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ABSTRACT

This paper presents an algorithm for the Euclidean Traveling
Salesman Problem in any k-dimensional Lebesgue set E of zero-volume
boundary. For n points independently, uniformly distributed in E,
we show that, in probability, the time taken by the algorithm can be
made to be of order less than no(n), as n -+, for any choice
of an increasing function o(however slow its rate of increase.) The
resulting tour-length will, with probability one (i.e. almost surely),
be asymptotic, as n -+ «, to the minimal tour length (which has pre-
viously been determined to be asymptotic to Bn1']/kv(£)]/k, where
B depends only on k and VQE) is the k—dimensiohal Lebesgue measure
(volume) of the set E.) This result is stronger and the algorithm is

faster than any other we have been able to find in the literature.



EXTENDED ABSTRACT

1. Introduction and Summary

Given an integer k=2 the k-dimensional Euclidean Traveling Salesman
Problem (k-TSP) can be defined as follows: given a set of n points dis-
tributed in the k-dimensional Euclidean space Rk, determine a tour, i,e.,

a closed path visiting each of the n points exactly once, so that the tour
is the shortest possible one (we take the distance between two points to be
the ordinary Euclidean distance).

For the particular case of k=2, the fact that the TSP is NP-hard
(Garey et al. [1976], Papadimitriou [1977]) igggﬁ evidence that there are
no polynomial-time algorithms for obtaining an exact solution for this problem.

On the other hand, there has been some research on heuristic methods for
the solution of the 2-TSP. For example, computer programs to find near-optimal
solutions for 2-TSP instances of up to 300 points in an acceptable amount
of time were described by Krolak et al. [1970] and by Lin and Kernighan [1973].
Their programs seem to give good results but no rigorous analyses of the
algorithms are available,

Our point of departure is a paper on the asymptotic behavior of the
length of the short;?gtour in a uniformly and independently distributed k-TSP
instance, by Beardwood, Halton, and Hammersley [1959].

In Section 2 of this abstract we present Algorithm A, a non-recursive,

> Algorithm

sented by Karp [1977] in terms of its simplicity, its dimensional generality
and its running time (Theorem 1, below). Moreover, we will see also that
the theorem on the asymptotic behavior of Algorithm A (Theorem 2, below)

is stronger than the corresponding result claimed by Karp [1977] (his claim
is for expected behavior only, while ours is true with probability cne); and

further, we have been unable to follow Karp's proof of his result.
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We assume Condition D, that

[1] the points of a sequence P are distributed uniformly and independently
in a Lebesgue subset E (of volume v(g)) of xg , the k-dimensional
hypercube of side A,

[2] the boundary of E 1is of zero k-dimensional volume (Lebesgue measure.)

[3] we choose a non-zerce function &(n) such that

8(n) » » and G(n)eS(n)/n +>0, as n > =,

The function &(n) 1is used in defining Algorithm A.

Let g” denote the first n points of P. In the paper, we prove
the following:

Theorem 1: Under Condition D, if Algorithm A is applied to a k-TSP

instance En in E, then the Algorithm runs in time

*
Rn ~A n é?n) e(S (n)’ in probability, where A is a constant

and aﬁn) = S(n)xk/v(g).

We are thinking in particular of very slowly increasing functions
8(n), bearing in mind that Karp [1977] has an upper bound for the expected
running time of his algorithm which cannot be less than 0(n (log n)2) . We
notice that, for example, if we let &(n) = log log Tog n in Theorem 1, we

would have

R, ~ 0 (n Tlog log log n Tog log n), in probability.

Indeed, by choosing 6&(n) = alog o(n), for any 0 <a <1, we obtain
Corollary 1: Under the hypotheses of Theorem 1, we can find a function

§(n), such that, for any arbitrarily slowly increasing function o(n),



the running time of Algorithm A will be

L&e |
~4g?(n og(n)), 1in probability. é;%;;

Let To(n) denote the length of an optimal solution for a given k-TSP
instance P", and let T(n) denote the length of the c]osed,path given by
Algorithm A for En. In the paper, we characterize the asymp&{totm perfor- Oﬂ
mance of Algorithm A by the following:

Theorem 2: Under the hypotheses of Theorem 1, we have

T(n)/TO(n) +~ 1, with probability one, as n » = .

2. The Algorithm

Algorithm A computes a closed path which visits some of the points more
than once. We will see later in this section that it is easy to transform
such a closed path into a tour with a shorter length.

In specifying Algorithm A, we need the function &(-) defined in
Condition D, and an integer m defined as the smallest even integer greater

than or equal to

1/k
(é(ﬁ§) s where n 1is the number of points of a

k-TSP instance J in C.

Now we specify:

A1_g_ori:glrg 5_:

[1] Divide each size of AC into m equal parts, thus creating a cubic

lattice of mk cells (of side h) in AC.
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[2] Let B be the set of cell-centers (mid-points of cells created in

[1]1). Form the union B U J.

[3] For each of the mk cells, find the shortest tour through the points

of Eﬂklglin the cell by applying a dynamic prog;gmming algorithm (such as
'GZj-

[4] Construct a basic tour through the points of E’added in stepo [2]

that by Bellman [1962] and by Held and Karp %}

above, using Algorithm B below.

[5] The closed path consisting of all the subtours constructed in step [3]

chain-connected by the basic tour built in step [4] is the result of the

algorithm.

Algorithm B: To construct a basic tour.

For k=2, Figure 1 indicates the basic tour. Note that there are

m2 cells, with m even.

Iteratively (see Figure 2 below), suppose we have a basic tour for
a given k=j. Number the cell-centers in the order of the tour, with

K] = ((2m-1)h/2,h/2,h/2,...,h/2),

K (M=),

K MKy

K K

172 T

Consider the case of k = j+1. Take the section of the (j+1)-dimensional
dissected hypercube defined by Xj+] = h/2. It forms a j-dimensional

dissected hypercube. Form the above basic tour of the cell-centers in
this section. Number the cell-centers of the chosen section so that the

basic tour is:

&



on Komt Xan Xaman Xem Nemn oo

(=M memd 1),

Each cell of the chosen j-dimensional section sits in Tine with a stack

of m cells in the (j+1)-dimensional cube, and we construct the basic tour
for the k = j+1 case by zig-zagging along the full length of these stacks.
All mj+] cell-centers are numbered as follows: if a stack of cell-centers

is in line with a cell-center numbered K'Zsm the cell-centers are numbered

[ 1 1
K'oem1 Klosmez o0 K (2s-1)m1,

moving from the chosen section; while if a stack of cell-centers is in

line with a cell-center numbered K'25m+1 the cell-centers are numbered

: S
K K (

i 1

2smt+2 2sm+3 2s+1)m,

moving from the chosen section. The new tour is then simply
K'. X'

Kl Kl

1 2 M' 1°
This defines the algorithm iteratively on k.

While it is relatively easy to imagine, Algorithm B is rather
laborous to implement and execute; so we have devised another, Algorithm
éai which is executed in time proprotional to mk (by defining the
successor-cell of each cell) and which we have proved to yield the

same basic tour as Algorithm B.

Now we want to show how the closed path constructed by Algorithm A
can be transformed into a tour with a shorter length.

First, if any cell has no points of 2; then the basic tour can be
shortened by connecting the previous cell-center to the next one. This

may be repeated until the basic tour contains only points of B from cells
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1. Introduction and Summary

Given an integer k=2 the k-dimensional Euclidean Traveling Salesman
Problem (k-TSP) can be defined as follows: given a sét of n points dis-
tributed in the k-dimensional Euclidean space Rk, determine a tour, i.e.,
a closed path visiting each of the n points exactly once, so that the tour
is the shortest possible one (we take the distance between two points to
be the ordinary Euclidean distance).

For the particular case of k=2, the fact that the TSP is NP-hard
(Garey et al. [1976], Papadimitriou [1977]) is an evidence that there
are no polynomial-time algorithms for obtaining an exact solution for
this problem. Even when one wants only a solution of some guaranteed
accuracy, the 2-TSP seems to be hard (Sahni and Gonzales [1976]).

On the other hand, there has been some research on heuristic methods
for the solution of the 2-TSP. For example, computer programs to find
near-optimal solutions for 2-TSP instances of up to 300 points in an
écceptab]e amount of time were described by Krolak et al. [1970] and by
Lin and Kernighan [1973]. Their programs seem to give good results but
no rigorcus analyses of the algorithms are available.

In Section 2 of this paper we present Aigorithm A (defined below),
a8 non-recursive, divide-and-conquer algorithm for the k-TSP, k=2 As
we will see, Algorithm A is a significant improvement upon a similar,
but recursive, algorithm presented by Karp [1977] in terms of its sim-
plicity, its dimensional generality and its running time (Theorem 1,
below). Moreover, we wi11_see also that the theorem on the asymptotic
behavior of Algorithm A (Theorem 2, below) is stronger than the corre-

sponding result claimed by Karp [1977] (his claim is for expected be-

havior only, while ours is true with probability one); and further, we

have been unable to follow Karp's proof of his result. (See Appendix III.)

