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ABSTRACT

By perturbing a linear program to a quadratic program it is
possible to solve the latter in its dual variable space by iterative
techniques such as successive over-relaxation (SOR) methods. This

provides a solution to the original linear program.
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1. Introduction

We shall be concerned here with iterative methods for solving the

Tinear program
Minimize pTx subject to Ax > b (1)

where p and b are given vectors in R" and R™ respectively, and
A is a given mxn real matrix with no rows that are identically

zero. The most popular methods for solving this problem are direct
pivotal methods such as the simplex method and its variants (Refs., 1-2).
However, more recently there have been a number of iterative procedures
proposed (Refs. 3-8). Some of these (Refs. 3-5) consist of an
iterative method for finding a feasible point of the Karush-Kuhn-Tucker
inequalities that constitute the optimality conditions of the Tinear
program (1). Others (Refs. 6 and 8) consist of minimizing a nonsmooth
reformulated problem or (Ref. 7) finding stationary points of an
augmented Lagrangian. Our approach here is different. We consider

the following quadratic programming perturbation of (1)

Minimize %-xTx + pTx subject to Ax > b (2)

It has been shown (Ref. 9) that (2) has a unique solution X, for
all e in (0,e] for some € > 0, which is independent of e and
which also solves the linear program (1). By working in the dual
variable space of (2) we can utilize the iterative techniques
developed in (Ref. 10) for solving the symmetric linear complemen-

tarity problem to solve (2). It turns out that a sufficient condition



for the iterative method to Tead to a solution is that the constraints
of the linear program (1) be stable (Ref. 11) which in this case
means that they satisfy the Slater constraint qualification (Ref. 12).
It is interesting to note that in order to obtain convergence of the
present iterative method use is made of various recent results con-
cerning linear programs, namely (a) nonlinear perturbation of linear
programs (Ref. 9) which originated with the uniqueness characterization
of linear programming solutions (Ref. 13), (b) stability of systems
of linear inequalities (Ref. 11) and (c) general sufficient conditions
for the convergence of iterative techniques for the solution of the
symmetric Tinear complementarity problem (Ref. 10).

The outline of the paper is as follows. In Section 2 we
describe how our proposed iterative procedure is applied to a general
quadratic program with a positive definite Hessian. This procedure
may be used also in finding the projection of a point on a polytope.
In Section 3 we adapt the procedure of Section 2 specifically for
solving the linear program (1) by solving the perturbed quadratic
program (2). In Section 4 we give an algorithm for the solution of
more general linear programs. In Section 5 we present some numerical
results which show that when the perturbation and relaxation parameters
are properly chosen our proposed iterative method 1s competitive with
the revised simplex method (Refs. 1-2) and may even be more robust in
that it can solve problems for which a revised simplex code fails.

We briefly describe now the notation used in this paper. ATl

matrices and vectors are real. For an mxn matrix A, vrow 1 is
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denoted by Ai and the element in row i and column j by Aij'
For x in the real n-dimensional Euclidean space Rn, element j
is denoted by X5 The superscript T denotes the transpose. All
vectors are column vectors unless transposed. Superscripts such as
Ki, ui refer to specific matrices and vectors and usually denote
m

iteration numbers. If u s in Rm, u, denotes the vector in R

with elements
(u+)-i = maX {Oau-i}) 1=1,coo¢9m

The vector e will denote a vector of ones in RM or R" and I
. . . i
denotes the mxm identity matrix. The Euclidean norm (xTx)2 of a

vector x in R" will be denoted by lxll.



2. Iterative Solution of the Quadratic Programming Problem

We shall consider in this section the quadratic program

Minimize %-XTQX + pTx subject to Ax > b (3)

where p, b, Q and A are respectively a vector in Rn, a vector
in R™, a real symmetric positive definite nxn matrix and a real
mxn matrix. We shall develop an iterative algorithm for solving

the dual of (3) (Ref. 12)

Maximize —5x'Qx+blu  subject to Qx-Alu+p=0,u20  (4)

XU
which under the positive definite assumption on Q 1is, upon elimi-
nating x, equivalent to
Minimize L uTAQ"1ATu - (b+AQ™'p)Tu (5)
u>0 2
The proposed iterative procedure will solve (5), and from the

solution u the solution x of (3) is then obtained from
x = Q"1 (ATu-p) (6)

Because the proposed procedure involves the inversion of the matrix
Q, it is not, in general, a suitable procedure for solving (3) with
a general Q. However, for certain applications such as those
requiring the solution of (2), Q 1is the diagonal matrix eI which
is easily inverted. Another such problem is that of projecting a
point ¢ in R" on the polytope {x|Ax>b} using the Euclidean

norm, in which case Q=1 and p = -C.



