A LEAST-COST ERROR CORRECTOR FOR
LR (1) -BASED PARSERS

by
Bernard A, Dion
and
Charles N. Fischer
Computer Sciences Technical Report #333

September 1978

COMPUTER SCIENCES DEPARTMENT
University of Wisconsin
1213, West Dayton Street

Madison, Wisconsin 53706

A LEAST-COST ERROR CORRECTOR FOR

LR(1)-BASED PARSERSl

by
Bernard A. Dion
and
Charles N. Fischer

Computer Sciences Technical Report # 333

September 1978

This research was supported in part by the National
Foundation under grant number MCS 78-0825780.

Science

Abstract

An error corrector working with LR(l) parsers and variations such
as SLR(l) and ILALR(l) 1is studied. The corrector is able to
correct and parse any input string. Upon detection of a syntax
error, it operates by deleting @ or more input symbols and in-
serting a terminal string that guarentees the first non-deleted
symbol to be accepted by the parser. The total correction cost,
as defined by a table of deletion and insertion costs, is minim-

ized.

Keywords

Compilers, Parsing, LR(l), Syntactic Errors, Error Correction.

l. INTRODUCTION

The problem of error recovery and correction in bottom-up
context-free parsing has received much attention [2,4,5,6,7,9 1.
Except for [9], all of these techniques, when faced with certain
syntax errors, are forced to skip ahead in the input stream, com-
pletly ignoring portions of it. All but [4] and [7] fail to use
a cost criterion to guarantee the quality of a correction or
recovery operation. Further, in none of the cited work is the
issue of time and space complexity dealt with. 1Indeed in many
cases, non-linear behavior is readily obtainable.

Following the work done in [l] and [3], we consider an error
corrector which generates "locally least cost" corrections in the
presence of any syntax errors. This algorithm works with LR(l)
parsers and (practical) variations such as SLR(l) and LALR(l) (we
term this class LR(l)-based parsers). In cases of practical in-
terest, linear time and space complexity can be guaranteed for
all corrections.

Let G = (V P,S) be an augmented context-free grammar.

n’vt,

All input strings will be terminated by the end marker symbol
'S'., Given an input string xalaz...am$ such that § == * x... but
S =/=>+ X&) eoe the error corrector will effect a correction by

deleting symbols aj...a (6 <i <m) and inserting a terminal

i S S inserting
string y such that S ==>" XYag jees o The values of i and y will

be chosen to minimize correction costs.

2. RIGHT CONTEXT OF AN ITEM IN A PARSER STATE :

In order to determine a least cost insertion to the immedi-
ate 1left of an error symbol, we need to know which strings can

legally appear to the right of an accepted program prefix. We

call this set of strings the right context.

2
The theory necessary to construct LR(l)-based parsers |is

derived from the notion of a viable prefix, i.e. a string which

is a prefix of some right sentential form but which does not ex-
tend past the handle of that right sentential form. We now in-
troduce the dual notion of viable suffix.

Definiton 2.1 : Let G be an augmented context-free grammar.
Assume ¢ is a viable prefix of G. Then B is a viable suffix of G
(corresponding to) iff

(1) 8 ==>" op

(2) There does not exist Y such that

* +
S ==>dY and Y ==> B

(i.e. PB is fully reduced)

Definition 2.2 : The right context R(I,slsz...s y of an LR

s . - — e un oy wmm wwmim es wm me rm. hsin, oo tn o n

item I = [A -=> ﬁl,ﬁz] where the contents of the parse stack are
R . *

S = Sl"'sn and I € Sn’ is the set of strings pzy € V such that

ﬁzy is a viable suffix of G corresponding to some viable prefix

dpl where
(1) dﬁl = X1X2°"Xn—l’ Xk € V for k=l,...,n-1
(2) GOTO(SK,XK) = sk+l for k=1l,...,n-1
We now consider the problem of computing R(I,S). It will be

expressed as the concatenation of 3 regular expressions over V.
We have R(I,S) = ﬁz cat l(I,sn) cat g(I,S), where 52 is the
trailing part of I, 1 is a regular expression denoting the local
right context and g is a regular expression denoting the global

right context.