-1-



e et

[1] the points of a sequence P are distributed uniformly and independentiy
in the k-dimensional unit hypercube C;
[2] we choose a non-zero function &6(n) such that

5(n)

(S(n) -+ o and \:,»(YI)E /n "*O, as n +» o,

Remark E: We note from Condition C [2] that, as n > e: (i) n/§(n) + =;
(i1) [s(m 7" = o(n), for any power m, since [5(n)T™/n

= {G(n)ed(n)/n]/[ea(n>/6(n)m”i] + 0 because eé(n) increases faster
than any power of &(n); and (iii) while &(n) ~ K log n does not satisfy
c[2], any &(n) = o(log n) will satisfy C[2]; since, if §(n) = (n) log n

and e(n) ~ 0, then G(n)eé(n)/n = e(n) (log n) Re(n)-1
1/2

= o[e(n)log n/n" " "] + 0.

The function &(n) is used in defining Algorithm A.

Let Eﬁ denote the first n points of P. In Section 3 of this paper
we prove the following:

Theorem 1: Under Condition C, if Algorithm A is applied to a k-TSP

instance BP then Algorithm A runs in time

Rn ~ & n &(n) eﬁ(n), in probability, where A is a constant.

We are thinking in particular of very slowly increasing functions
6(n), bearing in mind that Karp [1977] has an upper bound for the expected
running time of his algorithm which cannot be less than 0( n (log n)z). We
notice that, for example, if we let 8(n) = 1og log loa n in Theorem 1, we

would have )

R, ~0( n log log logn log log r), in probability,



Indeed, by choosing &(n) = alog o(n), for any 0 <a < 1, we obtain
Corellary 1: Under the hypotheses of Theorem 1, we can find a function
&(n), such that, for any arbitrarily slowly increasing function o(n),

the running time of Algorithm A will be

R, ~o( no(n)), in probability.

Let To(n) denote the Tength of an optimal solution for a given k-TSP
instance Ep, and let T(n) denote the length of the closed path given by
Algorithm A for Eﬁ. In Section 4 of this paper we characterize the asymp-
totic performance of Algorithm A by the fo]iowing:

Theorem 2: Under the hypotheses of Theorem 1, we have

T(n)/TO(n) + 1, with probability one, as n » o,

Finally, in Section 5, we consider Condition D, that
[1] the points of a sequence P are distributed uniformly and independently
in a Lebesque subset E of Ag, the k-dimensional hypercube of side A,

[2] the boundary of E is of zero k-dimensional volume (Lebesgue measure.)
{3] we choose a non-zero function &(n) as in Condition C,

In this case, we apply Algorithm A to AL (instead of C, as given in
Section 2) and obtain

Theorem 3: Under Condition D;

(1} Theorem 1 holds, with &(n) replaced by 6(n)xk/v(£);

(2) Theorem 2 holds; and the important result (4.43) in the proof this

theorem holds with B8 replaced by B[v(g)]]/k .
2. The Algorithm

As in Karp [1977], Algorithm A computes a closed path which visits some
of the points more than once. We will see later in this section that it is

easy to transform such a closed path into a tour with a shorter length.
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In specifying Algorithm A, we need a function &(+) and an integer

m defined as the smallest even integer greater than or equal to

1/k
(é{%y , where n is the number of points of a

k-TSP instance J in (.

Now we are able to specify:

Algorithm A:

[1] Divide each side of C into m equal parts, thus creating a cubic lat-

tice of m< cells (of side h) in C.

[2] Let B be the set of cell-centers (mid-points of cells created in

[11). Form the union B U J,

k cells, find the shortest tour thrcugh the points

[3] For each of them
ot E’U d in the cell by applying a dynamic programming algorithm (by Bell-

man [1962] and by Held and Karp [1962]);

[4] Construct a basic tour through the points of B added in step [2]

above, using Algorithm B below.

[5] The closed path consisting of all the subtours constructed in step [3]

chain-connected by the basic tour built in step [4] is the result of the

algorithm.

Algorithm B: To construct a basic tour.

For k=2, Fiqure 1 indicatés the basic tour. Note that there are
m2 cells, with m even.

Iteratively (see Figure 2 below), suppose we have a basic tour for
a given k=j. Number the cell-centers in the order of the tour, with

Ky = ((2m-1)h/2,h/2,h/2,...,h/2),



K., K (M = mJ).

K MYy

K

172 '

Consider the case of k = j+1. Take the section of the (j+1)-dimensional
dissected hypercube defined by X4 = h/2. 1t forms a j-dimensional

dissected hypercube. Form the above basic tour of the cell-centers in

this section. Number the cell-centers of the chosen section so that the
basic tour is:

K' K K! K K K

] ] ] )
K 2m 2m+] 4dm dm+1 bm 6m+1

1

K (M'=M m=md T 1),

“eoe KMl -]

Each cell of the chosen j-dimensional section sits in line with a stack

of m cells in the (j+1)-dimensional cube, and we construct the basic tour
for the k = j+1 case by zig-zagging along the full length of these stacks.
All mjH cell-centers are numbered as follows: 1if a stéck of cell-centers

is in line with a cell-center numbered KnZsm the celi-centers are numbered

1] ] 1]
K'osm-1 Kosme2 =0 K (2s-1)mt1,

moving from the chosen section; while if a stack of cell-centers is in

1ine with a cell-center numbered K'25 the cell-centers are numbered

m+]

1 L} 4]
K 2sm+2 K 2sm+3 K (2s+1)m,

moving from the chosen section. The new tour is then simply

K'y Ky me Ky

This defines the algorithm iteratively on k.

K'y .. K

Now we want to show how the closed path constructed by Algorithm A
can be transformed into a tour with a shorter length,

First, if any cell has no points of ﬂ; then the basic tour can be
shortened by connecting the previous cell-center to the next one. This

may be repeated until the basic tour contains only points of B from cells
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Figure 1:

The basic tour for the case of dimension k=2.
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containing points of i (without changing the sequential order of cell-
centers in the original basic tour). This does not affect steps [4] and
[5] of Algorithm A. Moreover, this can clearly be done in time propor-

tional to mk, i.e., 0(n/8(n)).

Figure 3

Secondly, let Kj and Kj+1 be two consecutive ce]]-centers and let
pred(K) and succ(K) denote the predecessor and the successor of a cell-
center K, respectively, according to an order assigned to the closed
path. Then, if Kj¢J and KJ._HQ{J, replace the edges

d(K.),K.}),
(pred(K;).K;)
and (Kj+1,succ(Kj4_])),
by the edge (pred(Kj),succ(KjH)), as illustrated in Figure 3.

If Kjeil, and Kj+]¢i’ replace the edges

and (Kjﬂ,succ(Kjﬂ)),

[

by the edge (Kj,succ(KjH)). Proceed similarly if KjGE J and Kj+1E J.



After applying the procedure above to all pairs (Kj’Kj+]) of cell-centers,
we get a tour which is shorter than the original closed path, since each
replacement of edges always shortens the length of the closed path.
Moreover, this shortening procedure can be clearly executed in time
proportional to mk, i.e., 0( n/8(n) ).

3. Asymptotic Execution Time

Before giving the proof of Theorem 1, we want to make some obser-
vations on the basic tour and prove two lemmas which will be useful in
this section.

We gave Algorithm B to construct the basic tour because it is relatively
simple to understand; but now we want to describe Algorithm B', below,
which is more efficient than Algorithm B. Theorem 4 below will establish
the equivalence of the two algorithms.

To construct the basic tour, we have a cubic iattice of cubic cells
of side h, m in each coordinate direction, mk in all, where m is a posi-
tive even integer. Suppose that, for a eL={0,1,2,...,m-1} , I i<k ,
the cell containing the cell-center with coordinates

( (2a]+1)h/2, (2a2+1)h/2, cee s (Zak+1)h/2)

is identified by the vector

a=( 815855 +ee s ak) .

