ON THE STRUCTURE OF SETS
IN NP AND OTHER COMPLEXITY CLASSES

by

L. H. Landweber

R. J. Lipton

and

E. L. Robertson

Computer Sciences Technical Report $342
December 1978

ON THE STRUCTURE OF SETS

IN NP AND OTHER COMPLEXITY CLASSES

L. H. Landweber*¥*
Computer Sciences Department
University of Wisconsin-Madison

R. J. Lipton*
Department of Computer Science
University of California-Berkeley
and
Department of Computer Science
Yale University

E. L. Robertson**
Computer Science Department
Indiana University

*Supported in part by NSF Grant number MC578-81486 and the Army
Mathematics Research Center.

**gupported in part by NSF Grant number MCS76-17323.

This research was also facilitated by the use of Theory Net
(NSF Grant number MCS78-01689).

ABSTRACT

A simple technique is developed for manipulating the relative
complexity of sets with respect to polynomial time reducibility.
One application is the definition of a minimal pair (with
respect to polynomial time reducibility) of sets in NP-P.

The last section proves that the NP-complete are effectively

enumerable while NP-P is not.

ON THE STRUCTURE OF SETS IN NP

AND OTHER COMPLEXITY CLASSES

1. INTRODUCTION

The relationship between resource bounded deterministic and
nondeterministic complexity classes has been extensively studied.
For polynomial time, the associated question P = NP? is
particularly important because of the large number of problems of
practical interest that can be solved by nondeterministic
polynomial time bounded devices. If P = NP, then these
problems all have deterministic polynomial time solutions whereas
otherwise only exponential time solutions exist. Furthermore,

the class NP contains complete problems to which all other

il

members of NP can be reduced [4,6,8] and P NP 1if and only
if one of these complete problems is in P. With few exceptions,
most intuitively appealing members of NP have been shown to be
complete.

In this paper, we study the structure of sets in NP, We
develop a number of simple tools which facilitate the study of
the relative complexity of sets with respect to polynomial time
bounded reducibility. The methods also vyield rather elegant
proofs for results obtained earlier by Ladner [9] and Lynch [11].
In the former case, the theorems involved are significantly
strengthened.

The main idea involves an analysis of those input regions on

which set membership questions can be decided in polynomial time.

Because of the restrictions of polynomial time reducibility, a

[N

bound may then be obtained on the size of such intervals in sets
to which a given set can be reduced. This yields the existence
of sets in NP which are not complete and which have a variety
of other properties. The existence of sets A,BENP-P such that
any set reducible to both is in P is also an Iimmediate
corollary.

Recently a number of papers [1,2,5,7,11] have dealt with such
properties as density and sparseness for sets in NP. A set is
p-sparse [2] if there is a polynomial g such that for all n at
most g{n) strings of 1length n are in the set. It is not
known whether NP-complete sets can be sparse. The relationship
between these results and ours is not clear. By introducing gaps
(and thereby easy intervals) into a set a sparser or less dense
set 1is obtained (e.g., 1f one considers distance between set
members) . Hence our results can be interpreted as imposing limits
on how sets can differ with respect to degree of sparseness and
still be related by polynomial time reducibility. The interplay
between the various definitions and results is an area for future
research.

We believe that our results and those referenced above are
important because they provide intuition with respect to the
structural properties of NP-complete sets. They represent an
attempt to look more closely at why sets are NP-complete as
opposed to which sets are NP-complete. While demonstrating that
a large number of problems are NP-complete has served to increase
the importance of the P = NP dguestion, it does not appear to

have brought us closer to a solution to this problem. Hopefully,

further study of the relationship between structure and
complexity will help in this regard.

The remainder of the paper investigates the -existence of
effective enumerations of devices for recognizing all and only
members of certain classes of sets. A class admitting such an
enumeration 1is said to be recursively presentable. See [10] for
earlier work in this area for abstract complexity measures. In
particular, it is proved that the NP-complete sets are
recursively presentable and moreover the devices all operate in
nondeterministic polynomial time. Similar results are obtained
for other complexity classes (PSPACE, EXP-TIME, etc). On the
other hand 1if P % NP, the <class NP-P is not recursively
presentable by any devices which compute characteristic
functions. It is open whether NP-P can be presented in terms of
devices whose domains are the sets in questions. 1In contrast to
NP-complete sets, we show that the complete (with respect to
Turing reducibility) recursively enumerable sets are not
recursively presentable.

Section 2 presents definitions and notation wused 1in the
paper. The basic techniques for studying reducibility
relationships are obtained in Section 3. As indicated above
these results 1involve analyzing the size of intervals for which
easy (polynomial time) recognition algorithms exist. They are
conceptually simple and appear to have wide applicability to the
study of structural properties of sets in NP. Section 4 uses

these methods to generalize results due to Ladner [9] on the

existence of non complete sets in NP-P and the definition of a

minimal pair in NP. The last section studies the question of

recurisve presentability for various classes of sets.

2. DEFINITIONS

*
Notation : * denotes the finite length strings over the finite

alphabet ?. We use |x| for the length of a string in P*. By
convention, n and m denote string lengths while letters at the
end of the alphabet denote strings.