Example 2.1 : Consider the following SLR(!l) grammar

Part of Gl's CFSM is as follows

S --> .E § § --> E. §

E -—-> .BE + T E E --> E. + T
E -—-> .T éT -=> a. S, S3
T --> .a a

T-—>.(E)}|s figure 2.1

We now consider state) and draw its closure graph G(Sl)
where each item of S is a vertex in G(Sl) and we include a
directed edge (Ik’Il) if Ik = [B ==> .Y] is obtained by predic-
tion from item Il = [A --> .BB]. Edge (Ik,Il) is labeled B. We

thus obtain:

P Il
S --> .E §
$ $
_ L I3
(E -=> .E + T E -——> .T
+ T + T
€ €
figure 2.2 T --> .a T-=>.(E)
I4 IS

Now considering any item in a closure graph, its local right

context 1is obtained by concatenating labels on a path from this
item to any basis item. For example 1(14,51) = {+T}* cat {$}
which <corresponds to paths 14,13,11 and 14,13,12,,.,,12,11. We
denote by 1(Ii,Ij,s) the regular expression of all paths between
items Ii and Ij in G(s). For example 1(15,13,51) = {€}. We also
denote by L(1(I,s)) and L(1(I,J,s)) the set of terminal strings

derivable from 1(I,s) and 1(I,J,s).

4
The part of the right context which cannot be obtained 1lo-
cally (i.e. looking at the closure graph of the top stack state)

is termed global right context. It is a function of the parse

stack. Still considering Gl’ assume the parse stack is S Sq- We
have g ([T --> a.],slsz) = {+T}* cat {s}. This is obtained by
considering the local right context of the predecessor of
[T -—-> a.] in s - In general, the global right context can be

obtained by concatenating appropriate local right contexts for

each state on the parse stack.

3. AN INSERTION-ONLY ERROR CORRECTOR :

As developed in [l], we first present a restricted version
of our algorithm where we only consider the insertion of a termi-
nal string as a potential correction. More precisely, we assume
a given insertion cost vector C where C(a) 1s given for all a €
Vt’ The cost of inserting a terminal string is the sum of the
insertion costs of the terminal symbols in the string. We now

formulate the problem in the following way: given an input string

xa... such that S ==>'x... and 8 =/=>%xa... find an optimal
solution y € Vt to
min { C(y') | S ==>+xy‘a,.. } (3.1)
+
1]
y' € Vt

Of course the existence of such a string y is not guaranteed

in general. Languages for which vy always exists are termed

insert-correctable [2]. Interestingly enough, it can be shown
that a programming language such as ALGOL 660 is insert-
correctable (modulo a very minor modification). In [1] an algo-
rithm is presented that tests if an LR(l) grammar is insert-

correctable.

3.1 Immediate Error Detection Property:

A parsing algorithm is said to have the immediate error

detection property (IEDP) iff an error 1s detected as soon as an

erroneous input symbol is first encountered. As we will see
later, our error corrector reqguires the IEDP.

It is a well-known fact that canonicgl LR(1) parsing has the
IEDP. However standard SLR(!) and LALR(l) parsers don't. Thus
we have to modify these algorithms slightly. Because of the fact
that they use follow sets which are approximations to exact
lookaheads, an erroneous symbol may cause wrong reductions. In
order to guarantee the IEDP, we save parser moves in a gueue un-
til the next input symbol is accepted by the parser. If it turns
out that the input symbol is erroneous, the parse stack is re-
stored to the condition it had when this symbol was first seen,
using information stored in the queue.

In the worst case this buffering technigue can require O(nz)
extra time to process an input of size n. However linearity is
achieved in the case of a bounded depth parse stack, which is al-
most always used in practice.