~

Let ei denote the unit vector in the i-th coordinate direction and write

r. = r.(a) = (-1)VFptaT ey for 2< i<k. (3.1)

Algorithm B': Given cell a, finds its successor b according to the basic

tour,

[1] If there exists one value d such that

d>3, ad+rd€Land a].+r].615Lford+1<1'<k; (3.2)

-9-



then the successor of a is

b=a+ry gy

(i.e., for all i#d, bi'= ai,and bd =a,f rd)-

(3.3)

[2] Otherwise, if (3.2) cannot be satisfied by any d, the successor is

determined as follows:

b =a —-SJ, if a] =1, a2 =0,

~ o~

or a]>1, a, even;

b=a+ eJ, if a] = 0, a2 =m ~ 1,

or 0 < ay <m - 1, 2, odd;

b E’—-Sz, if a] 1, a, even, a2 # 0,

or a] =m- 1, a2 odd;

E}=’i”+ EZ’ if a] = 0, a2 <m -1,

(3.4)

(3.5)

(3.6)

(3.7)

Having defined Algorithm B', we observe that the step [2] above is

executed only when

3 = A = ... = = 0; and 3 + a, is odd and as

or a]~+ a2 is even and a

This is so because step [2] is executed when

ai+ri§EL for 3 <1 <k:

thus  a, + -1yt ¢

whence a

p Fa

5 is odd and a; =m- 1 (odd),

or a, + a, is even and az = 0 {even).

-10-
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If ay + 2, is odd, then

ry = (G2 =0,
23
and ag =m - 1, whence ry = (-1) ry = -1s
. a4
a, tr, ¢ L, whence a, = 0, so rg = (-1) rg =Ty = -13
ag +rg & L, whence a; =0, sorg =rg= -13
ak = (.,
Also, if 2y + a, is even then
ry = (1)1 = g
23
and ag = 0, whence ry = (-1) ry=ry = -1;
a, = 0, whence rg =1y = -13

We shall now establish the equivalence of Algorithms B and B' as

follows:
Theorem 4: The orders of cell succession determined by Algorithm B
and B' are the same,
Proof (by induction on k):
For k = 2, step [2] prevails and from the observation made above it is easy

to verify that (3.4) - (3.7) prescribe the entire set of successors b of possible

vectors a and is in accordance with the basic tour of Algorithm B for k = 2.

Assume now that the theorem is true for.the (k - 1) - dimensional case

(k > 3) and let us proceed inductively on k. Then, by the inductive step

“11-



of Algorithm B and by the inductive hypothesis, the order of cell succession
(not necessarily consecutive succession in k-dimensions) in coordinates
1,2,..., (k=1) 1is prescribed identically by Algorithms B and B'; hence,

whenever a, = 0 or (m-1) and a, +r & L, the successions determined by

Algorithms B and B' are the same as for (k-1) - dimensions. When a, + r

K €L

k
step [1] tells us that bk =a tr, bi = 2y for all i # k. Thus e is

not changed (since e depends only on 81585500058 4 according to (3,1));
so that the direction of the succession (i.,e., a being increased or

decreased) is not changed, as in Algorithm B. When finally we arrive at

a = 0 or (m-1) and a + e & L, we make a move according to the order of

succession in (k-1) - dimensions (which is the same by B or B', as noted

above) and this changes just one of 2158558, 3 by +1 or -1, thus

changing L to Ty and ensuring that 2y + ry € L again; i.e., that the

~direction of succession is changed as in Algorithm B, Therefore, the cell
successions determined by Algorithms B and B' are the same in k dimensions,
and the induction is complete.

QED

Now we want to present two auxiliary lemmas. Their proofs will be
given in Appendix I.

Let Sn denote the time needed to compute the M = mk shortest tours
through the points in each of the cells gﬁ constructed in Algorithm A,
and let (n),i denote n(n-1)(n-2) ... (n-i+1), as is customary.

Lemma 3.1: Under Condition C, if Algorithm A is applied to a k - TSP

instance Eh then there is a constant A, such that

&s, ~Ansn) S S ss)) L asn e

-12-



Lemma 3.2: Under the same conditions as in Lemma 3.1, we have that

e ad

var 5. < A% Lens(m)3e8(M) w N [v0(1/6(n))]
n 48(n)

as n - », where A 1is the constant in Lemma 3.1.

We are now able to present the

Proof of Theorem 1:

We have three terms to consider for the execution time of Algorithm

A:
(1) the time to determine which points are in each of the
M= mk cells;
(i1) the time to compute the shortest tours through the points

in each of the M cells (step [3] of Algorithm A)
(ii5) the time to construct the basic tour (Algorithm B).
We assume that 0(n) (on- or off-line) memory space is available
and a hashing technique may be used to determine the points in each
cell and term (i) is then O(n) (otherwise, a sorting requiring O(n log n)
would be needed),

We estimate term (ii) as follows,

Since, for any € > 0 and for all sufficiently large n, by Lemma 3.1,

b

&S, - Ana(n)eé(n)l < %Ana(n)e‘s(”)

-13-



we see, by the Chebyshev inequality with Lemma 3.2, for any e > 0 and

all sufficiently large n, that
Pr[AnG(n)eﬁ(n)(l—e):< Sn <§An6(n)e6(n)(1+s)]

= prLfs,-ans(n)e® (™| < e ans(n)et (M

2
=1 - var Sn/% Aznzé(n)zeZS(n)

>1 - tean (et M 4 s(n) ™M [140(1/6(n)) 12 > 1 as n v .

&(n)

Therefore, since n-]a(n)e -+ 0 as n - o (for example,

wher &(n) = 0 (Tog n/log log n))
s ~A §(n) . (s
n ns(n)e , in probability, as n » e« .

Finally, the basic tour can be constructed by using Algorithm B'
M times so that the term (iii) is clearly
a(M) = of n/8(n)).

The proof is now complete, since the term (ii) dominates the others.

QED
4. Asymptotic Performance

Bafore proving Theorem 2, we need to prove three auxiliary lemmas.
First, let us establish a notation for some concepts used in this section

(following the notation in Beardwood, Halton, and Hammersley [1959]).

-14-



Ve have already stated that P denotes a sequence of points, EP

denotes the first n points of P and C denotes the unit hypercube. Let
E denote any bounded Lebesgue-measurable subset of Rk (we shall suppose
that the boundary of E has zero measure); EP E denote the subset of
P" which 1ies in E; N(EE) denote the (possibly infinite) number of

~

points of P in E; & (RE) denote the length of the shortest
tour through the points of E‘i 5 4“1,522 ,... denote semiclosed hyper-
cubes (i.e., hypercubes open on their lower-left faces and closed on
their upper-right faces) in different positions in Rk; and v(g) denote
the volume (k-dimensional Lebesgue measure) of E . If & is a positive
real number, we write EE for the set of all poénts with coordinates
(gXl, EXysvens ng) such that the (X], Xoseues Xk) are points of E.

Thus &E is a g-fold linear magnification of E, which leaves the origin

of Rk invariant, and v(EE) = gk v(E). We will use EPE to denote

the magnification of PE, whereas PEE will denote the intersection

of the unmagnified P with the magnified E.

The phrase 'P € qu)', where E is a Lebesgue set of strictly

positive measure, means that P = P],Pz,... is a sample of random

points independently distributed over E with uniform probability

density.

The phrase 'P € wg' means that P = P]’PZ"‘ is a sample from a

Poisson process of density & over Rk; that is to say, for arbitrary
disjoi ;
joint Lebesgue sets 51, EZ’ ey En}’
p { N(P E.) = N T N
r > = y 3 F ]»29 L - :
=] j J 5=1 € Vr(qgl‘]) J exp{-EV(gj)}




Finally, we adopt the abbreviation q = 1 - 1/k, where k> 2,
With these notational conventions in mind, we are now able to
state and prove the following lemmas.
Lemma 4.1: Let M = mk (where m is a positive even integer) be an
integer value (but not a function of n as in Algorithm A) and let

C. »J=1T1,2,...,M, be the cubic cells, congruent to (1/m) C, obtained

by dissecting C, as in Algorithm A. If P € W

£ then

amg%)~%%m,asgm+w , (4.1)

where B is an absolute constant (independent of £&,M and P; but
depending on k, the dimension of the space),
Proof: If ¢ is a positive real number, Lemma 5 of Beardwood, Halton,

and Hammersley [1959] says that

82 (P'eE) ~ B V(E) as ¢ e, for PEY (4.2)

‘]0

We notice that, by scaling, to each P'€ bh in zE corresponds
aPe wg in gg']/kg (and this correspondence is one-to-one), By the
same scaling we have

-1/k

epze /i) - e R eprop),

Thus, from (4.2) we have

1/k k

aeppee ke ~ & V(E) as T+ . (4.3)

~ —

Bz

Let us take Cg']/k==1/m and £ = C, so that Ej js a linear translation

of (1/m)C = z&™/*E, Then

-16-



k

v(E) =v(C) =1, ¢ g/mf = €/M. Thus, as g o, E/M>e;

-1/k
Tk k

]

and £ = gq/M. Since wg is homogeneous 1in Rk , so that trans-

Jation of sets has no effect on the statistics, from (4.3) we get (4.1).

QED
Lemma 4.2: Under the same conditions as in Lemma 4.1, we have
-2/k 2-2/k°
var R(pC;) = o(1) &7 (&/M) ,
as E/M oo, (4-4)

where (1) depends only on k.