Assume a fixed bijection between E* for finite alphabet P and
the natural numbers, N(e.g., the p-adic notation of [3]). If x
is a string and n a natural number, then notation such as x<n
means that the number represented by x is less than n.

Our basic model of computation is the multitape Turing
Machine (TM). All machines are assumed to bhe deterministic
unless otherwise specifified. A (possibly nondeterministic)

Turing Machine M has time complexity (space complexity) £(n)

or runs in time {space) f(n) if for all inputs of length n, M
uses at most f(n) moves (tape squares) on all computation
paths. If M runs in time (space) p(n) where P is a

polynomial, then we say that M runs in polynomial time (space).

Let

NTIME[£(n)]

il

{AIACE*}, A recognized by a nondeterministic

™ in time £(n) }

DTIME[f(n)] {AIACR*, A recognized by a deterministic
™ in time £(n) 1}

NSPACE[{f(n)] and DSPACE[f(n)] are defined similarly. Then

P = W DTIME(n")
i>0

NP = @ NTIME(n")
i>0

PSPACE = W DSPACE(nY) = U NSPACE(n")
i>0 i>0

DEXP-TIME = W TIME(2™").
i>o0
NEXP~TIME, DEXP-SPACE and NEXP-SPACE are defined similarly.

We consider two notions of polynomial time reducibility due

to Cook [4] and Rarp [8]. A set A is many-one reducible to a

set B in polynomial time (AipB) if there 1is a function £
computable by a Turing Machine which runs in polynomial time such
that X€A if and only if £(x)€B. The function £ of the above

definition is often referred to as a transducer.

An oracle Turing Machine (with oracle BCE¥) is a multitape

T™ with a special tape called the oracle tape. The machine may
periodically write a string on the oracle tape and then in one
step branch depending on whether the string is in the oracle set
B. Of course, if B 1is not effectively computable, then the
computation could not actually be performed. An oracle machine
runs in time £ if it uses at most £f(n) moves on inputs of

length n. A set A is Turing reducible to a set B in

polynomial time (AipTB) if there is an oracle Turing Machine M

which runs in polynomial time such that X is in A 1if and only

if M halts in an accepting state on input ¥ with oracle B.

Write A< B, if A< B but not B A. Also A=_B if A< B
P -P P P

and B< A, If AspB, we say A and B are in the same degree

with respect to ip or are ipmequivalent. Similarly define <pT

and EpT.

Many-one and Turing polynomial reducibility are useful tools
for classifying the relative complexity of problems. For
example, if A< B, then a polynomial time recognition algorithm
for B yields a polynomial time recognition algorithm for A,
If AspB, then modulo a polynomial the complexity of B imposes
an upper bound on the complexity of A.

A set A is X-m-complete (X-T~complete) for some

complexity classs of sets X 1if A€X and BipA (B A) for all

_pT
BeEX.

We will omit the prefix when the meaning is clear. Complete sets
are in some sense the hardest sets in a complexity class. TFor X
= NP, Cook [4] showed that the set of satisfiable propositionl
calculus formulas 1is complete. Karp [8] and many others have
since demonstrated that a very large number of interesting
problems are NP-complete (see Garey and Johnson [6]).

A function £ is time constructible 1if there 1is a Turing

machine which on 1inputs of 1length n halts in exactly £(n)

steps. Polynomials, 2N and n! are examples of time
constructible functions. It is easy to see that for any
recursive r there is a recursive r'>r such that r' is time
constructible (On input X lxl = n, compute r(n) and halt.

Then r'(n)>r(n) is just the number of steps required to compute
J

r(n)).

A set of £functions {fi} is said to Dbe recursively

presentable if there is an effective enumeration MO’Ml"" of
algorithms (Turing Machines) such that 1) each fi is computed
by some Mj and 2) each Mj computes a member of {fi}. Sets
are identified with their characteristic functions yielding a
definition of recursively presentable for a collection of sets.
When the context is clear, we will use the same symbol to denote
a set, its characteristic function and an algorithm for the
characteristic function. 1In particular SAT will denote the set
of satisfiable propositional calculus formulas encoded suiltably
in an alphabet.

In the following, QO’Q1'°" denotes a fixed recursive
presentation of P. The enumeration is in terms of Turing
Machines which accept all and only members of P and which, in
addition, operate in polynomial time. The required enumeration
is obtained by attaching polynomial time clocks to Turing
Machines. For each T™ M and each i, there is a copy of M
with an ni clock in {Qi}. The modified devices operate in
polynomial time because polynomials are time constructible.

For any function £, define fﬂ , the exponentiation [3] of

£, by

et (x,0) = £(0)

et x,y+1) = eCEF (x,y)
For r increasing, define GI[r] by

Glr] = {xlr#(O,n)§|xl<r#(O,n+l) for n even}.

G[r] will be used when we wish to introduce r sized gaps into

sets.

For né€N, the r-interval at n, I[r,n] is given by

I{r,n] = {y€r*|In<|lyl<r(n)}

A set B has r-gaps 1f there are arbitrarily large n such
that ye€I[r,n] implies yéB.
Let Q be a polynomial time algorithm and let BCR*. The

algorithm Q is correct for B on arbitrarily large r-intervals

if there exist arbitrarily large n such that for all vy€I[r,n],

Q(y) = B(y).

