QUERY EXECUTION IN DIRECT
by
David J. DeWitt
Computer Sciences Technical Report #343

December 1978

QUERY EXECUTION IN DIRECT

David J. DeWitt
Computer Sciences Department
University of Wisconsin

This research was partially supported by the National Science
Foundation under grants MCS78-01721 and MCS77-08968 and the Unit-
ed States Army under contract #DAAG29-75-C-0024.

ABSTRACT

In this paper query organization, execution, and optimiza-
tion in the database machine DIRECT are discussed. We demon-
strate that the use of a monitor for each relation referenced by
a query along with the use of the NEXT_PAGE construct permits the
DIRECT back—-end controller to assign a query to any number of
processors for execution. Furthermore, these constructs also
permit the controller to balance the 1locad in the back-end by
dynamically adjusting how many processors are assigned to each
executing query.

We also identify the problem of relation fragmentation which
occurs when a query is executed by several processors in parallel
and develop a technique for estimating the optimal number of pro-
cessors to compress a relation so that the execution time of the
entire query is minimized. These results appear to be applicable
to all database machines which employ parallel processing tech-

niques to enhance query execution.

1.0 Introduction

This paper discusses query organization, execution, and op-
timization in DIRECT. DIRECT is a multiprocessor organization
for supporting relational database management systems which is
being implemented at the University of Wisconsin. DIRECT can
support the simultaneous execution of relational algebra queries
from different users in addition to parallel processing of single
queries. Section 1.1 contains an overview of DIRECT's organiza-
tion. More details can be found in [1,2].

One feature which differentiates DIRECT from the other data-
base machines which have been proposed is its relational algebra
query organization and execution. As will be demonstrated in
Sections 2.0, 3.0, and 4.0, the unique structure of DIRECT
queries results in the following two features. First, the number
of processors assigned to execute a query can be dynamically
determined based on the priority of the query, the type and
number of relational algebra operations included in the query,
and the size of the relations referenced. The second effect of
our organization is that the number of processors assigned to a
query can be increased or decreased during the execution of the
query.

Section 5.0 presents a discussion of a problem which has
been 1ignored by all previous database machine designers. This
problem arises when more than one processor is used to select
from a relation those tuples which satisfy a search condition.
We call this problem “relation fragmentation". To illustrate we

will use the ‘"restriction" operator. Assume that the relation

being "restricted" is divided into fixed size pages (tracks in
RAP [3,4]) and that there 1is one processor per page (track).
Then, when the search condition is applied by all ' processors in
parallel to the relation, each processor will produce a subset of
the new relation. This new relation will contain those tuples
which satisfy the restriction. In DIRECT each processor will
produce some fraction of a page of the new relation. In RAP,’
each processor will "mark" those tuples on its track which satis-
fy the search condition. (For a discusion of mark bits versus
temporary relations see [1,2].) If this new relation represents
the results of the query, this fragmentation is not a significant
problem. However, if this new relation is to be used by a subse-
quent operator (such as a join) in the query, then the degree of
relation fragmentation will have a significant impact on the per-
formance of this operator. This performance degredation will oc-
cur because any subsequent operator which uses the fragmented re-
lation as an operand will have to read all of the partially
filled pages (tracks) in order to access all the tuples of the
intermediate relation. RAP has no choice but to suffer the ef-
fect of this fragmentation and, as a consequence, RAP executes
joins with about the same performance as a single conventional
processor [5]. In Section 5.0, we introduce the concept of
compression as a technique for reducing the degree of relation
fragmentation. Then, we analyze the cost of compression in order
to calculate the optimal number of processors to perform the

compression so that the execution time of the entire query is

minimized.

1.1 DIRECT Systems Architecture

DIRECT consists of six main components: a host processor, a
back-end controller, a set of query processors, a set of CCD
memory modules which are used as pseudo-associative memories, an
interconnection matrix between the set of query processors and
the set of CCD memory modules, and one or more mass Storage dev-
ices. A diagram of these components and their interconnections
can be found in Figure 1.1.

The host processor, a PDP 11/45 running the UNIX operating
system, handles all communications with the users. A user who
wishes to use DIRECT will log onto a modified version of INGRES
[6] and then proceed in the normal manner. However, when the user
wishes to execute a query, INGRES will compile the query into a
tree of relational algebra operations called a "query packet" and
then send it to the back-end for execution.