Proof: If ¢ is a positive real number and if E < C, Lemma 6 of Beard-

wood, Halton, and Hammersley [1959] implies that

var 2(P'zE) = 0 (2R K1) o 1), as ¢ v ee

for E'Ew] . (4.5)
Ve notice that

27k 2/ (k=1) q502, - -2/ (k(k-1)) ]992C = o(1) ,

as ¢ » o, for all k=2,

Thus, from (4.5) we have that

var €(P'z E) = o(1) g2k"2/k , @S G > oo . (4.6)

~ —

-17-



If Effw and we consider the set T E—1lk§; by scaling as in the

3

proof of Lemma 4.1 above, we have from (4.6) that

var 2(P ?;E;‘”k_g) = £ %% var 2 (pTE) -
= o(1) g2k ARK s g e, (4.7)
As before, if c£7 /¥ = 1/mand E = C , then ¢ = ek
Thus, from (4.7) we have that
var 2(P(1/m)C) = var z(g,gﬂ) =
2
= o(1) £ /K (gm2-2/k |
as &/M » e,
QED

Let us now introduce UE M a random variable conditional on &

and M as parameters with M>1:

U =

£M (P
J

1

o

j) . Rewg . Ej a translation of (1/m)£.

m o~

Then, by the independence of Eﬁfwg in the disjoint gj 's we have

from Lemmas 4.1 and 4.2 that

& UE,,M =

-1

(e ) ~pEl, as Mo (4.8)

J=1

-18-



s 2
var U, =7 var (P CJ) = o(1) w2/ Rgm)a¥k
E.:,M j=] ~=J —
as &E/M - e, (4.9)
Lemma 4.3: Given any set P" of n points in C, let M, = m]k and M, = mzk,

where m< m, and mysm, are positive even integers. Consider the

dissections of C, finto M] cells Ch congruent to m1—19.’ and into M2
cells £2j congruent to mz-]g, as in Algorithm A, Then
?2 2( ) tﬁ ( )
P'C < ) (P g
=1 T EE ym =l
+OD4Ukk1)11/k1-J+O[M11M] (4.10)

Proof: Since M]< MZ’ the cells C2 are smaller than the cells 9]4

(sides are m "l and m _], respectively); thus any cell C,. can contain
2 1 =]

at most one corner of the dissection into cells Cq5 . Therefore, QQ

!

contains all or part of at most 2k minimal cell-tours T_i (say) of E

Hﬁ

17

We distinguish two cases: k=2 and k>2,
Case (i): k=2. We form a tour of Pngzj as follows, Any pieces

of Ti (i=1,...,M]) intersecting £2j can be formed into a simple closed

polygon by tracing parts of the perimeter of C i (See Fig. 4) This

perimeter is of length 4m2_] = 4M’2‘”2 . Any Ti contained entirely in

ng can be connected to the above polygon by a double chord of length

less than mz'] (See Fig. 5) Such included tours cannot be more than

4 in number, Since each part of every Ti will Tie in exactly one of the

sz s the sum of the tours constructed above will not exceed

~-19-



Figure 4

A

Figure 5

Figure 6
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M

1
121 Q<Eﬁ£11 ) +8 MZ]/2 , and will not be less than the minimal sum

M2

2 (P"¢c

€5 ). This proves (4.10) for k=2,

J=1
Case (ii): k=3, The cell EZj

2-(k-1) = MZ‘(k‘])/k . Various tours Ti

now has 2k faces (of k-1 dimensions),

of (k-1)-dimensional volume m
will cross a particular face (say) F times; and so, we may form a tour
of these F intersections by a polygon L, of lenath not exceeding

'y 1 MZ—]/k F1-1/(k’1) (by Lemma 4 of Beardwood, Halton, and Hammers-

ley [19597; with a', ;> _; independent of My, Fsor P"); and there-

fore, all pieces of tours T1 entering into sz by the given face may

be connected into a simple closed polygon by parts of such a polygon L,
rather as in Case (i). A1l 2k such paths belonging to sz may then be

joined into a single simple closed polygon by 2k segments of total length

not exceeding 2k3/2M2—1/k (

k]/ZMZ"T/k. As in Case (i), we see that there are at most 2k tours Ti

Figure 6), since the diagonal of ng is

entirely contained in C jo and these can be incorporated into our tour

-1/k

of Eﬁg by double chords of length less than M2 Again, each part

23
of every Ti will lie in exactly one ng , and the sum of all the numbers
F of intersections of faces with tours cannot exceed 4n, since each point
of Eﬁ is connected to its successor, in its Ti’ by just one chord, and
this can only cross at most two faces of the finer dissection; and every

such intersection is counted twice,

Thus the sum of the tours constructed above cannot exceed
M

1 -1
DT N AL
i=1 = faces

1-1/(k-1)

-21-



L R L A A (511)

By Holder's inequality, since every face intersected at all will

be counted twice, and there are at most (M,-M ]']/k)

oM, 2k such faces,

) (])1/(k-—1) F'I-]/(k—]) <[2 (])]1/(k-1)[2 F]1—1/(k-—1)

es
fac faces faces

]

Bk(MZ_MZ]-]/k)]l/(k—U (4n)1-1/(k-1)

i}

0 5421/(k-1)n1-1/(k-1)]

Thus the upper bound given by (4,11) is

y oe(p"

e

L) w0 [V ek 11 (1]
1 P

o[ ]

Since the sum of the tours constructed above cannot be less than

M2 )
Yy R(P CZ‘)' we obtain (4.10) for k=3,
=1 T '
QIE!DQ

Finally, we are now able to proceed to:

Proof of Theorem 2:

First, assume the conditions of Lemmas 4.1 and 4.2,
From (4.8) we know that for all sufficiently large £/M and for any

arbitrary € >0 we have
3 -g &9 LR q;
and then by Chebyshev's inequality, much as in the proof of Theorem 1,

-22.



- q = 9 = - '
Pri |V, =B E" [ <eB&l I>Prifu y-& U |

2
1 - o(1) m e e (o cae)? (by (4.9))
=1 -9(1) 1 asi— > oo, (4.12)
2 2 2’ ¥
£ g2/k M]-Z/k
Also, if N(E,g) = N then by Chebyshev's inequality,
Pri [n-t]<ecg? >1~.-—%--, (4,13)
€&
since & ng = var ng =g .

Thus, from (4 .12) and (4.13) we have for all sufficiently large

E/M that
-2
Pr[ﬁ 1“€q <UE&M <s-]+€q—:l>]_[ 21 7+}_]e .
+ - -2/K
(1+€) nE (1-€) E2/k M] 2/ &
(4.14)
M n
Now, let V ., = Z] R(E,Qﬂ) where n is a positive integer value
’ j=
and P € u(C).
Next, define f(n,M) by
)
1 - f(n,M) = Prob | g —=5— < M < g e | (4 15)
(+e)® nd (1-¢)1

Since the conditional probability distribution of Ug M given ng =n
is the unconditional probability distribution of Vn ﬁ, we have

-23-



) e b ‘%T [1-f(n,M)] = Pr g l-e < nE,,M < g_Me
n=0 : (1+¢)9 g9 (1-£)9
> - ; 5+ %. g2 (4.16)
g2/k M1—2/k
for all sufficiently large &/M.
Since 0< 1-f(n,M) <1, (4.16) gives us that
sup [-f(tm] ] e, ]t
Jt-gl< et [n-g|< et ni [n-g|>e& nT
> 1- 1 +-g;- 5—2. (4.17)

2
E2/kM1—2/k

By observing that the first summation above is less than 1 and the second

summation is less than 1/(32£), by (4.13), we have that

1 *‘“5‘52’

2/k M1—2/k

sup

|t-£l< et 2

for all sufficiently large §&/M. (4.18)

Since by hypothesis M > 1, for all sufficiently large £E/M we have

tet

|toe]< e6

[1-F(t,M)] > 1-{ !
£2/k

5+
2

>1- ceméR, (4.19)
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for all sufficiently large &/M, where C is a constant (depending upon

e and k but not on M.)

The supremum in (4.19) is taken over the range:
(T-e) <t < (14e) &

m
If ¢ = te) and if Jm is the set of integers t satisfying:

(]-E)m'*'] ?
m m+1
(%;E) < t< <%§%> » m=1,2,..... » then Jm becomes the range

of the supremum in (4.19).

