THE ROSCOE KERNEL

by

Raphael Finkel
Marvin Solomon

Computer Sciences Technical Report #337

October 1978

THE ROSCOE KERNEL
Version 1.0

October 1978

Raphael Finkel
Marvin Solomon

Tachnical Report 337

Abstract

Roscoe 1s a multi-computer operating system running on a
network of LSI-11 computers at the University of Wisconsin. This
document describes the implementation of the Roscoe kernel at the
level of detail necessary for a programmer who intends to add a
module or modify the existing code. Companion reports describe
the purposes and concepts underlying the Roscoe project, present
the implementation details of the utility processes, and display

Roscoe from the point of view of the user program.

NN MMM

Lo

PR gl o g g
E=-S SO

~N VU EWO DN - —

»
——

TABLE OF CONTENTS

INTRODUCTTION . t it ettt i et aaresneeessoneoennnaneaness 1
Source Flles. .ot it ieeteeosnseoooesnnenssnssnasnsnasss 2
Compilation and linking......c.eeiiiiii ittt enans 3
FUNDAMENTAL MODULES. vttt it ittt ettt eanoneannnnenans 3
Initializalbion .. ettt iinnestoosoeeessesaconsnonans Yy
DEebUBEING AidS..e e en e ioneironooesonesonanesnanss 6
T /0 e it ettt et ee e e asnseteeesansancanasonsstsaennannas 8
Free storage management.....c.cviiitiierieeeronnsonennss 9
L OGS e ittt e ettt saenossnesssossoasesosssessenassan 10
Service Calls. ..ttt i et oneseseessennanaarsanannonsss 11
The CloCK .. e u ettt torsosnonssnnseassnsssnonssasnass 12
PROCESS MANAGEMENT . o ittt ittt ittt enononnannassnans 14
The scheduler . ..ottt in ettt tnesesnennonaaneeennens 15
COre IMAE e S it ieeseossonsassocessosossnsnsassssenas 22
MESSAGE S .ttt it ittt ittt eaattsasssennnnonasnnsssesnsns 25
Central message handling....oeieeer ettt nnnnnnnns 26
Inter-machine MeSSaZeS . vttt vt tneenuneenneenennnanes 29
0 ¢ 2= 33
USer MESSAZES .y e v vt v sntnoesssssesosnsaseessessanaenes 35
INTERRUPT HANDLING. vt v e et n it ieeenennonnenasanssossns 38

ACKNOWLEDGEMENT S . ¢t v v v ittt et i et e ennnnaoaansssas 4o

THE ROSCOE KERNEL

Version 1.0 -- October, 1978

1. INTRODUCTION

The Roscoe project at the University of Wisconsin 1is imple-~
menting a distributed operating system for several co-operating
LSI-11 microcomputers [Solomon 78a, 78bl. Documentation for pro-
grammers writing code to be run under Roscoe can be found in a
companion report [Tischler 78al]. Roscoe is in a state of flux;
the details of the kernel are likely to have changed since the
ftime this report was written.

The operating system is divided into the kernel and the

utility processes. The tasks of the kernel are storage manage~

ment, process management, and message management. The tasks of
the utility processes are terminal handling, file management, in-
teractive command line interpretation, and resource allocation.

This report describes the Roscoe operating system at the lev-
el of detail necessary for systems programmers who might be modi-
fying the kernel. Utility programs are documented in a compain-
ion report [Tischler 78b].

All code for Roscoe is written in the C 1language [Kernighan

781 and in the Unix [Ritchie 74] PDP-11 assembler language. The

C compiler has been modified to provide stack-limit

the wentry to each procedure,

hardware stack 1limit check or memory management.

nel 1s compiled and

sent to the various LSI-11 machines through

parallel) lines.

are given below.

1.1 Source Files

since the L3I-11

checking at
does not have any

The Roscoe ker-

linked on Unix on a PDP-11/40 and is then

DR-11C (sixteen-bit

Details of the linking and sending procedures

The source files for the Roscoe kernel reside in the directo-

ry /usr/network/roscoe.

tension, for example, "clock.h"

tension "h". The extension "u"

ten in C and should be compiled

compiler. The extension "c"

in C and should be compiled with

tension "g"

tension "h"

has the name "clock"

marks files written in assembler language.

indicates header files that are meant to define

Each source file has a name and an ex-

and the ex-

indicates that the file is writ-
with

the stack-limit-checking

indicates that the file is written

the normal C compiler. The ex-
The ex-

data

and structures and are included (by the file switch "include") in

several C files. Each module is

has extension "o". Files ready

have extension "lda™; the linked
is placed in "roscoe.lda".

The source files for utility
/usr/network/roscoe/user. These

variety.

Many library routines are available in the

compiled separately; the result

to be loaded on the LSI machines
files

collection of all Roscoe

processes are in the directory
files are all of the "u" and "h"
library "libr.a"

in the user directory. The source for these routines is in

/usr/network/roscoe/library.

1.2 Compilation and linking

The kernel can be compiled and linked by invoking "lprep".
This shell file calls "compile"™ on each source file for the ker-
nel. The program "compile" compares the date on the source file
(whether its ektension is "u™, "c", or "s") with the date on its
object file (extension "o"). If the former has been changed
since the latter was prepared, the appropriate compiler/assembler
is invoked to create a new object file. The shell file "lprep"
then <calls the linker to combine the various object files. Fi-
nally, "lprep" invokes "mklda™ to convert the Unix link file for-

mat into absolute loader (lda) format, producing "roscoe.lda".
2. FUNDAMENTAL MODULES

The kernel source code is mostly found in eleven "u" files.
In addition, there are a few "c" and "s" files. Each file begins
with an extensive comment indicating the procedures, data, and
structures that are imported into, exported from, and local to
that module. Many modules use "h" header files to communicate
exported data and structures. The cross~reference file "cref"
contains a complete listing of all procedures that are defined in
one module and used in other modules. This file lists each pro-
cedure name, the defining file, and the names of all referencing
files. If there is some doubt about the accuracy of cref, it is

easy to find all uses of a particular function, say "foo", by us-

ing the "grep" program:
grep foo ¥.u ¥.,¢c ¥ s
This program searches for all mentions of "foo" in all source

files.

2.7 Initialization

To load a new version of Roscoe into a c¢leared LSI-11, one
needs to employ the Unix program "coml". This program acts as
the console terminal to the LSI-11 and can send whole files ei~
ther on the console 1line or through the fast word-parallel
(DR-11C) line. By default, "coml" uses the fast line to machine
0. To set it to, say, machine 1, type "<control-T>1".

In the cleared state, the LSI-11 executes microcode that im-
plements ODT (octal debugging technique) [DEC 76]1. To enter ODT
at any time, send a <break> to the console. The program "coml"
sends a break when the user types "<control-T>B". ODT prompts
for input with "@". To invoke the built-in absolute loader, give
ODT the command "173000G", which causes the machine to run a di-
agnostic program in read-only memory starting at location 173000.
This program prompts with "$". The command "AL<carriage return>"
to the diagnostic program starts the absolufte loader. To cause
"coml" to send the software loader, type "<control-T>3". The
program will prompt with "file = ", to which one responds
"drload.lda<carriage return>". When this file has been loaded,
it begins execution with the message "Loading".

