sequence such that yje[zJ,ujj for all j and yd - y*,
then fI(yJ) + F*(y*).

Proof: The proof consists of establishing the result fg(yg) +vf?(y:)
for each i by considering several cases.

* k%
Case 1 (zi5y1<mi)

Clearly, y% < mg for all sufficiently large j, and it is
easily seen from the continuity of f, that fg(yg) - f?(y?) in

this case.

* &k
Case 2 (m1.<y1._§_u1.)

Analogous to Case 1.

* 'k=* *
Case 3 (Ri<yi=mi<ui)

J
-i’

fg(yg) J q*. If there is a subsequence J' of J such yg = m



-30-

then clearly q* = f?(y?). If there is a subsequence J' of J such

that mg < yg the same result follows from Case 2. If Q? < m? and

. .

J J
J J

; < ms for all sufficiently

there exists a subsequence such that vy the result follows

from Case 1. Finally, if 2: =m

3 and y

large jed, then the result follows from min {fi(zg), fi(mg)}.i
J(yd J J
5 (yy) < max {f;(23)5 fi(m3)l.

*  k_ Kk *k
Case 4 (21<mi’y15”1)

Analogous to Case 3. A

Our next results deal with the continuity properties of the
feasible sets of the approximating problems. Given a sequence of
non-empty sets s9, we say that }12 s = s* if (a) yj esd and
yj > y* dmplies y*eS", and (b) y¥e S* implies that there exists
a sequence {yj} with yj eSj such that yj > y*o Property (a) is

called upper semi-continuity (u.s.c.) since it implies that ¥ is at

least as big as the "Timit" of the sJ, and property (b) is called

Tower semi-continuity (1.s.c.) since it implies the opposite limit

property.

Lemma A.2: If {(zJ,mJ,uJ)} and (2*,m*,u*) satisfy the assumptions
of the preceding lemma, if S is polyhedral, and if md ¢S for all

j, then T1lim sd = 5*, where $J = Sn[lJ,uJ] and S° = Sa[2*,u*].

Joe

D £ T s PN J 3 1
Proofr—In—this—case—the—sets—S*—maybe—defined by a system of linear

inequalities. It is known that the feasible sets of Tinear systems
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are continuous under right-hand side (RHS) perturbations that preserve
feasibility (see [Dantzig, et al (1967)]). For the sake of complete-
ness, however, we will present a compact proof of this results.
Upper semi-continuity follows trivially from the definitions, so
we need only verify l.s.c. Let X" ¢S* and consider the problem
min Hy-—x*ll°°

Yy
(A.1)

s.t. yeS, 2 <y f.uJ

Denoting the optimal value by w(2?,ud), note that 1.s.c. may be
established by showing that w(2d,u9) > 0. Since u(l*,u*) =0, it
is sufficient to demonstrate an appropriate continuity property of 1.

To establish this, first note that the problem (A.1) is equivalent to

(A.2)

s.t. yeS, 20 <y <u

-ze <y - x* < ze,
where e 1is a vector of 1's. Since (A.2) represents a family of LP's
which are defined parametrically in terms of RHS perturbations, it is
easily seen that the corresponding optimal value function u 1is
continuous with respect to bounds on y that ensure feasibility of

the LP, A
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If we drop the polyhedrality hypothesis and assume merely that
S 1is a closed convex set, then the previous proof does not apply,
because the optimal value funcfion u need not be continuous.
However, by taking into account special properties of the sequences
(zj,uj) associated with Algorithm 2, an analogous continuity property
may be established. (A somewhat weaker continuity property holds with

respect to Algorithm 1.)

Theorem A.1: Let (&*,m*,u*) be an admissible triple such that

*

. * *
m*eS, and for 1 = T1,....0, %1 = max {Zi,mi—a-ai}, and

u? = min {ui,m?+u*61} where a*di >0, If {mJ} cS 1is such that

m > m*, and for i =1,...,n and all j, 22 = max {Ri,mg-u*ﬁi}

and ug = min {ui,m3+a*61}, then 1lim Y = $*, where

i
sd = sn[ed,u?] and S* = sa[2*,u*1.