We observe that, for any M and for sufficiently large m, &/M can
be made as large as we like, and so can ensure that (4.319) above holds true.
In particular, if we let n be any member of Jm’ for fixed e, and let

M= M(n) = n/s(n). We have

e . ()" stn) o (re)" (=)™ o 8(n)
0T~ ™1 0 T )™ ey o ()

Since §(+) 1ds an increasing function; for fixed e and for sufficiently
large m, &/M(n) can be made as large as we like; so that from (4.19) we

have

sup [1-f{t,M(n))]>1-C' . (4.20)

2
_1_+_g_) ~en/k
teJm

1-¢

for all sufficiently large m,

2
where C*' = ¢(1-¢)2/K

is a constant (depending only on ¢ and k),
That is, there is an integer My (depending on € and k) such that (4.20)
holds for all m > my.  Further, since J, contains only a finite number of

integers, it contains an integer n, (depending on e, k and n) such that



1-f(nm,M(n)) = sup [1-f(t,M(n)]; whence

teJm
)
I {1-pr |p—E- < D < p i€
m=0 (1+¢)9 nd T (1)
mO-] =2} @ 1+E —2m/k2 < @
= ] f(n M)+ [ f(n .M(n)) < my + T C (T."’) '
m=0 m m=my m m=m0 €

(4.21)
By the Borel-Cantelli lemma, (4.21) implies that, with probability

one, for any choices of n (and consequent values of M and nm) in

each J ,
m
v v
| n_,M(n) n_,M(n)
A€ < Yim inf D < lim sup —% < e
(1+¢)9 m- o nmq Mmoo nmq (1-¢)@
' (4.22)
Next, for choices n',n, and n" in J J, and ¢ re-

m+1?
From the definition of Jm

m-1> "m

V =n

spectively, write u =n_ 45 Vo —_y

and nm we have

m-1 m m+] m+2
+ + 1+ 1+
()™ << (1) s (19 <vas (T

(4.23)
, n 1+e m-1
From (4.23), 0 < n-u, <n - : =T \Toe
+e
(%)
2
= (1-e
n [} ]+;> ]
= n e < den. (4.24)
(14¢)



n 1+e m+2
Similarly, from (4.23), 0< v < ( ;) -n

L)' A
1-€
o [™]
= de
=n > < 5en (4.25)
(1-¢)
for sufficiently small e (< 1 )
5+/20
MR\epn . . .
Thus 63 P consists of a set of not more than 4 ¢ n points in

v
C and P " (M consists of a set of not more than 5 & n points in C.

Now, if E denotes the closure of E,

by Lemma 4 of Beardwood, Halton
and Hammersley [1959] there is an a such that 71im sup n'qz(Eﬁg)

n->o
<a v]/kQE) i.e. there is an o' such that

(¥n) 0”9 (p"E) < o' V1K

iaal]

) (4.26)

where o and o' are absolute constants (depending on k)., If
v

3; = N(E,“(E?)ng), by applying (4.26) to gﬁ we have

..q Ay
(ag) 25 "o "™ Ce.) < a'miny MK, (4.27)
since V(gj) = M(n)
From (4.25) we have

v <V

(n) 17k
Vy>M(n) ¥ z "

[2(P (R”)ng) +2/K M) ] (4.28)

-1/k
(VE M) * is the diameter of g;)-
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Mn) 4 1k M)\ q
Since S < M(n) y aj (H81der's inequality), from (4.27)
j=1 j=1

we have

<a' (5em)9 . (4.29)

From (4.28) and (4.29), we have

n 4 V\)n’M(n) < n~d Vn,M(n) + nfq[cx'(Ssn)QJerk’ M(n)%]

= n-an,M(n) + o' (5e) + 2/ <?%?%> ) (4.30)

and the last term in (4.30) is o(1), as n-w,

M(n) < M(n") and v;q-< n"9,

On the other hand, since

by Lemma 4.3 we have that

] 1
- - 1= =
M(n) +n q [p—@(nn)k(k 1) \)n. _k—T>

+g(M(n")qg] . (4.31)

Since, by (4.25), v, < (1+5e)n  and similarly n" < (145c)n, we have that
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o

1
1 1
n°q9_(wn">k(k‘” v 1" *‘*k-1) - <i

-1
= 0 (G(n”)k(k']j) =0(1), as n > =,
(4.32)
and also
n"Yo(mM(n")9) = 9,[{%%%§%%¥§>(T} = o(l1), as n=»>o . (4.33)

We have from (4.30), (4.31), (4.32), and (4.33)

..qv

..q . q .
n Yy M)y S Voomeny o' (Be)T +0(l), as n e

n

We see that, in this inequality, the independent variables are €, n

(in Jm’ which determines m), and n" (chosen in J_,,, which determines

mt1

SV T nm+]). Applying (4.22), we thus get that

8(-c) < lim inf n %y M + a'(5e)9,
(1+¢)9 n - n,M(n)
with probability one. ﬂ (4.34)

u
Similarly, if b, = N(EF(E,“)Cgm), by applying (4.26) to Ly, we get

(¥p,) b z(ﬁ”(ﬂu”)cgj) < o'M(n)VE (4.35)
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From (4.24) we have

M n) Un -]/k
Vun,M(n) = Vomm) - jé1 [2(P" (R )ng) + 2/K M(n)"'%7. (4.36)
From (4.35) we have
M M
E(:n)[Q'(Rn(E,un)C_C_.)] < }(?n)bc_l a'M(n)_Vk
j:'] =J j:] J

< o' M(n) R ugn) 1V Z b:l

< o'(4en)d  (by (4.24)) . (4.37)

From (4.36) and (4.37) we have

nd Yy M) > "V ey - "Lt (4en)2/K H(n) %]

n,M(n) ~ o' (4€) + 0(1) (4.38)

On the other hand, since M(n') < M(n) and n"9< u;q , by Lemma

4.3 we have

SRR L PR P

—q
> n 'V M
Hp? (n) (4.39)
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Since, by (4.24), I > (1-4c)n  we have

1
KT T
-q T 1 ) (1-00)"h by k_ﬂ
un QM(H) M k-T ) = 0 O —'-—*i——vl
un]—?

A
=0 (s(m Ty = o)

y 45 N & @©,

(4.40)

and also

- (1-4¢)7 T\ 9
unq Q(M(n)q) =0 —MSTMT———E = o(1), asn~»o, (4.41)

nJu,

We have from (4.38), (4.39), (4.40), and (4.41) that

p "9y > n"9y

_— q > o
n un,M(n' ) - o (4e)* + o(1), asn .

n,M(n

As in obtaining (4.34), we note that the independent variables in this
inequality are €, n (which determines m), and n' (which determines

U= "m—])' Applying (4.22) again, we get

n

BUe) 5 1in sup n9 Vo M

- ! q
(1-e)3 ~ oo ny - o' (4e)s (4.42)

with probability one.
Since e 1is arbitrary and n"@ Vn M(n) does not depend on ¢,

(4.34) and (4.42) imply that

lim n”9 Vo.m(n) = B> With probability one. (4.43)

n-o©
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M(n)
= n ) )
n,M(n) jzl Q(E.QdUKj) where Kj is the singleton
containing the cell-center of gj . Then we have

Now let X

X

VAN

v )t M(n) [2/K M(n)"V/K]

n,M(n) n,M(n
- vn,M(n) +.9[M(n)q]
~5 n+ o[nY/s(n)%] (by (4.43))
=g n%+o(nY)
Thus: Xn,M(n) < g n9+ g(nq) , as n -, with probability one.

(4.44)

Since the basic tour has length M(n) h (there are M(n) cell centers

1/k

being connected by edges of length h), where h = 1/m = 1/M(n)"/", we

have that the length of the closed path given by Aigorithm A is, by (4.44)

= q
T(0) = Xy ey * 2N
= q
Xn,M(n) + o(n”)
< gnd o+ gan) » as n o, with probability one. (4.45)
On the other hand, by Lemma 7 of Beardwood, Halton, and Hammersley

[1959], the length To(n) of the optimal tour is such that

To(n) ~gn%, as n-w, with probability one. (4.46)



From (4.45) and (4.46) we have

T(n) gnd + o(nq)
< Ty < otn’)
] TO n Bni

Thus .; n ~ 1 as n e« , with probability one.
oln

QED
In constructing the proof of Theorem 2, we had occasion to review
Beardwood, Halton, and Hammersley [1959]; and, in particular, to

check the proofs of the lemmas there. We found a small inaccuracy

in the proof of Lemma 7, which is corrected in Appendix II.
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5. A Generalization of the Results

As we mentioned in Section 1, Algorithm A can be applied to AL,

the k-dimensional hypercube of side A, instead of (. 1In this section,

we want to show how Theorems 1 and 2 can be modified so that, under Con-

dition D, Theorem 3 holds true.

Under Condition D, we partition AC into M= n/§(n) cubic cells,

Qﬁ say. Let us define index sets HO’ H], H2 as follows, for

. . c .
jeHy » iff C;cEC;
jeHy , iff C.