3.2 Error Correction Algorithm

We are now ready to discuss the LR_INSERT function (algo-
rithm 3.1, p.8) which is called upon detection of a syntax error
(the parse stack being restored, if necessary). The input to the
function is 'a', the error symbol and S = SLSZ"°Sp’ the parse
stack. Its output is LR_INSERT which is a solution to problem
3.1

LR_INSERT processes the parse stack in a top-down fashion,
creating a stage for each stack state. A stage is a collection
of 'LC' values, one per basis item in the corresponding state.
If item Ii is in the basis of some state then LC.l is a least cost

terminal string whose insertion allows us to complete the recog-

6

nition of Ii when the parser is restarted in state sp (LCi is

termed a least-cost completor of Ii). As we process the stack we

keep track of 2 stages only : CURSTAGE corresponding to state S
and PREDSTAGE corresponding to state Sk—*

Let us introduce some notation that is needed

(1) S(d) is a least cost string derivable from d.
(2) Insert(ﬁi,a) is a solution to the following problem
*
min { C(t') | pi ==> t'a... }
t'GV*
t
If no solution exists, Insert yields '?', a special

symbol with infinite insertion cost.

The function starts by initializing INSERTION to '?'. It
initializes LC values for the top stack state and checks if a
correction can be obtained from the trailing part of a basis item
in this state (lines 2-6). It then processes the parse stack un-
til no lower cost insertion can be found (lines 8-34). At each
iteration of the while 1loop (line 8), LC values of PREDSTAGE

(corresponding to state s are deduced from LC wvalues of

k—l)

CURSTAGE (corresponding to state s This is done by linking

k) -
basis items in these two states : a basis item in Sy is 1linked
to its predecessor in ST (line 12) which, in turn, is linked to
basis items in Sk following paths in the closure graph of s, _,
(line 14). It also has to check for the possibility of discover-
ing a lower cost insertion from the local right context of a clo-

sure item in s and it updates INSERTION if this is the case

k-1
(lines 22-26).
To allow an efficient implementation of Algorithm 3.1, many

of the values needed by the algorithm can be computed in advance

and tabled. This is detailed in [1].

7

Example 3.1

Using grammar Gl, assume that the input string is
"aa$' and unit insertion costs are in effect. When an error is
detected we are in the following configuration : stack = S Sy
error symbol = 'a'. Considering Sqr we obtain LCl = 5(8) = '§°'
and LC2 = S(+T) = '+a' (line 3). Further, INSERTION =
Insert (+T,a) = '+' (line 5). Since C(+) is less than both C(LCI)
and C(LCZ) (by convention, C($) is infinite) the computation im-
mediatly terminates (test of line 8) with a correction of ‘'aa$'
into 'a+a$'. The error corrector thus attempts to effect correc-
tions using local context only.

When necessary, however, Algorithm 3.1 considers just enough
global right context to guarantee that the lowest cost correction
possible is effected. Thus given an input string of 'a++a$', er-
ror correction would commence in a state whose sole basis item is
[E ==> E+.T]. Now LCl = S(T) = a and INSERTION = Insert(T,+) =

Y(a'. Since C('(a') > C('a'), we would examine states below the

uppermost and discover 'a' to be the least-cost INSERTION value.

Function LR_INSERT(a, S) : terminal string ;

begin { initialize error correction using top state }

l k := p; INSERTION := ? ; CURSTAGE := STAGE(SD)

2 for all i such that [A; -=> d;.B;] € Basis(sé) do

3 CURSTAGE.LC; := S(B;) i

4 if C(Insert(ﬁi,a)) < C(INSERTION)

5 then INSERTION := Insert(ﬁi,a) fi

6 od ;

7 { now process stack until no lower cost insertion possible }
8 while 3 i DC(CURSTAGE.LC,) < C(INSERTION) and k > I do

9 PREDSTAGE := STAGE (s
10 §9£ all I

k~1) ¢ { LC values are initially = '?'}

€ Basis(sk) such that

11 C%CURSTAGE.LCl) < C(INSERTION) QQ

12 let I, be the predecessor of Il in Si_y

13 if I, € Closure(sk_l) then

14 for all Ij € Basis(sk_l) such that 1(Im’Ij’Sk—l) £ @
E do

16 let y be a least cost string in L(l(Im’Ij'sk—l)) H
17 if C(CURSTAGE.LC;) + C(y)