A recursive set BCE* 1is r-interval easy for some recursive

r, if there 1is a polynomial g and an algorithm having time
complexity £ which recognizes B such that for infinitely many

n, y€Il[r,n] implies £(lyl)<a(lyl).

10

3. STRUCTURAL PROPERTIES

Previous studies have revealed a rich degree structure with
respect to polynomial time reducibility . In this section we
investigate structural properties of sets which result from their
position in the reducibility hierarchy. The strict constraints
associated with polynomial time reducibility allow us to develop
a fairly simple tool which has a number of applications.
Analogous questions in classical recursion theory include the
relationship between simple and hypersimple sets and various
reducibility notions.

The first theorem imposes a maximum gap size on sets to which

a given set is many-one polynomial time reducible.

Theorem 1. Let A be a recursive set. 1If AéP, then there is a
recursive r such that B has maximum gap size r for each B

such that AEpB.
Proof. Let AQP be a recursive set. The function

d(n) = max!((jvly) (lzl>n and Q. (2) # A(z))]11

i<n
is therefore total and at each n, d(n)-n provides an upper
bound on the interval for which A can agree with the set

accepted by the polynomial time algorithm Qj(for i<n).
The proof uses the function d to help provide an upper
bound for gaps in B where AEPB. Intuitively, 1f B has very

large gaps, then the polynomial time transducer from A to B

must map A members not near the gap boundary to much smaller

11

strings. If the shrinkage is sufficient, then we can use a
polynomial time algorithm to decide A membership for a portion
of the gap which exceeds the bound given by d. This intuitively
appealing idea yields an upper bound on the possible gap size in
B.

Assume A is recognized by an algorithm which operates in
to be time constructible and increasing

time Choose

9p- 9
(by padding the output of gA). Define g'A by

g'a(n) = min [{Am) (g, (m)2n)=1,n]

The value of g‘A(n) is the smaller of n and one less than the
length of the shortest input whose time complexity is at least

n. Then

mig'A(n) implies (m)<n.

I9n

Now choose B such that ASPB via transduction t. We
define a polynomial time algorithm Q which agrees with parts of

A, dependent on the size of gaps in B:

Q(x): 1f (y<g', (Ix1)) [ely) = t(x)]
then A(y)

else reject x

The algorithm Q is polynomial because at most [x| vy's are
examined, t is polynomial~time computable, =N is time
constructible, and A(y), if evaluated, requires less than | x|
steps by the choice of vy.

Consider a gap in B beginning at some length n. Pick an

12

n which is large enough (I.e., there are indices for A and the
identically zero function which are <n.) to insure that

a. A can not agree with Q
and

b. A can not agree with the identically zero function

on the interval [n,d(n)].

The second condition guarantees that some member of A is in

the interval [n,d(n)]. We must determine the largest possible

gap in B at n. That is, what is the largest n' such that
n<|lyl<n' implies y¢B.

The idea is to build a gap on which A agrees with 0 but

which contradicts the definition of d. Observe that if
n<lt(x) |<n", then x@A and 0 is <correct on X. Also
[t (x)|>n’ is only possible if | x| is within a polynomial
distance from n' since t 1s a polynomial time transducer.

In the following, we will consider the sub-~interval [n,n"]
where [n",n'] is the portion of the total interval which is near
the boundary. All members of A in [n,n"] must be mapped via t to
strings which are shorter than n.

g ¢+ We can infer that Xy
Sg'A(Ixi) (Note that x@>g'A(lxI) implies there is a vy, |yl

Iif le>gA(xg), for some X,X

SX@ such that gA(lyl)lel. But then gA(X@)lel contradicting
the assumption.) Thus for x satisfying le>gA(d(n))ZgA(x@)
and t(x) = t(x@), the algorithm Q 1is <correct. The maximum
possible gap is then obtained by sucessively iterating gﬁ»d. In

each such extension there must be at least one A member by the

13

choice of d because d bounds easy A intervals and if no
string in an interval is in A, then A is easy on that
interval. Furthermore, by the pigeonhole principle, within 2%41
such extensions there must be an extension such that if x is in
the extension and |t(x)[<n, then t(x)=t(y) for some y in an
earlier extension. The algorithm Q0 is then correct on this
last extension which contradicts the definition of the function d
and the <choice of n (since the extension is longer than d).

Hdence the maximum gap size in B is bounded by

#

(An) [expe(g,ed)” (n,27+1)]

where the function exp 1is added to provide the gap from n" to
n. b

If we restrict the above result to recursive B such that
AipngC for given recursive A,C¢P, the proof Dbecomes

considerably easier. Let be the time complexity of C.

9¢
Then 9o provides a uniform bound on the time complexity of all
such sets B. If g‘C is defined as in the previous theorem,

then Q(x) is given by

a(x): if t(x)<g'.(1x])
then B(t(x))

else reject x

The maximum gap size in B is then expo(dogc).

