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ABSTRACT

The abstract proposal is to support the development
of the "science" behind software engineering in order to
ensure required system properties, to compare current soft-
ware engineering techniques, to develop specification for
new design and analysis tools, and to demonstrate the prac-
ticality of the "science".

A hierarchical design schema will be developed within
which formal representations and analyses can be defined
and the required solutions can be found.

This report describes further work (based on CSTR 295)
in DDP design, real-time systems, evolutionary processes
and requirements analysis. It also presents. a systematic
development of the required design theory, with some ex-

amples of its use.
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THE FORMAL DESIGN AND ANALYSIS OF

DISTRIBUTED DATA-PROCESSING SYSTEMS



1. Executive Ov.
We will start this report with a
general structure and results of this res. '
research has been carried out under Contract
0080 with the Ballistic Missile Defense Systems
part of a continuing program to develop the use of .
data processing architectures in the solution of comple Je
scale real time defense systems.
1.1 Ppayoffs
The major mission payoffs being addressed (however indi-
rectly) are life cycle costs, mission confidence, rapid devel-
opment, and evolutionary deployment. These payoffs are strong-
ly impacted by such properties as the following:
. The predictability of development w%mﬂmam
. The efficiency of development systems
. The reliability of development systems
. The adaptability of change of both development
and application systems
+ The testability of application requirement,
design, and realization behaviors
. The reliability of application requirements,
designs, and realizations.
The essential attributes of distributed data processing
(DDP) systems include
. Distribution - both logical and physical

« Architectural domain - relatively unconstrained

-6 -

« Problem adaptability - fitting architecture to problem

« Medularity - independently designed and tested units.

We can thus augment our list of critical properties above
by adding simplicity as a property. we must find a way to ex-
ploit the modularity of DDP to obtain overall simplicity.
Without this overall simplicity, DDP encrmously complicates
our development processes. The current state of development
methodology is barely adequate to deal with centralized data
processing systems. We must find a way to both generalize and
simplify the development problems.

1.2 Research Approach

The critical properties of simplicity and testability
dictate that we provide a formal structure to the development
process that will prevent large classes of errors and avoid
worst case situations that are too complex to resolve. Large
scale development processes require substantial w:woamnwos of
the verification and validation tests for any confidence to
be established. Even simple changes may introduce undetected
inconsistencies, unless they are carried out by tested and
automated procedures,

We have developed a generally applicable research proce-
dure that, if followed, will produce a formal development
methodology. The procedure is driven by a set of formal speci-
fication properties selected to have a high impact on system
payoffs. A formal specification language is then defined so

that the required properties are testable. A set of analysis

-7 -



and simulation tools is then developed to provide feedback to
a designer. Next, we develop a set of designer selected and
guided procedures for transforming specifications. By the
use of these automated procedures a designer may start with a
very high level (and general} specification {(requirements) of
a &mmwhmm system and produce (as a sequence of such procedure
appiications] a final low level (and detailed) specification
(suitable for analysis, simulation, and implementatiomn. And
finally, we produce some general design principles that may
usefully guide a designer in the selection of the procedure
sequences so as to carry out a more reliable and efficient
application system development,

1.3 Specification Properties

An informal characterization of the formal specification
properties required for structuring a DDP development are

given below.

Pormal: A specification is formal if it is an abstraction

(i.e., a thing representing only a certain set of properties,
instead of its literal self] such that its represented prop-
erties can be specified precisely. We may thus automate the
analysis and transformations of specifications,

Consistent: A specification is consistent if it specifies

a unique formal system that is implementable. All errors such
as contradictions, omissions, or impossible constraints are
automatically detectable.

Effective: A specification itself may be used to gener--

i

ate automatically a simulation model. Experiments using the
simulation may be used to display and analyze the behavior of
the specified system.

Homogeneous: Every abstraction of a system must also
have a formal specification. The same specification language
may be used throughout the development process.

Modular: A specification is modular if it can be par-

titioned into identifiable components which could be replaced
by compatible components, while producing only local and pre-
dictable changes in the specified system,

Informal Extensibility: A specification tay contain in-

formal (formally uninterpreted) attributes., All relevant in-
formation, not currently included in the mwmnwmwnmwwObW formal
properties, may be associated with specification components.
Where our formal methodology does not help, it must not hinder
a designer using any informal techniques.

-~ Distributed: A specification must be able to define

systems composed of asynchronously interacting subsystems. We
can then design and study the properties of the subsystems in
isolation, knowing that their integration will not produce new
or unexpected behavior.

Generality: A mmmnwmwnwwwou language is general if there
is a specification in the language for every distinct formal
system, We may deliberately constrain generality in order to
eliminate untestable systems. -

This abstract set of properties for specifications are



critical for creating and comparing formal design theories
that will enable the achievement of the potential DDP pay-
offs.

1.4 Specification language

We have developed a formal model for asynchronously inter-
acting processes and an interpretation of such processes as
system generators. Thus we may design processes as implicit
system designs. The simulation of a process will display the
computations of the generated menma.

The process model is functional (in the mathematical sense
of the wordl and algebraically mvaowmwmmm Thus the specifica-
tion language is a subset of conventional algebraic notation
with the addition of some new abstract models for asynchronous
interactions called “exchange functions”. The use of exchange
functions allows a practical and explicit design of interact-
ing processes {(and corresponding systems).

The algebraic specificatien language is sufficiently con-
strained so that the specification properties described above
are automatically testable.

The specification language was used to start the design
of a prototype computer assisted formal engineering laberatory
that will provide the formal mcthodology to a system designer.
1.5 Methodology

Our formal methodclogy consists of a set of procedures
for generating specifications, a sct of automatable transfor-

mation and analysis tools, ard a set of rules for their use.

-10 - -

We have constrained our procedures to support a homogeneous
development process, starting with very abstract specifica-
tions (requirements) and ending with very detailed specifica-
tions (hardware and software designs).

In effect, the set of methodology procedures defines a
space of development processes. Each development process will
consist of the application of some sequence of methodology
procedures to an initial specification. The results of each
procedure define the new state of the development process.

We can thus formally specify and study such development pro-

cesses themselves, as well as those of the systems being de-
velopead,

The methodology currently includes procedures for start-
ing, changing, decomposing, and w:nmmnuﬁwsa development pro-
cesses. NMs well as procedures for elaborating and optimizing
a specification. The formal nature of the specifications znd
the development process provides a high degrece of traceability
for design decisions and control of the locality of changes,

1.6 Decsign Principles

We have done the least work on this area since such
principles must be tested by practical experience to gain
credence.  Indead, most such principles arise from design
experience with a methodology, and we have little such ex-
perience as yet. We can, however, identify some general
principles that can be plausibly justified a priori. wrm%

must still be tested by experience.
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Formal Methodology:

A designer should maximize the use of a formal method-
ology and minimize introduction of informal steps in a formal
development process. This principle will produce a maximum
payoff of the design methodology.

Closure:

System specifications should be a closure (i.e., defin-
ing both controlled and controlling processes) and formal de-
compositions should be used to factor development processes.
The formal analysis and testabllity of systems is greatly en-
hanced when both the control system and the environment being
controlled are formally specified.

Unbounded Resources:

A system should first be designed, without conflicts for
implementing resources, to a testable level until we have a
satisfactory design in all other respects. This principle
greatly simplifies the initial design, and ensures that the
specified system could work, even if over-designed with re-
spect to some performances.

Optimization:

An over-designed specification may be optimized by find-
ing an equivalent specification in which redundant resources
have been eliminated by intreducing resource contention for
the remaining resources. Thus the performance may be degrad-

ed bv such contention in just those places where overperform-

ance has been identified.

- 12 -

Evoluticnary Adartation:

At each step of a development process, make only those
design decisions that are required in order to delegate all
of the rest of the design decisions to subsequent steps.
This provides maximum freedom of (re-elaboration) changes
with minimum scope of consequences, Hindsight is better
than foresight. This principle minimizes need for foresight.

The area of design principles is fruitful and little

explored. Our formal development methodology will make it

‘possible to formulate such principles precisely and to vali-

date their use. The generality of our design theory makes
such research investment and experiments worthwhile,

1.7. Future Work

Given the scope of this research effort, it should not
be surprising that it is only part of a continuing research
project and not limited to this research contract alone.

Formal Design Theory:

¥e plan to extend our formal design theory and use it
as a basis for comparisons and integration of other method-
ologies. In particular, we will explore the integration of
our DDP design concepts into the BMD RSL/REVS Methodology.

We plan to extend our formal design attributes into
dynamic pcrformance analysis. This will involve creation
of a basic theory of resource management.

Computer Assisted Formal Engineering Laboratory (CAFEL):

We plan to’complete the design and implementation of a

- 13 -
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prototype CAFEL that will support the application of our formal
design theory to actual development process experiemnts.

DDP Development Experiments:

We plan to use our design theory to support DDP design
experiments being carried out by the BMD Advanced Technology
Center. Ultimately, these experiments will test the validity
of our development methodology and quantitatively assess the

resulting mission payoffs.

2. INTRODUCTION

The work described in this report is a continuation of the
previous work on contract DASG-60-76-C-0080 under modification
P0004. The following technical proposal was prepared in
response to RFQ DASG60-77-Q-0077 and the resultirng contract was

awarded in January 1977.

2.1 Technical Quotation

2.1.1 Research Area

The system development process is currently supported by
an ad hoc methodology based on informal (English text) specifi-
cations. The informal nature of the specification restricts
the scope and effectiveness of potential methodology tools.
Some systems do get developed in spite of difficulties, and we
must accept the fact that our research in methodology should
broaden the range of options in the development process rather
than specify a uniquely optimal process for all systems
designers and customers. This section will discuss the natuvre

of the requirements in the SOW of the RFQ.

2.1.1.1 Background {(SOW 1.0)
The RFQ is for a continuation and extension of the current

work on contract DASG-60-76-C~0080,



2.1.1.1.

1 BMD Systems

A good review and characterization of BMD systems has been

given by Davis and Vick.

1 particular we quote the following

seven methodology requirements from that paper:

pata Processing Description ommmupwwnxm The system
must allow for inclusgion of data processing limitatiens
early in the development cycle, This must include the
means for assessment of data processing induced system
limitations (e.g., processing delays and inaccuracies)
as well as the ability to provide accurate estimation
of data processing hardware requirements, and support
tradeoffs between alternative approaches.

