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RATIONAL MIXED-INTEGER AND
POLYHEDRAL UNION MINIMIZATION MODELS

R. R. Meyer, M. V. Thakkar, and W. P. Hallman

1. Introduction

The primary purpose of this report is to establish a broad
class of optimization problems that may be "re-formulated" in such a way that
they may be solved by MIP techniques. (If irrational coefficients

are allowed in the MIP formulations, a significantly broader class of

optimization—problems—can-be-handted—{see—{9])sbut—such—Fformulations
have 1ittle value since irrational coefficients are computationally

intractable.) As a specific illustration of the type of problem that

can be dealt with, consider a production cost minimization problem of

the following form:
min f(x) + f(z)

(1.1) s.t. B]x + B,z = d

where x 1is a real variable representing the quantity of item A purchased,

z = (z],..., z )T is a vector variable representing the quantities of

p
other items purchased, the functions f and f are cost functions

whose sum gives the total cost of purchasing x units of item A and



Zyy oees zp units of the remaining items, and the constraints represent
the production technology and production goals, We further assume for

the purposes of this example that f (see figure 1) is given by the

relations
(2% if xc[0, 1]
(1.2) f(x) = < 2 if xe[l, 2]
x if x>2.

(From an economic point of view, this could be thought of as an
"economy of scale” purchase function in which the initial unit of

item A costs $2, and volume discounts are made such that a "two for

the price of one" policy allows the second unit of item A to be obtained
for no additional cost, while further units may be purchased at a cost
of $1 per unit after the initial two units have been purchased.) The
function f will be assumed to consist of a sum of piecewise-linear
cost functions for the other items, but we shall not be concerned with
its specific form at this time.

The cost minimization problem as stated in the form (1.1) is
not amenable to solution by traditional linear programming techniques
since its objective function is piecewise-linear and non-convex. Although

problems involving non-convex piecewisedinear functions can often be



re-formulated as mixed-integer programs by well-known techniques
(see, for example, [4}, [5], [6]1, [7], or [13]), these standard
techniques do not apply in this case because f{ is defined for all non-

negative reals. (A re-formulation employing the "special ordered

sets" of Beale and Tomlin [2] is possible, however, and the
relationship between such sets and MIP's will be discussed
below.) However, by using the results to be developed below,

the problem (1.1) first is re-formulated as the "equivalent" problem

min Zyl + v2 + ‘f(z)
x,z,yi,vi,u

s.t. B.x+ B2z=d

(1. 3)

y3 integer, u integer

and then, if the function f 1is also sufficiently well-behaved, similar
re-formulation steps can be used to "eliminate" f from the objective

function of (1. 3), so that the resulting problem will be an MIP, which
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(storage space and money permitting) may be solved by using a
commercial MIP code.
On the other hand, suppose that the function f, instead of

being given by (1.2), is defined by (see Figure 2)
2X if xe [0,1]
(1.4) f(x) =4 2 if xe [1,2]

2+.9(x-2)  if x> 2.

The only difference between the functions defined in (1.2) and (1.4)

is the difference of .1 in the slopes of their "unbounded" segments.

However, this difference is critical, since by again using the results
to be developed below, we will show that no re-formulation involving
linear relations with integer variables and rational coefficients can
be used to "eliminate" f, as given by (1.4), from the problem (1.1).
A re-formulation using "special ordered sets", however, is possible,
as will be shown in section 4.

In order to make these notions precise, we develop in section
2 a general re-formulation procedure and describe in what sense it
yields equivalent problems, and in section 3 we consider re-formulating
problems as MIP's with rational coefficients. Section 4 gives necessary
and sufficient conditions for re-formulating problems in terms of unions

of polyhedral sets, and section 5 summarizes the results.

2. General Minimization Models
Consider the following minimization problem (in which xe R"

is considered as a vector of parameters):



min g(y)
(MM(x))
s.t. yeY N H(x)

1 !
m, g: IRm - R, H is a mapping from IRn into the

where ye IRm, YCR
subsets of IRm, and it is assumed that MM(x) has an optimal solution

if it is not unbounded or infeasible. Given an extended real-valued

function f defined on SCR , MMi(x) is said to be a minimization

model for f on S (which we will write as MM(x)e M (f, S) ) if w(x), the

optimal-value-function-of -MM(x);—has-the property:

(2.1) w(x) = f(x) for every xe S .