Proof: Upper semi-continuity follows trivially from the definitions,
so we need only verify l.s.c. If x* eS*, then Ax* + (1—A)n9 )
for all j and all Xe[0,1] because of the convexity of S. To
see how "close" x* is to [zj,uJ], consider the problem

min Iy - x7ll_

Ysh

(A.3)

s.t. y = AF 4 (1-0)m?

23 <y i_uj, 0<x<T.

Denoting the optimal value by uJ, note that lower semi-continuity of
the sequence {SJ} may be established by showing that uJ +~ 0. The

problem (A.3) may be re-written as
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min  fo(md-x*)_
)

(A.4)

s.t. 2 - x* f‘e(mJ-x*) <ul - x5,

0<e#o <1

where 6 =1 - X, since y - x* = e(mJ-x*). Note that 6 =1 is

always a feasible solution, so that (A.4) has an optimal solution for

all j. Let J be chosen such that u* = Tim sup uJ = 1im uJ.

jed
Without loss of generality we may assume that there is an r
such that for Jjed, the optimal value 69 of (A.4) is determined by

the constraint

Jo_oo* J_ *
(A.5) - X, g_e(mr Xr)’
so that

P j_ o *
(A.6) 8 (lr xr)/(mr Xr)'

»

(If none of the constraints 23 - x* fﬁe(mJ—x*) g_uJ - x* have the

property that they bound 6 from below, then 69 = 0 and the desired

result is proved. If a constraint involving u? bounds & from below,
the argument is similar to that in the gd case.) If

la < x: < mj, the preceding expression for 8 s negative; if

r
*
x=m‘]

v s the expression is undefined (and it is clear that 6 is not

bounded from below by the corresponding constraint); and if mi < x:,

then the constraint (A.5) provides an upper bound on ©6 rather than

a Tower bound. Thus, when 6V is determined by (A.6), it is the case
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.

* B j * * L . 34 % .
that x,. < &, <m, ; and thus 2 < x, implies & > x.. Clearly, if
* * i * * . * _
X, < Mo then 83 >0, so suppose X, = m .. Since zr = x:,
admissibility implies 2: = x: = m: = zr° However, since

J = Jj_* * . -
zr max {xr,mr o Sr}, where o  and Gr are fixed positive

constants, zg = . for sufficiently large jed, and (A.6) implies

r
6 = 0 for such Je A

(In the case of Algorithm 1, it may be deduced from (A.6) that
1im ej = 1 - oF 1in the worst case, but this property turns out to be
J+OO

adequate for the convergence proof of Algorithm 1.)

Corollary A.1: If the hypotheses of Theorem A.T hold, and w*, the

optimal value of P(&*,m",u*),

satisfies w* < f(m*), then the
optimal value of P(2d,x3,ul) s also strictly less than f(m*) for

J sufficiently large.

Proof: By Theorem A.1, if y* is an optimal solution of P(Z*,m*,u*),
then there exists a sequence {yj} with yJ ¢SY  such that yJ - y*.
By Lemma A.T, fj(yJ) - f*(y*) = w*. Since the optimal value of

P(lJ,XJ,UJ) is not greater than fJ(yJ), the conclusion follows. A

Convergence Proof for Algorithm 2:

If {xj} is a sequence generated by Algorithm 2, then {£(x3)}
is monotone decreasing, so let z* = lim f(xJ), and assume z°F < z*,
Jroo

Let x* be an accumulation point of {x9} so that f(x*) = 7* and

x* s not optimal for (1.1). Let o be a power of o such that

*

x* is not optimal for P(2*,x*,u*), where 2? = max {24,%j

U*Gi } 9
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and u: = min {ui,x?+a*61}o By Corollary A.1 with m

*

X", the

optimal value of the problems P(RJ,XJ,uJ) is strictly less than

£(x*) for xJ sufficiently close to x*, so that, for such

x9, F(x¥) < f(x*), a contradiction.

Convergence Proof for Algorithm 1:

The proof is analogous to that of Algorithm 2, except that
an appropriate modification of the proof of Corollary A.1 is needed
in the non-polyhedral case, as noted in the remarks following

Theorem A.1.




10.

1.

12.

-36-

References

Avriel, M., Nonlinear Programming Analysis and Methods, Prentice-

Hall, Inc., Englewood CT1iff, N.Jd., 1976,

Bachem, Achim and Korte, Bernhard, "Quadratic Programming over
Transportation Polytopes", Report No. 7767-0R, Institut fir
Okonometrie und Operations Research, Bonn, 1977.