Requirements Orientation. Requirements approaches must
be developed which insure means for stating the required
processing without the inclusion of unwarranted design
detail; insure unambiguous communication of intent;
provide a means to validate requirements; insure their
feasibility; and be responsive to the invariable change.
Design. The software design process must provide a
means for earlier error detection, rapid modification,
and designed-in reliability. The approach must insure

the production of a highly reliable modular product

Hn. G. Davis and C. R. Vick, "The Software Development System,*®
Proceedings of the 2nd International Conference on Software
Engineering, October 1976, .
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which will minimize the life cycle costs.

Automation. The system must possess as much automation
as possible in every phase of software development.

The aids should be such that they provide maximum
utilization of the thoroughness of the computer to
eliminate many sources of human error.

Management. The system must consist of well-defined
phases containing intermediate milestones which provide
for measurements and evaluation of progress. Techniques
must be devised which allow a priority costing and
scheduling based upon a defined, structured approach

to development.

Testing. The system must provide means for the
allocation of mMmmonamnnm to the data processing sub-
system, the refinement of that allocation and improved
means for the testing, verification and validation of
that performance as an integral part of the development
cycle.

Structured Decomposition and Development. There must
be a technology which forces the problem to be stated
and structured at a high level, analyzed at that level
and then allows the developer to proceed with the addi-
tion of detail in an orderly, defined and measurable
fashion. This must proceed from early system definition

through code delivery in a traceable and flexible manner,



This technology must assure maximum designed~in
reliability in the development cycle.

The intrinsic severity of typical BMD system requirements
complicates the development process to a nearly unmanageable
extent. This complexity poses serious problems in meeting the
methodology requirements quoted above. When intrinsic gate
w»ammkwwawﬁ performance and force non-systematic "shce-horning”
of an application onto a centralized data processor, the
ability to meet or test system requirements is seriously

jeopardized.

2.1.1.1.2 Distributed Data Processing

A major potential advantage of DDP lies in the relaxation
of the gate time bounds on performance via increased parallelism.
If an arbitrary n-system "solution" is used, the development
process may become n-factorially more complex. This extra
burden would jeopardize the possibility of success in the
developmental process. Instead, we can spend some of the DDP
performance potential on simplicity. In the limit (probably
unattainable) an n-system solution could become one-nth as
complex as a one-system solution. In order to obtain this
simplicity we must accept sufficient requirement and design
constraints (laws) so that the development process becomes
simpler and so that requirements can be {and can be shown to

be) met.

2.1,1.1.3 Formal Specifications

The acceptance of design laws requires that we can test
resulting specifications for their consistency with those laws.
This is not possible if the specifications are informal. The
addition of design laws thus requires increased formalization of
the system specifications. This is not enough, however.

We cannot test arbitrary (even formal) system specifica-
tions for most properties of interest. The potential (and
undetectable) worst case problems will defeat our attempts to
analyze and transform specifications. Our proposed methodology
must support developmental processes that generate only "well-

behaved" specifications that can be tested and implemented.

2.1.1.1.4 Methodology

The enforcement of such laws in the development process
for large complex systems is impractical unless such enforcement
can be automated in specification language design and analysis.
The avoidance of worst case system specifications will frequently
require an automation of the development process steps that
produce that specification. This does not imply an elimination
of the designer. For example, an automated tool could generate
only canonical structures that are well-behaved as a sexrvice
to designers searching for a solution. The designer would
guide both generation and selection, yet hig choices would

automatically obey the required laws.,

- 19 -



2

.1.1.1.5 Current Status -

We are currently working under Army Research Contract

DASG-60-76~C-0080 with the Ballistic Missile Defense Advanced

T

been addressed in that contract. A special report

echnology Center, Huntsville, Alabama. These problems have

2 on this

work is available and a final report is in preparation. -

A brief summary of the current status of this work is

given below.

-~ Developmental process.

A discrete process model has been developed.

~- Requirements specification.

A top~down derivation of some essential requirements
“os requirements mmmnwmnomnwmu has been developed.
Some typical and critical steps have been identified
as candidates for methodology improvements.

-~ Formal specifications. -—
A formal functional specification language and
interpretation has been developed. This formalism
allows specification of asynchronously interacting

2.1.1.2
systems and processes at varying levels of abstraction

Design process.

Some critical steps have been identified and a top level
characterization of the process has been obtained. The
crucial aspect is "most local" testability of design
decisions.

Critical properties of specifications.

In addition to the usual properties of a specification
itself, we have explored some additional properties
required of the specified system. The most basic of
these is that the systems in the complex do run and

complete their process steps and can be shown to do so

at the specification level (i.e., the question of

whether the specifications really specify a system
complex). Preliminary design laws to ensure this
behavior and its testability have been developed.

Top down methodology development.

An approach to the development of a suitable methodology

and design science has been explored,

Objectives (SOW 2.0)

The long term objectives in SOW 2.0 are reasonably clear

and appears to be a suitable vehicle for developing

our methodology.

and need little interpretation. The major problem lies in

quantifying such goals and measuring progress toward them.

2

The short term objectives are designed to build on our

D. R. Fitzwater, "The Formal Design and Analysis of Distributed

Data Processing Systems," Computer Sciences Department Techni- previous results and extend the domain of specified system

cal Report CSTR279, October 1976.
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properties, testable at the specification level, to critical

problems identified by the previous work.

2.1.1.2.1 Dpefine DDP Design Theories

The design process that accepts abstract functional
specifications and produces DDP process specifications must be
elaborated to provide the basis for the specification of
methodology tools to support it. This study must be top-down
and systematic with ﬂmmmmnﬁ to the selected properties. This
objective must be met prior to tool development and prototype

demonstrations required in the long term objectives.

2.1.1.2.2.2 Define Critical Real-Time Properties

Performance testing and prediction is a vital part of the
development methodology. We must £ind design laws .that will
enable us to model, analyze, and predict performances from
specifications. We must also £ind design laws that simplify
the required real-time performance testing process for DDP

systems.

2.1.1.2.3 Conduct Requirements Analysis

We plan to extend current studies of the requirements
specifications process and its associated methodology, and
develop specifications for tools and requirement specifications.
The resulting specifications should be suitable for input to

the design process discussed above.

2.1.1.2.4 Dpefine Evolutionary Processes

Changes at requirements, design, implementation, and
operational levels are inevitable. 1If we design for change, we
may decrease their impact and increase the domain of feasible
changes. Evolutionary processes that will support such
changes, at each of these levels must be designed. Again, the
necessary price will be accepting sufficient design laws to

allow evolutionary process models to be used.

2.1.1.2.5 Identify Potential BMD Payoffs

Plausible arguments must be developed to support estimates
of BMD payoffs. The important impacts of the developing
methodology on the developments of real-time DDP systems must

be identified.

2.1.1.3 Research Requirements (SQW 3.0)

The previous work on contract DASG-60-76-C-0080 will be
continued and extended to real-time systems. 1In each of the
areas discussed below, critical issues will be identified and

potential solutions developed in the context of the previous

work. 1In each area, a critical comparison with other representa-

tive state of the art methodologies will be made, and the
potential impact of this work on Ballistic Missile Defense

problems will be identified.
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2.1.1.3.1 Distributed Data Processing Design.

The contractor will develop procedures useful for trans-
forming data processing subsystem requirement specifications
into process specifications for a network of virtual, high
level, machine-independent systems. The specifications and
procedures should be suitable for designers to encode and
analyze functional assignments to nodes and to processes within
a node.

This process will include system decomposition and
integration steps as well as canonical generation of both
control and data structures. Functional analysis and simulation

procedures are also required.

2.1.1.3.2 Real-Time Systems

The contractor will identify critical properties for
real-time systems that, if present, will decrease required
real-time testing and increase the scope of effective testing
against requirements. Sufficdient conditions on the developmental
process to ensure these critical properties in the resulting
design, and corresponding design laws to make them effective
will be developed. Tools for applying the required analysis
and testing will be specified.

Dynamic models suitable for either analysis or simulation
must be developed, and design laws sufficient to make the models

applicable must be developed.

2.1.1.3.3 Evolutionary Processes

The contractor will identify critical specification
properties that, if present, will limit the impact of evolving
requirements or design changes. Sufficient conditions on the
development process to ensure these critical properties in the
resulting specifications, and the corresponding design laws to
make them effective will be developed. Tools for applying the
required analysis and testing will be specified.

Meeting this requirement will involve a formalization of
such evolutionary processes and a careful structuring of

interactions in the evolving system.

2.1.1.3.4 Requirements Analysis

The contractor will assess the impact on the data
processing subsystem requirement specification of the properties
and conditions developed above. The contractor will specify
development guidelines and analysis tools sufficient to ensure
those properties and conditions.

Each system property required by the development
methodology may generate design laws or guidelines for any
previous stage of the development process. Some Qf these will

even have implications on requirement specifications.

2.1.2 Overall Approach (SOW 3.0)
The general approach described by the previous contract

reports will be followed in this research work and appears to



be a satisfactory basis for this work. Because of the complex
nature of this research, details of the approach must be
produced, tested, and elaborated during the work. Sm.oma
identify some of the required tasks as discussed below.

Undoubtedly others will also be required.

2.1.2.1 Formal Specifications (SOW 3.1-3.4)

The formal functional specifications previously developed
must be extended as required to support the other tasks. This
work will produce a specification language and procedures for
analysis and simulation of the specified systems.

Since the formal specifications form the representation
medium for encoding requirements and design decisions, we must
study equivalence relations as a foundation for optimization of
the design process. More relaxed sufficient conditions for
algorithmic implication will be developed and extended to
characterize more general system complexes. Formal functional
simulation procedures must be developed that allow study of the

behavior of specified systems at any level of abstraction.

2.1.2.2 Distributed Data Processing Design (50W 3.1)

Both static and dynamic models for system decomposition/
integration will be developed to support performance impact
analysis of proposed design decisions. Procedures for encoding
control and data structure design decisions and their organiza-
tion into a formal automatable methodology and Hmacwmem:nm for

such tools will be developed.
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2.1.2.3 Real-Time Systems (SOW 3.2)

There appear to be three aspects to this task. The first
is the analysis of critical reflex paths in a specified system
to demonstrate that they are bounded and provide a model of
performance coupling with other paths. The second is to
simplify the performance surface Amu@.. to ensure that it is
convex) and thus simplify real-time testing. The third is to
find sufficient design laws to minimize the required real-time

testing. We plan to pursue all three possibilities.

2.1.2.4 Evolutionary Processes (SOW 3.3)

this is a relatively unexplored area and the critical
igsues must be identified. Our formal specification methodology
will allow us to define a domain of evolutionary processes.
We will then develop sufficient conditions such that the changes
can be analyzed, controlled and automated with minimal and
predictable impact on the remainder of specifications. The
model for virtual networks involved in DDP design will also be

required to define potentially reachable evolved systems.

