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ABSTRACT

A generalized linear complementarity problem which is equiva-
lent to finding a root of a piecewise-linear system of equations
is shown to be solvable if and only if a related linear programming
problem is solvable. Furthermore each solution of the linear pro-
gramming problem solves the generalized linear complementarity prob-
lem and is a root of the equivalent piecewise-linear system of equa-

tions.
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This work contains an extension of the essential idea underlying
the approach recently proposed by the author [9,10,11,12] to the
generalized linear complementarity problem of finding an x in the

n-dimensional real Euclidean space R" such that

.. k. .
Mx+qt20, ] (Mlx+ql)j:0, TS D m (1)
i=1

where TT‘ is the product symbol, subscripts denote vector elements,

k is a given integer bigger than 1, and for i=l,...... ko, M
. , . i . . m

are given mxn real matrices and q are given vectors in R .

This problem subsumes the fundamental linear complementarity problem

[2]

w=Mx+q >0, x>0, XTW:O (2)

which is obtained from (1) by setting k=2, m=n, Ml:=M, M2= I,

I being the identity matrix, ql==q and q2= 0 . Problem (1)
also includes the generalized linear complementarity problem of
Cottle and Dantzig [3] as a special case. In addition problem (1)
is equivalent to the problem of finding an x in R" which satis-

fies the following piecewise-linear system of equations

Minimum{(Mlx+ql).} =0, 9=l,...,m (3)
1<i<k J

That (1) and (3) are equivalent follows from the following obvious

equivalence for the real numbers al, ...... ,ak
i LI i
min {a7}=0<* J[ a*=0, a* >0, i=1,...,k (4)
1<i<k i=1

The piecewise-linear system (3) which has been considered by Eaves
[6] occurs in certain nonlinear networks [7,8,1] and is unsolved

in its general form except by enumerative methods. Our approach
here, which is a generalization of the approach of [9,10,11,12]
for the linear complementarity problem (2), is to look for a vector

p in R" such that each solution of the linear program

Minimize pTx subject to Mlx4~q1§;0, i=l,....,k (5)



is also a solution of the generalized linear complementarity problem
(1). Our principal result, Theorem 1, states that the generalized
linear complementarity problem (1) or equivalently the piecewise
linear system (3) is solvable if and only if the linear program (5)
is solvable for some p satisfying conditions (8) and (9), and that
each solution of the linear program solves the generalized linear
complementarity problem (1) and equivalently the piecewise-linear
system (3). 1In a related series of papers Cottle and Pang [4,5]
and Pang [14] have shown, among other things, that the approach
proposed by the author for the linear complementarity problem (2)
has the interesting feature of finding the least element of a poly-
hedral set.
To establish our result, which is a generalization of
[12, Theorem 3] we need the dual to the linear program (5), namely
the linear program
k . . k . . .
Maximize ) --(ql)Tyl subject to ) (Ml)Tyl=:p, ylip i=l,.....k

i=1 i=1

(6)

where yle R™ , for i=1,....,k . Let the primal and dual feasible
regions of (5) and (6) be denoted by S and T respectively, that

is

wn
fl

{x | M'x+q* >0, i=1,....,k, %eR"}

X (7)
k i,T i i i_m
..... O ) M)y =p,y >0, y'eR, i=1,....,k}
i=1

-3
i
-
~
<
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When S 1is nonempty, a necessary and sufficient condition that the
dual linear programs (5) and (6) be solvable is that T be nonempty.

This condition is equivalent to requiring that

K .o . .
p= ) ah's, s'>0, seR", i=1,....k (8)

for some s’e Rm, i=l,.....,k . Throughout this work we shall assume
that (8) holds and consequently can take (8) as the expression de-

fining p . Let Z be the class of mxm real matrices with



nonpositive off-diagonal elements. We are ready now to state and

prove our principal result.

Theorem 1. The generalized linear complementarity problem (1) or
equivalently the piecewise-linear system (3) has a solution if and
only if the linear program (5) is solvable for some p defined by

(8) with (sl,......,sk) in ka satisfying the conditions

(a) MY =z" + qlcT, i=1l,....,k

R
(b) '} (s)z >0
i=1 (9)
X i\T i T
() } ()2  +c >0
i=1
L
(d) ) (sH)>o0
i=1
c, sl,....,skijh Zl,....,ZkeZ, Q: unrestricted
for some vector ¢ in RV , some nxm matrix Q and some mxm
matrices Zl,....,Zk . FPurthermore each solution of the linear
program (5) solves the generalized linear complementarity problem
(1) or equivalently the piecewise-linear system (3).
Proof. (Necessity) Let x solve the generalized linear complemen-
tarity problem (1). Define s* in R" for i=l,.0... .,k as follows
1 if (Mlx+ql).= 0
J j=1,...,m" (10)

i <
s. = . .
J 0 1if (Mlx+ql)i> 0

It follows that (sl)T(Mlx+ql)= 0 for i=1,...,k and consequently
X solves the linear program (5) because (sl, ...... ,sk) is dual
feasible, that is it is in T , and
k . . k . .
pTX - z (Sl)TMlX _ E _ (ql)TSl
i=1 i=
Furthermore conditions (9) are satisfied by (sl,....,sk) as defined

in (10) aboveand c=e, z = - (Mt l)eT, Q= —xeT , where e is
q



a vector of ones in RM ,

(Sufficiency) Let conditions (8) and (9) hold and let x solve

the linear program (5). We have that (sl,....,sk) is dual feasible.