Alternatively, the following bootstrap procedure may be used:

When the LSI-11 1is being reloaded, unless the power has been

turned off or the last program destroyed memory, "drload" will be
present. To invoke 1t, type "157000G" +to ODT. The message
"Loading" should appear immediately. One way to send the kernel
to the L3I-11 is to type "<control-T>F". When "coml" prompts for
the file, type "roscoe.lda<carriage return>". After the file has
been loaded, Roscoe should start. Another way to send a file to
the L3I-11 avoids "coml" altogether. A file, say "foo", may be
sent to a machine, say 7T, across the fast line by "ecp foo
/dev/dr7".

The machine id must be set by hand in location 157700. If
the machine id 1is wrong (it is printed along with the startup
message), halt Roscoe, set it, and then restart. The machine 1id
is placed at a location that is not damaged when a new version of
Roscoe is read in by "drload", but it is destroyed if drload 1it-
self is reloaded.

It is possible to restart Roscoe at any time by halting exe-
cution ("coml" command <control-T>B) and starting at location 700
(ODT terminal command 700G). When Roscoe 1is started, a small
amount of code 1in module "crtl.s" causes a Unibus resst (which
clears all interrupt enablings), sets the kernel stack to loca-
tion 700, and Jumps to routine "main" in module "lsi.ec". This
routine sets the kernel stack limit to 400 (in global 1location
1000) and invokes "initall", which calls the initialization code
for each module.

After all modules are initialized, "initall" prints the name
of the operating system, the machine id, and the amount of memory

used.

The "main" routine then initiates and awakens the kernel job
"kernjob" in "lsi.c". Then "startscheduler"” in module
"schedule.u" is called. The kernel job is soon started; it exe-
cutes a manual load request (see "Core Images", section 3.2) to
load the first process (usually, the Resource Manager). After
the kernel Jjob starts the first process, it remains in a loop

waiting for kernel-to-kernel load requests, described in section

3.2.
Files

1si.c and kernkern.h
Procedures
main()

Calls initall, then starts up kernjob.
initall()

Calls the intilalization code for each module.
kernjob()

Loads the first user program, then waits for messages
from remote kernels to load up new programs.

2.2 Debugging Ailds

The module "error.c" contains various debugging aids. This
module 1is compiled with the standard C compiler, since stack
overflow calls "syserror".

The routine "pause" in module "lowestirp.s" prints its de-
cimal argument and then halts. The console ODT command "P" will
proceed from the halt.

When the Roscoe kernel discovers a situation from which 1t
cannot recover, the routine "syserror" in module "error.c" is in-
voked. This routine prints a coded message to the console termi-
nal and then executes a "pause(-1)". The messages are listed in
the file "syserrors"; their text is not stored 1in the kernel

proper in order to save space. It is usually not wise to contin-

ue from such an error.

Non-existent memory traps and illegal instruction traps cause
a message to be printed from routine "nxmerror". The proper in-
terrupt vector is established during "initall" in "lsi.c". if
the error 1s in the kernel, syserror is invoked. Otherwise
"schedcall(DIE)" in "schedule.u" is called to terminate the of-
fending process.

Service routines return failure to the calling process by in-
voking the macro USRERROR, which is defined in "util.h". This
macro causes the error number to be printed and a negative error
code to Dbe returned. The procedure "usererror" in "error.c"
prints the message. A list of errors can be found in the file
"usererrors".

The routine "snap" in module "error.c" checks its argument
against the global wvariable "debug", which is always stored in
location 776. If "debug" and the argument to "snap" have any
bits in common, then a walkback of routine return addresses is
printed to the terminal and "pause" is invoked.

The global location "debug" can also be used as a guard on
various diagnostic output while new modules or routines are being
tested. 1In addition, several important variables are kept in low
core to facilitate debugging.

Several debugging routines that print various structures can
be found in the file "debug.u". These routines are not normally
included in the kernel but can be edited into the kernel source
during debugging. They include "procprint" to print the status

of each process, "kmprint" to print a kmesg buffer, "Inprint" ¢to

print a link, "clkgprnt" to display the clock queue, and "free-
print" to print a map of free space.

Files

lowestirp.s, error.c, debug.u

Data structures

int debug
At location 776. Can be set through ODT to control de-
bugging.

int numkmes
At location 756. Stores the number of available kernel
message buffers.

int curusr
At location T760.

int wormno
At location 774, Stores the value of register 1 the last
time a service call went through the "wormhole".

Procedures

pause(code)
Print the code on the terminal and halt.

snap(code)

nxmerror (dummy)
Print message, then either call schedcall or syserror.
Print a trace of the stack and pause.

syserror(code)
Print the code (which can be found in the file "syser-
rors", then call "pause(-1)".

The lowest-level input-output routines that deal with the
console terminal are in module "io.c". Since these routines can
be called after a stack limit exception, they are compiled by the
normal € compiler that does not check for stack overflow. The
routine "outchar" sends a character to the console terminal after
sitting for a while in a busy loop. The number of iterations of
this loop is stored in the global location 157702 (octal), which
can be set in ODT. The delay is to slow down the natural rate of
transfer so that if the program "coml" is receiving the console

stream, Unix can keep up with the line.

The "printf" routine used by the kernel is in module "lsi.c".

It acts much 1like "printf" in Unix, except 1t does not have
widths in its format specifications. '"Printf" is only wused for
debugging output; terminal I/0 is ordinarily handled by the ter-
minal driver utility process [Tischler 78a, 78b]. The module
"lsi.c" defines "putchar", which calls "outchar" in "io.c".
Files

io.c
Procedures
outchar(dev,c) char c;

Print one character to the teletype at address dev.
ttyflush()

Remove any waliting character from the teletype 1input

buffer.

2.4 Free storage management

Free storage management routines are found in the module
"free.u". During Roscoe initialization, the routine "freeinit"”
grabs a large section of memory from the end of the kernel using
the "sbrk" routine 1in "lsi.c". The boundary tag method [Knuth
68] is used to allocate chunks of storage through the routine
"freeget" and to return them through the routine "freerel". Free
storage is used to find room for certain kernel tables that are
made once during Roscoe initialization and to provide room for
processes. This latter space is reclaimed by a reference count
technique described under Core Images, section 3.2.

Files

free.u

Data Structures

int freesize
Length of the free space in words

int ¥freespace
Start of the freespace. Set by sbrk(freesize) at ini-
tialization.

int freeptr

10

Head of a doubly linked chain of blocks of free storage.
struct { int frsize, ¥frnext, ¥frprev; }
Format of the header of a free block.

Procedures
freeinit()
Free storage initialization
int *¥freeget(size)
Returns a block of "size" words of free storage. Returns
-1 for error.
freerel(ptr) int ¥ptr
Release the block of storage pointed to by "ptr".

2.5 Locks

Several sensitive queues must not be simultaneously modified by
an interrupt-level routine and a standard routine. Access to
these queues 1s controlled by interlocks found in the module
"lock.u", which provides routines "wait" and "signal". The
"wait" routine makes sure that no lock is active, then moves to
high priority. (The LSI-11 has only two priority levels.) The
"signal™ routine restores the original priority (which may have
been high). ©No interrupts are serviced betweﬁ these calls. Four
queues are locked in this fashion and will be discussed Dbelow:
the ready process queue, free message buffer queue, received mes-
sage queue, and outgoing message queues.