The back—-end controller is a PDP 11/40. It 1is responsible
for interacting with the host processor and controlling the query
processors. After the back-end controller receives a query pack-
et from the host, it determines the ﬁumber of query processors
that should be assigned to execute the packet. TIf the relations
which are referenced by the guery packet are not currently in the
associative memory, the back—-end controller will page portions of
them in before distributing the query packet to the query proces-
sors selected.

Each query processor is a PDP 11/03 with 28K words memory.
The function of each query processor is to execute query packets

assigned by the back-end controller.

T°T @unbL4
JUNLIILTIHIYY WILSAS 1I23YIC

XIYLYW
NOILJ3INNOJYIINI

u
¥0SS330¥d

A¥3nd

4
40SS330¥d

A43N0

L
40SS330dd

A¥3Nd

39Vd04S
SSYW

39VH01S

437704 LINOD
gN3I-A02Vv8

1SOH

Since DIRECT has a MIMD architecture, it is capable of sup-

porting both intra and inter-query concurrency. To facilitate

the support of intra-query

concurrency, relations are divided

into fixed size pages. Each query processor, assigned by the con-

troller to execute a query

packet, will "associatively" search a

subset ofﬂ each relation referenced in the packet. When a query

processor finishes examining one page of a relation, it makes a

request to the back-end

controller for the address of the next

page it should examine. Since several query processors, each ex-

ecuting the same query, can request the "next page" of the same

relation simultaneously, the controller operations must be indi-

visible. This will insure

that each of the query processors will

be given a different page to examine. After receiving the ad-

dress of the page from the controller, the query processor must

be able to rapidly switch to that page. Details of an intercon-

nection matrix which permits this can be found in [1,2].

To facilitate support

of inter-query concurrency, the asso-

ciative memory and interconnection matrix must permit two query

processors, each executing
page of a common relation
cate copies of a relation,
but, more importantly, we

tiple copies of a relation

different queries, to search the same
simultaneously. By elimindating dupli-
we not only reduce memory requirements
eliminate the problem of updating mul-

without sacrificing performance.

2.0 Query Packet Format

The types of query packets which are received by the back-
end controller can be divided into two classes based on informa-
tion contained in the packet header. Class I contains those com-
mands which manipulate system catalogues (e.g. CREATDB). Execu-
tion of these commands generally involves addition or deletion of
information in one or more tables which are maintained by the
back-end controller and does not involve any query processors.
For more details the reader should see [1,2]. Class II contains
those queries which will be executed by a collection of query
processors. In this section, we will discuss the structure of
this class of query packets.

Each Class II query packet is structured as a tree (see Fig-
ure 2.1). The leaf nodes of this tree correspond to relations
referenced in the query. Each non-leaf node is either a rela-
tional algebra operator or an intermediate relation. The set of
operators supported include the traditional operators such as
JOIN, PROJECT, RESTRICT, UNION, INTERSECTION, and DIFFERENCE as

well as aggregrate operators such as MAX, MIN, COUNT, etc.

%)
o)

() ()
s> CEosmicD

Figure 2.1

One of the unique features of DIRECT is the general struc-
ture which is common to all the relational algebra operators sup-
ported. This structure, as we will demonstrate in Section 4.1,
permits a query packet to be assigned to any number of query pro-

cessors without modifying the packet. Furthermore, this operator

structure permits additional guery processors to be dynamically
assigned to execute a packet during execution of the packet by
other query processors. We will conclude this section with an
example of a simple INGRES query and the corresponding query
packet. This example will be used in Section 4.1 to illustrate
how our flexible query processor assignment scheme is implement-
ed.

Given the SUPPLIER relation sbown in Figure 2.2 and the
INGRES query to find the names of all suppliers in N.Y.:

RETRIEVE (SUPPLIER.NAME) WHERE SUPPLIER.CITY = "N.Y."
Then, the compiled query packet for this query has the structure
shown in Example 2.1. ©Note that the packet never asks for an ex-
plicit page of a relation. Instead, the next page of the rela-
tion 1is always requested. This structure, when combined with a
monitor for every relation referenced by a packet, permits us to
dynamically assign query processors to executing query packets
{see Section 4.1).