J

In

E 3

- = = Voo k
Let N(HO) = NO’ N(H]) = N], N(HZ) = N2, and M' = v(E)M/A

1<Jj<MN,

Since each cell is of volume kk/M and E has volume v(E); under

Condition D, the probability of s points falling into gj is

K S k n-s
0 i 48" 0 e e

(5.1)

if je H]; while if Je HO’ the probability is zero; and if Jje H2, the

probability will have Ak/M replaced by v(gdgj <§xk/M.

Since the boundary of E has zero k-dimensional Lebesgue measure,

asymptotically, only M v(g)/xk cells contain some of the n points. More.

precisely, we have

N]/M' + 1 and N2/N] +0, as n-» o,

-34-
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In the proof of Lemma 3.1 (in Appendix I) we have, under Condition D,

&S
n jeHy e, jeH =0

yo+ Yy o+ 7 :> g Pr [s points in C.] t
2/ S o

; (“) (/M) (1-1/m)"S ¢

S

-+
=~
oS3

(2) (1/Mj)5(1—1/mj)"‘S t,

J€H2 5=0

»N)

Ny w(M'.n) + ] M,
jeH2

where, for each jeH,, Mj = V(E)/v(gjg) =M. (5.3)

Then the proof of Lemma (3.1) shows that
oM.n) ~ A2 M (lwmy, as now. (5.4)
Hence, if Mj =M, w(Mj,n) = O[y(M',n)]. (5.5)

Applying (5.2) and (5.5) to (5.3) we have

&S_ =N, p(M',n) + Pp(M.,n)
no ngZ J

~ MM ,n) + N (ﬁl) (”2 oLw(M )]
M N]

~Myp(M',n), as n=> o ; (5.6)
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so that, by (5.4), we have, if &*(n) = n/M',
&5~ Ans*(n) e 11 /5% (n)]

Lk
= AnLs(n)a%/v(e) 1elSMAVEN Ly (£)/s(n)ak]

as n >« (5.7)
j.e., Lemma 3.1 holds true under Condition D, after replacing each

§(n) by &*(n) = n/M'.

Similarly, if we denote by w1(n/6(n),n) = w](M,n) the right-hand
side of (I1.9) (in Appendix I), and we denote by wZ(M,n) the expression

for c‘?.(tn tn [i#§) din (I.11), and we denote by ¢3(M,n) the expression
i N -

for (& Sn)Z/M2 in (I.12); then we have, under Condition D,

var Sn < N]w](M',n) + QKN])W](M',n)

+ M8, n) + o(N) 0Lp, (M ,n)]

{1 2500am) + 00, ?) olwy(nam1} by (1.9), (1.7)
~and (1.12)).
~ le](Ml,n)

+ M'zwz(M',n)

M‘2w3(M',n) (by (5.2))

-36-



= 'y (1) + ML, (M n) - (M ,n)]
2

< A {16n6*(n)3 e30*(n) ~——ﬂ——§~e26*(“)} (+0[1/6%(n)]}  (5.8)
46*(n)

(by the paragraph following (I.13)); i.e. Lemma 3.2 holds true under
Condition D, when &(n) 1is replaced by 6*(n).

By (5.7) and (5.8), the proof of Theorem 1 holds under Conditjon D
if we replace each &(n) by &*(n); so that the first part of Theorem 3
is proved.

Now we want to show that the second part of Theorem 3 is true.

As in the proof of Lemma 4.1, we have from Lemma 5 of Beardwood,
Halton, and Hammersley [1959] that, for stwg R

& 2(pee ke ~ e VK gk (EY), as g o ws (5.9)/(4.3)*

for any bounded Lebesgue-measureable subset E' of Rk, with boundary of

Zzero measure.
Now, under Condition D, take g = E]/k and E' = Qj £=E'£ﬂ (note

17Ke). Then, as ¢ » o, £ +o, and from

that gﬁ is congruent to M
(5.9), we have

C.E) ~ BEW(C.E), as £~ , (5.10)/(4.1)%

As in the proof of Lemma 4.2, we have from Lemma 6 of Beardwood,

Halton, and Hammersley [1959] that, for Pe wg,

= o(1)g 2k p2k-2/k e e (5.11)/(4.7)*

var 2(pze”/¥g)

uniformly in E' c {any set congruent to C}.
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17k

Now, under Condition D, take cg'1/k = MM and

E'=2) ul/k C. E:S.A"]M]/k C; (note that A~ 'M'/* g, is congruent to

k

tojg). Then 7" = Xxg/M and thus, as ¢ +», &/M=>w, and from (5.11),

we have
27k, 2-2/KE
var 2(R£5=£) = o(1)¢ (g/M) » as &/M > o, (5.12)/(4.4)*

uniformly in j.

Under Condition D, U is defined as follows:

£,M

Then we have, as in Section 4, from (5.10) and (5.12), that

M . M
&U.y = J &a(PC.E)~ B9 ¥ v(C.E)
= eI v(E), as £+ w; (5.13)/(4.8)*

and, by the uniformity of (5.12) over j = 1,2,...,M,

M
L

j=1

1]

var 2(P£5=§) var (P£%=g)

2q-2/k% . 2-2/K°

Mo(1) 777" /M

2q-2/k?

1

2
o(1) & MUK s e . (5.18)/(4.9)%

As in the proof of Theorem 2, we have from (5.13) that, for sufficiently

large ¢ and for any ¢ > 0,
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1
& Uy - e v(E)| <5 eBE? V(E) 5
and then, by Chebyshev's inequality,

Pr{lUg,M-BEq v(E)] <e g9 v(E))

1

2 2
>1- oM M ee? v(E)® (by 5.14))

- 1. 20) 1 —] , as EMow and £-w. (5.15)/(4.12)%
2 | 2/K% 1-2/K°
£ M |

Also, as in the proof of Theorem 2, if N(PE)= ng then

Prijng-ev(E)|<eev(E)} > R (5.16)/(4.13)*

since &n_ = var n_ = gv(E).

2 €
From (5.15) and (5.16), for sufficiently large &/M and &, we have

Pr Efi‘.’_(-_i_)_ (-e) o Ve < gedyv (E) (HE)ﬂ

gv(E)T (1+e)9 ngq EqVQQ)q (1-¢)
B N VL A B N\ S VA E0)
BN GO S = ()
- : bt |2 (5.17)/(4.14)*
=1 +
Lz/kzm-Z/kz €V(£)]E |
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Under Condition D, V¥ is defined as follows:

n,M

where n is a positive integer value and E’e u(C).

The remaining part of the proof of Theorem 2 holds true here if we
replace each occurrence of B8 by Bv(é)]/k (as (5.17) above suggests),
and if we replace each occurrence of the condition "sufficiently large
g/M" by ‘“sufficiently large £&/M and £&".

The only additional point to observe is that, since we take

m
1+¢

= )m+] just before the definition of the sets J_ in the proof
(1-¢

n
of Theorem 2, the condition "sufficiently large £" 4s satisfied for

sufficiently large m.
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Appendix I

First we want to prove a remark which will be used in the proofs of

Lemmas 3.1 and 3.2.

Remark 1 (A)

If x, 9 = 0 are fixed and M > o in such a way that M/n = 0,

2
then 0 < ™M - (ax/m)™9 < VM (X0, X1

2M
2 2 m m
Proof: exn/M =1+ %?'+ 7t g Fooo? ;%'é'%"+""’ (rfﬁ)n_q =1+ &L%%ﬂl
M M
2 m
x“(n-q) x"(n-q) -
+ %. 5 A F%'"' - My ... so e"M_ (1+x/M)"7
M M
= cf —]—j‘—[nm%n- ) 1. Now n"> (n-q) >n" - ™! mil (i+q)
m=1 m! Wn g m - 9 m~ = B
= " - a"Tnl3n-1)+q)]

The first inequality holds because each factor of (n—q)m is less
than or equal to n, and there are m factors on each side; the second
is seen by induction: n-q = n]—noq (m=1). If true for m = h-1, then

(n-q), = (n-q)h_] (n-g-h+1) > {nh-]—nh'z(h-l)[%-(h—2)+q]} (n-q-h+1)

o - n" T (n-1) [ (h-2)+q] - (qth-D)n"1 = a" - "1 p[g (h-1)+q] and

\%

induction is complete. Thus O <n" - (n-q)m <;nm"1 m[%-(m—1)+q] , whence

«© m
0< &M (1ex/m)"9 < L -n;‘,—;"-‘—n; n™ Ty (m-1)+q]
m=1 " [
@ 1 Xm—]ﬂm—] Xq
< mz] m-T7T -1 W

)
oLy 2)T w2 2

2
/M pxa, x%n g

oM?
QED
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Remark 1 (B)

If x <0, g=0 are fixed and M » « 1in such a way that
M/n - 0, then
xzn 2

o~ (u-v) + %ﬁ-(u+v) < exn/M —(1+x/M)n'q <X (yv) +
aM 4M

s

(U'V)a

N

exn/M e—xn/M.

where u = s, v=1u-=

Proof: As in Remark 1(A), we see that

3 3

ax) = &M L™ ey DX [ (neq) 1,
m=1 ™ M m
and that

0< nm~-(n--q)m < "' [—;—(mJ )+q].