2.1.2.5 Reguirements Analysis (SOW 3.4)

The requirements methodology based on our formal specifi-
cations will be elaborated and a small (hand worked) example
will be mm<mwommm as an illustration and as a source of experi-
ence with the methodology. Additional analysis and simulation

tools will be specified.



2.1.3 Critical Issues (SOW 3.0) 2.1.3.3 Evolutionary Processes (SOW 3.3)
The following are some of the critical issues to be -- Definition of domain of evolutionary processes.
addressed. -- Localization and delegation of design decisions.

-- Specification analysis of required process
2.1.3.1 Distributed Data Processing (SOW 3.1) . .
invariances.
-- Equivalence. What are equivalence classes? Which , . . 5
-- What are required process invarilances:
members are optimal with respect to performance

requirements? 2.1.3.4 A Requirements Analysis (SOW 3.4)

-~ Distributed data and control models. How suitable -~ How to develop example prior to development of
are the proposed virtual networks? What canonical methodology tools.
structures are sufficient? -~ How to compare with current methodologies.

-=- Decomposition/integration models. Particularly into
2.1.4 Work Plans

application and virtual operating systems such that We plan to carry out the work at the University of

path coupling via resource contention is modeled. Wisconsin utilizing the normal facilities and equipment of the

-- Functional simulation. What techniques are university. No subcontractors or consultants will be employed.

applicable and how can they be exploited?

2.1.4.1 Computer Usage

2.1.3.2 Real-Time Systems (SOW 3.2) The use of computers is anticipated in the following areas:

~- Conditions for path flow analysis and prediction for
-~ Date base management.

boundedness and performance. .
? -- Document and report generation.

~-— Resource mapping and contention resolutio roperties
pping r tion propertle -~ Prototype tool development.

required for simple performance surfaces. .
-- Analysis experiments.

-=- Interaction conditions that minimize, localize, and —- Utilization of BMD software development systems for:

simplify real~-time testing. Experience
-~ Comparision

-~ Embedding evaluation
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A portion of this work must be done at the ARC due to the
availability of the BMD systems. Part of the remainder can be
done either with BMD or university computers. Some data base
and document generation work may be best carried out on
university computers.

We plan to utilize university computers, terminals, and
DAIN lines to access the BMD computers.

The majority of the computer work will be carried out next
summer after the critical experiments and tools have been
specified. Estimation of computer usage at this time is very
difficult, but we anticipate that ten hours of CDC 7600 time
at the ARC would not be unreasonable. Flexibility in this

figure would be potentially helpful.

2.1.4.2 Research Effort

This technical quotation is for an increased level of
support to pursue the identified issues. The staff for the
spring semester will be increased but limited by the avail-
ability of qualified candidates. Maximum staffing will be
reached this summer coincidental with the increased computer
program developments. I plan to work on this contract on a
half~time basis during the spring semester, full-time during
the summer, and half-time in September for the fall semester.
The majority of the staff will be highly qualified graduate

students working on (or preparing for) Ph.D. theses in the

- 30 -

area of this contract, while finishing their studies. The
guality of work will be such that the major results should (and
will) be published in appropriate technical journals, and
meetings. A small amount of clerical help will also be

required.

2.2 Organization

The major results of the research effort are presented in
section 3 on "A Theory of Design." We then present a sequence
of examples of formal specifications of a "patient monitoring
system," and a complete formal specification of a micro-
processor system. We then conclude with a summary and an

outline of future work.
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3. A Theory of Design

The major results of our work are described in this section
with references to more detailed discussions in appendices. We
develop a theory of design for distributed data processing
systems suitable for complex, large scale, real-time ballistic
missile defense systems.

The developed design theory is, of course, not complete.

It is sufficiently developed to have a major impact on systems
development and software engineering technology.

The developed design theory does provide a firm theoretical
basis dmnd for further development mm a viable science of design
and for further specializations for ballistic missile defense

system applications.

3.1 Research Approach

The task of creating a suitable system design theory is
even more complex than using it to support a system development
process. We have no real hope of formalizing the creative
activities involved in producing a design theory. We can, how-
ever, provide some useful factorizations of the theory develop-
ments process into simpler and solvable subproblems.

We will introduce and informally describe a useful
decomposition of a research process suitable for developing
design theories for many classes of application systems. We
will introduce a simple model of system development processes,
distinguish between system development and theory development
problems, and present a procedural description of a plausible
research process. The validation of this research process is
of course in its application. The process described seems to
have broad applicability and has been used in developing a
theory of distributed data processing system design.

We will start with the postulate that our design theory
will be a formal theory. That is, it will be possible to decide
what the design principles are and formally analyze what they
do to a design. This means that the principles will be well
defined, teachable, and transferable between both designers
and projects.

We will also postulate that we want a’design theory

suitable for large scale (more than a dozen developers)



development processes. The scale requires substantial design
automation to prevent, detect, or correct designer errors. The
extent to which large scale automation can be carried out is
directly constrained by the formalism of the design theory.

We will postulate that the specification must be modular in

order to control complexity and support practical automation.

3.1.1 Discrete Processes

First we will introduce the concept of an abstract discrete
process and distinguish between system development problems
and theory development problems.

A discrete process is a state space and a relation between

elements of that state space. An m%mwamnwon of the successor
relation applied to a subset of the process state space and
producing a subset of the process state space is called a
process step. A discrete process may thus be interpreted as a
generator of a set of computations.

A computation is a sequence of state space elements. The
relation of a discrete process may be applied to the first
member {(an initial state) of a computation to generate a second
member. The relation may also be reapplied to each new member
of the computation to produce a successor member. This

successor state generation is a computation step.

For example, if the state space N is the set of integers

and the successor relation R is "increment by any prime number,”

the discrete process (R,N) will generate (among others) the
computations 3, 6, 11, 18, 21, . . . and 3, 5, 7, 9, 11, « . . .
Both the state space and the successor relation may be
defined in terms of primitive components whose nature is not
formally specified. These primitive components need not be
simple and may subsequently be elaborated into more elementary

primitives. Thus we may also define abstractions of discrete

processes that are also discrete processes defined in terms of

more abstract primitives.

The concept of discrete processes can be extended to include
asynchronously interacting processes and to apply them to both
system and development processes. For this discussion we will
use only the simpler discrete processes defined above.

Tt is important to remember that we distinguish vmnsmmm
research, development, and system processes. A regearch compu-~
tation corresponds to the development of a design theory. A
development computation corresponds to the development of a
particular system design. A system computation corresponds to

the operations of an implemented system design.

3.1.2 System Development

A system development process might be quite unstructured
and formalizable only in terms of the final design specifica-~
tions. We could still abstract all such processes as discrete
processes in a trivial fashion. For example, any development

process specified as (D,S), where D is a primitive
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relation and S is the null set unioned with all possible design
specifications, generates only computations of the form {1,
“final specification.” Only the "final specification” has a
nontrivial formulation. The designer must leap to the right
conclusion in just one step of the development computation.

Clearly, we wish to develop a much richer model for
development processes so that we may support it with a useful
and automatable methodology. We cannot do this for an
arbitrary process such as (D,S) above since it is not subject
to any further formal constraints.

We will postulate that all development processes will be
abstract discrete processes, and leave all nondiscrete
transformations to be carried out during a process step. The
state space of such processes will be specifications at various
levels of abstraction. The successor relation will be informally
defined by the designers actions in producing a successor
specification. Clearly our wwmnnmow development processes
will not formalize all aspects of system development. That is
imposgible. We can formalize some aspects without prejudicing
the (informal) treatment of the remaining aspects. One measure
of the power of our design theory will be the range of aspects
that can be usefully formalized.

Our hypothetical development process can thus be described
as being in a design state (that specifies the relevant design

decisions) that is transformed by the designers into a new

design state that specifies the current design decisions.
Thus a particular system design sequence is a computation of
the development process.

The generation of a system design via such a computation
in a single step is vastly too complicated. We will thus want
tc support development processes whose computations consist of
many (much simpler) steps. We may also wish to define sub-

sequences of a computation as phases. A phase of a develop-

ment process is a member of a partition of the computations
generated by that process. The types of design decisions may
rm quite dependent on the phase of the development process.
Typical examples of development phases are requirements,
process design, implementation, deployment, etc. ;

Each phase or computation step thus focuses on a more
specialized system development problem (i.e., how do we get
from this state to that state?). This is one way to partition
a design problem into separate problems. Such design problem
partitioning is essential if the designer is to succeed. There
are other very important system development process decomposi-~
tions that must be developed as part of an application design
theory. This is a vital subject but it is outside of the scope
of this .metatheory discussion.

The phase type of development partitioning focuses on more
detailed and simpler subproblems involving system design ,

decisions. Unfortunately, this partitioning does not simplify
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the design theory problems involved, since the theory of how
to go from one state to some subsequent states is HmmmmH%
independent of which phase is involved. The complete solution
to a development problem in one phase, no matter how narrowly
nosmnnmwmmm may require results from an entire methodology or
design theory. There can be some theory specializations for a
given phase but we must first £find the more general theory
before we define specializations. We must thus find a
different and more useful partitioning into subproblems foxr

our research process to develop the required design theory.

3.1.3 Design Theory Development

The research process required to generate a particular
design theory could also be formalized but this 1s unnecessary
for our purposes. In the absence of a satisfactory design
theory, we will happily settle for a useful theory rather than
a theory of such theories. We will thus treat the research
process quite informally. Further, until we have a useful
design theory, arguments about a better one are premature. We
are not after an optimum theory (how could you even tell if
you had one?) but rather a useful theory. Elaborations, evolu-
tion, and experience will then get us a better theory.

We will thus postulate a particular research “"computation”
that will result in a design theory. This "computation" may
not be optimal, but it has the essential virtue of being

practical and we can (and have) carried it out to produce a
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first cut at a design theory. The unmﬂwmwawwwos of this
postulated research "computation" is, of course, in the use-
fulness of the resulting theory. This approach is
intuitively plausible and is far from a random selection.
There seems little point in elaborating a discussion of how
and why we created this particular approach. It can stand on
its own results. A brief description of the overall research
"computation” in the form of a research procedure is given in
Figure 3.1-1.

The basic problem discussed in this section, is that of
decomposing the research process so as to simplify its steps.
We can illustrate the relationship between development process
partitioning intoc phases and the research process decomposition
described by this research approach in Figure 3.1-2. The
source of our previous difficulty with phase decomposition is
now obvious. No matter how small a development step we focus
on, we need the results of all of our research process steps
to support it. Thus such focusing does not simplify our
research problem. Our approach first identifies and develops
those aspects common to all steps, second focuses on special
phase sensitive problems, and third develops the application
sensitive specializations,

A more detailed discussion of Figure 3.1-1 is glven helow,
and constitutes an informal description of our research

process.
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The section numbers on the arrows refer to the corresponding discussions.