We are now ready to apply the results of Ref. 10 to solve (5)
iteratively once we realize that, since AQ'1AT is positive semi-
definite, (5) is equivalent to the following symmetric Tinear

complementarity problem

T

v =A0ATu - (b+AQ"'p) > 0, u >0, ulv =0 (7)

We shall use the following special case of Algorithm 2.1 and

Remark 2.4 of Ref. 10.

Algorithm 2,1 Let uO be an arbitrary nonnegative vector in R™,
Having u' compute u1+] as follows
= (ueee (g TATu -b-Ag e (T uTy)), (8)

where E 1is a positive diagonal matrix, K' is either the strict
lower triangular part L or the strict upper triangular part U of

AQ']AT, G is the diagonal of AQ']AT and

0<w<?2 /Gwéio ijEjj (9)

JJ

Note that for computing purposes ui+] is computed in the order
u;+], u;+],°...oo,u;+] when Ki = L, and in the reverse of that
order when Ki = U,

The following theorem is a direct consequence of Theorem 2.1 of

Ref, 10.



Theorem 2.1 Let Q be symmetric and positive definite. Then, each
accumulation point u of the sequence {ui} generated by Algorithm 2.1
solves (5) and the corresponding x determined by (6) is the unique
solution of (3).

This theorem does not guarantee the existence of an accumulation
of the sequence {ui} whereas the following one does under the

s1ightly more demanding condition of a constraint qualification.

Theorem 2.2 Let Q be symmetric and positive definite, and let the
constraints of (3) satisfy the Slater constraint qualification, that
is AX >b for some X in R". Then the sequence {ui} generated by
Algorithm 2.1 is bounded and has at least one accumulation point.

Each accumulation point u of {ui} solves (5) and the corresponding

x determined by (6) is the unique solution of (3).

Proof Because AX > b, there exists a & >0 such that the set
{x|Ax>b+se} 1is nonempty. Let X be the solution of the quadratic

program

Minimize %-XTQX + pTx subject to Ax > b + Se

A solution ¥ to this problem exists because Q is positive definite,
and together with a U in RM satisfies the following Karush-Kuhn-Tucker

conditions (Ref. 12)

QX +p-AT=0, 00, AX > b + se, U (A%-b-de) = 0



Hence

(A0 'AT)E - (b+AQ 'p) > s > 0

By Theorem 2.2 and condition (10) of Ref. 10 the sequence {ui} is
bounded and has at least one accumulation point. By Theorem 2.1
above, each accumulation of {ui} solves (5) and the corresponding

x determined by (6) is the unique solution of (3). O

Remark 2.1 The Slater constraint qualification is equivalent to

the stability condition (Ref. 11) that for each d in RT  there

Rm+1

exists (x,e) 1in satisfying

/-\Xib+€d,g>0.



3. Iterative Solution of the Linear Programming Problem

We now turn our attention back to the linear program (1) and

state a result which is a direct consequence of Theorem 1 of Ref. 9.

Theorem 3.1 Let the Tinear program (1) have a solution. Then there
exists a real positive number € such that for each e 1in the interval
(0,e] the unique solution X of (2) is independent of e and is also
a solution of the linear program (1).