14

Corollary 2. If A@P, then there is a maximum gap size for the

= class of A,
P

The fact that a set has r-gaps for large r does not imply
that is "easy". By standard complexity theory techniques,
recursive sets of arbitrary complexity may be constructed with
r~gaps (although the construction requires that the set be more
complex than r). This together with Theorem 1 means that given
any set A, there are arbitrarily complex sets with arbitrarily
large gaps which are incomparable (with respect to many-~one
polynomial time reducibility) with A. Conversely, the
introduction of large enough (polynomial time recognizable) gaps
in a set A guarantees that the resulting set A' satisfies
A'<pA. (Theorem 8 of Section 4 provides a more significant
application of this technigue because the A' above may be in P
whereas AQP.)

In contrast to the above, note that polynomial size gaps can
be introduced in SAT with the resulting set SAT N G[p]
remaining NP-~complete. Show SAT§p SATNG[p] as follows:

Given x:
if xeG[p]
then compute SAT (x)
else pad x to an equivalent x'€G[p]
and compute 3AT(x')

By methods similar to the above one may show:

15

Theorem 3. Let B have r-gaps for some recursive L. Then
there exists an r'>log -~ g' (g' as in the proof of Theorem 1)
such that for all AipB, A = A'UA" where A"ep and Al has
r'-gaps.

The following results deal with the existence of gaps for
NP-~complete sets. Related | questions were considered in
[1,2,5,7]. Studies of the gap—~density properties of NP-complete
sets will hopefully increase our intuition with respect to the

difficult open problems for this class.

Theorem 4. Assume that a polynomial time algorithm is correct
for SAT for arbitrarily large r=intervals and some recursive r.
Then there is a polynomial time computable set A such that

SATIA is NP-complete but has r-gaps.

Proof. Assume SAT has r-intervals for which it agrees with the
set recognized by the polynomial time algorithm Q. That is, for
arbitrarily large n, y€I[r,n] implies SAT(y) = Q(y). We define
a set AE€P such that SATgPSATﬂ A via a polynomial time
transduction t. The set A, will not include any strings y
such that Q(y) = SAT(y). Since Q and SAT agree for
arbitrarily large r—~intervals, this will mean that SATNHN A has
r-gaps.

Let b be a fixed member of SAT. Also put b in A.
Define A to be the set of inputs (except b) for which the

transducer t, defined below, outputs b.

Transducer t:

Input:y

wey

while

w has variables with no value assigned

pick a variable of w and assign 0 and 1

to obtain W and w, - do not simplify

so |wl| = lwll = IWO] (S0 W,WgiW; oo

in the same r-interval).

case

(choose first true alternative)
Q(w0)=l : wéwo and record assignment
Q(wl)=l : wéwl, and record assignment
else : output vy, halt

end case

end while
if variable values found satisfy vy
then output b (0 is correct on y and VYESAT,
bESATNA)

else output y (so YyE€A)

Then SATSPSATQA via t because:

a. yE€SAT implies t(y)=bESATAA or t(y) =yESATAA

b. y¢SAT implies t(y)=y¢SATAA.

16

The transducer clearly runs in polynomial time. It remains

to show that SATAA has r-gaps. Assume y€SAT is in an interval

I[r,n] for which Q 1is correct. Then the output of t on

M

17

is b so y¢A by the definition of A. Hence yéSATﬂ A and
SATN A has r-gaps corresponding to the r-intervals on which Q is

correct for SAT.]

Theorem 5. Let B be an NP-complete set, r a recursive
function and 0 a polynomial time algorithm such that Q is
correct for B on arbitrarily large r-intervals. Then there
exist NP-complete sets with £ r log-gaps where f is any

function satisfying f—l(n)>nk a.e. for all k.

Proof. We show that SAT has forelog-gaps. Let BSAT < B via

—-P
to Assume Q is correct for B on arbitrarily large r-
intervals. Consider such an r-interval, ni!yi<r(n) where n

is chosen large enough to allow £ to compensate for possible
growth in |yl resulting from the application of t. Consider a
string y such that |yl is in the subinterval {2n,fur(n)]:
a. If lt(yyl€ln,c(n)]l, and lt(y) I>log(lyl) then
the algorithm Q applied to t(y) is corect,
b. If |t(y)l<loglyl, then t(y)eB and
yE€SAT can be decided in polynomial (in lyl) time using an
exponential time recognizer for B(B 1is in NP).
Hence there is a polynomial time agorithm which 1is correct
for SAT for intervals [Zn, for(n)] for arbitarily large n.
The result follows by substituting log(n) for n and applying

Theorem 4.]

The next theorem provides a bound for each A¢P on the size

of intervals for which A can be easy, i.e., on which it can be

recognized in polynomial time. Notice that this also yields an

18

upper bound on permissible gaps in non-polynomial sets since
recognition 1is trivial on gaps. This theorem and the one
following enable us to strengthen earlier results on the
structure of sets in NP and, in addition, provide an elegant

and consistent approach for obtaining such resul ts,

Theorem 6. Let A4P be recursive. Then there is a recursive r

such that A 1is not r-interval easy.
Proof. Since A%P, the witness function
w(i,n) = (pz)[lxI>n and A(z) ¥ Q;(2)]

is total. The required r |is

r(n) = maxl{w(i,n)}l + 1.
i<n
Assume A is r-interval easy, with an algorithm M having

time compexlity fA and polynomial g. Then the algorithm
if £, (Ix)<allxl)
then A(Xx) (using M)

else O

is polynomial time (Check fA(Ixi)Sq(IXI) in polynomial time by
attaching a clock for g to M) and is therefore computed by Qj
for some j. Furthermore, fA(lYl)ﬁ g(lyl) implies Qj(y)=A(y).
But then there 1is an n>j such that y€Ilr,n] implies
A(y)=Qj(y) but this contradicts the definition of r because then

w(j,n)>r(n)>w(j,n)

19

Hence A is not r-interval easy.]