(The optimal value function w(x) is assumed to be an extended-real-

valued function defined on ]Rn, with the understanding that w(x) = +co

if YNHx =¢, and o(x)=-o if MM(x) is an unbounded problem.)
On the one hand, it is trivial to show that given an arbitrary

f:R" [-», +©] and an arbitrary S C IRn, there exists a minimization

model for £ on S (i.e., 7M(f, S) # #). For, such a minimization model

(or MM) may be obtained by defining

+

S = {x lxe S, f{x) = -»}, S = {x lxe S, f(x) = +x},

(£(x)} if xeS/(sTUsT)
H(x) = R' if xes

§ if xes'



Y = IRl and g(y) =y. Although the question of nonemptiness of 7 (f, S)

is thus answered, there remains the more interestir;g question of characterizing
f and S for which M{f, S) contains minimization problems of certain special

forms. TIrom the standpoint of applications, the answer to the latter question

is significant because of Theorem 2.1 below, which generalizes a result in

[9). Tnhis obvious theorem says that when a function appearing as a

term in the objective function of a minimization problem has an MM, then that

function may be "replaced" by its MM. Hence, if the MM is given in terms

of-functtons-that-are-simpler-than—f—({erg.;—fmay be nonlinear, whereas

MM may have a linear objective function and linear constraints), this re-

formulation will yield an equivalent problem that is, perhaps, easier to deal

with than the original problem.

Theorem 2.1. If f: 8 =R, f:SXR°~ R, and MM(x)enf, §),

then the problems

min  f(x) + E(x, z)
(x,2)

(P)

s.t. xe8, (x, z)eT

and

~

min gly) + £(x, z)
(x,v,2)

s.t. Xcg, (x, z)eT

veY NI H(x)
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where S C S, are equivalent in the sense that (a) (P) is feasible if

and only if (P') is feasible, (b) xﬂg is an optimal solution of (P) if

% - K
and only if there exists @ y suchthat (x , y ) solves (P'), and

(c) (P) is unbounded if and only if (P') is unbounded.

Proof: See [11].

3. MIMM's and Rational MIMM's
In this section we will consider minimization models of two special

types, namely, mixed-integer minimization models (MIMM's) and rational

MIMM's+—The-notions-of-a-MIMM-and-a-rational-MIMM-forafunctionon———
R" were defined by Meyer [ 9], and here we will generalize the definitions

to allow subsets of R" to be considered, and obtain some additiona

properties of rational MIMM's. Consider the parametrically defined (x is

the vector of parameters) mixed-integer program:

min z
zZ,u,v

s L ’ + = -
(3.1) s.t A02+A1u sz b A3x

u>0 and u integer

n , m
where xe R, ze¢ R ve R ', b is a given vector in R ,

and AO’ Al’ AZ’ and A3 are given matrices of the appropriate dimensions,

and define m(x) to the optimal value function of (3.1). The parametrically
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defined problem (3.1) is sald to be a standard-form MIMM for the function

f on S if

——— —

(3.2) m(x) = f(x) for every xce S.

(Put another way, the function f on S is representable by (3.1)
and we write fe WZM(S).) By "standard-form" we mean that the objective
function and constraints are of the format of (3.1). Any mixed-integer

program in which the RHS is a linear affins function of x may be converted

o {nto-a-standard-form MIMM by well-known techniques.) If in addition,

the matrices Ai (i=0, ..., 3) of (3.1) are all comprised of rational
data, we say that (3.1) is a rational MIMM for f on S and we write
fe WZR(S) to indicate that f is representable on S by a rational MIMM.,

Note that every piecewise-linear convex function h(x) of the form

h({x) = max {c(l)x + d(l)} is in WZM(IRH), since we have:
1<ic<k

h(x) = min z

s.t. z>ctkrd® w=1, .. K.

(In fact, note that this is a linear programming minimization model for h,

and it thus may be converted to a standard-form MIMM with A, being

1
the 0 matrix). In particular, every linear function is in WzM(IRn), and

(i)

every function h(x) of the above form in which all of the ¢ Y are rational

vectors is in WZR(IRn). In[9] and [/4] it is shown that some rather broad
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classes of lower semi-continuous piecewise-Tinear non-convex functions
are in the family Z?R(Rn), and the classes Z?R(S) are also studied
for various sets S in the case in which the projection of the
feasible set of (3.1) on the space of the integer variables wu is
contained in some compact set for all x e R", (Such models are termed

bounded-integer MIMM's.) Here we shall avoid such compactness

hypotheses, and, as a consequence, the results obtained will not be
as strong as those for bounded domains.