SUPPLIER Relation

NUMBER NAME CITY

10 JONES N.Y.

20 SMITH CHICAGO
74 WHITE DALLAS
101 RICE N.Y.

Figure 2.2

CITYQPKT

LOCK (SUPPLIER,READ)
CREATE NYSUPPLIERS /* create result relation */
DO FOREVER
BEGIN
- ASK BACK-END CONTROLLER (BEC) FOR THE NEXT~PAGE OF RELA-
TION SUPPLIER
- WAIT FOR THE REC TO RETURN THE PAGE FRAME NUMBER
- IF THE BEC RETURNS "END OF RELATION" QUIT AND SIGNAL DONE
OTHERWISE
- READ NEXT PAGE OF RELATION SUPPLIER INTO LOCAL MEMORY
FROM THE PAGE FRAME
- BEXAMINE ALL TUPLES READ IN
- COPY EACH TUPLE THAT SATISFIES THE RESTRICTION
SUPPLIER.CITY = "N.Y." INTO A ILOCAL PAGE BUFFER
- WHEN THE BUFFER IS FULL

- ASK (BEC) FOR THE NEXT PAGE OF RELATION
NYSUPPLIERS -
- WAIT FOR BEC TO RETURN A PF#
- WRITE BUFFER INTO PF#
END
UNLOCK (SUPPLIER)

Example 2.1
3.0 Query Processor Allocation

We are currently investigating two alternative approaches
for allocating query processors to a query packet when the back-
end controller decides to execute the packet. These approaches
are termed the fixed allocation approach and the dataflow machine
approach. In the fixed allocation approach the QPA process exam-
ines the packet and attempts to estimate an "optimal" query pro-
cessor allocation for this packet. By optimal we mean that as-
signment of more than the optimal number of query processors to
the packet will not decrease the execution time for the packet.
For example, assume that the query packet joins relation 2 and
relation B and that relation A is N pages long and relation B is
M pages 1long. Then, the optimal guery processor allocation for

this packet is MAX(M,N). This allocation will require MIN(M,N)

time units where a time unit is the time required to Jjoin one
page of A with one page of B. In this example, the optimal allo-
cation is truly optimal. However, consider the packet which
first joins A and B and then joins the resulting relation with C.
Since it is impossible to predict the size of A join B, it is im-
possible to determine exactly how many query processors should be
assigned. We plan to investigate several heuristics for deter-
mining the "optimal" query processor allocation.

In the dataflow machine aporoach to query processor alloca-
tion, only simple relational algebra operations (JOINS, RESTRIC-
TIONS, PROJECTIONS, etc.) are assigned to the query processors
and not complete query packets. This eliminates the difficult
task of estimating an "optimal" query processor allocation for an
entire packet. Instead, an exact value for each step in the
packet can be determined. 1In addition to increasing query pro-
cessor utilization, this approach should also decrease page
traffic in DIRECT. This should occur because as soon as a pade
of "A Jjoin B" is ©produced, another query processor can begin
joining it with C. Hence, the likelihood that the page will be
paged out is reduced. We are currently comparing this data flow
machine approach with the standard QPA scheme to determine the

effect of each on system throughput in DIRECT.

4.0 CCD Memory Management

The function of the CCD memory management process in the
back-end controller is three fold:

- Respond to a NEXT PAGE request from a query processor

Respond to a GET_PAGE request from a query processor

Schedule the movement of pages of relations between CCD memory
page frames and mass storage as the result of NEXT PAGE and

GET_PAGE operations.
4.1 The NEXT_ PAGE Operation

The form of a NEXT_PAGE request is:
NEXT_PAGE(QPKTi,RELj,QPk)
This is a request from query processor k which is executing query
packet i for the next page of relation j. The resulting action
is for the BEC to send the page frame number which contains the
next page of relation j to query processor k. A page fault can
occur if the required page is not in some CCD page frame. Han-
dling of page faults 1is the same for both the NEXT PAGE and
GET_PAGE operations and is discussed in Section 4.3.

Since a aquery packet can be assigned to any number of query
processors, there must be a way to prevent two simultaneous
NEXT PAGE requests from different quefy processors executing the
same packet from getting the same page. This is handled by the
use of the Query Packet Task Table which is shown in Figure 4.1.
The Query Packet Task Table has one entry for each instance of
each relation referenced by each executing query. Associated

with each entry is a monitor[7] which controls access to the

-10-

table entry. 1Initially, the currency pointer for the relation is

set to zero.