Theorem 1 is based on the fact that if B has large gaps and
AﬁpB, then the transduction from A to B must produce short
strings on inputs in A which are also 1in a B-gap. A more
complicated argument must be used for polynomial time Turing
reductions, where more than one question may be asked during a
computation and where answers must actually be computed (or
somehow simulated) for the computation to proceed. For Turing
reducibility, the upper bound on gap sizes is not as sharp as for

many-one polynomial-time reducibility(by one exponential).

Theorem 7. Let A$P be recursive. There is a recursive £ such

that if AﬁpTB and B 1is r-interval easy, then <f a.e.

Proof. The proof is similar to that of Theorem 1 in 1its strong
use of the pigeon-hole principle. Assume AipTB via some
algorithm T and B 1is r-interval easy with algorithm having

complexity £ and polynomial g. Let

5 be the complexity of

EF
a recognition algorithm for A where 9a is increasing and

“time constructible. Define g', by
g',(n) = min[(fm) (g , (m)>n)=1,n].

Then mig'A(n) implies gA(m)<n,

The function d given by

d(n) = max|[(pz) (Iz]>n and Q. (2) F A(z))1|
i<n

20

for each n provides an upper bound for i<n on the interval for
which A can agree with the set accepted by the polynomial time
algorithm Qi'

We now give an algorithm Q for A. IE B is easy on
intervals which exceed a function f, to be defined, then

will be easy on intervals which are too large, 1i.e., which

contradicts the defintion of d.

21

Algorithm Q
input: x
1. Simulate T on input x. If T gueries the

oracle for some vy, test whether

£,y <atlyl)

If yes, the oracle answer can be obtained directly
in polynomial time. If not, simulate

branches in the computation for y€B and yeEB.
All paths eventually terminate. For each path
define a triple <yt,Yf,a>.

where

Yt={ulu€B assumed on path}
Yf={u|u$B assumed on path}

yes if path accepts x

no if path rejects x
Call the set of triples ©5(x).

2. If there is a y such that
lyl<min(g', (1x1),logelog (lxI)

and S(y) = S(x),
then output A(y) - (gA(lyl) steps

else output A(x) - (gA(le) steps

Assume x€I[r',n] for «r' recursive such that fBiq on that

interval and

22

n
22 ¢lx|<logsr'(n) (see Figure 1). (%)

The condition (*) insures that oracle questions are either easy

on are for strings much shorter than ¥ (<logelog (Ixl1)).

| : | 3 |
N > 12 log r'Chy ')
Figure 1
Consider algorithm Q on input X Because B is easy on

[n,r*(n)], only B-oracle questions for y such that |yl<n are
included in the sets vy, and Ye- Hence each YerYe contains
at most 2™ nembers and the cardinality of S(x) is bounded by
2(2n+l) 2n)
2 . But [x]>2 so part 1 of Q can be completed in
polynomial time for the given X. Similarly, (since
lylimin(g'A(lxl), logelog (lx1))), part 2 of Q must compute
S(y) for at most log(lxl) strings y. The Yt and Yf sets of
each such S(y) will only contain strings of length less than n
(since B oracle gquestions for any 2 in I{r',n] are evaluated
directly). Hence as above, the determination of S(y) can be
done in polynomial time. Finally, note that if a vy such that
S(y) = 8(x) is found, then x€A iff yEA and the condition
lyl<g'A(lxl) insures that gA(!y|)<lxI so the algorithm for A
can be applied to y to decide x€A 1in polynomial time. Thus

n
for 22 <|x|<loger'(n), Q operates in polynomial time.

23

We now use the pigeonhole principle for the sets S(x) to

define an upper bound f for easy B intervals. For x and n

(2n+1) (2n+1)
as above there are 2 triples and hence 2 sets of
triples, Assume B has easy intervals of size r' where r'(n)
exceeds
i 2(2n+l)
f(n)=expado(ngd) (n , 2)
for infinitely many n. Since B 1is easy on [n,f(n)], 0 is
easy for A on at least one subinterval [m,d(m)], because

every set of triples occurring for x€[m,d(m)] have occurred for

2(2n+l)
sufficiently small y (gADd is iterated 2 times = number
of sets of triples). This contradicts the definition of d So
r' cannot exceed f. Notice that the function exp provides a

buffer preventing B oracle questions above the interval on

which B 1is easy. i

4, APPLICATIONS

In Section 3, we introduced the notion of (easy) gaps and
developed a few relationships between gaps and complexity
structures. We now apply this machinery to study the existence
of noncomplete sets in NP having certain properties. Unless

otherwise specified, we assume throughout that P4NP,

Theorem 8. [Ladner] Let BéP be a recursive set. Then there

exists a recursive set A satisfying:

a. A§p
b. A< B
—p
C. BibTA
Proof. Let B$P be a recursive set. Choose r recursive such

that r 1is time constructible and C 1is not r-interval easy for
any C such that BipTC‘ Let D = G[r]. Clearly DeP. Let A
= B D, Since B D is r—interval easy, BipTBhD by Theorem 7.