Files

lock.u and lock.h

Data 3tructures
int NUMLOCKS3
Number of lock types. These locks are defined:
RQLOCK: ready queue lock; used in schedule.u
KMBUFLOCK: available list of message buffers; wused 1in
kmess.u
IOQLOCK: 1list of outgoing messages; used in line.u
KMWTLOCK: 1ist of received messages; used in kmess.u
int curlock
-1 if no lock active, else name of lock.
int lastps
processor status before the current lock was entered.

11

Procedures

lockinit()
Initialization routine.

wait(lock)
Make sure no lock is in force, then move to high priori-
ty.

signal(lock)
Make sure the argument is the lock currently in force,
then return to the old priority.

2.6 Service calls

Processes running under Roscoe request kernel assistance by
invoking kernel service routines. These invocations are per-
formed by loading a routine code in register R1 and transferring
control to location 1002 by a subroutine call instruction. The
routine "sys" in the module "crtl.s" resides at this 1location.
It decodes these <calls and invokes +the appropriate kernel
routine. This "wormhole" technique allows user programs toc com-
municate with the kernel without being linked to it. Each ser-
vice call is represented by two words in a table: The first 1is
the address of the service routine, and the second is a set of
flags indicating whether the routine may be called at interrupt
level and at normal level, and whether it is a privileged in-
struction. No use is currently made of the privileged flag.
(Interrupt handling 1is discussed 1in section 5.) This same
routine calls the routine "maydie" in "schedule.u"™ so that the
calling process may be terminated 1f termination 1s pending.
(See the discussion on the scheduler, section 3.1.) When the
service routine is finished, control is returned directly to the
calling process. During execution of the service routine, the
stack belonging to the calling process is used. For this reason,

most kernel routines are compiled with the stack-checking version

12

of the C compiler.

Service routines usually have two names; the one that applies
in the kernel, and the alias employed by user processes. The
aliases are defined in a companion report [Tischler 78al.

Files
ertl.s

Data Structures

table

Branch table for dispatching service calls.
Procedures
sys

At location 1002. Dispatches service calls.

2.7 The clock

The module "clock.u" provides a routine "setalarm", which al-
lows an arbitrary routine with up to four arguments to be called
some number of seconds in the future; This routine will run at
interrupt level. The routine "setalarm™ returns a code that can
be used to turn the alarm off before it expires by invoking "ftur-
noff" with that code as an argument.

The clock routines are implemented with a programmable clock,
which is set to interrupt when the next scheduled event has been
reached. A queue of events stores the alarms that have been set;
each node includes the time to the next event in the queue. The
queue is not allowed to become empty; at least a "tick" event 1is
always present.

The tick event occurs once a second to update the various
time indicators., It also calls "setalarm" with a special argu-
ment of delay = -1, placing another tick on the queue one sSecond

after the first event on the queue, rather than one second from

13

the current time. (The first event on the queue 1s the tick
currently being serviced.)

When the clock interrupts, "timesup" is called at interrupt
level to act on one or more events on the queue. Each such event
is carried out before updating the queue, so that the queue 1is
never empty. (In particular, there's always a "tick" event
present.) The algorithm tries not to lose any time on the clock
while the action i1s being carried out: the clock stays in repeat

interrupt mode, and the time for which it was last set 1is saved

in "lasttime", so the time elapsed while servicing an interrupt
can be calculated. "Timesup" may carry out several such actions
before returning, 1if their times arrive while previous ones are

happening.

The date, given in seconds since Jan 1, 1973, may be obtained
with the service routine "date", which returns a long integer.
The service routine "setdate" may be used to change this date.
Another service routine, "time", returns a long integer that
counts in increments of .0001 seconds. This latter timer cannot
be modified. "Time"™ works by returning "timeofday" plus the
fractional part obtained by summing the "expire" fields 1in the
clock queue up to the "tick" event. These services are used by
outgoing message sending and message reception, which are dis-
cussed in sections 4.2 and 4;4.

Files

clock.h and clock.u

Data Structures
int NBRARGS
number of arguments to alarm routine, currently four
struct cqvector {
int (¥cqfunc)(); /% function to call when alarm expires

*/
int cqargs[NBRARGS]; /* arguments to that function */
b
int timeofday
interval timer in seconds
long datereg
seconds since the epoch (beginning of 1973, Madison stan-
dard time)
int uniquecode
used to distinguish alarm events
struct clkgnode {
struct clkgnode ¥*cqnext;
long expire; /% time in .0001 seconds between this event
and the following one ¥/
int cqcode; /% distinguishing code ¥/
struct cqvector cqaction;
b
struct clkgnode clkqueuelCLKQSIZE],*clkqtop,*clkqgfree
Queue of alarms, start of queue, head of free 1list of
gqueue nodes.

Procedures
long time()
Returns the current interval timer value (in .0001
seconds), as determined from "timeofday" and the clock
queue.
long date()
Returns the current value of "datereg".
setdate(n) long n;
Sets datereg equal to n.
int setalarm(delay,action) struct cqvector *action
Places an alarm on the queue. When it expires, +the ac-
tion will be taken. Returns a code to be used for "tur-
noff",
turnoff(code)
Remove the alarm that has the given code.
tick()
Called every second to update datereg and timeofday.
timesup()
Called by clock interrupt to run the pending events.
clockinit()
Initialization of the clock routines.

3. PROCESS MANAGEMENT

Processes are managed by the scheduler and the core 1image

routines.

15

3.1 The scheduler

The scheduler resides in "schedule.u". This module keeps an
array of per-process information, which includes a stack frame
pointer, the current status of the process (non-existent, sleep-
ing, ready, running, halted, to be halted, to be terminated), a
pointer to the next process on the ready queue (if this process
is itself ready), the lowest address allowed for the stack, and
an index into a reference count table for purposes of storage
reclamation.

Each process is identified by two numbers: an index into the
ier (process id). The process id is a combination of the machine
id and a sequence number. The module "schedule.u" provides
routines "getid" and "getno"™ for conversion Dbetween the two.
Process 1id's are used as message destinations, since it 1s wrong
to direct a message to a new process that happens to have the
same process number as the desired but terminated process.

A process is started by a call to "initiate", which takes a
core image, an argument, and an owner id. A new stack is created
and initialized so when the process starts, it will appear as if
it has been called with the given argument. The stack is also
prepared with a return address that points to "fallthrough", so
if the process returns, "fallthrough" can perform a
"schedcall(DIE)" and properly terminate it. The reference count
on the core image is incremented to indicate that another process

is running in it. A check is made to insure that the owner of

16

the core image is performing the initiate. Finally, the process
is awakened by a call to "awaken".

The routine "awaken" causes a process whose status is "sleep-
ing" to be placed on the ready queue with status "ready". It
does nothing if the process was not sleeping. (For this reason,
"initiate" first sets the status to "sleeping" and then calls
"awaken".)