A Research Procedure
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3.1.3.1 mw%ommw,mo Properties

#we can start with a characterization of the payoffs to be
attained or improved by the resulting design theory and a
characterization of the most significant properties of the
development mnonwmmmm supported by that design theory. These
payoffs and properties must generate requirements on our
design theory rather than on m: application design to be
produced using our design theory. We can then study the
impact of those significant properties on the desired payoffs.
We may be able to develop explicit functional relationships
between them, in which case we can transform the payoffs into
objective functions of development attributes and can quantify
the "goodness" of the mmwwmb.

For many, if not all properties, we will only be able wo
develop a qualitative (or semi-quantitative) impact matrix
that identifies major dependencies. For example, rapid
development may be a highly desirable payoff of a development
process. We do not have a formal model of development speed
that will permit a quantitative prediction based on development
properties. It is important to note that dependencies that
cannot be predicted in an application independent way (e.g.,
those that could only be obtained by monitoring a particular
system development) will be of little use in developing a
general theory. They may be used in the latter amcmwmmamsﬁ

of specializations of the design theory.
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This analysis then generates a set of critical properties
that should be present for all development processes supported
by the design theory we wish to develop. If we gquit now, we
would still have generated some useful results that could
provide guidance to designers. However, we need not stop and

we can easily proceed to the next step.

3.1.3.2 Properties to Specifications

Given the set of properties produced by the previous
procedure, we can identify a subset of them that are propertie3
of the system being developed. We now postulate that any allow-
able system specification must have these system properties or
can be practically tested for them. This is the source of
major requirements on our design of system specification
ianguages. Clearly such properties are not sufficient to
generate a unique specification language nor are they suffi-~
cient to completely characterize a specification language.
They 4o represent necessary constraints on specifications.

A formal language is a set of strings over a vocabulary

of characters generated by a formal grammar. A S ecification

language is a subset of a formal language such that each
sentence in the language can be practically tested for the

necessary properties. A system specification is thus a sentence

in a specification language that is interpretable to include:

the design decisions and to characterize the specified system.

- 43 -



Note that all specifications in a specification language must
be practically testable for the necessary system wﬂowmnn»mm.

It is unlikely that we will have thought of all such
properties the first time around. Good judgment on the part
of the researcher is just as essential as good judgment on the
part of the designer using the resulting theory. Iteration
of this research procedure will clearly be required. However,
the resulting design theory may be quite sensitive to the
ordering of such properties created by incremental iterations.

We must start with the most basic properties on which
other properties are dependent. For many applications of
this research approach, we may actually be able to establish
a partial ordering on the properties such that the existence
of a later property is dependent on the existence of the
previous properties. This property dependency ordering would
itself provide valuable guidance to designers.

We can see in advance the need for a specification to be
suitable for the automatic generation of the behavior (compu-
tations) of the specified system. without such feedback, the
designers must be severely handicapped. They could not even
test hypotheses about the effects of their design decisions.
We will postulate the necessity of this property for our
design theory.

If we quit now we would have developed a system

specification language that will allow verification of the
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presence of these necessary basic properties., We also have a
precise way to specify current design states and design deci-
gions as well as design problems. This alone can significantly
improve our ability to formulate, communicate, and solve

design problems. The required properties can be automatically

tested. We can now go on to the next step, a methodology.

3.1.3.3 Specifications to Methodology

A methodology consists of a set of procedures for
producing specifications, automated tools to support the pro-
cedures, and rules as to the applicability of each procedure

and tool. An effective procedure is one that can be carried

out even if it will never complete. An algorithmic procedure

is an effective procedure that will terminate in a finite time.
We will postulate that the procedures of our methodology must
be effective at least. We cannot hope to make all such
procedures algorithmic.

The range of the methodology procedure (viewed as
implementations of relations) is a set of specifications. We

can define a homogeneous methodology as a methodology whose

procedures have domains that are a subset of their ranges.

We can now define a homogeneous development process that is

implemented by a homogeneous methodology as (D,S) where § is
a system specification language and D is a set of predicates
(defining the applicability rules) and reYations (defining the

methodology transformations). Such a development computation
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starts with an initial system specification and finishes with
a final system specification.

A homogeneous methodology is not very interesting if all
specifications in the specification language have totally
disjoint behaviors since there would be nothing in an initial
system specification that is relevant to any subsequent system
specification and thus it could just as well be bypassed.

This repeated bypassing leads us to the trivial development
process that we have already rejected as useless.

We will thus postulate that a specification language must
have a specification for each member of some hierarchy of
system abstractions for each final system specification in the
specification language. The homogeneous development process
can thus start with a very abstract system specification and
end with a very detailed system specification. We now have.
an interesting development process model.

We can identify potential procedures for ouxr methodology
by working our development computations in reverse, as shown
in Figure 3.1-2. In effect we can take a final system
specification and ask “"from what more abstract specification
could we define a procedure that could get us this final
m@mnwmwnwWHonw=. Each such procedure is a potential candidate
for our methodology. We can then iterate with the new start-
ing point to find a more abstract starting point. One measure

of the power of our methodology is the degree of abstraction

'

POTENTIAL
VERY ABSTRACT

STARTING DESIGN STATES

T 3

ABSTRACT

PRECEDING STATES

HODOLOGY \STEP

DETAILED PRODUCT
SPECIFICATION

Figure 3.1-2 Design Processes

Pach state is a "sentence" in a specification. A
development "computation" will be some path from a
particular starting design state to a final detadiled
product design.



of potential starting points for which there exists a
development computation supported by that methodology.

A weak methodology might require us to start with some
final system specification and thus provide no assistance to
the designer. A strong methodology might start with a very
abstract system specification at the system requirements level
and end in a detailed final implementation specification.

Perhaps an admittedly trivial example will clarify this
procedure. Suppose our specification language consisted of
simple arithmetic expressions involving primitive sets and
functions. Let ¥, G, and H be primitive functions and let
X,Y be members of some primitive set of values. The expression
FP(G(X), H{(Y)) has a valid abstraction in the form of P(X,Y)
where P is a new primitive function. The procedure of ela-
boration (defining a primitive function in terms of other
primitive) is a way to get from P(X,¥) to F(G(X), H(Y)) by
defining P(X,Y¥) £ F(G(X), :?:. Thus a defining procedure
for primitive functions that allows function composition is
clearly a candidate for our methodology. When augmented by
other forms of defining expressions, this procedure alone is
sufficient to allow us to start from P{X,Y) and develop an
arbitrary arithmetic expression with two arguments using a
computation of the homogeneous development process implemented

by our defining methodology.
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The essential points of this methodology development
procedure are that we need only study abstractions of a given
specification language and that we can at least guarantee the
existence of some development computation from any of the
resulting set of abstract starting specifications. This does
not guarantee that a designer will be able to discover a valid
sequence. We must also develop some design principles to
guide the designer.

We will postulate that there must exist a way to recognize
that a procedure of the methodology has ended. We may place
further constraints on such procedures but this one seems
universally regquired. It is essential to demonstrate that a
given computation step is finished before we can go on to the
next one. The methodology procedure need not be algorithmic,
since a designer may fail to complete the development step,
fall back to some previous specification, and try another
sequence of design decisions. We must at least know that it
has produced a valid successor. Indeed it might have produced
a valid successor that we cannot recognize. In that case we
must assume that it has not ended.

This seemingly obvious postulate has some important
ramifications and is a serious constraint on our methodology.
For example, a typical development process step in current use
is that of writing a computer program to implement some program

specification. We do not have {(currently) any way in general



to decide if the resulting program is a valid successor and
does implement the specification. Thus this "normal® step is
disallowed in our methodology except for specialized cases
where consistency between the program and the specification
can be mmosd. This rules out most of the current programming
activities. If our methodology is successful, contemporary
programming techniques will be radically altered.

Lest the reader become discouraged by this realization,
let us hasten to point out that there are several viable

alternatives. One of them is discussed below and uses heuristic

procedures. A heuristic procedure is an effective procedure
mOH.mm:wnmnwsm a set of nowm:nwwww<.mmmwanHm solutions

using an algorithm for generating each potential solution.

We can also define interactive heuristic procedures that allow
some designer to guide the generation sequences so as to
produce a better solution with less cost. If the interactive
heuristic procedure is designed to generate all valld successor
states in a development vnommmm. the designer can make random
design choices and still generate only valid successor states
while completing the computations step with any one of them.
In its aomﬁ‘manoawﬁwo form, the procedure simply generates the
"hest" successor state first and we have an algorithm for ouxr
step in its least automatic form, we have an "idiot" procedure
that requires intensive guidance by the designer to be

practically useful.
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3.1.3.4 Methodology to Design Principles

Our research process will produce development processes
whose computations start with an abstract system specification
and end with a detailed system specification. Each computation
corresponds to some sequence of application of our methodology
procedures. Many of these sequences may be nonterminating
may require too many resources to mmnn% out, or may result in
a.poor final design specification. 1Indeed, it can be assumed
that a development computation is quite impractical unless it
has been carefully selected. We clearly need more in our
design theory.

Our methodology just concerns itself with carrying out
particular computation steps. We must also develop some design
principles to select suitable starting points and sequences of
methodology application. We can usefully distinguish three
kinds of design principles.

The first kind consist of absolute laws that delimit what
is possible and result in a waste of effort if not obeyed.

We have a rich source of such absolute design laws in the
formal impossibility of most of our design tasks (unless we
place serious constraints on both the developmental and the
system processes). For each thing that cannot be done, we can
derive a corresponding absolute law which says "don't do that
thing" and accept the burden of accomplishing our design some

other way. For example, we must not use an arbitrary



methodology procedure in a development process, since we
cannot test its correctness.

The second kind of design principle is a sufficient
condition which, if met, will guarantee that we are not
violating one of the design laws. We must know that we are
not violating a design law. In general we may not be able to
determine that we are not. We can accept such sufficient
conditions as additional design principles. They are neither
absolute laws (that say you must do it this way) nor unique
(there wmay be many such sufficient conditions). With experi-
ence we may find the more useful ones and use them until we
find better ones. With analysis and research we may find
less restrictive conditions or extremely useful special cases.
For example, if we do not specify looping within a process
step, the classically unsolvable "halting problem" is
testable.