Furthermore, BAD EpB by the trivial transduction

if x€D then x else XO

where x, is a fixed member of B.
Finally, B!\D%P because B is not r-interval easy
(D=G [r]). B

Corollary 9. [Ladner] There are sets in NP--P which are not

NP-complete.

Proof. Choose B in the theorem to be NP-complete. Then BN

nDENP~-P but is not complete.

25

Observe that by introducing sufficiently large gaps, any NP-
complete set can be transformed into a member of NP-P which is
not complete. Furthermore, by choice of sufficiently large r,
we can diagonalize out of any r.e. class of infinite recursive

sets.

Corollary 10. Let CO'Cl”" be a recursive presentation of a

class of infinite recursive sets. Let B¢P be recursive. Then

there exists a recursive set A satisfying

1. agp

2. A< B
—p

3. BipTA

4. CiiA for any 1.
Hence, the set A of Theorem 8 can be chosen so as not to

have an infinite regular or context free subset. |

By Theorem 1, the introduction of sufficiently 1large gaps
into a set A results in a set A' satisfying A'<pA. Together with
a corollary to the following lemma this yields a strong version

of Theorem 8.

26

Lemma 11. For any recursive A,B, if AdgeP, then AEpAnB.

Proof. Assume A,B are recursive sets and AABeP. If ApB is empty,
then A and ANB are in P.
1. AﬁpAAB: Let d be a fixed member of ANB. The required

transducer 1is

Given x

iﬁ XEAND

then output d

else output x

2. AABipA: Let d be a fixed member of A. The required

transducer is

Given x
if XEANB

then output d

else output x]

Corollary 12. For any recursive B and NP-complete A, if AnpB 1is

not NP-complete, then AnB¢P.

Corollary 13. Any NP-complete set A can be decomposed into sets
B,C such that

1. A = BUC

2. B,CENP-P

3. B,C are not NP-complete

Proof. Let A Dbe NP-complete. Let B=ANG[r], C=A/G[r] for r

27

sufficiently large to force B<pA, C<pA (Theorem 1). Then by

Corollary 13, neither B nor C is in P. §

A similar result can be proved for other complete degrees
(e.g., PSPACE).

Two recursive sets A, and A, form a minimal pair

1 2
for P 1f neither is in P but DﬁpTAO and DSPTAl implies
Dep for all D. Ladner [9] proved the existence of minimal

pairs for P but did not give an upper bound of the complexity
of the pair. We are able to use the methods of Section 3 to

obtain minimal pairs of non NP-complete sets in NP.

Theorem 14. Let BEP be recursive. Then there are recursive

A and A such that

c. DL A, i=20,1 implies DeP.

Proof. Let BéP. Pick r time constructible such that B is
not r—-interval easy and r(n) is greater than exp(£f(n)) where
f 1is the computation time of some algorithm which recognizes B.

Define

€2}
|

o = tylrfo,ai+1)<lyl<c? (0,41+2), >0}

95!
1

. tylef0,ai+3)<lyl<rt (0,4i+4), >0}

and let 82=SOU81, Figure 2 shows how this partitions N.

28

SN\ V7 v 4 PNy VLA |
. S) ’ .) - L} - I
S = %o o 24 S Do 2y
Figure 2
Let Ai = ani, i =19,1. The sets Sg,Sl,S2 partition N with
S, providing a buffer between S, and S,. Because r is time

constructible, each S.1 is in P. Now part (a) follows from the

definition of Ai(AiipB) and because B 1is not r—~interval easy

(If B<_A,, then B 1is easy on S,e.). If B< A, via transducer
-p 1 1~i —-p i

t, then for input x in 8 » £(x) either is in §,,.05, in

1%3i
which case x is not in B or t(x) is in Si' In the latter case,
f(lt(x)1)<lx|. Hence in either case, XEB can be decided in

polynomial time. Part (b) is true because B is not r—~interval
easy.

To show (c) assume DSpTAi = BﬂSi, i = 09,1. The main idea of
the algorithm for D is that oracle queries are either trivial
or involve B computations on strings much shorter than the
input. This is accomplished by forcing each B question into an
S or Sl interval preceding that of the input (see Figure 3).

The algorithm for D is as follows where B dueries use the

algorithm having complexity f.