18 < C(PREDSTAGE.LC,) then

19 PREDSTAGE.LC; := CURSTAGE.LC; cat y
20 £i

21 od ;

22 let t be a solution to

23 min {*C(t') | t'a... € L(1(Irs,_|)) 1}
24 t' e v,

25 ig C(CURSTAGE.LCl) + C(t) < C(INSERTION)

26 then INSERTION := CURSTAGE.LC, cat t fi
27 else { Im € Basis(sk_l) }

28 ig C(CURSTAGE.LCl) < C(PREDSTAGE.LCm)

29 then PREDSTAGE.LC = := CURSTAGE.LC,

30 £i

31 £i

32 od ;

33 CURSTAGE := PREDSTAGE ; k := k-1

34 end while ;

35 LR_INSERT := INSERTION

end LR_INSERT.

algorithm 3.1

4. EXTENDED ERROR CORRECTION

We now extend the model to include deletions as specified in

section |I. Let D(a) for a € Vt be the cost of deleting a.
Assume D($) = + inf. Again assuming that S ==>*x... but
S=/=>+xala2...am$, we want to find a solution to the following
problem

. . [} — +]
min { min { C(y)+D(a;...a;) | S > Xy ai+l.,.am$ Py (4.1)

*

B<i<m y' € Vi

This can be implemented very simply by calling Algorithm
3.1 repeatedly with error symbols Aprdge.e until we reach a si-
tuation where the cumulative deletion cost D(al"'ai+l) is larger
than C(y') + D(al...ai) as obtained in the previous step. Howev=
er this procedure has an O(|x|2) worst case runnning time because
it may have to reprocess each input symbol O(|x|) times.
Now assume that we do the following preprocessing of
o8y :owWe maintain a vector FIRST_INPUT : Vt -—> {l,ec.,m} U
{ABSENT} which points to the first occurence, if any, of a termi-

nal in . Also, each terminal in aj.e.ay is labeled with

DC such that DC(i) = D(al...a.

1—1) and DC(ABSENT) = + inf. We now

find ¢ € Vt which is a solution to

min { DC(FIRST_INPUT(c)) + C(LR_INSERT(c,S)) } (4.2)

c € Vt

where S is the parse stack and LR_INSERT is the terminal string
that is computed by algorithm 3.1l.

The basis for the correctness of this procedure is the fact
that we only need to consider deletions up to the first occurence

of any terminal in order to find the least cost correction. This

calculation can be done in constant time per error if a bounded

depth parse stack is used [I1].

In practice, the preprocessing assumed by (4.2) would prob-
ably be done incrementally. That is, we would first compute the
cost of corrections involving 0 deletions, then | deletion, etc,
calling LR_INSERT at most once for a given terminal. As soon as
the best known correction is no more expensive than the cumula-
tive deletion cost, processing can be terminated.

Returning to example 3.1, assume all insertions and dele-
tions are of unit cost. While correcting 'aa$', corrections in-
volving @ deletions are first considered. The best of these 1is
insertion of '+' at a cost of l. Since deleting 'a' would also
cost |, no further processing occurs. If however, all insertions
are modified to cost 2 each, after the first step the best known
correction has a cost of 2. Now deletion of 'a' 1is explored.
This deletion costs only | and as no subsequent insertions are
needed, a lower cost correction is discovered. Thus a correction
of 'aa$' into 'a$' rather than 'a+a$' is obtained.

Normally costs are set so that deletions are more expensive
than insertions (to encourage corrections which "build upon" ex-
isting input strings). Under such circumstances, the above tech-
nique of considering deletions incrementally seems a particularly
good way of finding least cost corrections quickly and efficient-
ly.

We finally summarize the properties of this algorithm with

the following theorems.

Theorem 4.1 : Assume that for some cfg G, x... € L(G) but =xa...
& L(G). Further assume that while attempting to parse xa... an
LR(1)-based parser invokes the extended error corrector as soon

as 'a' 1is encountered. Then it will delete i input symbols and

then insert a terminal string y' where i and y' satisfy problem

11

4.1.