The third kind of design principles simply embody design
experience. "We tried this in a similar case and it worked
better than that.” Our formal theory development will not
discover many of these kinds of principles itself. It may,
however, provide useful generalizations of such experience.
It will mwmo provide a formal way to embody such experience
and transfer it to other designers or projects.

Having come this far we can use the resulting design

theory to design and implement a design laboratory system for
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interactive design. We can then use that laboratory to test
and extend our design theory.

We can also iterate on our research approach and build
more specialized design theories based on more specialized
aspects of our development processes. This will then extend
the power of our formal design theory to ensure essential

properties.

3.1.4 Conclusions

The research approach described in Figure 3.1-1 will, if
carried out, result in a design theory. It can be carried out.
The "goodness” of the resulting design theory will be dependent
on the skill and judgment of the researcher as well as on the
complexity of the systems to be designed. Such goodness can be
assessed by measuring the desired payoffs on application
experiments. However even a poor theory will be better than
no theory, and the last section points out how even a poor
theory can evolve to a better one through research and
experience.

The resulting design theory will be well defined, formal,
transferable, and teachable. It will also provide a way to
profit from design experience in a formal way. These are
essential attributes for a viable design theory.

From experience, we can surmise that the last, application
sensitive specializations should be made only by expexienced

application engineers and designers, Thus it may well be more
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effective to teach our basic design theories to the engineers
and leave it to them to finish the application specialization.
This is also a practical consequence of our formalization of
basic design theory.

There may be many other approaches to decomposing a
research project to produce a design theory. Ours will work.
How well it will work is up to the researcher. It is a suit~
able starting point for the development of a science of design.
We have used this research approach to develop an initial
theory of design for distributed data processing systems. It
worked and opened up a large new domain of automatable design
tools, and provided new insight into an emerging science of

design.

3.2 Distributed Data Processing Systems

We now have an informal research plan for developing a
design theory. Before we can specify the development process
properties that we will use for this theory of design, we must
look at the general application area of large scale real time
control systems. We are particularly interested in the use of
distributed data processing architectures in the design of such
systems. We will compare some important development payoffs
and some relevant distributed data processing characteristics
via an impact matrix. We will then develop some initial critical

issues (payoffs) for our DDP design wrmmﬂm.

3.2.1 Development Payoffs
The major areas in which the current state of the art
imposes severe constraints in the development of large scale

real time control systems are discussed below.

3.2.1.1 Life Cycle Costs

The life cycle costs for large scale systems are severely
constraining and prohibit development of all but the most
critical systems. Even many critical systems must be prohibited
because cost and benefit tradeoff studies rule them out. We
need to lower life cycle costs substantially if we are to usefully
exploit the potential of such large scale control systems., An
analysis of life cycle costs indicates that by far the biggest

cost factors lie in nonhardware areas of specification, design,
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implementation and "maintenance." This last factor is dominant
and is clearly misnamed. Bits do not wear out. Hsmwmm&. we
could more accurately call this area correction, redevelopment,

and evolution.

3.2.1.2 Mission Confidence

There are two aspects to mission confidence. The first
is, "Will the developed system design, if properly implemented,
perform the required mission?" The second is, "Will this
system realization, if properly operated, perform the specific
immediately required mission?" The answer to both questions
nmmcwnmm an understanding of system flaws.

The existence of requirement, design, implementation, and
realization flaws in any large system (even in most small
systems) is usually taken for granted, in spite of the some-
times catastrophic results. Extensive operational experience
after the last changes have been made ls our most reliable
guide and the severest test we can currently have, Unfor-
tunately, these measures are after the fact and, because of
the frequency of changes, equally frequently invalidated. We
need to improve our ability to prevent, detect, adapt, and
correct such flaws both during development and during operation.
Wwe also need models of the processes that are useful in

deriving confidence measures.
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3.2.1.3 Rapid Development

The development system itself is a large scale real time
control system that must produce timely responses. The
current development cycles are much too long. In many cases,
the development cycle spans much of the period in which the
requirements and technology can be forseen. For some systems,
the development cycle can forseeably extend past all fore-
knowledge of mission requirements and equally forseeably, get
into severe difficulties. We need to reduce substantially

current system development times.

3.2.1.4 Evolution

The major factor that severely impacts our ability to
achieve the previous payoffs is the adaptation of both the
development and application systems to changes in requirements,
technology, and state of the system. Each such change may
require a new development cycle (hopefully small scale,
inexpensive, reliable, and rapid) that could jeopardize the
entire system development. Adaptability to change is the
single factor most often cited as of major significance by
systems engineers. With a greater adaptability to change, we
can defer many sensitive Hmmwmw until later in the development
process. In the limit, we could gquickly design and deploy a
kernel system that could evolve to meet full mission reguire-

ments in operational environments with benefit of actual



experience in its use. This would enormously decrease the
omniscience currently required of the designers, if they are
to anticipate future changes in mission and technology.

¥We need to anticipate the need for change in both
development and application systems and provide techniques
for minimizing the impact, assessing the impact, and proving
the correctness of the changes that are made. With improve-
ments in this area we can cubstantially impact the other
development payoffs. With such improvements life cycle costs
will be reduced, mission confidence will be enhanced, and the

development cycle will be speeded up.

3.2.1.5 Conclusions

From the above considerations we can easily conclude
that we need to improve the following:

-- the predictability of development behavior

-- the efficiency of development systems

-~ the reliability of development systems

~- the testability of application requirement, design,
and realization behaviors

-~ the reliability of application system requirement,
design, and realization behaviors

-~ the adaptability to change of both development and
application systems

This list is still too large and unfocused for practical
use as payoffs for our design theory. We cannot wowm»mm a

first (or possibly a last) try at creating a design theory

that will address all of the important factors impacting
these payoffs. Further, we must keep in mind that the pay-
offs we are after, in order to start our research process,

are those of the design theory, not of the application system.
It is clear that any significant progress towards the above
goals will have an important and-'positive impact on our
starting payoffs of life cycle costs, mission confidence,
rapid development, and evolution.

We will first restrict our attention to the requirements
and design phases of development which seem to be at the
heart of many of the significant issues affecting the payoffs
above. We will postpone considerations of application reali-
zation and deployment w%m:mm until we have a satisfactory
prototype design theory. Clearly an improvement in mmm:wﬁml
ments and design theory can have a substantial impact on the
latter payoffs associated with realizations and deployment.
mxmmﬂwmsmm has shown that it is easier and cheaper to get
things correct than to detect errors later and repair their

damage.

3.2.2 DDP Characteristics

We are particularly interested in developing a design
theory that will help us exploit the potentialities of
distributed data processing in attaining the system payoffs
discussed above. We will look first at the intrinsid proper-

ties of distributed data procegsing.
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3.2.2.1 Distribution

The obvious property is that DDP systems may be -
logically or physically distributed either over a complex of
local systems or over geographically dispersed nodes of local
systems. Computing power can be collocated with devices being
served. This may improve response times, decrease long
distance band widths, increase reliability through redundancy,
and increase survivability through both redundancy and local
autonomy of useful functions.

We are more concerned with the impact of distribution on
our design theory. Clearly the most obvious factor is that
our design theory must be applicable to asynchronously inter-
acting systems in a useful way. In our theory, we want to

consider such interactions explicitly.

3.2.2.2 Architectural Domain

The obvious property is that DDP systems can utilize
an enormous set of different architectures., From a technology
point of view almost any conceivable interconnections of
general or specialized digital systems can be consgtructed.
This increases the range of design choices in solving develop-
mental problems, while blurring (or eliminating at the design
jevel) the distinction between hardware and software. We can
thus defer the technology sensitive engineering decisions to

later development phases. From a design theory point of view,
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the increased architectural domain increases the complexity

of design declsions by relaxing otherwise severe constraints,

3.2.2.3 Problem Adaptability

Because of the wider range of architectures, we. can
transform the perennial problem of "how can we shoehorn our
software into this system?" into "which architecture best
£its our functions?". In some cases, the answer may be
centralized systems. In any case we can profit from the
increased design freedom. This has been demonstrated many
times in small systems where the complexity issues have been
manageable.

From a design theory point of view we must be able to
model both static and dynamic properties of DDP architec-
tures in order to forecast the suitability of mappings of
particular applications onto particular DDP architectures.
Given the modularity of DDP architectures, we can usually
£it the problem onto several architectures. We must model
the performance of each in order to determine their suit-

ability and to select among them.

3.2.2.4 Modularity

The wide range of DDP architectures includes highly
modular systems whose response to loads and module fallures )
can be modelled and predicted. A particularly simple form of

evolutionary development, even in the operational phase, is to
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increase the number of such modules, Such modularity can also
simplify the behavioral forecasting by nosmnnwwawsm the
conflicts between processes for physical resources. These
conflicts enormously complicate all dynamic models.

From a design theory point of view, modularity is a
major tool in resolving complexity issues. A poor modulari-
zaticn will produce even greater design complexity. Chaos
does not really promote design freedom. The potential 1ift-
ing of performance limite by DDP architectures must be
exploited to give us simplicity and usable design freedom.
Instead of N ! complexity (in worst cases) we can obtain z..H
complexity (in best cases). 1In practice such extremes would
not normally be encountered, but our position on this complexity

scale is of dominant concern.

3.2.2.5 Conclusions

We may now augment our list of significant development
system payoffs by the potential DDP payoffs of design
freedom and simplicity. The resulting list of desirable
payoffs for a development system is

-~ predictability

-~ generality

-- reliability

-- simplicity

-~ efficiency
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-- testability of specifications

-~ testability of realizations
The achievement of these payoffs can be significantly more
complicated in a DDP design. Thus a serious need for a
design theory in centralized data processing becomes an
absolute necessity for distributed data processing. It is
this need that guides our DDP mmmwmn theory development.
We are now ready to start our research process with the
definition of some of the properties our specifications must
have.

The primary goal of our design theory is to improve
significantly our ability to achieve these payoffs in a

practical development system for DDP applications.



3.3 Specification Properties

We start our design theory development by postulating
the following properties of specifications, each of which must
be practically testable on any specification. The presence of
these properties is essential for subsequent development of
our design theory. These properties do not include all proper-
ties that could be formalized. These can all be plausibly
%gmgmgﬂg<&gggmﬁgagggggwgmﬁmggggu
for most other properties. They were selected because of their
significance in making specification language design decisions.

All of the following properties are, of course, testable
on any specification developed by ﬁrww research approach. The
ambitious nature of these reguirements is tempered by the
knowledge that we have developed a specification language
meeting all of them. These properties are defined to be
generally applicable to any potential discrete system specifi-
cation. They can thus be used to characterize and ooanwwm

different specification languages.