29

%8s, i = 0,1: use DipTanlii computation
for query Y¢Sl£i answer no
for query yGSlii compute vyE€B
xGI[r,n]gSZ, r(n)GSi
if Ix[>loger(n)

then use x€8., case above

else use XE5 o5 case above

2= 1%
end if
end case
end
% l | } v % l‘l ¢'} 9 l¢’g g \ ;
So 5, 5 S5, S, 5, s, 5. s,
Figure 3
The above algorithm for D is polynomial because all B

queries y satisfy £(lyl)<lxl where x is the initial input.
This follows because r(n)>exp £(n). In particular, if
xes@(xesi) and y is a non-~trivial B query, then y is in an
earlier Sl(Sg) interval. If xGI[r,n]gSz, then a non-~trivial
B query is either in the immediately preceding interval (if
[x{>log r(n)) SO E(lyl)<f(n)<log(r(n))<lxl) or in a still

earlier S@ or Sl interval. Since there are at most a

30

polynomial number of gueries each of which requires at most a
polynomial number of steps, the algorithm runs in polynomial

time. ||

Corollary 15. There exist A,BENP-P which are not NP~complete

such that DgpA and DSPB implies DEP.

Corollary 16. For any BENP~P there exists a minimal pair

AE,A1¢P such that Ai<pB i=0,1.

By similar methods to the above we may prove a strong minimal
pair theorem.

Theorem 17. Let A,B@P and A<PB. Then there are Cl and C2 such

that

a. A< _C.< B i=1,2
p1p

b. D<pci i=1l,2 implies DﬁpA

Lynch [11], Berman [1l] and Hartmanis and Berman [7] have
studied the density of sets with respect to a number of different
definitions. We can use Theorem 1 to obtain a result due to
Lynch which states that if a set is reducible to arbitrarily

sparse sets, then the set is in P.

Definition [Lynch]. A set A is s~sparse 1if there is a

polynomial p and an algorithm for recognizing A which runs in
time p(n) for all but at most n strings of length less than or

equal to s(n).

We use Theorem 1 to show that sets reducible to arbitrarily

s~sparse sets must be in P.

31

Theorem 18 [Lynch]. For any recursive A
(¢ recursive s) (3 recursive B) [B is s—~sparse and Ang] iff AEpP

Proof.

<= trivial

=> Let A?P and assume that A is reducible to the s-
sparse set B. Let p be the polynomial for B given by the
definition of s—~sparse. Construct B' by removing from B all
strings, except the shortest one, which are recognized in time p
by the B algorithm. Then AipB' and B' has s(n)/n gaps.
Since such sets B exist for arbitrary s, this contradicts

Theorem 1. @
Theorem 19. For any recursive A

(V¥ recursive 3) (A recursive B) [B has s-—~gaps and Ang] iff Aep

32

5. ENUMERATION PROPERTIES

If a class of sets is recursively presentable, then there is
an effective enumeration of devices which recognize all and only
sets in the class[10]. The existence of such an enumeration is
useful when studying properties of the class. In this section,
we show that various important complete complexity classes are
recursively presentable. Furthermore, the presentations can be
in terms of efficient devices. Whereas the NP-complete sets are
recursively presentable, this is not true of either NP-P or the
non complete sets in NP-P. This may be interpreted as suggesting
why so few intuitively appealing problems in NP ,which are not
complete, have been found, i.e., perhaps most 'natural' problems
are complete,

Theorem 20. If PFNP the <class of NP-complete sets is

recursively presentable. The presentation is an enumeration of
algorithms which run in non-deterministic polynomial time and

which accept all and only NP-complete sets.

Proof. Let AO,Al,...and tO’tl”" be recursive presentations
of the non-deterministic polynomial time recognizable sets {by
non-deterministic polynomial time devices) and the polynomial
time transducers respectively. We describe the algorithm Aij
which accepts L(Ai) in case tj is a correct transduction from
SAT to L(Ai)’ i.e., 1if for all x, x€SAT 1if and only if
tj(x)GL(Ai). If tj is not a correct transduction, then L(Aij)
is SAT almost everywhere, that 1is, for sufficiently long

inputs.

33

Given input x, Aij is defined by:
1. For each vy, lyl<logelog (l|x|), check if
yESAT 1iff tj(y)eL(Ai)
2. If (1) returns true for all y
then Aij(x)éAi(x)

el se Aij(x)éSAT(x)

Aij operates in non-deterministic polynomial time because part
(1) only checks small strings for which the checking can be done
in deterministic polynomial time. As long as (1) does not
discover that tj is not a correct transduction from SAT to
L(Ai)’ Aij accepts L(Ai)‘ Once an error is discovered, it will
occur in part (1) for all longer inputs so Aij accepts an NP-
complete set. It remains to note that for every NP-complete set
B there are i,J such that L(Ai) = B and t., 1is a

J
transduction from SAT to B. §

The method of proof of the previous theorem can be used to
obtain similar results for the complete sets of any time or space
complexity class admitting an effective enumeration of the sets
of the class by efficient devices (I.e., by devices whose

complexity is bounded by the functions which define the class.)

Corollary 21, If P# PSPACE, then the PSPACE-complete sets are
recursively presentable by devices which operate in polynomial

space.

Corollary 22. The classes of exponential (deterministic or

nondeterministic) time or space complete sets are recursively

34

oresentable by devices which operate 1in (deterministic and

nondeterministic) exponential time or space respectively.

The enumeration of Theorem 20 can be modified so that each
NP-complete set 1s accepted by exactly one device in the
enumeration. The proof involves a finite injury priority method
whereby each device monitors the enumeration and may be forced to
modify the set it is accepting in case a device which is earlier

in the enumeration appears to be accepting the same set.