In [9] it was shown that the uncapacitated fixed-charge function

( 0 ifx=20

f(x) ={1 ifx>0
4  otherwise

has no rational MIMM on R]. The following theorem generalizes this
result, and in particular, establishes a convexity property that a

class of functions with rational MIMM's must have.

1

Theorem 3.1: Let 6 : S~+R with the property that there exists

an M >0 and a rational c¢ such that
6(x) = cx +d for x> M.

If there exists an X ¢ S such that 6(x) < cx +d then 8 éiWR(S).

Proof: See [11].
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From a geometrical viewpoint, this result says that the line
cx + d must be a supporting hyperplane for the epigraph of 6 in
order for 6 to have a rational MIMM on S. This may be thought
of as a convexity property of rational MIMM's. (Jeroslow has
shown [8] that the convex hull of the epigraph of the optimal
value function of a rational MIMM must be closed, and observed
that Theorem 3.1 also follows from his result.) The following
results show that this property is also sufficient if the function

is well-enough behaved on its nonlinear portion.

Theorem 3.2: Let f](x) = min{g(y) | ¥y ¢ Y NH(x)}, and assume

that f(x) > CX +d for x e [a,8], where o> 0. If

1
f](B) = cB + d, then on [a, +o), the function f, defined by

f](x) if xel[a,B]
fo(x) =

cx +d if x>8

has the minimization model:
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min gly) + cv,
(y,u,vl,vz)

s.t. yeyY H(vl)
(3.3 ) Xx=vtv,
agvlgﬁ
05v2_<_ Pu<x

u integer .

Proof: If xe[a, B), then u-= v, =0, x=v;, andthe minimization

med»el‘re‘la»t‘ie»ns‘reduee—t-e—m-iﬂ—{Ag‘(AyA)—]Ay~e—Y—ﬂ—HA(-xA)A}j—whi‘ch—by‘defi‘ni'ti“uu
is fl(x).

If xe[B, +2), then we may obtain a feasible point for (3.3) by
letting vy = B, v, = x-B, u=[x/B], and y be the element yq< of
Y N H(B) suchthat g(y ) = cB + d. Note that all the constraints of (3.3)

other than v2_<_;3u are obviously satisfied, and that v_ < Bu 1ic satisfied

2

’

since v, = B(x-B)/B = p((x/B)-1) < B[x/B]. Moreover, at this feasible point
the objective function value is ¢ + d + c{x - B) = cx + d. Thus, the
theorem will be proved if it is shown that the objective function value of

any other feasible point is at least cx + d in this case. Since x = vy + v,

and v <B, yeY N H(vl) implies g(;) > fl(vl) > cvy + d. But the objective

function value is thus at least cv1 +d+ cv2 =cx + d.



-14-

Corollary 3.3, Let

fl(x) if xe[a, B]
f.(x)

i

cxtd if x>B,

where « >0, B is a positive rational, ¢ is rational, and fle'mR[a,ﬁ]- Then

fzemR([a, +)) if and only if fl(x) >cx+d for xe[a, B,

Proof. Clearly these conditions are sufficient, since the method of
v construction of the minimization model (3.3 ) will yield a rational MIMM,—
Conversely, if there exists an Xe [, B) such that f(X) <cx + d,

Theorem 3.1 shows that fz;(?ﬂR([a, + )}, e

As examples of the application of Corollary 3.%, we will
re-consider the two examples described in section 1. When f{(x) is

given by (1. 2), we can apply Corollary 3.3 by letting fz =1,

2x if xe¢[0,1]
fl(x)z , =0, p=2, c=1, and d =0, Itis

x if xe[l,2]
easily seen that flemR[O, 2] and that fl on [0, 2] has the rational
MIMM:

fl(x) = min Zyl
Yy X

s.t. 0<y,<y,<y <l

X=Y1+Y2

Yy integer .
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Thus, since f(x)>x on [0, 2), by Corollary 3.3, £ e W(R[O, o)

and has the rational MIMM:

fz(x) = min 2y1 + v
X,¥;.V,,4

2

s.t. 0<y, <y, <y <l

VitV Ty,

Y4 integer, u integer.

By using the substitution procedure of section 2, then, the equivalent
problem (1. 3) is obtained from (1,1).