3.3.1 Formality

Because of our emphasis on very large systems, we must
restrict munmmw<mw to specifications and techniques that can
be formally defined --~ because automated tools and supports are
our only hope for taming complexity beyond what a single human

mind can handle. Although this means that human factors in
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design will not be addressed directly, the potential impact on
them is still considerable. We cannot force a customer to
understand completely all of his requirements at the outset,
for instance, but we can hope to provide him with useful
feedback at early stages of design, and to facilitate graceful
evolution when requirements do change.

A specification is formal if it is an abstraction (i.e.,
a thing representing only a certain set of properties, instead
of its literal self) such that its represented properties can
be specified precisely. The imposition of formality as a
requirement on our specification language implies that speci-
fications will be abstractions rather than realizations. The
relevant properties of the abstraction are precisely specified
and potentially susceptible to automated analysis and
transformation. Abstractions also provide us a "transparency”
for our design theory. We will incorporate only the abstract
properties into our theory. The remaining properties are
neither treated nor prejudiced by our design theory. Where
our design theory does not help, it does not hinder. An
abstract development of our design theory provides a maximally
evolvable base for particular development system designs and
realizations. Most of the important human factor issues can be
deferred to the subsequent design of a particular development

system.



Our specifications must be formal if we are to develop a is in 8, for all i.

formal design theory. We must be able to specify our problems The system space $ is the set of all systems.

and potential solutions precisely if we are to provide The interpreter I is a relation in L xC,

significant extensions to current methodologies. We must For convenience we concatenate sequences as follows:

specify approxmations to the desired systems. There is a vast If a = <0,,0,,05>, then <@,0,> = <0y,0,,05,0,>. These

difference between an informal and a formal approximation. definitions state that there is a specification language UL

The former prevents most automated analysis while the latter whose semantics are sets of computations in € as defined by II.

can be designed to make such analysis possible. Formality is To represent the states of a system as strings over some

essentially equivalent to testability. Without testability, alphabet causes no loss of generality, since the formally

cur design theory becomes only wishful prescriptions. defined system is only a stand-in for the informally

Our formal properties will be based on specifications, defined, realized one anyway. The formal system is a set of

computations, systems, and the relations between them. We computations, the same as would be obtained by observing and

will require the following definitions. formalizing all possible computations of the corresponding

A specification L is a finite string over the global realized system.

alphabet A. The specification language L is a set of

Property (a) in the definition of a system says that the

specifications. subsequent behavior of a system depends only on its present

A computation C is a finite sequence of states, where a state, and not on the past. This is characteristic of

state is a finite string over some global alphabet C. The digital systems, simply because information about the past

computation space @ is the set of all computations.

cannot be used unless it is encoded in the present state.

A system A is a recursive set of computations such that: Property (b) in the system definition says that the system

(a) if <a>,<B>,<y>,<§> are computations, Ojrd4r0 aze is cyclic, i.e., does not halt (any computation records a

states, and AQ.QH.Qu.mv.A<.aH.qx.mv are computations finite observation, but every computation is an initial sub-

in S, then AQ~QM.Qx.mv is also a computation in S; sequence of a longer one). This causes no loss of generality

(b) if <a> is a computation in S, then there exists a simply because a system which is intended to halt can go into

finite, nonempty set of states o, such that <a,0,2

i a "null" state whose only successor is another "null" state.
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The purpose of defining systems this way is to be able to
distinguish inconsistencies in the specification by cases
where a state has no well-defined successor. Thus the concept
of a "halting state" is an interpretation by the user. This
definition also accommodates both systems with single initial
states and systems in which every state is a possible initial
state of a computation.

Thus our system definition is very general; it is hard to
imagine any "digital system" which could have been left out.
(The section on "asynchronism" will explain why it is adequate
for distributed systems.) The reason that only state sequences
appear explicitly in the definition, without mention of the
processing between discrete states, is that this is enough
for us to define the required "logical® or "functional"
properties. Computation will have to appear explicitly in the
system definition on the next iteration of the metamethod
when performance properties will be added.

It is interesting to note that in the context of the
metamethod, formality implies the decidability of L, i.e.,
that there will always be an algorithm that decides whether a
given string is a member of L, This is because, if specifi~
cations are formally defined, then the "testability" for
other properties required by the meta-method must take the
form of decision algorithms. Each decision algorithm determines

a decidable language over which it is known to be defined, and
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the intersection of these domains is the specification
language: obviously decidable jitself. The formal property
of specifications is thus assured by the definition of
specifications and need not be represented by a testing
algorithm.

There are a large number of automatable analyses possible
because of this property alone. For example, if a specifica-
tion is proffered, it can be "gyntactically" checked by a
“parsing” algorithm to decide that it is completely specified
and correctly formed. Even this testing is not possible in
some currently used specifications. We can provide to a
designer the type of feedback from a "compiler" currently

obtained by a programmer. The utility is obvious.

3,3.2 Consistency

We will also require that a gpecification does specify a
system. This is a nontrivial property since it can easily
be violated by specifications. For example, if the specifica-
tion consisted of a set of equations whose solution specified
a system, we would have to have an algorithm to decide whether
or not there existed a solution. This is in general not
possible, and requires <mnm severe constraints on the nature
of the equations.

For each L inlL, L is consistent if the set of all

related computation sequences is a system in &.
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Consistency of a specification means that its image
under interpretation is a system. It is a very important
property because it precludes both "syntactilc” errors (missing
parts, double definitions, etc.) and "semantic" errors
{infinite loops and deadlocks) which would prevent computation
of a successor state to any state. Thus any consistent
specification specifies validly some system.

This definition of consistency also subsumes the
unambiguity of the specification of L. Each specification
will specify a unique system. The property of consistency
is possessed by few of the current forms of system specifica-
tions. A designer has an obvious interest in the possession

of this property by system specifications.

3.3.3 Effectiveness

The consistency of a specification ensures the existence
of a system meeting it. This does not imply that we can
determine whether a computation is an element of a specified
system or. not. We are in a position similar to a programmer
who gets his program specification through a compiler but
does not know what the resulting program will do, The program
behavior can be studied with trial computations. We also want

+he behavior of a specified system accessible and testable.
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We will thus require the effectiveness property of our
specifications.

The property of effectiveness means that a specification,
regardless of how abstract it is, is "runnable," i.e., can be
used as a simulation model of the specified system -~ to the
level of the properties that have Unm: specified. This idea
has been in circulation at least since Zurcher and Randell
({2R]) recommended that a system evolve from simulations of
itself. It is realized in the SREM project ([BB], [Al],

[DV]), in which the "functional” or "analytic" properties of
a requirements specification can be simulated by providing
simulations of private processing functions with behavioral
or performance mdﬁnwvcnmw~ respectively.

Effectiveness is of fundamental importance because it
provides early feedback to the designer and his customer about
the behavior of the specified system. In terms of our meta-
method, it provides the only possible handle on those properties
not chosen to be guaranteed by the design method: as soon as
the specification is elaborated to a point where those properties
are defined, they can be tested by any conventional means.

It seems that the most useful formulation of effectiveness
would make it always possible to generate all the states which
could follow a given state in a computation of the specified
system. This correspond most closely to our idea of "running”

a system, and, by clause (a) of the system definition, it is



then possible to construct any finite subset of the system.

A consistent specification L is effective if there exists
an algorithm which, given any state ¢ appearing in a computa-
tion of 8 = {C:(L,C) elL}, will produce the set of all states
o' which mHW immediate successors to ¢ in computations of S.

Note that this definition cannot be satisfied unless the
set of all successor states is finite. This is guaranteed
if £, the set of all states appearing in computations of S,
is finite. And finiteness of I is useful and practical in its
own right -- all realized (and realizablel!) digital systems
use finite amounts of memory resources.

Informally, the possession of this property ensures that
we can provide a universal (for all specifications in W)
procedure for evaluating a specification and generating
instances of the computations of the specified system, i.e.,

a universal system simulator running directly on the specifi-
cation itself. There can awrm be no discrepancy between the
specification and the "simulation" model.

The designer could thus obtain test computation data
directly and automatically from the specification itself.
Debugging design decisions are now possible, even with abstract
specifications. A trivial way to obtain this property is to
specify systems by programs that can be compiled and

interpreted.

3.3.4 Homogeneity

The next desirable property of a specification is that
every abstraction of the system it specifies have a specifica~
tion in the same language. This is called "homogeneity"
because it means that the results of all design phases can be
expressed in the same homogeneous language: system architec-
tures can develop from regquirement specifications, and the
(admittedly arbitrary) distinction between hardware and
software disappears.

The necessity of this property is clear from the current
wide interest in data abstractions, design languages, etc. It
is simply impossible to expect people to design complex systems
without mechanisms for expressing abstractions of them, or to
choose particular abstractions for them.

We want our specification language to include both
specifications of a given system and specifications of
abstractions of that system. We can then use the same
specification language from the start to the finish of each
development process. This will eliminate the introduction of
errors in going from one specification to a rowmmmwww equivalent
specification in the language of the next development phase.
The entire methodology is then available in each phase.

There are two forms of abstractions which can be defined
in the system domain, both of which will later be related to

specific design steps.



A system S is a containing abstraction of a system S' if

s* € s.

A system S is an embedded abstraction of a system S' if

there exist projection functions pg.: <A*> + <a*> and

Pg: A" + A* such that ¥C ¢ S, 3C' ¢ S*' such that

Cc = mmaﬁmﬁn.vv. Amm removes states from sequences, and Pg
removes characters from states.)

A system S is an abstraction of a system S' if it is a

containing abstraction or an embedded abstraction of it.

How do these relationships arise? Let L be a specification
with a primitive computation state successor function

£:°0 +»n and let L' be the same mvmnwmwnmnwos- but with £
elaborated in terms of lower level primitives. The system S
specified by L contains computations in which f maps every
value in ¥ onto every value in R, while in the system S'
specified by L' some of these computations have been eliminated
by the additional structure in f£. Thus S is a containing
abstraction of S'.

On the other hand, let S be a system modeling execution
of a program (its states are values of the vector of variables,
and its steps are statement executions), and let S' be a
system modeling the implementation of the programming language
on a computer (its states are machine states, and its steps
are instruction executions). Then S is an embedded abstraction

of 8', with Ps removing all states of §' that arise during

execution of language statements, and Pg removing all state
information except the user~defined program variables.

A consistent specification L' is homogeneous if for
every system S which is an abstraction of §' = {C':(L',C') ¢ I},
there exists an L ¢ WL such that s = {C:(L,C) ¢ I}.