In contrast to the above result, we now show that NP-P is
not recursively presentable even if the only requirement on the
devices is that they always halt, i.e., that they compute the
characteristic functions of sets in NP-P. For NP-complete sets,
the enumeration was in terms of non-deterministic polynomial time
devices so that an enumeration exists in terms of deterministic

exponential time devices for the characteristic functions.

Theorem 23. Unless P = NP, there is no recursive presentation
of NP~P by characteristic function. 1In addition, the non

complete sets in NP-P can not be recursively presented.

Proof. Assume BO'Bl"" is a recursive presentation of NP-P

in terms of devices for computing characteristic functions. We
will obtain a contradiction by defining a set AeNP-P such that
Bij%TA for any 1. Let Lyrlorens be a recursive presentation
of functions such that

a. each ry is time constructible and the

device for computing rs operates in time r;-

35

b. C 1is not ri—interval easy for any C such

that Bi< cC.

_.pT
The recursive presentation of {ri} exists because: 1)
BO’Bl’°" is a recursive presentation of NP-P by devices
computing the required characteristic functions and 2) a real

time algorithm for a time constructible r; can be obtained from
Bi by the proof of Theorem 7.
Define r' by

r'(n) = max {ri(n)}
i<n

and let «r>r' be time constructible. Then by Theorem 7, each Bi
satisfies, c is not r-interval easy for any C such that

B.

1£pTC° The required set in NP-P which differs from each Bi is

A=B. N G[r]l. First note that A¢P because B, is not r-interval
easy and AENP because BleNP, Glrlep (because Y is time

constructible). Since A 1is r-interval easy we have

BiipTA for any 1i.

But this implies AENP-P since {Bi} contains all sets in NP -

P, a contradiction. Hence there is no recursive presentation of

NP-P in terms of devices for computing characteristic functions.

It is important to notice that NP-P can not be recursively
presented by characteristic function even if inefficient devices
(e.g., non-primitive recursive) are permited. This result may be

contrasted with our earlier result for the NP-complete sets.

36

In Theorem 23, we required a recursive presentation by
characteristic function in order to effectively obtain algorithms

for the ry functions.

Open Problem. Assuming Pf NP, does there exist a recursive

presentation of NP-P by domain, i.e., in terms of devices whose

domains are all and only the sets in NP-P.

The next theorem shows that the recursively enumerable
complete sets are not recursively presentable, While not
surprising, this result does provide an indication that care
should be exercised when considering definitional analogies
between NP and the r.e. sets, The proof wuses a recursion

theoretic hierarchy argument.

Theorem 24. There is no recursive presentation of the recursively
enumerable sets(as domains of partial recursive functions) which

are complete with respect to Turing reducibility.

Proof. Assume that the complete r.e. sets with respect to Turing
reducibility are recursively presentable. Then there is a

recursive relation R such that
{yl (IX)R (y,x)}

is such a recursive presentation. Then the set of all indices of
complete r.e. sets (i.e., all indices of partial recursive

functions whose domains are complete) can be defined by

s = {el (Ty) [(Ix)R(y,x) and W, = Wy]}

37

where Wu is the domain of the partial recursive function whose

index is u[l13]. Equivalence of r.e. sets is in \(2 in the
arithmetic hierarchy. Hence, by the above, S is in 223.

However it can be proved by standard recursion theoretic methods
that 8 is é.4—complete[13]. This 1s a contradiction and
therefore there is no recursive presentation of the r.e.

complete sets. ﬂ

38

REFERENCES

1.

10.

11.

12.

13.

Berman,L. On the structure of complete sets:

almost everywhere complexity and infinitely often
speedup. Proc., Seventeenth IEEE Symp. on the Found.
of Comp. 8ci.,1975,76-80.

Berman,P., Relationship between density and deterministic
complexity of NP-complete languages. Fifth Int. Collog. on
Automata Languages and Programming,1978,63-71.

Brainerd,W.S. and Landweber,L.H. Theory of Computation.
Wiley, New York,1974.

Cook,S.A. The complexity of theorem proving procedures.
Proc. Third Annual ACM Symp. on Theory of
Computing,1971,151-158.

Fortune,S5. A note on sparse complete sets.

Garey,M. and Johnson,D. Computers and Intractibility: A
Guide to the Theory of NP~Completeness. W.H.Freeman and Co.,
San Francisco,1979.

Hartmanis,J. and Berman,L. On isomorphisms and density of NP
and other complete sets. SIAM J. Comp. 6(1977),305~-322,

Karp,R.M., Reducibility among combinatorial problems. In
Complexity of Computer Computations, R.E.Miller and
J.M.Thatcher, Eds.,Plenum,New York,1975,85-103,

Ladner ,R. On the structure of polynomial time reducibility.
JACM 22(1975),155-171.

Landweber,L.H. and Robertson,E.L. Recursive properties
of abstract complexity classes. JACM 19(1972),296-308,

Lynch,N. On reducibility to complex or sparse sets. JACM
22(1975) ,341-345,

Machtey,M. The honest subrecursive classes are a
lattice. Infor. and Contr. 24(1974)247-263,

Rogers Jr.,H. Theory of Recursive Functions and Effective
Computability. McGraw-Hill,New York,1967.