On the other hand, if f is given by (1.4), then the condition
fl(x) > 2+ .9(x-2) is not satisfied for xe [0, 2), (in particular, it is
violatedat x=0) so that no rational MIMM for f exists in this case.
Note, however, that by using the general construction procedure of [9],
a MIMM with irrational coefficients may be generated for the function

defined by (1.4):
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t>0, t>.2+ .9v_ - .2u

Yy integer, u integer (i =1, 2, 3),

Unfortunately, because of its irrational coefficients, this MIMM
cannot be handled by commercial MIP codes.

This leads us to the consideration of another class of
minimization models, polyhedral-union minimization models, which

do allow a rational representation of the above function.
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4. Polyhedral Union Minimization Models

In this section we will consider minimization models in which
some of the variables are constrained to be in a finite union of
polyhedral sets. Such models will be called polyhedral union
minimization models (PUMM's). Optimization problems with Togical
constraints involving linear inequalities have been studied else-
where, namely in Balas [ 1] where cutting planes are developed for

these problems. Some examples of functions that have PUMM's but

no rational MIMM's (and vice versa) will be given along with a
theorem characterizing functions representable as PUMM's. We will
also show that any PUMM is equivalent to a minimization model with

“special ordered sets". (see Beale and Tomlin [2].)

Formally, consider the program:

min z
Z,U,V
(4.1) s.t. Aoz + A]u + sz =bh - A3x
N
ue Tj’ v >0,

1

1]

J
where all data have the same dimension as in (3.1), each Tj is a

polyhedral set, and x is a vector of parameters. Let m(x) be

the optimal value of (4.1) for a given x. The program
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(4.1) is said to be a PUMM for the function f on a subset S of
R

m(x) = f(x) for every x e S.

To see that special ordered sets can be modelled in the above form,

K

recall that a set S](K) CR"™ s said to be a special ordered set

of type 1 if S](K) consists of all points in RK with at most one

nonzero component.,

Then

K
S;(K) = L T, T, = {(u],...,uK)Iuj=O, j#il

is a representation of a type 1 special ordered set as a finite union

of polyhedral sets. Furthermore, if ue S](K) and

H—12R)

u. = 1, then the u; can only take the values 0 or 1. Thus

i=1 !

bounded integer MIMM's are contained in the class of PUMM's.

As noted in section 3, the uncapacitated fixed charge function
0 x =0
f(x) = 1 x>0

+e0 otherwise

has no rational MIMM. However, using PUMM's it follows that
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f(x) = min (]—u])

u'l ,u2
s.t. u2 = X
“2,1 0
0<uy; <1

U=
(u],uz) € S](Z).

Also in section 3, it was shown that example (1.4) has no rational

MIMM, but it does have the following PUMM

f(x) = min 2h, + 20, + 90X

. 1 2 3

s.t. X = A F 2%2 + A3
XO + A] + XZ =]
Ags M Aps A3 > 0
(XO,A],AZ,AB) e T, VT, UTs,

Where T'l = {()\O,A] ,}\2,>\3)I>\0 3_ 0, >\-| _>~ Os )\2 = >\3 = 0}

T, = {0gsAshperg) [ = 05 A7 > 0, A

5 >0, Ay =

2

To = {\gsAyshparg)[Ag = A = 05 &y > 0, Ay > O3

Finally, we note that the rational MIMM

f(x) = min ¥y ¥ 10y2
YisY
1272
s.t. 2 + 12y2 > X
y]s y2_>_0

Yo integer
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has no PUMM since there are infinitely many breakpoints in the graph
of f. That such functions have no PUMM's follows from the next

theorem.

Theorem 4.1: Let f: R" + (-, +o]. Then f has a PUMM if and
only if there exist extended affine* functions gj(x) with polyhedral

effective domains Dj, J=1,...,N, such that

f(x) = min g.(x)
i=1,...,N 9

Proof: Assume that f has the PUMM
f(x) = min z

s.t. (z,u,v) e Q(x)

( N

Aoz + Alu + A2v =bh - A3x
4 (z,u,v) }

N
v>0,ue U Tj
L =1

fl

where Q(x)

and each Tj is polyhedral.

r 3

Aoz + A]u + A2v =h - A3x

Let QJ(X) =4 (Z,U,V) }

>0, T.
v20,ueT,

\

* g: R" » (~»,+o] dis said to be an extended affine function if there
exists a and b and a polyhedral set D E_R” such that
g(x) =ax +b if xeD and g(x) = +» 4f x£D.
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then each 9.(x) 1is polyhedral and

J
N
Q(x) = U Q.(x)
i=1
Thus f(x) = min g.(x)
§=1,00 N Y
where gj(X) = min {z|(z,u,v) « Qj(X)}.