The series for A(x) now alternates. By collecting positive terms only,

| we obtain that

© m
M) < ] (G7) L B(m—]ﬂ%

m=2
(m even)

2 e m-2 @ -1

- xn 1 [(xn ) 1 (xn
o Zz m-2)1 (M/ Mo L, 1) (M)

(m even) (m even)
o1\ 1 T 1 mxn 1
Now mZO = (hi) 5 (utv)  and m£1 = (Ff) 7 (u-v)
(m even) (m odd)
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Thus  A(x)

Similarly,

Ax)

2
< 5~g—(u+v) + 2 (y-y).,
4M

by collecting negativé terms, we get

o m
> 3 e 6 e

m=1

(m odd)

2 o m-2 © m-1
- xn 1 (xn xq 1 fxn
Y mZ3 (-2 (M) T mzl m-1)1 (M)

(m odd) (m odd)
=£ﬂ( -v) + 52 (utv)
QED
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Lemma 3.1: Under Condition C, if Algorithm A is applied to a k-TSP instance

g? then there is a constant A, such that

& Sn ~ AncS(n)eG(n)U—]/(S(n)], as n > o .

Proof: Let tS denote the time needed to compute a shortest tour through

s points.

From Bellman [1962] and Held and Karp [1962], we know there is

a constant A (roughly, half the time needed for one addition), such that

ot
il

2A(s-1) [2573(s-2)+1]

A[25°2(s)2

If k,p, and q =0 are fixed, and n » o, we see that

- n
fimskopsa) = T (3) G/ (-km)™5p% T (s)

S q

=0

n
q n-q NS-qrq_ n-s
(g 1 (5-8) om*=a-k/m)

(n)qu/M)q [1+(p-k)/M1"9 .

By Remark 1 (A) we have that, if p =k, q =0, then

2
d(n)qe(p-k)d(n)(]— (P&k)q - (P"k% Ny (1+0(1/n))

2M

< f(n;k.p,q)

< sm) e(PKIS() |

-44-

—25"]s+25+25']-2]= t*(s), for s =1, and ty = 0. (1.1)

(1.2)

(1.3)



So f(nsk,psq) ~ §(n)%ePKIS(M140(s(n)2/n)] . (1.4)

Now, if n denotes the number of points in cell Qj, we have

&
w
i
3]
n~1=z

t =M&t (1.5)
1 nj nj

and, since n; has (binomial) probability (2) a/mEa-1mnTS of

taking the value s,

n

n
& sn M Z

S
S

(B am*a-m™ AR 4(s),
0

25715 + 25 + 257127 + M(1-1/M)"(3/2)A

AM[f(n;1,2,2) - f(n3;1,2,1) + 2f(n;1,1,1)

+ (1/2) £(n31,2,0) - 2f(n31,1,0) + (3/2)(1-1/m)"]
(1.6)

[Note that we use the general formula t*(s) in (I.1) for t. even
when s = 0. This incorrectly yields t*(0) = -(3/2)A; forcing us to

make the corresponding correction, +M(1~1/M)n(3/2)A, above.] Thus
&s, ~ Ay [80n 2,8(n) Z 5(n)ef™ 4+ 25(n)
s (172)e8 M 26(3/2)e8 M) IL140(5 () /M1 (by Renark 1 (4)

~ AnG(n)ea(n)[]—l/G(n) + 1/2a(n)2 + Qxd(n)z/n)],

as n -+ o, and the lemma follows from Remark E (ii), since

[s(m)2/n]/[1/6(n)] + 0, as n +w.
QED
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Now we want to prove a second remark which will be used in the

proof of Lemma 3.2.

Remark 2

2=k _ (ag/m)"k < g2n/M '“(1+ ) if k>0 is fixed and
e

0 < (1+1/M)

M~ 1in such a way that M/n - O.

Proof: The first inequality above is true since clearly
(1+1/M) 20K (142/m)-K

= 1+ 2n-k . (2n-k)(2n-k-1) oot (2n-k).. (2n k- J+1)

M oM? jimd

1 - 2n-2k _ (2n-2k)(2n-2k-2) _ _ (2n-2k) (2n 2k-23+2) _

M 2M2 J!VJ

= 0.

Now, the j-th term in the difference above is:

1. = (2n-K)...(2n-k-3+1) - (2n-2K)...(2n-2k-2§+2)
i

ktj-1 . _ .
= i Z (Zn)J“]i - 3 Z (2n)3-2 ii' + 7 Z (zn)3‘3ii'i“—...
Jm | iEk pairs triplets

By induction on j, we want to show that

1 k-
T, < (2n)3" z i . (1.7)
J JIMJ 1=k

%—. Assume the inequality above is true
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Then Thh!Mh [(20-k)...(2n-k-h+2)](2n-k-h+1)

1]

- [(2n-2k)...(2n-2k-2h+4)] (2n-2k-2h+2)
h-1

1

T, 7(h=1)IM" "(2n-k-h+1) + (2n-2k)...(2n-2k-2h+4) (k+h-1) .

h-1

h“2 k+h"2
< (2n) T i) (2n-k-h+1) + (2n-2K)...(2n-2k-2h+4) (k+h-1)
i=k
k+h-2
=1 5w (2n)™ T (kehen)
ik
e ke

yo1 o,

i=k

< (2n)
= (2n

and induction is complete.

From (I.7) we have that

T, < —= ()3 TLL (ke3-1) (kH) - 3 (k-1)K]

ST
= (eI ] L2k
jim
so that
® TR L AU I T PO Vel L R
T. < — : (2n) + S - (2n)
FE I A R R o jZp (3-2)1
_ k _2n/M n  2n/M
= Xe +—e
M "
QED
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Lemma 3.2: Under the same conditions as in Lemma 3.1, we have that

2
var S < p2g28(n) ]6n6(n)3e5(n) + =0 >  [1+0(1/8(n))]
45(n)

as n-+«, where A 1is the constant in Lemma 3.1.

Proof: &S "= & t t = & t + 2 t t
- n =1 g=1 M " i=1 M i=1 j=1+1 " N3
= Mt 2+ MM-1) & (.t |i#) (1.8)
ni ni nj

Since [(5)2]2 = (s)y + 4(s)g + 2(s),, s(s), = (s)5 + 2(s),, and

52 = (s)2 + s, wusing (I.1) and (I.3), we see that

gt 2=

n; s 3

Hi~123

AD(Vmﬂkvmmsf{M?%g4+f4@>

+ 2.8578(s5),1- 457V (s)y + 2.8%71(s), + [2%(s),

+ 201(5),0 + 4571(s), - 2%(s), + 1457 ()44 Ts]

- 25 s) 425 Te) - 2,857 Ts 4 25Fs 4 [4(s) y+4s]

2

v 25 o ogs 4 2571 - 25ty - (97a)%(1am)"
[The last terms above is a correction similar to that in (I1.6)]. So

& tn? = A2[16f(n;1,4,4) + 8f(n;1,2,3) +2f(n;1,4,2)
1
-4F(n31,2,2) + 4f(n31,1,2) -f(n31,4,1)
+4£(n31,2,1) - 4f(n;1,1,1) + (1/4)f(n31,4,0)

-2f(n31,2,0) + 4f(n31,1,0)-(9/4)(1-1/M)"]

.