QUERY PACKET TASK TABLE

QPKT # RELNAME CURRENCY | POINTER TO
POINTER PAGE TABLE
FOR RELATION

CITYQPKT |gsuppLIER i
CITYCPKT | NYSUPPLIERS 5
Figure 4.1

As an example, assume that qguery processor allocation 1ini-
tially aséigns the CITYQPKT query in Example 2.1 to query proces-
sors QP5 and QP8. Assume that the order in which the monitor for
the SUPPLIER relation receives requests is:

NEXT_PAGE(CITYQPKT,SUPPLIER,QP5)

NEXT*PAGE(CITYQPKT,SUPPLIER,QPB)

NEXT_PAGE(CITYQPKT,SUPPLIER,QPS)

NEXT~PAGE(CITYQPKT,SUPPLIER,QPS)

NEXT_PAGE(CITYQPKT,SUPPLIER,QP8)

Then, the pages of the SUPPLIER relation examined by QPg will be
1,3, and 4 and the pages of the SUPPLIER relation examined by QPg
will be 2 and 5. Assume that after the 1last NEXT PAGE request
above, the QPA algorithm assigns an additional query processor
(QPy) to the CITYQPKT. Now there will be three query , processors
requesting pages from relation SUPPLIER. If the subsequent re-

quest stream is as follows:

-11-

NEXT_PAGE(CITYQPKT,SUPPLIER,QPl)

NEXT_PAGE(CITYQPKT,SUPPLIER,QPS)

NEXT PAGE (CITYQPKT,SUPPLIER,QPy)

NEXT PAGE (CITYQPKT,SUPPLIER,QPg)

NEXT_PAGE(CITYQPKT,SUPPLIER,QPS)

NEXT_éAGE(CITYQPKT,SUPPLIER,QPl)

NEXT_PAGE(CITYQPKT,SUPPLIER,QPS)
and the SUPPLIER relation consists of nine pages then QPl1 will
examine pages 6 and 8 and then will receive the "End of Relation"
(EOR) message. QP5 will examine page 7 before receiving an EOR
reply. QP8 will examine page 9 before it receives an EOR to a
NEXT_PAGE request.

By having a monitor associated with each entry in the query
packet task table and by using the NEXT_PAGE concept, we can
dynamically assign additional query processors to a query packet
that 1is already partially executed. 1In the case of a complex
query such as that in Figure 2.1, it may be the case that the ad-
ditional query processors are added after the other query proces-
sors have finished the restrict of Ry and Ry. Our approach han-
dles this situation correctly. When the newly assigned query pro-
cessors attempt to restrict Ry (or Ry), they will get "End of Re-
lation" immediately and will therefore proceed to begin the join

of Ryj' with Ry'.

4.2 The GET-PAGE OPERATION
The form of the GET_PAGE Operation is:
GET*PAGE(QPKTi,RELj,QPk,PAGEm)

It represents a request from a query processor for PAGE, of RELj.

-12-

A query processor which is executing A Jjoin B will wuse this
operator to retrieve every page in B for each page of A it exam-

ines. No monitor is needed to coordinate GET_PAGE requests.
4.3 PAGE FAULTS IN DIRECT

The third task of the CCD memory management process 1is to
handle page faults by scheduling page transfers between CCD
memory page frames and mass memory. A page fault occurs when a
requested page is not in some CCD memory module. 1In DIRECT these
page faults will be, to a large extent, avoidable by doing anti-
cipatory paging. In the CITYQPKT (Example 2.1), for example, the
controller knows that the entire SUPPLIER relation will be exam-~
ined and hence the reference string of the CITYQPKT is known in
advance. By using the currency pointer for the SUPPLIER relation
in the query packet task table, the SUPPLIER relation page table,
and the current query processor allocation, the controller can
determine how far ahead it should attempt to be in order to in-
sure that there will always be a page ready for each query pro-

cessor which is executing the packet.