Scheduling is round-robin non-pre-emptive. The scheduler it-
self remains 1in a loop in routine "scheduler". Once a process
has been chosen for execution, the scheduler 1loop <calls the
routine "strtusr" (again in module "resume.s"), which switches to
the process stack and transfers control to that process. The
stack 1imit for this process is placed in location 1000 (octal)
so that procedure entry code can check for stack 1limit viola-
tions. Interrupts are prevented during all stack switching, when
the stack limit implied by location 1000 is not <consistent with
the stack pointer in hardware register r6. (3ince interrupt-
level routines also use stack-limit checking, they would 1likely
signal a stack overflow.) The routine M"psset" 1in module
"lowestirp.s" is used to switch the processor priority.
Processes are run at low priority.

The details of process switching depend on the standard
subroutine linkage conventions of C. Normally, each activation

of a procedure has a corresponding stack frame. More recent ac-

tivations correspond to stack frames at lower addresses. A frame

is identified by an address (called the frame pointer) of one of

its fields. The word addressed by the frame pointer contains the

17

frame pointer for the next older (higher addressed) frame
pointer. The following word (next higher address) contains the
return address, and subsequent words contain the actual parame-
ters, the first actual parameter being at the lowest address.
The three words preceeding the frame pointer word are wused to
save registers r2, r3, and ri4. Subsequent locations are used for
local variables and temporary storage. Register r5 always con-

tains the current frame pointer:

ro --> temporary storage
local variables
rb5 -=> previous frame pointer

return address
first actual parameter
second actual parameter
(lower addresses are towards the top of the diagram).

To call procedure "foo", say, the calling program pushes
the actual parameters onto the stack and then executes a "jsr
pc,foo" or a "Jjsr pc,¥$foo" instruction, thus pushing the return
address onto the stack. If the program "foo" was compiled
without stack limit checking, it first executes "jsr rb5,csv",
which pushes the previous frame pointer. The routine "csv" then
saves r2, r3, and r4, sets r5, and returns to "foo". The code of
"foo" then decrements r5 to make room for local variables. The
stack pointer r6 ends up pointing one word beyond (below) the
last local variable.

The stack-limit-checking version of "foo" 1is similar,
but instead of calling "csv" and then making room for local vari-

ables, it places the negative of the number of bytes of local

18

variables into r1 and calls "nesv", which checks the 1limit (in
location 1000) to see that the space for local variables can be
granted with room to spare and then decrements the stack pointer.
Return from a function is accomplished in either version by a
jump to "cret", which restores the registers r2, r3, r4, and r5
to their values prior to the call, sets rb6 to point to the return
address on the stack, and executes an "rts pc" instruction. Ac-
tual parameters are cleared from the stack by the calling pro-
gram. (All parameters are passed by value.)

The contents of rb6 on entry to "cret" are irrelevant; on
return from a procedure, rb6 always points to the word following
the word addressed by r5 during the procedure. Hence, the entire
state of a process can be saved by storing r5, provided the pro-
cess is just about to return from a procedure.

A process that wishes to relinquish control calls
"schedecall"., The code in "schedcall" stores r5 in a location as-
sociated with the current process (the field "ppfptr"™ in the
per-process data structure "proctablcurusrl"), replaces it by the
saved r5 from the scheduler "process", and returns. Similarly,
"strtusr" resumes the process by restoring the saved r5 value and
doing an ordinary return. To the process, it 1looks as 1if the
call to "schedcall" returns immediately.

The argument to "schedcall", one of DIE, CONTINUE, and
SLEEP, is passed back to the scheduler as a result of the invoca-
tion of "strtusr". In the first case, "killoff"™ is 1invoked and
another process is chosen at the start of the scheduler loop. In

the second case, the process remains ready but 1s awakened so

19

that it sits at the end of the ready queue. This alternative 1is
used by service routines that need to wait an unspecified amount
of time and are willing to allow other processes to eXxecute 1in
the meantime. In the third case, the process is placed in state
"sleeping". Forms of schedcall(DIE) and schedcall(CONTINUE) are
provided for processes 1in the service routines "userdie" and
"usernice", aliases for "die" and "nice".

The procedure "killoff" first removes the target process
from the ready queue, if it 1s there. The status is set to
"halted". If "killoff" was invoked to halt the process, it then
returns. If "killoff" is to terminate the process, it then in-
vokes "intclear" to remove any interrupt handlers associated with
the target, "freerel" to return the target's stack, "lnclear" in
"lnmaint.u" to clear the target's 1link table, "kmclear" in
"kmess.u" to remove any messages awaliting the target, and then it
reduces the reference count that records how many processes are
active in the target's core image. The routine "lnclear" can it-
self indirectly cause the termination of other processes, so
"killoff" is indirectly recursive. A running process cannot be
halted or terminated, so "killoff" will change the state of a
running process to "to be killed" or "to be halted", as appropri-
ate. Each service call invokes +the procedure "maydie", which
checks to see if the current process is in one of these states.
If so, "schedcall" is invoked to return control to the scheduler,
which can then invoke "killoff" to finish the action.

Both "awaken" and the scheduler 1loop use locks as

described above to prevent misuse of the ready queue.

20

The scheduler is itself started by the routine
"startscheduler". First, the routine "scheduler" is initiated as
if it were a normal process. This action insures that the
scheduler will have a reasonable stack. Then "strtusr" is in-
voked to transfer control to the scheduler. Its first action 1is
to invoke M"killoff"™ on itself, removing all vestiges of itself
from the process table. The "killoff" routine knows not to re-
move the scheduler's stack.

Files

schedule.u, schedule.h, resume.s.

Data Structures
STKLEN

Length of a user stack, in words.
int NUMPROCS
Size of the process table.
int idtable[NUMPROCS]
Table of process identifiers for each process number
int curusr
Process number of currently running process.
int nextid
Non-reusable id for next process to be initiated
int kernno
process number of kernel job; set by lsi.c
struct ppnode {
int ppfptr; /% stack frame pointer #*/
int ppstatus; /¥ One of the following:
PPNONEX 01
PPSLEEPING 02
PPREADY 04
PPRUNNING 010
PPHALTED 020
PPTOHALT 040
PPTOKILL 0100
*/
int ppnext; /¥ for linking into queues: in
(0. .NUMPROCS-1] ¥/
int *ppstklim; /¥ stacktop (lowest address allowed).
Also address of stack for allocation */
int ppcodeno; /* index into codetab, -1 if resident. ¥/

b
struct ppnode proctab[NUMPROCS]
per-process data; indexed by procno's
int schedfp
stack-frame pointer for the scheduler
int schdstklim

21

stack limit for the scheduler
int schedno
process number of the scheduler until it wipes it out
int rqfirst, rqlast
head and tail of the ready gqueue
int curusr
Process number of currently running process.
struct codentryl
int edrefcount; /¥ reference count (-1 if not in use) ¥/
char ¥cdmemory; /¥ start address of this segment */
int cdowner; /¥* process id of owner ¥/
}
int NUMMODULES
Length of core image table.
struct codentry codetab[NUMMODULES]
The core image table.