From the proof of Theorem 1 of Ref. 9 we can obtain an

a posteriori upper bound on & of the above theorem, namely €<

<]

where Y is the positive optimal Lagrange multiplier associated

with the last constraint of the problem

Minimize %—xTx subject to Ax > b, p'x < B

and where 8 s the minimum of problem (1), If vy =0 then € can
be any nonnegative number. There is alsc another interesting
interpretation of e (Ref. 14). If we take the dual (Ref. 12) of

the convex quadratic program (2) we obtain the problem

Maximize b'u - gé HATu—pll2 subject to u >0

This is precisely the exterior penalty problem associated with the

dual linear program of (1)

Maximize bTu subject to ATu =p, u>0

with penalty parameter o = %-. Results of ordinary exterior penalty



methods (Ref. 15) require that o - « and hence e - 0. However,
sharper results that take advantage of Tinearity of the problem
(Ref. 16) require merely that o >a for some o > 0 or equivalently
e <& for some € > 0. These sharper results correspond to the cited
results of (Ref. 9).

We can now combine Theorem 3.1 with Algorithm 2.1 to solve
problem (2) with any e in (0,€] and thus obtain a solution to
the linear program (1). In particular we set in Algorithm 2.1,
Q=¢el, E=cD! where D is the diagonal of AA', and obtain the

following.

Algorithm 3.1 Choose a positive number € and any nonnegative vector

uO in RM, Having u' compute ui+] as follows
AL (ui—wD_](AATui-Ap-eb+Ki(u1+]—ui)))+ (10)
where D is the diagonal of AAT that is

- T 52
Djj - AJ(Aj) 5 J 1goooo,m

k! is either the strict lTower triangular part L or the strict

upper triangular part U of AAT, and 0 < w < 2,
Combining Theorems 3.1, 2.1 and 2.2 we obtain the following two

convergence theorems for Algorithm 3.1.

Theorem 3.2 There exists a real positive number € such that for

each ¢ in the interval (0,€], each accumulation point u of the
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sequence {u'} generated by Algorithm 3.1 solves

Minimi ze —]2~ WarTu - (eb+ap)Tu (11)

u>0
and the corresponding x which is independent of e and deter-

mined by
X = 5'1(ATu—p) (12)

is the unique solution of (2) and is also a solution of the linear
program (1).

We again note that Theorem 3.2 does not guarantee the existence
of an accumulation point whereas the following theorem does under

the additional assumption that the constraints are stable.

Theorem 3.3 Let AX >b for some % in R". There exists a real
positive number € such that for each e in the interval (0,e],
the sequence {ui} generated by Algorithm 3.1 is bounded and has at
least one accumulation point. Each accumulation point u of {ui}
solves (11) and the corresponding x which is independent of ¢

and determined by (12) is the unique solution of (2) and is also a

solution of the Tinear program (1).
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4, More General Linear Programs

We outline in this part of the paper the corresponding results
for the case of more general constraints and omit the proofs which
are similar to those of Ref. 10 and of Section 3 of this paper. In

particular we consider here instead of (1) the Tinear program

Minimize p'x  subject to Ax > b, Cx = d (13)

where the additional equality constraint is specified through the

kxn matrix C and the vector d in Rk, We note that this problem
encompasses linear programs of a very general type. We shall again
assume, for simplicity, that no rows of A or C are identically
zero and associate with (13) the following quadratic program for some
positive ¢

£

Minimize 5

xIx + p'x  subject to Ax > b, Cx = d (14)
and the corresponding dual problem

e T Tl A T
prms O Q0 Q- @0 o

u>0

where the relation between x, u and v 1is given by
X = e'](ATu+CTv—p) (16)

The iterative procedure associated with (15) is as follows.



Algorithm 4.1 Choose a positive number €, an arbitrary non-

. 0
negative vector uo in R™ and an arbitrary vector v

) K ui u1‘+1
in R". Having vi compute V1+] as follows
i+] i \WRIR NS ifut 1Y
u, S fu) oo [AY (AT CO) fus) (A} L (D), KT .
) - *

T-T i . .
where D is the diagonal of (ﬁ)(A C'), K' is the strictly lower or

upper triangular part of the same matrix, 0 <w <2 and

o). - )

v v)°©

*

Theorem 4.1 There exists a real positive number € such that for

each e 1in the interval (0,e], each accumulation point (;) of the
i\
sequence {(ﬁj}}’ generated by Algorithm 4.1 solves (15) and the

corresponding x determined by (16), which is independent of e, is
the unique solution of (14) and in addition is a solution of the Tinear

program (13).