The computations of the less abstract system are thus
contained in the computations of the more abstract system.
This is essentially a concept of system generality. The less
general system has a subset of the computations of the more
general system. If the general system is satisfactory in
each computation then the special system will also be
satisfactory with respect to the same aspects.

Homogeneity implies that every abstraction of a specifi-
cation is also a specification. As a result, any development
process starting with an abstract specification and ending
with a less abstract specification can have intermediate
states that are also abstractions of the target specification.
All of those states are specifiable. All properties of the
abstract system are automatically inherited by the less
abstract system produced from it. Further design decisions
do not invalidate past design decisions provided only trans-
formations to less abstract systems are used in development.
This property also allows direct traceability of design

decisions at each level.
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3.3.5 Modularity

We must have some way to localize design decisions and
control the complexity of the design. A modular specification
is one with identifiable components which can be replaced by
compatible components, producing only local and predictable
changes in the specified system. Modularity is essential in
the specification of complex systems, because it makes it
possible for one person to cummnmnmsm parts of the specifica-
tion [BH], and for many people to work on pacts of a large
design data base.

There may be many forms of modularity, but only one is
sufficiently basic and language independent to be defined
here. It is the concept that elaboration, or replacing a
component by a less abstract one, creates a specification
which is less abstract -- in the sense that the system
specified by the former is a containing abstraction of the
system specified by the latter. To formalize this, we must
define "component" and "more abstract component.

A component K is a finite string over the global

alphabet A. The component lanquage K is a set of components.

The component relation wﬁm i x X contains a pair (L,K)
if and only if K is a substring of L which is a component.
The abstraction relation mv..n.w K x K contains a pair

(X,K') if and only if K is an abstraction of K.

- 16 -

In a program, a component might be any substring generated
from a nonterminal of the context-free grammar. A procedure
whose body is undefined is an abstraction of a procedure of
the same name and parameter list with a defined body.

A homogeneous specification L' is modular if for every X'

sucn that (L',K"') ¢ wznmsw every K such that (K,K') ¢ R, the
specification L, formed by substituting K for RK' in L', is
either inconsistent or such that S = {c:(L,C} ¢ I} is a con~
taining abstraction of s' = {c':(L',C') e O},

The reason that L can be inconsistent, even though K is
a valid abstraction of K', is that consistency is intrinsically
global. For instance, K might be a primitive function, and K'
might be an elaborated version in which an wnwmnwnﬁwosﬁswwr
another part of the system (perhaps to get control information)
is specified. The substituting K into a consistent specifica=-
tion containing K' (which must have a specification of the
other half of the interaction to be consistent) will create an
inconsistent specification, in which the other half of the
interaction is left hanging.

Informally, the modular property provides the®ability to
develop components with a process similar to that supported by
homogeneity. In effect, modularity is eqguivalent to local
homogeneity. We thus design components independently while
preserving previous properties and design decisions of the

more abstract (general) specifications.



The component relation Ry may also be applicable to
components themselves. In this case we can define components
in terms of components and establish a hierarchy of

modularization. This will vastly improve our ability to

factor the design complexity.

3.3.6 Informal Extensibility

A specification language needs to provide for comments
and other information expressions of the designer's choice.
The distinguishing characteristic of such informal expressions
is that they do not affect formal interpretation of the
mmwnwmwnmwwoa. Thus the definition must distinguish between
pairs of specifications which differ only in uninterpreted
attributes, and pairs of specifications which specify the
same system via different interpretations. This is done by
associating uninterpreted attributes only with modular
components. Informal attributes may often become formal ones
during subsequent iterations of the metamethod.

An informal attribute set T is a finite string over the

global alphabet A. The informal attribute set lanquage W is

a set of informal attribute sets.

The informal attribute relation wdthx X T contains a

pair (X,T) if and only if T is a substring of K which is an

informal attribute set.

A modular specification L is informally extensible if

for every K such that (L,K) € mxAmsﬂ every T such that
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(K, T) ¢ Ryps the specification L', formed by substituting T'
(T e, T#T') for T in L, is such that
{c:(n,c) e g} = {c':(L",C") ¢ m}.

Because our formal specifications do not include all
properties of interest, we must provide some way to include
uninterpreted (informal) attributes that convey the desired
information. Our methodology will not analyze such attributes
since they are not formally expressed. However, any informal
methodology may be used with respect to these uninterpreted
attributes. We won't provide much assistance other than that
of a controlled data base, but we won't hinder that which
can be done by the designer.

The extensible property provides an "open end" where
properties we do not yet wish to formalize may be included
informally in our specification. A component seems to be a

very natural "unit" to possess such attributes.

3.5.7 Distributed

A specification must be able to define distributed
systems if it is to address the essential DDP design problems.
A formal definition of the "distributed" property is developed
below. Distributed systems mwmmmﬂ primarily in that the system
computations are composed of asynchronously interacting compu-
tations of distributed system components., Distribution is

also important for decomposing oosmwmxww%.wb a nondistributed
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system. At a low level of abstraction, most systems are

distributed.

3.3.7.1 Asynchronous Subsystem Compositions

Many formulations of asynchronous interactions have been
proposed, but what we need here is a definition of this pro-
perty which is independent of the mechanism or its implementa-
tion. The essence of "being composed of asynchronous processes"
seems to be that the specification can be factored into
separately interpretable specifications, and that the aggregate
computations of the system are composed from computations of
these parts, taken at all possible relative rate combinations.
HUW essence of interaction between these "processes" seems to
be to constrain the computations just described. The informa-
tion received by a process in an interaction serves to rule out
some otherwise possible computations, just as the w:monamnwoc
gained by elaborating a primitive function rules out some
mappings from elements of its domain to elements of its range.

Let bw.ﬁm.....hz be effective specifications, and let mw
be the relation on states which maps a state of the system mw

specified by L; to its finite set of successor states,

o

1<

< n. Then the asynchronous combination of mw.mm.....ma
is the system:
(a) whose states are n-tuples Aaw~q~.....asv~ o; &

state in the computations of mw. 1 <1ix<nm

(b) whose successor relation G is defined by:
:qw.ami...asvLaw.qm...:am: £ G if and only if:
(1) a unique i, 1 <1 < n, 0y € G, (0,)s

(2) o5 =ol, ¥ # i.

Then the definition of asynchronism states that the
asynchronous combination of the process interpretations is a
containing abstraction of the specified system with interacting
processes.

In effect, this notion of composition produces a new
system whose joint computation sequences correspond to all
combinations of computation steps by the n subsystems. The
subsystem Seguences are preserved by embedding them in the
composed system sequences.

The constraints to unigue values of i is equivalent to
requiring that the "ayents" of computation step completions
never occur simultaneously, i.e., there is no true simultaneity
between asynchronous computations. This constraint is very
useful, and we can always model the “gimultaneous" systems by

asynchronous sytems.

3.3.7.2 Asynchronous System’ Specification
An effective specification L is asynchronous if there is
a function which maps L to a finite, nonempty set of effective
wmmo»mwcwwwo:m hw~rw.....ﬁ=. such that the asynchronous
combination of rv.bw.....b: is a containing abstraction of
{c:(L,C) € 0.
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The asynchronous system is thus contained in the
corresponding asynchronous combination. The effect of an
jinteraction between subsystems of the asynchronous system
will be to eliminate certain computations from the correspond~
ing mm%nwrno:osm combination. If no interactions occur, the
asynchronous system is the same as its asynchronous combination.
By defining asynchronism without defining interactions, we
avoid making any restrictions that might exclude distributed
systems. Even the most general discussion of distributed
systems ([La2]) atknowledge that a distributed system has a
well-defined global state; it is just that in a distributed
m%mﬁman knowledge of the global state on which to base decisions
is harder to come by.

A fixed process structure seems to be the inevitable
result of reasonable definitions and manipulations of
asynchronous systems. There are other sound arguments for
static process structures, especially since dynamic recon-
figuration can be built in as an evolution (see alsa [BH]).
Multiprogramming systems, for instance, usually have 1/0
processes and user processes. But the I/O processes correspond
to a fixed configuration of devices, and the degree of user
multiprogramming is fixed ox bounded.

We can thus design and study the properties of the sub-
systems in isolation, knowing that their wznmmnwnwos,swww not

produce new and unexpected behavior. Subsetting of the

computations is all that can occur. This property of
distributed systems will be quite important for any develop-

ment process in which subsystem integration is attempted.

3.3.8 Generality

A final interesting property of a specification language
is completeness: having at least one specification for every
system.

A specification language .lL is complete if for every

§ ¢ §, there exists an L ¢ IL such that {c:(L,c) € I} = 8.

This is not a product property at all, but rather a property
of a design process. It seems that completeness is a theorem
to be proved as a part of the design principles, especially
since completeness may be deliberately compromised. For
instance, as hinted in the section on effectiveness, we have
no intention of allowing the specification of systems with

infinite state spaces.

3.3.9 Conclusions

We have defined an abstract set of properties for
specifications and specification languages that are critical
for creating a formal mmmwmm theory that will enable the
achievement of the DDP payoffs.

A suitable specification language for distributed systems
must have at least these critical mnommnmwmm in a useful form.
We may use these properties as requirements for specification

language design.
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We will clearly add further properties as required to
support subsequent development of our design theory. These
will be introduced in latter sections.

Figure 3.3-1 is a precedence graph of the reguired
product properties. P, precedes P, if the definition of Py is

needed to define mw. and "L has P_" implies "L has P

"
2 1°

formality
consistency
informal
extensibllity
homogeneity effectiveness
modularity asynchronism

Figure 3.3-1: The required product properties.

The property definitions, in addition to their usefulness
in our application of the metamethod, are interesting in their
own right. Being formal yet independent of any specification

language, they can serve as verifiable requirements on the
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design of a specification language. For instance, in [Al]
the following desirable properties of a specification are
named: ‘“"completeness, consistency, correctness, testability,
unambiguity, design freedom, traceability, communicability,
modularity, and automatability." Alford goes on to say:
As a result of the foregoing analyses, three

goals were then identified for an SREM:

(1} a structured medium or language for the

statement of requirements, addressing the

properties of unambiguity, design freedom, test-

ability, modularity, and communicability;

(2) an integrated set of computer-aided tools to

assure consistency, completeness, automatability,

correctness; and (3) a structured approach for

developing the requirements in this language, and

for validating them using the tools.
Using our results, these requirements for a specification
language and its associated tools can be evaluated as follows.

Probably everyone would agree that although "communica-
bility" is a desirable goal, it is intrinsically subjective,
and thus subject only to personal evaluation.