< A20ies(n)* &35(M) 4 gg(n)3 S(0)

+ 26(m)? 30 4 as(m)2 + as(n) 5(M)
+ (1/8) e38(n)ygy (1.9)

Just as in (I.2), we note that

1

I <

v-r
Lo (Z) ps—Q(s)q(v-s)r (v)q” ) (Z:g-r) pS~d

s=q

)V‘Q"Y‘ -

|
I~ <

= (v) . (p+ ;

r
(I.10)

g o (&) 77T ) lves)

S

whence, by putting v = s+u, we get that

.. hon=sop /s+u> s+ Nes-u
&(tnitnjl1#3) = SZO uZO +;>\ o) /mEa-2/m) tet,

-2v-3s(v—s)2 + 2v—25(v—s)- 255(v-s) - 2Y7%

v-s-1

+2%5 + 2 s(v-s)2 - 2755 (v-s) + 4s(v-s)

+2V75¢ - 45 4 2V"3(v-s)2 —2V°2(v—s) + 25 (v-s)

V=2 _ S _ 2v-s—l(

+2 v-s), + 2V"3(v-s) -4(v-s)

2
-2Y7%4] + 3(2Y(v), 2Ny v v 4 2V"‘~2J
+(9/4)8% (1-2/m)"
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[The terms 3(2v-2(v)2—2V']v+2v+2v—]+2) and  (9/4)A%(1-2/M)" at the

end, above, are corrections for the use of t*(0) instead of tO’
similar to those in (I.6) and (I.9) above. ]

- Ay (3) (/mY (-2 V2", 2V
v=0

- - “3, V-3, V-2
-2"73(1) 2" + 2(1) 3V + 23 (y) 2

-2(v)23V'2-2V‘3(v) )

3

Ve ava¥ 1 4 2(y) 373

-2(v)23v'2-2v‘2v2V‘ 5

- - - -1
-2(v),3" 2, 4(v) 2" 2 4 3Vl ayV

+2v-3(v)22v-2_ 2v-2v2v-l + V3v—1 +2v—22v
-3v . 2(v)23"'2 T AL 17\ ol B\ S YA

+3(2V‘2(v)2-2V"v+2v+zv“7-2)] + (9/8)A%(1-2/m)"

= A°[F(n;2,4,4) - 2f(n;2,4,3) + 2f(n;2,4,2)
-£(n32,4,1) + (1/4) £(n;2,4,0) + 4f(n;2,3,3)
-8f(n32,3,2) + 6f(n;2,3,1) - 2f(n;2,3,0)
+7(n32,2,2) - 116(n32,2,1) + (11/2)F(n;2,2,0)

+6F(n32,1,1) - 6f(n;2,1,0) + (9/4)(1-2/M)™]
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Then,

wa(e o 1isd) = ABECC(n) ) ez - 2((m) %) (reem)
i
+ 2((n) M0 (22 - (i) (2™ 4 (178) (e

b a((n)y40) (101/m) "8 ( (n) /M) (11 /)2
+ 6(n/M)(1+1/M)n—] —2(1+]/M)n + 7(n)2/M2 =11 (n/M) + 11/2
+ 6(n/M) (1-1/M T 6 (1-1/m™ + (9/8) (1-2/m)") (1.11)
On the other hand, from (I.6) we have that
&5, = ML((n),/M) (1+1/m)" 2 = (am) (110"
+2n/m + (1/72) (11/M)"-2+(3/72) (1-1/m)"].
So (&5,)% = AL (n) +4(n) +2(m) 11 /m) (11 /) 218
=2(n), n(1/M)>(141/m)20"3
+ [(n)+n?1(1/m)2(141/m) 202

Z2n-1

- (/M (a) (e m

+ 401+ (3/8) (1-1/MM (), M2) 1412 = (n/m) (141"
+ (172)(14mM)"] + a(B-1)2

+ 6= 1) (1" + (9/8)(1-1/m)%" (1.12)
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Observing that, in (1.12), (n),n = (n), + 2(n), and n2 = (n), + n,
2 3 2 2

from (I.11) and (I.12), using Remarks 1 (A) and 2 we have that

Mza(tnitnj[i¢j) - (&)
= KB { (L™ - 2
+ ((n) /M) [-201+2/m) "3 (M) (1) ez /)20
+ ((n),/M)[2(1+2/M)" 2 - (2/M7) (141 /)27
+ (/M) (1+1/m) 2032 (141 /M) 212

+ (/M -(e2m)™ 1 amy (eym20=2e (e 20

+ (1/8)(142/M)"-(1/8) (1+1/m) %"

- 4((n) /M) (101" ((n) ,/43) (141 /M) "2

2 n-1 2 2 o 2 n
+ 2(n/M7) (1+1/M) - 4n/M° * 3(n)2/M =3n/M+3/2+6(n/M") (1-1/M)
+(9/8)(1-2/M)" =3((n),/M2) (1-1/M)" (141 /M) "2
+ 3(n/M) (11" (1™ (az2) (- ()"

- (9/4)(1-1/M)2”}

< p2y? {6(n)3 2 8ln) - (2(npq, soy 1+ P g 20
+ §(n) §%§l- e28(n) [1+ gf%7q + %veza(”) [continued....]
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Iy

+ 2 ${n) eé(”) + 36(n)d +3/2 + (68(n)/M) [9"5(”)(14-1/@4)
+ (M) an)e2)/am) + (970) [ (Mas(n)e?® (M g

+ 38(n)[1+6(n)e25 (M) /am }

_ opl 3 28(n) 3 5 ] n
= 2A°ns(n)” e 1+6(n)+ 5 3+ 3

28(n) 28(n)

4] e-é( [:
6(n)3 (n 28(n)

b e~8(n )(1+1/2M) (8(n)+2)/4M)

b9 (e 5280

(1.13)
s(n)? _J
From (I1.8), (1.9) and (I.13) we have that

2 2
&S, )

y 3 (1+5(n)e26(")/4mﬂ]

var Sn - (& Sn

2 o
MEt © o+ M(M-1) & (¢t |iF) - (&)

i iJ
< A2 {16nc‘>(n)3 e36(n) + 2ns(n) e35(n) + (n/48(n)) e36(n)

+ 8ncS(n)2 ea(n) + 4n eé(n) + 4ns(n) + 4n/8(n)

3 ,28(n) 2 ,28(n)

+ 2n8(n) + 6n8(n) + ns(n) e28(M)

2 .
+ __D~M§_826(n) +on o) n2 1343

45(n) ~28(n

e26(n)

)2 [continued...
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+ -g- e M (11/2m) + (M) (5n)42)/am)

9 -26( 28(n) 3 .. 28 Y
+ ZS?ES?.(Q n) 4 s(n)e M M) + g(ﬁy(1wé(n)e (n)/4MZ]}

2

= A% {TGHG(H)3 e35(n) -%—;?»e26(”)+3n2[i+6(n)2e6(n)/12n+3e26(n)/4n
48(n

+6(n)826(n)/4§]} (1+0(1/6(n))); (1.14)

but each of the terms in 3n2[1+6(n)2e6(n)/]2n-P3e25(n)/4n+~6(n)e25(n)/4n]

is o(é(n)'3e25(n)); since a(n)3 e“ZG(n) -+ 0 (ea(n) increases faster

than any power of 6(n)), 6(n)5 e'é(n)/n + 0 (similarly, 5(n)3/n + 0 (by

Remark E (i1)), and 6(n)4/n ~+ 0 (similarly). The lemma follows.

QED
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Appendix II

In the proof of Lemma 7 of Beardwood, Halton, and Hammersley [1959],
equation (7.15) is not valid; because the N depend on the corresponding

intervals Jm, and these depend on the value of «.
However, the argument via (7.16)-(7.19) is valid, except that, in each

of (7.18) and (7.19), a factor of « should be inserted before (5en)9,

coming from Lemma 4 of that paper.

(7.20) now follows from (7.14) in the modified form

B v@) < vimnt 0T a(p") + al5e)v(@)el T,
(1+¢) n-> o

(7.20)*

holding with probability one.
Similarly (7.21) and the next-following inequality (unnumbered) should

have a factor of o dnserted before (5€n)q; and, again directly from

(7.14), we get a modified form of (7.22), holding with probability one:

Bte 1/k
— V(E) > limsup n% 2(p") - a(5€)q[V(£)+€]]—q'

1.4
(1-¢) o

(7.22)*

Now we observe that e is arbitrary and conclude that

lim n7® 1(5?) =B v(g)]/k,

et

~-55.



establishing Lemma 7 of Beardwood, Halton, and Hammersley [1959].

Incidentally, equation (5.1) of the same paper should read

& 2(PEE) ~ By k”zgkv(j;) = ngv(g) as & » o, (5.1)*
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Appendix III

In Karp [1977] the points of a 2-TSP instance are assumed to be
distributed in a region A according to a two dimensional Poisson dis-
tribution with density n. As is noted in Karp [1977], it is then
known that the expected number of points in A is n v(A), where v(A)
denotes the area of A.

But the algorithms in Karp [1977], when applied to a region A
with v(A) = 1, are analyzed as if the observed number of points in a
2-TSP instance were n, rather than considering n as the expected
number of points. We conjecture that one possible way to rescue this
part of the analysis in Karp [1977] is to prove that the observed number
of points in A is asymptotic to the expected number of points in A,
with probability one.

Furthermore, we note that Karp [1977] quotes a result (as Theorem 5
in Section 4 of his paper) from Beardwood, Halton, and Hammersiey [1959]
as if it held under the assumption of the Poisson distribution of the
points with density n. But, actually that theorem is proved in Beard-
wood, Halton, and Hammersley [1959] (as Lemma 7) only for the uniform
distribution of n points. The length of the proof of Theorem 2 in our
paper indicates that the connection between the two is far from trivial;
and, in fact, we do not believe that the results hold for the Poisson

distribution more strongly than in probability.
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