Theorem 4.2 If in addition to the assumptions of Theorem 4.1 the

constraints of (13) are stable, that is there exists an % din R"

such that AX > b, CX = d, and the rows of C are linearly independent,
.i

then for ¢ in (0,e] the sequence '{(3{}}' of Algorithm 4.1 is

bounded and hence has at least one accumulation (3) . Each such

accumulation point solves (15) and the corresponding x which is
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independent of e and determined by (16) is the unique solution

of (14) and is also a solution of the linear program (13).
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5. Numerical Results

Some test results were obtained using the iterative SOR Algorithm
3.1 starting with uO = 0 to solve the linear program (1) on the
Argonne National Laboratory IBM 3033 computer running under VM release
5 PLC 11 and the Conversational Monitoring System. For comparative
purposes a revised simplex code was also used (Ref. 17). The test
problems were generated as follows. The matrix A was a fully dense
matrix with random elements Aij uniformly distributed in the interval

\.

[-100,400]. The vectors b and p were chosen such that

11 jo1 1
b, =
| ) 'z‘
-1+ 2 A,. if A <0
=Y =T
i=1,. sm
and
) 1]
p. = A.. where J = {i A:. >0}, J=T,0000,N
I PR =1 Y

These choices for b and p made the point x = 2e satisfy the

constraint qualification A(2e) > b and the point x =e primal

n
optimal with a minimum value of } ] A
Jj=1 1ied

variable is given by u; = 1 for 1ied and u; = 0 for 1i#J. Results

ij° A dual optimal

for six cases are summarized in Table 1. Note that for cases 1, 2, 3

and 5 because n >m the Tinear program (1) does not have a unique
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solution (Ref. 13). Cases 4 and 6 have a unique solution if and
only if the matrix with rows Ai’ ied, has linearly independent
columns (Ref. 13). Thus the accuracy of the solutions described
in Table 1 is measured by (a) the number of figures in agreement

between the calculated objective function and the theoretical

n
minimum: )} Asss
=1 ded M

and (b) the «-norm of the infeasibility of

the calculated primal solution x, that is the maximum} (b.-A..x.)
1<i<m 3=1 ' 19

We now make the following observations regarding Table 1:

+l

(i) Except for cases 4 and 6, the computing times for the
two methods are quite similar. For case 6, the revised
simplex method failed and for case 4 the iterative method
took 2.5 times as long as the revised simplex method.

(ii) The revised simplex solutions, when obtained, are more
accurate than those of the iterative method.

(i) The iterative method is more robust in the sense that it

never fails to provide some answer when the constraints
are stable.

(iv) The values of the perturbation parameter € and the

relaxation parameter were obtained after some experimenting,
but are not necessarily optimal. Table 2 gives a typical range
of answers obtained by the iterative method for various values
of ¢ and w which led to the values ¢ = 105 and o = 0.5

given in Table 1 for the case of m =250 and n = 100.
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(v) The values of e in Table 1 lie in the range mn < e < 12mn.
(vi) Even though the relaxation factors w in Table 1 are all
less than 1, we still (Ref. 18, p. 215) refer to our iterative
method as an over-relaxation rather than an under-relaxation
method.
The above numerical results indicate that the proposed iterative
method is a viable one and when e and w are properly chosen it is
competitive with the revised simplex method. These parameters may be

chosen experimentally by making a few short test runs starting with

e ®5m and w = 0.5 and picking those values for which Hx1+] -
approach zero fastest. The main advantages of the method are its

robustness, simplicity and ability to handle large problems.
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TABLE 2
Numerical Results for Iterative Method for Min pTx s.t. Ax>b, m=250, n=100
Accuracy
e No. of Seconds of Virtual
Iterations Machine Time No. of Figures in | «-Norm of Primal
Objective Function; Infeasibility
104 500 62 5 0.860x 1072
4 -1
10 500 64 4 0.196 x10
4 -1
10 500 62 4 0.436x 10
105 500 64 5 0.725 x 102
10° 500 64 4 0.164
10° 500 64 4 0.116
5 -1
10 500 62 4 0.859x 10
5 -6
10 1114 130 10 0.484 x10
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