5.0 Relation Fragmentation and Compression

In this section we will discuss why the problem of relation
fragmentation occurs, when a relation should be compressed, and
how many query processors should be used to perform the compress
operation. The query shown in Figure 2.1 will be used throughout
this section to.illustrate several points. In this query, rela-

tions R; and Ry are "restricted" by boolean search conditions to

-13-

form Ry' and Ry', respectively. Then, relations Ry' and Rp' are
"joined" to form the result relation Rj.
In the following sections we will address the following
questions:
- Why should a relation ever be compressed?
- Before performing the join operation, should relation Ry', Ry',
or both Ry' and R,' be compressed?
- How many query processors should be assigned to compress a re-
lation so that the execution time of the complete query 1is

minimized?
5.1 Relation Fragmentation

In order to explain the need for compression, consider the
restriction of relation Rj in Figure 2.1 to form relation Ry‘'.
If Ry contains 1000 pages and 1000 query processors are available
to execute the restrict operator, then each query processor will
examine one page of Ry and will produce at most one page of Ry'.
If 20% of the tuples of Ry satisfy the search criterion, then
each page of Ry' will, on the average, be 20% full. If only 500
query processors are used to evaluate the restrict operator then
500 pages, each of which is 40% full, will be produced. Note,
however, that if one time unit is”the amount of time required for
one query processor to restrict one page of a relation, then the
restrict operator will require one time unit if 1000 query pro-
cessors are used and two time units if 500 processors are used.
Thus, there 1is a tradeoff between the processing time of an
operation and the degree of fragmentation of the relation pro-

duced.

-14-

As another example, assume that R; contains 1000 pages, that
25% of the tuples in R; satisfy the restriction, and that 100
query processors are assigned to perform the restriction. Then
each query processor will examine (approximately) 10 pages of Ry
and will produce, on the average, 2.5 pages of Rj'. Therefore,
before R;' is compressed it will contain 300 pages. Two hundred
of these pages will be full and 100 will be 50% full.

To proceed more formally we need the following definitions.
Let QP be the number of query processors which are available to
execute a query. For a restrict operator, let RF be the fraction
of the tuples that satisfy the search criteria. Finally, for

each relation, R in the database, three pieces of information

ir

are maintained. S; 1is the size of R; in pages. QPF; is the

i i
number of the S; pages that are only partially filled. For those
pages that are partially filled, F; indicates how full each page
is (on the average). For our previous example S = lOOO,MQPFl =
0, F{ = 0, s;' = 300, QPF;' = 100, and Fi' = 0.5.

Assume that QP query processors are assigned to restrict re-
lation R, with size S;. If Ppax~ MOD(S;,QP) and Pgip= QP - Ppaxr
S.

then P, processors will each examine Cy 4= 5;J + 1 pages and
..

S
. i
PLin Processors will each examine Cpip, = L&; pages of Rj. The

size of the resulting relation R;', S;', will be:

Prax * rCmax * RFij + Ppin ¥ rcmin * RFi—.| pages.
QPF;"' will equal:

Pmax * rfraction(cmax * RFi)q + Prin * rfraction(cmin * RFi)W

-15-

and F;' will be equal to:

* RFj) + Ppip * fraction(Cpj, * RFi)

QPFi'
Finally, if QP > S5, then only S; query processors will be wused

to perform the restriction.
5.2 The Compress Operator

The purpose of the compress operator is to eliminate rela-
tion fragmentation by compressing those pages of a relation which
are only partially full. This can be accomplished by reading
partially full pages and writing full ones.

If CP is the number of query processors used to compress re-

lation Ry and T is the time required to move a page between a

pr
query processor's local memory and the CCD memory then the time

required to perform the compression is:

T Qi35 B S | g O R
¢ CP pr cp t Pt

The first term represents the time required by the CP query pro-
cessors to read the QPF; partially filled pages and the second
term represents the time required to write the compressed pages.
The size of the compressed relation R;' is:

QPF,
S;' = S; - QPF; + MOD(QPF;,CP) * | (| -===|+ 1) * Fj

QPF;
+ (CP - MOD(QPF;,CP)) * || --== | * F
L cp |

As with the restriction operator, there is a
time/fragmentation tradeoff associated with the compress opera-
tor. As the number of query processors employed increases, Tc'

the time required to compress the relation, decreases but the

-16-

value of S;' increases since each of the CP query processors will
terminate with a partially filled page. As we will demonstrate
in Section 5.4, the optimal value of CP cannot be determined
without examining how the compressed relation is used by subse-

guent overations in the query.
5.3 Employment of the Compress Operator

Consider the query shown in Figure 2.1. Since both R;' and
R,' contain partially filled pages and since the execution time
of the join is proportional to the product of the sizes of the
two source relations, the obvious choice is to compress both re-
lations before performing the join. The modified query tree
representing this choice is shown in Figure 5.1. As we will now
demonstrate, compressing Ry' will actually increase the execution

time of the query.