Beale, E. M. L., Mathematical Programming in Practice, Sir
Isaac Pitman & Sons Ltd., London, 1968.

Charnes, A. and Lemke, C. E., Minimization of Nonlinear Separable
Convex Functionals, Naval Res. Logistics Quart., 1, pp. 301-312, 1954.

Collins, M., Cooper, L., Helgason, R., Kennington, J., and
LeBlanc, L., "Solving the Pipe Network Analysis Problem
Using Optimization Techniques", Man. S¢i., 24, pp. 747-760,
1978. )

Dantzig, G. B., Linear Programming and Extensions, Princeton
University Press, Princeton, N.J., 1963.

Dantzig, G. B., Folkman, J., and Shapiro, N., "On the Continuity
of the Minimum Set of a Continuous Function, JMAA, 17, 519-548,
1967.

Dantzig, G. B., Johnson, S., White, W., A Linear Programming Approach
to the Chemical Equilibrium problem, Man. Sci., 5, 38-43,

1958.

Fletcher, R., "An Algorithm for Solving Linearly Constrained
Optimization Problems", Mathematical Programming, 2, 133-165, 1972.

Geoffrion, A. M., Objective Function Approximations in Mathematical
Programming, Mathematical Programming, 13, 23-27, 1977.

Griffith, R. E. and Stewart, R. A., "A Nonlinear Programming
Technique for the Optimization of Continuous Processing Systems",
Man. Sci., 7, 379-392, 1961.

Gross, 0., Class of Discrete Type Minimization Problem, RM-1644,
RAND Corp., Santa Monica, California, 1956.

13.

Hadley, G., Nonlinear and Dynamic Programming, Addisof Hesley
Publishing Co., IncC., 1964,




14.

15.

16,

17.

18.

19.

20.

21.

22.

23.

24,

25.

-37-

Marsten, R. E., Hogan, W. W., Blankenship, J. W., "The Boxstep
Method for Large-Scale Optimization", Operations Research, 23,

pp. 389-405, 1975.

Meyer, R. R., "A Class of Nonlinear Integer Programs Solvable by
a Single Linear Program",SICOP, 15, pp. 935-946, 1977.

Meyer, R. R., Two-Segment Separable Programming, Management
Science, 25, pp. 385-395, 1979.

Meyer, R. R., "Computational Aspects of Two-Segment Separable
Programming", in preparation, 1980.

Meyer, R. R. and Smith, M. L.,"Algorithms for a Class of 'Convex'
Nonlinear Integer Programs",in Computers and Mathematical
Programming”,ed. by W. W. White, NBS Special Publication 502, 1978.

Miller, C. E.,"The Simplex Method for Local Separable Programming"s
in Recent Advances in Mathematical Programming",ed. by R. L. Graves
and P. Wolfe, McGraw-Hill, New York, 1963.

Miiller-Merbach, H., "Die Methode der 'direkten Koeffizientanpassung'
(u-Form) des Separable Programming", Unternehmensforschung, Band 14,
Heft 3, pp. 197-214, 1970.

Rockafellar, R. T., Optimization in Networks, Lecture Notes,
University of Washington, 1976.

Saaty, T. L., Optimization in Integers and Related Extremal
Problems, McGraw-Hill, New York, 1970.

Symonds, G. H.,"Chance-Constrained Equivalents of Some Stochastic
Program”, Operation Research, 15, pp. 495-512, 1967.

Teng, James Z, "Exact Distribution of the Kruskal-Wallis H Test
and the ‘Asymptotic Efficiency of the Wilcoxon Test with Ties",
Ph.D. Thesis, University of Wisconsin-Madison, 1978.

Thakur, L. S.,"Error Analysis for Convex Separable Programs: The
Piecewise Linear Approximation and the Bounds on the Optimal
Objective Value",SIAM J. App. Math., pp. 704-714, 1978.

26.

27,

Wagner, H. M., Principles of Operational Research-with Applications
to Managerial Decisions, Prentice-Hall, Inc., 1969.

Wets, R., "Programming Under Uncertainty: The Equivalent Convex
Program", SIAM J. Appl. Math.. 14, pp. 89-105, 1966.