Procedures

maydie()
If current process is in state "to kill"™ or "tohalt",
calls "schedcall".

startscheduler()
Called during initialization. Starts up the scheduler as
a process, then transfers to it.

killoff(userno,how)
The second argument is either PPTOKILL or PPTOHALT. Halt
or terminate the target process. If the process is run-
ning, set the status to PPTOKILL or PPTOHALT. If the
process gets terminated, remove its stack, link table,
waiting messages, and interrupt handlers.

int getcodeseg(userno)
Returns the core image stored in the pptab.

int getfreeno()
Finds an available user number.

fallthrough()
Procedure called if a process returns. Calls
"schedcall(DIE)".

int initiate(codeseg,arg,owner)
Makes a new process entry in pptab. Its entry point 1is
the start of the memory in the given core image, and the
stack is initialized to hold the given argument. The
core image 1is placed in the pptab for future reference.
The process is left in state "ready".

fallthrough(p)
Called if process returns. Effects a schedcall(DIE).

scheduler()
First removes itself from the process table, retaining
its own stack. Then enters a loop in which a ready pro-

cess i1s scheduled and run through "strtusr"™. Upon return
(through "schedcall"), process may be rescheduled, ter-
minated, or neither, for the case CONTINUE, DIE, and
SLEEP.

awaken(procno)
Cause the given process to be placed on the runnable

22

queue if it was sleeping.
userdie()
This service call is invoked by the kernel call "die()"
and effects "schedcall(DIE)".
usernice()
this service call is invoked by the kernel call "nice"
and effects "schedcall(CONTINUE)".
schedinit()
Initializes local tables.
int getno(procid)
Finds the process number for the given process id.
int getid(procno)
Finds the process id for the given process number.
strtusr(fptr)
In "resume.s". Starts the process whose frame pointer is
given. The scheduler stack pointer is saved in fptr.
schedcall(kind)
In "resume.s". Switches back to scheduler stack frame,
places "kind"™ as a result, and returns from what looks
like the call to "strtusr" made earlier.

3.2 Core images

The module "lifeline.u" provides service calls that allow one
process to control another. A process can cause a program to be
loaded into memory by invoking "userload" (an alias for "load"),
which takes a file name and a file descriptor. The file descrip-
tor is a link to an open file. (Links are described in section
4,3, and the file system is described elsewhere [Tischler 78bJl.)

The program "userload"™ calls routine "uload" in module
"uloader.u" to bring in the core image of the file. This module
is written as a user program, using standard service calls to ac-
complish the necessary communication with the file manager to

read the file. If the file descriptor 1s -1, then "uloader"

tries to read the file directly over the fast line to Unix. In
this case, the file name 1is used as a console prompt. The
routine "uload" wuses a privileged service call to acquire free

space for the new load image. It returns the starting address of

23

the loaded program.

Core images are maintained in a table that assoclates an
area 1n memory with an owner and a reference count of processes
active in that area. The routine "newcseg" in "schedule.u" takes
an address and an owner, finds a free slot in the segment table,
sets the reference count to 0, establishes the owner, and stores
the address as the memory for that core image. The service
routine "userload" establishes a code segment for the new 1image
by calling '"newcseg" and returns the index of the code segment
that "newcseg" provides.

The calling process can then use this image number to
start a new process in the 1loaded image. Since loading and
startup are 1independent, the <calling process (usually the
Resource Manager) may start several processes in the same image
and may save the images of dead processes *to start wup again
later. Starting a process is accomplished by the service call
"userstart" (an alias for "startup"), which takes a code segment,
and argument, a 1link to the parent, and a disposition code for
that 1link. This routine calls "initiate" to start up a new pro-
cess 1in that code segment (if the owner is right). The new pro-
cess is started with a fresh link table that contains one link,
the parent link supplied to "userstart". (See the discussion of
links in section 4.3.) This link is either duplicated for the
child or given away outright, depending on the disposition. This
link has the restriction "NODESTROY", so the child cannot destroy
it except by dying. (The parent can thus be furnished an un-

forgeable notification of the child's termination.) A lifeline

24

is then created for the parent. It appears in many ways like a
link in the parent's link table, except that it is not possible
to send a message along it, and it has the restriction bit LIFE-
LINE. The destination of the lifeline is the new child.

A kludge to allow remote loading of programs checks the
file name in the "userload" call if the file descriptor is good.
If the file name is a small integer between 0 and NUMMACH, the
number of machines, then the call is taken as a request for re-
mote loading. 1In this case, two extra arguments are used, one to
be the parent link of the new process, and one to be the argument
to that process. A special message is sent to the kernel job on
the destination to request loading. The process identifier of
the kernel job is always a number with the wmachine id 1in the
upper byte and a 0 in the lower byte. Protocols for the kernel-
to-kernel message are in "kernkern.h". The kernel job on the re-
mote machine not only loads the program, it also starts 1t with
the supplied parent 1link and argument. The remote kernel job re-
turns the 1lifeline to the started process by sending its response
along a link that it builds to the requesting process with chan-
nel 15, The routine "userload" waits for this response, then re-
turns the lifeline to the calling process.

A process holding a lifeline may use it to control the
owner of the lifeline (that is, the process to whom it points).
The service routine "userkill", alias for "kill", takes a 1life-
line as an argument. This routine sends a KILL notification to
the target process.

In order to remove a core image, a process may 1invoke

25

the service routine "userremove" (an alias for 'remove") in
"schedule.u". This routine reclaims the memory through "freerel"
and frees the slot in the segment table. The caller must be the

owner of that segment, and the reference count must be O.

Files
lifeline.u, lnmaint.h, kernkern.h, schedule.u.

Procedures

int userload(prog,fd) char *¥prog
Load in a new program from the given file. Either use
the file descriptor, or the file name. If prog=1, load
remotely and return 1lifeline. Else return the image

number of the new core image.

int userstart(codeseg,arg,plink,dup)
Start a process in the given image with the given argu-
ment. Initialize it to have the given parent link. Re-
turn a lifeline to the new process.

int userkill(lifeline)
Send a KILL note to the process pointed to by the 1life-
line.

userremove(codeseg)
If the caller owns the code segment, and the reference
count is 0, reclaim the storage for the segment. This
routine is in "schedule.u".

4. MESSAGES

All communication among processes 1s carried out through
the medium of messages. Three major modules in Roscoe deal with
message handling. The module "line.u" <(and the small module
"route.u") deal with messages sent to foreign sites or arriving
from foreign sites. The module "message.u" contains the inter-
face between message routines and the service calls "receive" and

"send". The central message-handling module is "kmess.u".

26

4.1 Central message handling

The module "kmess.u" maintains a pool of unused message
buffers each of which contains the message text, other user-
accessible fields, the process 1id of the destination, and a
pointer field used for linking unused buffers into a queue. All
access to the pool of message buffers is protected by locks (sec-
tion 2.5).

Message buffers can be acquired by invoking the routine
"getkmesg" and released by "rlkmesg". The former routine takes a
priority argument. If the priority 1is 1, +then any available
buffer 1is returned. If the priority is 2, then a buffer is only
given if there are at least 1/4 of the original buffers left. If
the priority is 3, then a buffer is only given if there are at
least 1/2 of the original buffers left. These distinctions are
used to implement flow control. The callers to getkmesg are in
the other two message modules.