ZsU,V

Now each gj(x) is the optimal value function of a para-
metric Tlinear program, so eff dom gj which we denote by Dj

is polyhedral. By a standard result in linear programming, for

each Jj there exist polyhedral sets D},...,D?j, for some Mj,
M.
. J .
and affine functions g}(x) i= 1,...,M,j such that Dj = U D}
. . i=1
and
i Di
gj(x) if X e ;
gj(x) =
400 i ..
if X ¢ DJ
. g;(x) if X e D}
Let §}(X) =

—te

+oo if x £0D
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then

£(x) = min {G500]3=1,0000N5 121500005

which proves half of the theorem.

Conversely, suppose

c'x +d if x e Dy (1=1,..u,M)

+o  otherwise

where each Di is polyhedral and

Then since Di is polyhedral, there exist integers Nys M and

vectors e R" (j=1,...,n.) and Lis € R" (j=]"“’mi)

N3 i

such that

J

n m. n

i

: i
D5 = Ch agmig L gl L hagTe 220 B2

(see Rockafellar [12]).
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Th = mi
en F(x) z,ﬂle,w,x,t z
N
>t 1.21 Z Mg Z gt d'u;)
N
=) ( 2% Et
i=1 j=1 13 ij iJ 1"1
N
Y Ass = ug, Us e {0,130 (i=1,0.00,N)
j=1 o
N
Z u, = 1
i=1 !
m;
}Z] tij = vy (i =1,...,N)
W 1 - us (i=1,...,N)
(Vi’ Wi) € S](Z) (i=1,...,N)
Aij >0, tij >0 forall 1, j.
which is a PUMM for f. |

The representation for the function f wused in the last half
of the above theorem needed only type 1 special ordered sets, not

general polyhedral sets. Thus any function that can be modelled
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with a PUMM can be represented as a minimization model with type 1

special ordered sets. However, such a model would require knowledge
of all extreme points and rays for each Tj' In the absence of this
knowledge or of any special structure for the polyhedral sets Tj’
it is not clear how to branch effectively and calculate bounds if a
branch and bound algorithm is to be used to solve the problem. A

cutting plane procedure such as that proposed by Balas [1] could be

employed directly on (4.1) though.

Note also that a type 2 special ordered set as described by

Beale may be represented as a union of polyhedral sets in which only
two "adjacent" variables are allowed to be non-zero, and thus models
involving only linear constraints and type 2 special ordered sets
are also PUMM's. (It is easy to see that the converse also holds,
namely, that any PUMM may be reduced to a model involving only Tlinear
constraints and type 2 special ordered sets.) Finally, because of
the observations following Theorem 5.6 of [9], every function having
a PUMM also has a MIMM, but not necessarily one with rational
coefficients.

We close with the observation that Theorem 4.1 may be extended
to the case f: R" » [-oo, 4] by appropriately generalizing the notion
of an extended affine function (to allow ax + b to be replaced by

-») and by carrying out some minor modifications in the proof.
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5. Summary

The results in sections 3 and 4 give necessary conditions
and sufficient conditions for the existence of various representa-
tions of piecewise-linear functions. Similar conditions have been
given in earlier reports ([9], [10]) for other types of MIP repre-
sentations, and, in Table 1 we summarize results to date specialized
to the case of continuous piecewise-Tinear (with a finite number of
segments) functions of a non-negative real variable. For each

function of this class there exist a set of breakpoints

0= a3 <8, < ... <@ and a set of slopes CpseeesCy such that
on the interval [ai, ai+]] (i=1,....,n=1), the function is a
linear function with slope Cso and on [an, +), the function is
a linear function with slope Cpe

It should be noted, however, that continuity of f on
[0, +~], is not a necessary condition for the existence of a MIMM
for f. Some of the continuity properties established in this and
earlier papers are summarized in Table 2.

These continuity properties again demonstrate the
generality of the unrestricted MIMM as well as the ability to
handle most cases of interest via special ordered sets (because of
the equivalence with PUMM's). Figure 3 shows the relationships
between various model classes, e.g., the class of optimal value
functions for linear programming minimization models (LPMM's) is
contained in the corresponding class for bounded-integer minimiza-
tion models (BIMM's). (RMIMM (MIMM) denotes the class of optimal
value functions for rational (unrestricted) mixed-integer

minimization models.)
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