Figure 5.1

To understand why this is true, we must examine how DIRECT

-17-

executes a join operation. If the number of query processors as-
signed to execute the join in Figure 5.1 is equal to the size of
R;" (i.e. QP = S1") then each query processor will read one page
of Ry". It will then attempt to join the tuples on its page of
Rl" with all the tuples in Ry" by reading R," one page at a time.

There"are several alternative reasons why compressing Rj'
will increase the execution time of the 3join operation. If
QP=S;', then compresssing Ry' will reduce the number of query
processors which can be utilized to execute the join operation
from Sl' to Sl". Furthermore, since compression does not reduce
the number of tuples in a relation, each of the S1" query proces-
sors will have to examine more tuples from relation Ry". There-
fore, each query processor will produce a greater percentage of
R3. This will result in more page writes per query processor and
hence increased processing time for the complete query.

If QP << 87" (the size of the compressed relation), the
above argument will no 1longer be valid. Rather, if Rl' is
compressed, then since S;" < S1' the time spent by each query

processor reading pages of Ry" will be reduced:

[Sl"] [Sllw
o * g " % T < o * g, *x .
0P 2 pr 0P 2 pr

If CP query processors are assigned to compress Rjy' before the

'
join operation, then [-5;4-1 * Tpr seconds will be used
to read the partially filled pages. Additional time will also be
required to write the compressed pages and then reread the pages
of Ryj" to perform the join.

An alternative approach is to make the compression of Rj' an

implicit component of the join. By having each of the QP query

-18-

processors attempt to read enough partially filled pages of Ry
to fill its buffer before proceeding to read the first page of

R,", the compression will, in effect, be performed in only

If QP = s7' = QPF;', then each query processor will fail in its
attempt to fill its buffer. It will, therefore, proceed to join
a partially filled buffer containing tuples of Rl' with all the
tuples in Ry". By using this approach we achieve the best as-
pects of both approaches. We do not 1limit the potential con-
currency when QP = S;' and yet we will achieve the performanee
improvement of compression when QP << Sq".

While explicit compression of Ry' 1is not beneficial,
compression of Ry' certainly will be. Since each query procesor
will, for each page of R;' it examines, read all of Ry',
compression of Ry' will significantly reduce the number of page
reads performed and hence the execution time of the query. There
is, however, a tradeoff between the benefits obtained by doing
compression versus the cost of performing the compression. In
the following section, we will develop a method for choosing the
value of CP so as to minimize the cost of performing the compres-

sion while maximizing the resulting benefits.
5.4 Calculation of the Optimal Value of CP

As discussed in Section 5.2, there 1is a tradeoff between

minimizing the time required to perform a compression, T and

cl
the size, S;'s of the compressed relation. As the value of CP

increases, To will decrease but Si‘ will increase. Since the

-19-

compressed relation is subsequently used as an operand in a join
(Rp" in Figure 5.1), any increase in the value of S;' will also
increase the execution time of the join. 1In this section we will
develop a formula for determining the value of CP such that the
execution time of the compress and join operations is minimized.

In Section 5.2, expressions for T. and Si' were developed.

c
The time to execute the join, Tj, is expressed by:
Tj = Tr + Te + TW

T, represents the time required to join tuples of the two source
relations and is independent of the number of pages in relations
Ry ' and Ry" (81' and S," respectively). The time required by the
query processors to move pages of the result relation from local
memory to a CCD memory module is T,- T, depends only the number
of tuples produced by the join and QP, the number of query pro-

cessors used to execute the join. T the time spent reading

L"

pages of the two source relations can be expressed as:

Sl'— Sl'
= ——— * —r—— * 0%
T, - Tpr + op Sy Tpr

Since To and T, are independent of S;' and S," and since

g 1
el
QP ®
is not effected by the compress operator, Tj can be rewritten as:
Ty = o1 * S, T L+ ¢
3 - - o 2 N
J 0P pr

The time required to execute both the compress and the join, T =

TC + Tj, is thus:

T = | ww——- * P | e * le T r + o 2" * T r + C
cP Pt cp pr oP P

Since the result of the compression is to reduce the size of re-

lation Rp' from S,' to Sp", we can substitute the expression for

-20-

S," developed in Section 5.2 and divide by Tpr‘ This yields:

QPF, '] QPF,"
T =] === + || === *Fz'
cp cp

S1'] QPF,"
+| === |* (S,' - QPF,' + MOD(QPF,',CP) * | (| —=—=- + 1) * Fy
QP CP
QPF,
+ (CP - MOD(QPle,CP)) * L ----- J * Fz') + Cy
CP

T can be simpified further by consolidating those terms which are

independent of CP into c. This simplification yields:

S1'] QPF,"
+|-=-|* (MOD(QPF,',CP) * | (| —--=- + 1) * Py
QP Cp -

QPF, "'
+ (CP - MOD(QPF,',CP)) * || --==- * Fy') o+ ey

The obvious approach of differentiating T with respect to CP
to find that value of CP which minimizes T will not work since

this function is not continuous. We have plotted T, T, (the

first two terms of T), and T (the third term of T) as functions

rj
of CP in Figures 5.2 and and 5.3 for two different sets of data.

As is illustrated by Figures 5.2 and 5.3, T, 1is a nonin-

creasing step function of CP. Thus, CPj > CP; implies TC(CPj)
L T (CPy). Trj' on the otherhand, remains relatively constant
(with minor fluctuations) until a certain value of CP, CPp, is

reached. At CP=CPp, begins to increase as a linear function

Trj
of CP until CP becomes equal to QPF,'. At this point, and for
all values of CP > QPFZ', compression will have no effect since

each of the CP processors will read exactly one page of R2'.

€°Gg @anbta

z2°G6 2aInbta
o 114 oz ST ot S D 114 0z ST ot s
- ‘ . + $ - - 4 1 t + +
UB / U.H. /1‘ ¢
| K
114 i o1
T ST] ST
} oz +02
Hy ﬁua
hA / + ¢z & F ST
T o T0¢e
1 ¢ " GE
T or Tor
9°0 = iy €0 = (F
Z,! z.!
zz = ‘b Zz = “xd
1 i ¢
0S= 5 05 = §
05 = Sad I Gy 05 = 5O Tsv
<B 49

-21~

An obvious choice for that value of CP which may perhaps
minimize T is CPp. While values of CP less than CP, may produce

values of Trj less than the value of T at CPp, the decrease in

rj
Trj is more than offset by a large increase in T,. We can deter-
mine a formula to calculate CPp» by first observing what changes

occur 1n Trj

Starting with CP=1, as more and more query- processors are

at CPm.

used to compress a relation, the maximum number of pages of the
compressed relation produced by any one processor decreases. For

a given value of CP, this number is expressed by:

[2): »]

As long as CP is less than by QPF,', the minimum value of this
expression 1is r2 * Fz'w. Thus, when F2' < 0.5, r2 * Fz'q is
equal to 1. Otherwise, when F,' > 0.5, it is equal to 2. The

first value of CP such that

(2] o]

equals 1 if F,' < .5 or 2 if Fy' > .5 will be CP,;. As CP grows
larger than CP_, the maximum number of pages produced by any one

processor will continue to equal to 1 (or 2). Thus, S. (the size

C

of the compressed relation) and hence Trj will grow as a linear
function of CP (with slope of 1 or 2 depending of the wvalue of
Fy') until CP becomes equal to QPF,'. At this point S, will be-

come equal to QPF,'.

QPFZ'
Solving | | ————- * F2' = n, n=1,2
CP

-22~

for CP yields: CP = [QPFZ"I

If Fy' is less than 0.5, then evaluating this expression with n
equal to 1 will yield the correct value of CP,. Otherwise, it
should be evaluated with n equal to 2.