Each process has a queue of messages waiting for it, ar-
ranged in the order they arrive. This queue is protected by
locks (section 2.5). These messages are placed on the queue by
the routine "sendit", which 1s invoked by both the other message

modules. This routine places the message on the appropriate

queue if its destination is local to this machine. (The destina-
tion is a process id, which includes the machine 1id.) If the
destination is no longer alive, the message is discarded. If the

destination is on a foreign machine, then "sendit" finds the ap-
(=1 1

propriate line on which to send the message by calling "getline"

27

in the module "route.u", then calling "sendblock" in the module

"line.u" to ship it off. (See section 4.2, "Inter-machine mes-
sages".) The routine "sendit" recognizes one special case: If
the M"note" field of the message to a local process is the code

"KILL"™ or "HALT", then instead of delivering the message, sendit
invokes "killoff"™ in module "schedule" with argument TOKILL or
TOHALT (section 3.1, "The scheduler™).

The dual to "sendit" is "waitmess", which is invoked by
module "message.u" to get a message from the queue for a process.
The caller specifies a set of channels. The routine "waitmess"
Wwill return the first message on the appropriate queue whose
channel is one of those specified. The caller also specifies a
timeout period. If the timeout is 0 and no appropriate message
is waiting, then "waitmess" returns failure. If the timeout 1is
negative and no message is waiting, the routine "waitmess" calls
"schedcal 1(SLEEP)" to allow other processes to carry on. Every
time "sendit" deposits a message in a process queue, it invokes
"awaken" to inform that process. Eventually, the process that is
sleeping for a message will be awakened and will be able to con-
tinue. (Schedcall and awaken are described in section 3.1, "The
scheduler".) If the delay is positive and no appropriate message
is waiting, then "waitmess" uses the clock routine "setalarm"
(section 2.7) to awaken the sleeping process after that amount of
time. If an appropriate message arrives first, +the alarm 1is
turned off. When the alarm rings, "waitmess" is awakened, dis-
covers that no message has arrived, and returns failure to the

caller. The routine "waitmess" wuses "time" 1in the module

28

"clock.u" to distinguish between an alarm and the awakening that
accompanies the arrival of a message.

In some cases of user error, the module "message.u" must
give back a message it has taken. 1In this case, "giveback" is
invoked to put it at the head of the queue.

When a process 1is killed, "killoff" in "schedule.u"
calls "kmclear" in "kmess.u" to remove any message that might be
queued up for the process that is dying. The buffers occupied by
the messages are reclaimed.

Files
kmess.u and kmess.h

Data Structures

struct kmesg{
int kmnext; /% links together free list ¥/
int kmdest; /% destination process id ¥/
int kmcode, kmnote, kmchan;
struct link kmlnenc; /* enclosed link ¥/
char kmbody[MSLEN]; /¥* MSLEN defined in lnmaint.h ¥/
}
One kernel message buffer.
int kmesgsize
Size of a kmesg in words. Set at system initialization.
struct kmesg ¥kmesgbuf
Initialized to kmesgbuf[NUMKMES].
struct kmesg ¥*kmbufavail
Head of available list.
int numkmes, warnl, warn2
Number of buffers 1left, half the original number of
buffers, 1/4 the original number of buffers.
NUMKMES
Original number of kernel message buffers available
NUMWTMES
Number of waiting messages that can be held before wusers
take them.
struct kmwtlst{
/¥ entry in a linked list of kmesg'es waiting to be re-
ceived ¥/

struct kmesg *kmwtptr; /¥ the waiting kmess #*/
struct kmwtlst *kmwtnext; /¥ next for this user ¥/
}

struct kmwtlst kmwttab[NUMWTMES]
Table of waiting messages.
struct kmwtlst kmwthed[NUMPROCS], ¥*kmwtavail
Headers for each process into kmwttab, head of available

29

list of kmwtlst's.

Procedures

struct kmesg *getkmesg(priority)
Returns a pointer to a free kmessage buffer. The meaning
of priority is described above. Returns 0 on failure (if
no buffer is available at this priority).

rlkmesg(kmess) struct kmesg ¥*kmess
Returns the kmessage buffer to the free buffer pool.

kminit()
Initializes all tables for kmess.u.

sendit(kmess) struct kmesg ¥kmess
Sends a message to the destination indicated in the mes-
sage. If the message looks foreign, try to route it
through an appropriate neighbor. (See section 4.2,
"Inter-machine Messages".)

int waitmess(who,chans,delay,kmgot) struct kmesg *¥*kmgot
Wait for a message for user number "who" on any of the
channels indicated in the mask "chans". Delay is a max-
imum delay (in seconds), after which a return of -1 1is
given if no message was received. A delay of -1 indi-
cates no time limit. Kmgot is a result parameter, set to
point to the received kmessage buffer.

giveback(kmess) struct kmesg ¥*kmess
Place the indicated message back at the head of incomming
messages for the current user (curusr).

printkm(mess) struct kmesg ¥mess
For debugging purposes.

kmelear(who)
Remove any incomming messages on the queue for process
number "who".

4.2 Inter-machine Messages

The modules "line.u" and "route.u" deal with communica-
tion to other machines. "Route.u" associates physical lines with
processor id's by the routine "getline". The actual handling of
physical lines is in "line.u".

"lLine.u" keeps tables for each physical line indicating
the current state of the communication (idle, awaiting ack-
nowledgement, sending data, receiving data, awaiting checksun,
sending checksum), a pointer to the message buffer currently be-
ing sent or received, a pointer within that buffer to the active

word, how much information 1s 1left to transfer, the current

30

checksum, and a queue of messages waiting to be sent on that
line. All access to the outgoing message queues is protected by
locks (section 2.5). All the queues are locked simultaneously
for simplicity.

During kernel initialization, +this module determines
which physical lines to neighbors exist by attempting to read the
status register for each line. If the register does not exist,
the processor traps, and this trap is caught by "setflag" in
"lowestirp". This routine sets a flag that is examined by 1line
initialization.

The routine "sendblock™ places a given message buffer on
the appropriate queue and signals the interrupt-level routine
"linehandle" by using the routine "frob". If the queue 1is too
full, then "sendblock" places an alarm on the clock queue to try
again after one second and returns. "Frob" signals "linehandle"
by clearing and setting the output interrupt enable bit on the
appropriate line. 1If the line is currently not engaged 1in out-
put, this action will cause an output interrupt. If it is, then
an output interrupt will occur 1in any case as soon as it is fin-
ished.

The routine "linehandle"™ is called whenever an input or
an output interrupt occurs in any one of the lines. The inter-
rupt itself is caught by a routine in "lowestirp.s" (see section
5, "Interrupt Handling") and dispatched to "linehandle" with ar-
guments indicating which line was involved and whether the inter-
rupt was on input or output. Interrupts are serviced based on

the current state of communication on the particular 1line that

31

caused an interrupt.