Eﬁggggg 4.2 : Assume an LR(l)-based parser using the procedure
outlined in 4.2 as an error corrector processes x$. Then it re-
gires
(a) at most O(lez) time and O(lx|) space 1in the general
case.,
(b) at most O(|x|) time and space if a bounded depth parse
stack is assumed.

(c) at most O(|x|) time and space if a canonical LR(l) parser

is assumed.

The O(Ix!z) time bound arises in the general case because
for each of O(|x|) possible errors, it may take O(lx|) time to
restore the parse stack (as per section 3.1) and then execute Al-
gorithm 3.1. For the expected case of a bounded depth parse
stack, we can process each error in constant time. Alternately,
if we use a canonical LR(l) parser no stack restoration is need-
ed. A more complex version of Algorithm 3.! (see [l]) <can then
be used to guarantee linearity. Thus in cases of both theoreti-
cal and practical interest 1linear LR(l)-based correctors are

available.

5. CONCLUSIONS AND SIGNIFICANCE :

The LR-corrector presented above has both theoretical and
practical significance. Theoretically, the algorithm can be
shown to operate correctly on any input string. A least-cost
correction is guaranteed and, in cases of special interest (e.g.,
bounded depth parse stack), linearity can be established.

On the practical side, preliminary experience indicates that

our LR-corrector can be used satisfactorily with most LR-driven

12
compilers. As developed in [l], values needed to drive the
corrector can be precomputed and stored in secondary storage.
This allows the algorithm to operate guite efficiently with a
rather small primary storage requirement.

This research can be extended in several ways. For example,
it can be noted that our definition of least cost correction is a
very local one since it is concerned with finding an insertion
which allows the first non-deleted input symbol to be accepted by
the parser. We believe it is worhtwhile to develop more global
error correction techniques. Recent work by Penello and DeRemer
[6] shows how a forward move can be used by an LR-based parser to
condense information on that part of the input string which is to
the right of the error symbol, thus providing potentially un-
bounded lookahead. We plan to investigate the possibility of us-
ing such information in the context of least-cost correction.

In [8] Watt shows how attribute grammars can be parsed and
evaluated wusing LR techniques. The possibility of using attri-
bute information (such as types, symbol tables, etc.) to aid in
choosing corrections 1is a very interesting topic of future

research.

[2]

[4]

[6]

13

References
Dion B.A. and C.N. Fischer
An Insertion-only Error Corrector for LR(1),LALR(]l) ,SLR(])
Parsers.
Technical Report #315. February 1978. University of Wiscon-
sin.

Druseikis, F. C. and G.D. Ripley
Extended SLR(k) Parsers for Error Recovery and Repair.
Technical Report. University of Arizona, 1977.

Fischer, C.N. , D.R. Milton and S.B. Quiring

An Efficient 1Insertion-only Error Corrector for LL(1)
Parsers.

Conference Record of the 4th ACM Symposium on Principles of
Programming Languages, pp. 97-103.

Submitted to Acta Informatica.

Graham, S.L. and S.P. Rhodes

Practical Syntax Error Recovery.

Communications of ACM. November 1975. Vol.Il8 no.ll , ©pp
639-650.

James L.R.

A Syntax Directed Error Recovery Method.
Technical Report CSRG-13. May 1972. University of Toronto.

Penello T.J. and F. DeRemer

A Forward Move for LR Error Recovery.

Conference Record of the 5th ACM Symposium on Principles of
Programming Languages. January 1978.

Tai, K.C.

Syntactic Error Correction in Programming Languages.

Ph.D. Thesis. Department of Computer Sciences. Cornell Univ.,
1977.

Watt, D.A.
The Parsing Problem for Affix Grammars.
Acta Informatica 8,1-280 (1977) pp. 1-28.

Mickunas, M.D. and J.A. Modry
Automatic Error Recovery for LR Parsers.
Communications of ACM. Vol.2l, no.6, June 1978, pp.459-465.