If (sl,....,sk) is also dual optimal, then

S X E S T I A SN SNNF I S S
) (@7)'s” + ) (sT)yMx-= }o(sT) (Mx+q) ,
i=1 i=1 i=1

0 =

. . . k .
and because s‘l=>__0, Mlx+ql; 0 for i=1,....,k , and Z s >0
i=1

k . .
it follows that 17— (Mlx+ql),j =0, for j=l,....,m , and conse-
i=1

quently x solves the generalized linear complementarity problem
(1). Suppose now that (sl,....,sk) is not dual optimal and that
some (yl,....,yk) in R is dual optimal. Then
k . . ko, .
Y (sl)Tql + ) (sH x>0
i=1 i=1
and hence we have from (9b), (9c) and the last inequality above
that
k . . k . . .
) (sl)TZl + (sl)T(Mlx+ql)cT >O (11)
i=1 i=1

Let Z' =D-V' , for i=1,....,k , where D,V ,....,V5 are mxm

nonnegative matrices and D is in addition a diagonal matrix with

a positive diagonal. Then

k . . k . . .
b oshzt = T sh ool (By (3a))
i=1 i=1
S T C T
= .Z (sH) (M'Q-q'c) + ) Ca) (—M1Q+D—Vl+qlc )
i=1 i=1 (By (9a))
k . . k . ..
- X —(sl)qucT + 2 (yl)T(D-Vl+qlcT)
= i=1 1 K
(Because (y ,...... .V JeT)
k . . k . .
< Z ~(sl)qucT + X (yl)T(D+qlcT)
i=1 i=l

(Because y%;p, Vlip for i=1,...,k)



k . R . k .
:_-z (sl)T(M1x+ql)cT + Z (yl)TD
i=1 i=1

(Because (yl,....,yk) is dual optimal)

Therefore

. Koo k.
] oD > 7 HT e 7 T ordkegh)et (12)
iZ1 121 i=1

By using (11) in (12) and recalling that D is a diagonal matrix

with a positive diagonal we obtain that
K i
Ly >0 (13)
i=1

But because x and (yl,...,yk) solve the dual linear programs
(5) and (6) we have that

K N
) (y7) (Mx+qT) = 0 (14)
i=1
From (13) and (14) we have upon noting that ylglo, Mlx+qlz_0 for
k . . a a
i=l,...,k , that [ (Mlx+ql). =0, for j=1,...,m . Hence again
i=1

X solves the generalized linear complementarity (1). []

We note that the choice of sl,...,sk,c, Zl, ...... ,Zk and Q
in the necessity proof of Theorem 1 is a very particular choice and
is by no means the only one that satisfies (9). Thus for example
as shown in the proof of Corollary 1 below a different choice which
does not require knowledge of a solution to the generalized linear
complementarity problem (1) can satisfy the conditions (9). Also,
in Examples 1 and 2 below we choose for sl,...,sk, c, Zl, ...... ,Zk
and Q, values other than those given in the necessity proof of

Theorem 1.

Corollary 1. Let m=n, MeZ , for i=1,..... .,k , let S be
N R 1 K
nonempty and let X (s")'M*'>0 for some nonnegative (s™7,......,s")
i=1
kn

in R . Then the generalized linear complementarity problem (1)

or equivalently the piecewise-linear system (3) has a solution which



can be obtained as a solution of the solvable linear program (5)

Kooirg
with p= ) (M)'s
i=1

Proof. This corollary follows from Theorem 1 by noting that condi-
tions (%a), (9b) and (9¢c) are satisfied by taking c¢=0, Q=I and
Zi:Mi for i=1,....,k . 1If condition (9d) is not satisfied we
would have s%= 0 for i=1l,....,k and some j,1<j<m , which when
combined with (9c) gives the contradiction

k . . k..

o< J (sHzhy, < T slal=o

i=1 174 30D
Hence all the conditions of (9) are satisfied, the linear program
(5) is solvable and any solution of it solves (1) or equivalently

(3). O

The following example due to Eaves [6] illustrates the use of

Theorem 1.

Example 1 [6, p. 100]

b= (-1 -1 1_(2) 2.([2- 2 (-1
B S L Y I 2 L
1 (L 0 ) L - 2
Lo o 2 1 {2
" |22 ST P )

GLCP: Min{»xl»x +2, 2%

2 1%l =0

Min{x,-x,+2, -2xl—x2—i} =0
LP: Min 2xl - ng
subject to Xy =X, t 22>0
X, - x2 +220
2xl "Xy - 1>0
—2xl - X, - 1>0



The point xl==0, x,

tion to both the GLCP and LP.

. 2 2 2 2 _ .
= -1 with Mlxi-ql-o, szﬁ-qQ-O ,» 1s a solu-
The following example is an application of Corollary 1.

Example 2

&
S

GLCP: Mln{xl-x2+l, xl—x2+2, —xl-x2+l} =0
Mln{—x2-l, 2x2+3, —xl-l} =0
LP: Min Xl + X,
i - >
subject to Xp © Xy F 1>0
- - >
x2 120
Xl - x2 + 2 >0
. >
2x2 +32>0
- - >
xl x2 +12>0
- - >
Xl 1>0
. N 5 _ 3 . 1 1l _ 2 2 _
The point Ry T =55 Xy = - 5 with Mlx + ql = 0 and M2x + q, = o,

solves both the GLCP and LP.

Conditions (8) and (8) so far are probably the simplest char-
acterization of generalized linear complementarity problems as linear
programs. Many cases are given in [11] for which the conditions
(8) and (9) are satisfied for the simpler linear complementarity
problem (2). What is still unknown is the scope of these conditions,
that is the class of linear complementarity problems and generalized
linear complementarity problems for which conditions (8) and (9)
can be "easily" verified. It is hoped that future research will

clarify and enlarge this scope.
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