An output interrupt on an idle line causes ™"linehandle"
to examine the queue of outgoing messages on that line. If it is
not empty, then the first is picked and readied for sending. An
input interrupt on an idle line causes "linehandle" to prepare to
receive a foreign message. It calls "getkmesg™ in "kmess.u" with
priority 3 to find a message buffer in which to place the incom-
ing message. If this request fails, then "linehandle"™ responds
to the foreign site with a negative acknowledgment. Otherwise a
positive acknowledgement is sent. If "linehandle"™ is trying to
send a message and receives a negative acknowledgement, then the
outgoing message is not removed from the queue. Instead, an
alarm 1is set to call "frob" again in a second. Once the ack-
nowledgment has been sent and received, the sending side of the
line sends the entire message buffer and follows it with a check-
sum. During the bulk of the transmission, "linehandle" attempts
to stay at interrupt level in order to use the physical line at
peak efficiency. If the receiver fails to receive at a reason-
able rate, then the sender leaves interrupt level, but will come
back when the next transmitted word has been read.

Files

line.u, route.u, and line.h

Data Structures
int linetab[NUMMACH] (in route.u)
Linetab[nl] is the number of the line to machine n.
struct drvblock {
int dresr; /% common status register ¥/
int droutbuf; /¥ output data buffer */
int drinbuf; /% input data buffer ¥/
int drfiller; /% not used */
}
The structure of a block of registers pertaining to one
physical DRV-11 (parallel-word) interface to another

32

LSI-11.
int numnbrs
Number of phyical links to neighboring LSI-11's. Set
during initialization.
struct ioblock {
int iostate; /% eg IOWANTCKS ¥/
struct kmesg ¥iocurmess; /% kmess currently in transit

x/

int *ioptr; /¥ information to transfer (points within a
kmesg) ¥/

int iowdent; /% length of information left to transfer
®/

int iochksum;

struct kmesg *iooutghead, ¥iooutqtail; /¥ head, tail of
output queue, linked through kmnext field.

} ioinfo [NUMNBRS] Data indicating the state of one
DRV~-11 line.

struct intervect {

int *outnpc, outnps, ¥innpc, innps; /% new pc and ps for
output and input interrupts ¥/

} Interrupt vector block for one DRV-11 line.

Procedures

routeinit()
Initialize linetab.

int getline(machno)
Return the line corresponding to machine "machno". Abort
on an invalid machine number.

int irpvect(mach)
Return the address of the interrupt vector for machine
"mach".

int drv(mach)
Return the address of +the device register Dblock for
machine "mach".

irpinit()
Initialize the states (ioblocks) of all lines.

sendblock(mach, block) struct kmesg ¥block
Attempt Lo send the message pointed to by "block"™ to the
neighbor whose machine id is "mach". If there is no room
on the output queue, set an alarm to try again later, but
return for now.

frob(dr)
Cause an output interrupt on the DRV-11 1line whose ad-
dress is "dr".

linehandle(machine, irpkind)
Service an interrupt that occurred on the 1line from
machine "machine". Irpkind 1s OUTIRP or INIRP.

33

4.3 Links

Each process has a table of links that are used to send
messages. The table of links and all manipulations of links are
handled in the module "lnmaint.u". This table, called "lntab",
uses a destination field of O to indicate that an entry is not in
use.

A new 1link can Dbe created by the service routine
"lnmake", which 1s an alias for the service call "1link". This
routine returns a small number that the process program can use
to refer to this link; processes never have direct access to the
link table. The new 1link 1is initialized with a destination
pointing to the <calling process, code, channel and restriction
according to information provided by the <calling process. The
code and channel are provided to the recipient of any message
that comes along that link. The channel can also be wused for
selective reception of messages. The restrictions are a set of
permissions and actions that will govern the use of this 1link.
The owner (the process that created the 1ink) can demand that no
holder (a process that is given the link in order to send mes-
sages to the owner) be able to give the link away or duplicate
it. On the other hand, these actions may be permitted. The own-
er can request that it be notified when the link is duplicated,
given away, or destroyed., Notifications come as special messages
along the channel and code of the 1link with the unforgeable note
field indicating what notification type it is. The restriction

bits also indicate whether the link is a use-once resource {(a RE-

34

PLY link) or a permanent resource (a REQUEST 1link). A special
restriction LIFELINE is used to give the holder the capability to
terminate the owner, that is, it makes the link into a 1lifeline
(section 3.2).

After a link has been created, it can be given to anoth~
er process as an enclosure in a message.

The routine ™M"lnclear™ 1is called from "killoff" in
"schedule.u". It sets the destination field of all links in the
current process' link table to 0, clearing them. If any link has
the TELLDEST (tell upon destruction) bit set, then
"tell(DESTROYED)" is invoked. If any link has the LIFELINE bit
set, then "tell(KILL)" 1is invoked to kill the destination pro-
cess.

The service routine "lndestr" (an alias for "destroy")
is wused to destroy links. It clears the destination field after
sending any necessary notifications by using "tell".

Files

Inmaint.u and lnmaint.h

Data Structures
struct link {
int lncode;
int lndest; /¥ destination. O if link not in use ¥/

int lnrestr; /¥ restriction bits ¥/
int lnchan; /¥ channel ¥/
}

int NUMLINKS
Number of links per process.
struct link *1lntab
Initialized to hold NUMPROCS*¥NUMLINKS entries.

Procedures
int lnmake(code, chan, restr)
Make a new link, with destination pointing to the calling
process, with the given channel, code, and restrictions.
lnclear(userno)
Remove all links for this user. If any have the TELLDEST
restriction, send a DESTROYED notification to the desti-

35

nation. If any has the KILLABLE restriction, kill the
destination with a KILL notification.

int lndup(ulink)
Duplicate the given link, and return the index of the new
one. If the link has the TELLDUP restriction, send the
DUPPED notification to the owner.

int lndestr(ulink)
Destroy the given link, but return an error code 1if not
possible. If the link has the TELLDEST restriction, send
the DESTROYED notification to the owner.

int 1lnfree(userno,ln) struct link ¥¥1n
Return the index and address of a free link in the given
user's link table, if possible.

int lndecode(alink,ln) struct link *¥1n
Check to see if "alink" is a valid link number for the
current user. If so, return a pointer to the 1link table
entry via the result parameter "1ln". Otherwise, return
-1.

prntln(1ln) struct link ¥1n
For debugging purposes.

Ininit()
Initialize all tables for lnmaint.u.

4.4 User messages

The user interface to message-passing 1is contained 1in
the module "message.u". The service routines in this module do
extensive consistency checking of arguments given by calling
processes. For example, pointers to memory are checked against
"outrange" in module "lsi.c". If any errors are found, the ser-
vice routine first undoes any work it may already have performed
(which may involve returning a message buffer via "giveback" in
"kmess.u") and returns to the caller by using the macro "USRER-
ROR" (section 2.2).

The service routine "sendumes" 1is an alias for the wuser
service call "send". This routine checks that all the actions
desired by the caller are in consonance with the permissions of
the link across which the message is to be sent. If all is well,

"sendumes"™ acquires a message buffer from "getkmesg" in

36

"kmess.u". The priority argument is 1 if the message is travel-
ing on a reply link and 2 otherwise. (Replies are more likely to
be actively awaited by +their destinations than are requests,
which may build up.) If "getkmesg" refuses to allocate a message
buffer, then the calling process waits for it by executing a
"schedcall(CONTINUE)" inside "trygetkmesg" in "message.u". Once
a message buffer is available, the contents of the caller's mes-
sage (if any) are copied into the message buffer, along with the
destination field extracted from the link along which it is being
sent and any 1link to be enclosed. The message buffer is then
given to "sendit" in "kmess.u" to direct the message toward its
recipient. The 1link on which the message was sent and the en-
closed link are then removed from thé sender's link table if this
action 1s called for by the situation. If the restrictions on
these links dictate, notifications are sent to their destina-
tions.