For QPF2' = 22and Fy' = 0.30, evaluation of_the formula for
CP vyields CpP = 8. As 1indicated in Figure 5.2, this is the
correct value for CP, and is also the value of CP that minimizes
T. The expression for CP also gives the correct value for the
example shown in Figure 5.4.

The expression for CP can also be used to determine whether
compression of Ro' will be beneficial in terms of reducing the
time to execute the join. For example, assume that QP=50,
S4'=50, QPF,'=22, and Fy' = 0.826.’ Plotting T as a function of
CP for this example indicates that the minimum value of T occurs
when CP=22. Evaluation of the expression above yields CP,=11.
Since F5' is greater than 0.5, each of the 11 processors will
produce two pages of the compressed relation. Therefore, the
size of the compressed relation will be 22 and hence .it is not
worthwhile to perform the compression.

CP, will not, however, always give an accurate estimate of
that value of CP which will minimize T. For example, if QP = 50,
QPF,' = 22, 8;' = 50, and F,' = 0.0826, the value of CP, which is
computed is 2. The minimum value of T, however, occurs when CP =
4. This situation arises because Tq is the .dominating term in T.
If S1' equaled 150 instead of 50, then CP, would have indeed been

the value of CP which minimized T.

-23-

Therefore, by evaluating CpP = [QPFZ']

b

the optimal number of query processors to perform the compression
can be estimated. If Fo' is less than or equal to 0.5, this ex-
pression should be evaluated with n equal to 1. Otherwise, it
should be evaluated with n equal to 2. 1If Fy' > 0.5, then
compression will be worthwhile if and only if CPp * 2 is 1less
than QPF, ', While CP, may not always be the value of CP which
minimizes T, it appears to generally be a very good estimate of
it. Furthermore, as is indicated by Figures 5.2 and 5.3,
compression of Ry' using CPy, processors significantly reduces the
execution time T when compared to the execution time of the query

when Ry' is not compressed (i.e. the value of T when CP = QPF,"').

6.0 Conclusions

In this paper we have discussed query organization, execu-
tion, and optimization in DIRECT. The use of a monitor for each
relation referenced by a query along with the wuse of the
NEXT PAGE construct permits the DIRECT back-end controller to as-
sign a query to any number of processors for execution. Further-
more, these constructs also permit the controller to balance the
load in the back-end by dynamically adjusting how many processors
are assigned to each executing query.

We have also identified the problem of relation fragmenta-
tion which occurs when queries are executed in parallel and

developed a technique for estimating the optimal number of pro-

-24~

cessors to compress a relation so that the execution time of the
entire query is minimized. These results appear to be applicable
to all database machines which employ parallel processing tech-

niques to enhance query execution.

7.0 Acknowledgements

I would like to eXpress my appreciation to Haran Boral, Ra-
phael Finkel, and Ron Tischler for their helpful suggestions and

criticisms of earlier versions of this paper.

REFERENCES

1. Dewitt,D.J., "DIRECT - A Multiprocessor Organization for
Supporting Relational Database Management Systems," Proceed-
ings of the 5th Annual Symposium on Computer Architecture,
April 1978,

2, Dewitt,D.J., "DIRECT - A Multiprocessor Organization for
Supporting Relational Database Management Systems," To ap-
Pear in IEEE Transactions on Computers, Spring 1979, Also:
Computer Sciences Technical Report #325, Univ. of Wisconsin,
June 1978,

3. Ozkarahan, E.A.,Schuster,S.A., and K.C. Smith, "RAP - An as-

sociative processor for database management, " Proceedings of
the 1975 NCC,pp.379-386.

4. Schuster,S5.a., Ozkarahan,E.A., and K.C. Smith, "aA virtual
memory system for a relational associative processor,"
Proceedings of the 1976 NCC, pp. 855-862.

5. Ozkarahan, E.A., Schuster, S.A., and Sevcik, "Performance of
a Relational Associative Processor," ACM Transactions on
Data Basge Systems, Vol. 2, No. 2, June 1977, pp 175-195,

6. Stonebraker, M.R., Wong, E., and P. Kreps, "The design and
implementation of INGRES," ACM Transactions on Data Base
Systems, Vol. 1, No. 3, Sept 197s, pp.189-222,

7. Hoare, C.A.R., "Monitors: An Operating System Structuring
Concept," CACM Vol. 17,10, Oct,. 1974, pp. 549-557.