All notifications are sent by +the routine "tell" 1in
"message.u", which immediately <calls "telling", which takes as
arguments the destination, channel, code, and notification type.
If "telling™ cannot get a message buffer at priority 2, it sets
an alarm on the clock to try again in one second. By the time
the alarm rings, the original link along which the notification
is to be sent may have disappeared, but the necessary information
from it is stored as the arguments to "telling".

The dual service routine "recumesg" is used to receilve
messages; it 1s an alias for "receive". The caller indicates

which collection of channels to use and where to put the contents

37

of the message when it arrives. The repository for the message
is a M"urmesg", which contains fields for the message text, the
note, and the channel and code describing the 1link wused. The
calling process can request a timeout after which the call should
fail if no message has arrived. This argument 1s passed directly
on to "waitmess" in module "kmess.u". After the contents of the
message have been copied into the process data area, the message
buffer is reclaimed with "rlkmesg" in "kmess.u".

Files
message.u and message.h

Data Structures

struct urmesg
What a user receives.

struct usmesg
What a user sends. These structures are described 1in
full in the Roscoe Users Manual.

Procedures

tell(who,what) struct link *who
Send a message over link "who" with note "what", one of
DUPPED, DESTROYED, GIVEN, and KILL. Uses routine "tel-
ling™.

telling(dest,chan,code,what)
If can't send a note immediately, set an alarm to try
again in a second.

mscopy{to,from) char *to, ¥from
Copy body of message. If from = 0, fill "to" with nulls.

int sendumes(ulink,elink,usmess,dup) struct usmesg ¥usmess
Send message "usmess" over the link numbered "ulink" in
the current process' link tablee If elink is the index
of a valid link in the current process' 1link table,
create a link 1in the destination process' link table
equivalent to it. Remove elink from the sending process'
link table if dup = FALSE. Return 0 for success, a nega-
tive error code for failure.

int ksend(dest,elink,usmess,dup) struct usmesg *usmess
Send message "usmess" to process id "dest". This func-
tion 1is only callable by the kernel process. Otherwise,
it is similar to sendumes.

int recumesg(chans,urmess,delay) struct urmesg ¥*urmess
Receive a user message on the channel combination speci-

fied by "chans". Place it into the user-provided buffer
"urmess". If delay >= 0 and no message 1s received 1in
"delay" seconds, fail. Return O for success, a negative

failure code for fail. The timeout faillure code is -3.

38

struct kmesg ¥trygetkmesg(priority)
Call getkmesg(priority) until a message buffer 1is ob-
tained. Perform "schedcall(CONTINUE)" while waiting.
telldup(dup,pln) struct link *pln
If dup = TRUE, tell owner of link pln DUPPED; otherwise,
tell owner GIVEN. 1In latter case, remove pln from table
by setting its destination to O.

5. INTERRUPT HANDLING

Processes can inform the kernel that they wish to handle

their own interrupts. The module "interrupt.u" contains the
routines that accomplish the interrupt dispatching. A process
can call the service routine '"userhandler", an alias for

"handler", naming an interrupt vector, the address of the routine
that should service interrupts arriving through that vector, and
a channel number. The routine "userhandler" sets fthe interrupt
vector to Jump at high priority to a routine in "lowestirp.s",
one of "uintO0"™, "uint1", up to the number of allowed interrupt
handlers. Each of these routines places an argument (one of O,
1, etc.) on the stack and <calls the vroutine "uinterrupt" in
"interrupt.u". This routine therefore receives an argument tel-
ling which of the possible interrupts has happened. It then
calls the appropriate interrupt routine 1in the process data
space. When that routine finishes, "uinterrupt" returns, and the
interrupt 1is dismissed from "uintO" or whichever one 1t came
through.

While the process 1s handling an interrupt, 1t may in-
voke the service routine '"userawaken", an alias for "awaken",
which takes no arguments. This routine, in "interrupt.u", causes

a message to be directed to the process that created the handler.

39

The correct process is found through the variable "curhandler",
which is set Dby "uinterrupt" when the interrupt is dispatched.
The message is on the channel specified by the process when it
invoked "userhandler", with note INTERRUPT. The code is 0, and
the body of the message is empty.

No other service calls may be called by a process inter-
rupt handler. Such calls will be aborted by "sys" in "crtl.s".

Files

interrupt.u and lowestirp.s

Data Structures
int NUMHDLS
Number of handlers that may exist.
int numhdls
current number of handlers in existence
struct hdlnode {
int (*hdentry)(); /% entry point of user handler */
int hdchannel; /% channel for awaken calls */
int ¥*hdvector; /% vector for the interrupt */

int hddest; /% destination for awakens. 0 means this
handler not in use ¥/
b

struct hdlnode hdlset[NUMHDLS], *curhandler
Set of handlers, current handler in force.
int *lowuint[]
In lowestirp.s: pointers to individual uint routines

Procedures

intclear(procid)
Clears all interrupt vectors owned by this process. This
operation is part of killing a process.

userhandler(vector,entry,channel) int ¥vector, *entry
Service call to set up a handler at given vector, with
given entry point. The channel is used in an associated
"userawaken" call.

uinterrupt(hindex)
Called from "uint?" in "lowestirp.s" when an 1interrupt
occurs. Dispatches to appropriate handler.

int userawaken()
Service call to be used only from an interrupt handler.
Causes a notification to be sent to the process that
created the handler.

uintinit()
Initialization of the interrupt table.

40

6. ACKNOWLEDGEMENTS

The authors are pleased to acknowledge the assistance of
Jonathan Dreyer, Jack Fishburn, James Gish, Frank Horn, Michael
Horowitz, Will Leland, Paul Pierce, Ronald Tischler, and Milo
Velimirovic. Their hard work has helped Roscoe to reach its
current level of development and will be essential in completing

its design and implementation.

41

REFERENCES

DEC (Digital Equipment Corporation), Microcomputer Handbook,
second edition, 1976.

Kernighan, B. W., Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

Knuth, D. E., The Art of Computer Programming, Vol. 1, 1973.

Solomon, M. H., Finkel, R. A., Roscoe: A Multi-Microcomputer

Operating System, University of Wisconsin -- Madison Comput-
er Sciences Department Technical report #321, April, 1978.

Solomon, M. H., Finkel, R. A., "ROSCOE: a multi-microcomputer
operating system", Proceedings of the Second Rocky Mountain
Symposium on Microcomputers, August 1978, pp. 291-310.

Tischler, R., Solomon, M., Finkel, R., Roscoe Users Guide,
University of Wisconsin -- Madison Computer Sciences Depart-
ment Technical report #336, 1978.

Tischler, R. L., Finkel, R. A., Solomon, M. H., Roscoe Utility
Processes, University of Wisconsin -- Madison Computer Sci-

ences Technical Report #338, September 1978.

Ritchie, D. M., Thompson, K., "The UNIX Time~-3haring System",
Communications of the ACM, Vol. 17, No 7, pp. 365-375, July

1974,