Our definitions put “automatability,® "modularity," and
"tegtability" into precise terms as the properties of formality,
modularity, and effectiveness, respectively. The importance
of this should be clear from the vagueness of a term like
"modularity” without a formal definition, "Modularity is
enhanced by the maintenance of the requirements . . . in a
centralized data base . . ." ([Al]) is simply not enough to
determine whether a given specification language has

"modularity,” or whether such "modularity" is really worth



having, To the extent that. "design freedom” means naturalness
to a human designer, it falls in the same subjective category
as "communicability"; to the extent that it means that every
system can be designed, it is defined precisely in the next
section ag completeness. Hs.wwnrmﬂ case, the text is not
sufficient to distinguish which was meant.

The other four properties addressed are “"consistency,"
"completeness,” "unambiguity,” and “"correctness," with decision
algorithms for "completeness" and *consistency®™ being men-
tioned explicitly. Our analysis shows that in all formal
senses, these are one and the same property: consistency.

A consistent specification specifies, under a formal inter-
pretation, a valid system (although that system may be very
abstract, i.e., unelaborated). The specification must be
iriternally consistent and "complete” (have no parts missing);
it then unambiguously and correctly specifies that system.
The system may not be what ﬁrm user wanted, but this is not
subject to automated verification.

The most significant omission from these specification
requirements is that of performance properties. Our research
approach is first to develop a design theory of what a
distributed system does and only then to address guestions of
how well it operates. We can provide substantial payoffs even
prior to considerations of performance. The extensibility
property required of our specifications may be used to include

performance requirements in our formal specifications. Our
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initial design theory may assist (through its formal
analyzability) performance analysis, and will certainly not
prevent a designer from using any otherwise feasible
performance methodology.

The required specification properties are sufficient to
resolve most of the difficult design decisions involved in

producing a DDP specification Hmmasmmm.

[BH] Brinch Hansen, Per. The Architecture of Concurrent
Programs. Prentice-Hall, 1977.

[2R] Zurcher, F.W., and Randell, B. "Iterative Multi-
level Modelling ~ A Methodology for Computer System Design.”
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ology for Real-Time Processing Reguirements." Trans, Soft.
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Development System."” Trans. Soft. Eng. SE-3, January 1977.

{La2] Lamport, Leslie, "Time, Clocks, and the Ordering of
Events in a Distributed System." Massachusetts Computer
Associates, Inc., March 1976.



3.4 Specifications

We will now describe, both formally and informally, a
specification languagzs that will possess the required proper-
ties developed in the previous section. This gpecification
language should be considered as a base line design that is
subject to later revision as required in the development of
our DDP design theory.

We will first introduce an algebraic characterization of
the specification language concepts and their interpretation
as systems. The next section deals with the simpler case of
non-interacting systems (i.e., nondistrihuted systems) and
provides a basis for the following discussion of distributed
systems.

The specification language itself is a "source language"
that is translated to a semantic data base structure. This
semantic data base is the form on which analysis and
transformations will be applied.

The semantic data base is incorporated in a Computer

Assisted Formal Engineering Laboratory (CAFEL) that will

support the use of our DDP design theory in design experiments.

Finally, we will describe some of the important analysis

tools that can be included in the CAFEL.

3.4.1 Nondistributed Systems

A specification language lL has the semantics ( defined
by T S 1L x @ where € is a set of discrete computations, and I
is an "interpreter" for IL. We will develop our specification
language in the form of algebraic definitions of generating
relations for elements of . These relations will be defined
as processes.

A process is a pair (f,I), I a state space, f: L + L a
successor relation. A computation of a process is a finite
looping sequence of states ao.qw~....q@....~Qu where qw [
and Oi41 = mﬁqu~ i > 0. A state space is defined in terms
of primitive sets. The successor relation is a (possibly
nondeterministic) function defined in terms of primitive
functions. Neither primitive sets nor primitive functions
are formally defined in a process. They may, of course, be
defined or described in extensions (i.e., comments) in our
formal specifications.

Sets may be defined as primitive, as a set of literal
values, or as a set valued expression involving union and
products. Primitive sets will be used to define types.
Literal values will be used to define constants. Set union
provides multi-type definitions. The set product
NxM=+ {(nm)|n e Nme M} will be used to define structure
in the state elements. These forms are sufficient to give us

enough generality for our specifications.
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Punctions may be defined as primitive, or as expressions
in terms of other functions. The forms of expression include
composition, tuple formation, and selection. Primitive
functions will be used to control the level of the abstraction
of the specification (i.e., are they bit functions or do they
operate on complex states?). Composition of function invoca-
tions will be used to generate ordinary algebraic expressions.
Tuple formation will be used to define functions whose value
is that of a tuple of expressions. Selection of expressions
will be used as a conditional form.

Surprisingly, we now have sufficient algebraic structure
to specify any nondistributed system in a form that has the
required properties. The key to this simplicity is our
definition of process and the insistence that a specification
of a nondistributed system be a process. For designers used
to thinking in programming terms, the process concept repre-
sents a radical change. If they will bear with us, we will
later return to the notion of program and the relationship
between processes and programs will be made clear. For now,

a program may be considered as one way to implement a process.
The advantage of processes over programs is that we can achieve
a mnmwﬁmn.mvmﬂnwnwwos and generality using processes. petails
of data representation and control need not be specified
unless desired. The remarkable results of the :oEommnmww%

property is that, if such details are desired, they may also
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be specified in processes. This will be illustrated in later

sections.

3.4.2 Dpistributed Systems

We must be able to specify process interactions, both to
partition a process into interacting processes for simplicity,
and to specify distributed systems. We require a "functional"
abstraction of interactions for compatibility with our
algebraic definition of processes. The interactions between
processes must be defined via primitive "functions® used in

the definition of the processes.

3.4.2.1 Exchange Functions

A paper on the =mvmmmenmﬁwc= of Asynchronous Interactions
Using Primitive Functions" is included as Appendix A. e:m.
details of the concepts of exchange functions are developed
in that paper. A brief summary is presented here.

The first exchange function primitive is called
xnw. where i denotes its class. Interactions between
exchange functions occur only within the same class.
The evaluation of xnwﬁsv may start when its argument,
%z, is supplied but cannot terminate until a matching
evaluation of another exchange function in the same
class is selected. The selection mechanism is unspeci~
fied but is required to be fair (i.e., not meHcmm any

in class from matching if enough exchange functions in



the class are evaluated). The matching requirement
provides synchronization at some point during evalua-
tion prior to completion. A member of a matched pair
of exchange functions then completes its evaluation by
taking the argument value of the other as its value.
This "exchange" of argument values provides message
transmission. Exchange functions are exactly like
other computable functions in that their evaluation

is initiated with an argument, and sometime later
evaluation terminates, returning a value. Unlike many
functions, however, exchanges may be nondeterministic,
their evaluation has side effects, and they may fail
to return a value if never matched.

We must also describe an exchange function xv».
The only difference from Xcy is that two xbw functions
can never match each other. Thus any evaluation of an
exchange function in a class containing only XAy will
never complete. The purpose of this primitive is to
allow competition for matching an Xy without allowing
a match with one of the other competitors.

The final exchange primitive is XS,. The only
difference from XC; is that an X5; will always "match"
itself if no other match is avallable when it is initil-
ated. When XS matches itself, its value is its own

argument and no other synchronization is required.

These three kinds of exchange functions are
sufficient to specify very general message and syn-
chronization facilities. As functions, they do not
restrict their implementation to any particular form of
interaction. Indeed, if matching exchanges are both
implemented in the same storage no messages need be
passed in the implementation. If matching exchanges
are implemented in the same sequential procedure the
match synchronization can be built in as a sequence of
temporary assignments, and there are no explicit
exchange operations. This could be the case if
vcooperating sequential processes" were generated.
More importantly, the exchange functions may be used to
specify interactions at a high level of abstraction,

independent of such details.

3.4.2.2 Tidal Wave Model

We will include an example of distributed system
specifications taken from a system of differential equations.
This demonstrates that our specifications are suitable for
modeling "real world" continuous processes as discrete
processes. This is the property of closure -- there need be
no arbitrary and formally unspecifiable interface concept in
our specification language. This has important consequences’

for our design theory.



This section describes a formal, high-level specification
of a fluid simulation model by means of the monsmwwmﬁ summarized
in Appendix A of [Fi77). The simulation model itself was
designed and implemented previously by Greenspan et al.
mononqm_M although no acquaintance with the latter reference
is necessary here. The purpose of the model is to study the
propagation of tidal waves, rapidly moving shock waves
generated by earthquakes at the ocean floor. The damage these
waves can cause to possibly distant shorelines depends to a
large extent upon .the geometry of the ocean bottom wmammwmnmw%
adjacent to the shore. Many of the details of the simulation
model are omitted here since our mmwnhwvnwoa is primarily
pedagogical in nature. However, a brief outline of the
salient features of the model provides the foundation for an
understanding of the somewhat abstract material to follow.

The simulation model is actually quite simple in design,
even though it details with several complex natural phenomena.
In brief, it models "particles," each of which represents a
large quantity of sea water. These particles are contained in
a two-dimensional ocean basin with a special region on one
side which approximates the continental shelf and shoreline.
The particles are held in the ocean basin by gravity and
interparticle attraction; in addition, repulsive forces
exist between particles (within a certain interaction distance)

and between particles and the ocean bottom. A typical simulation

begins by assigning the initial position and velocity to each
of a set of several hundred particles. Then the particles

are allowed to move during enough discrete time steps to reach
a stable configuration. Next, the geometry of a part of the
ocean bottom is altered slightly but suddenly over the interval
of a few time steps in order to simulate an earth tremor.
Finally, the effect of this perturbation of the ocean floor
upon the motion of the particles is observed for as many time
steps as desired. Note that the forces between interacting
particles remain constant throughout the simulation and that
the essential shape of the ocean remains intact. However,
these same factors may be modified in other simulations in
order to find a more accurate model of tidal waves. 1In other
words, the model is parameterized.

Our functional specification of the simulation model just
described will assign a separate asynchronous process to each
particle being simulated; each system step of a process then
will represent a time step in the simulation. Note that even
though in the simulation model we define particles to move
discretely and synchronously, we have chosen asynchronous
processes for our specification. There is really no contra-
diction here, as we shall see, since the processes are in fact
loosely synchronized by messages exchanged among each other.
Specifically, no two processes can be modelling time steps
which are more than one simulated time unit apart at any given
time.
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We will formally specify this sytem as follows. Let n
denote the number of particles in the model. Let P denote
the set of processes which model the n particles:

P = ﬁmw.mu.....wnw (1)

Each process P, has two components. The first compo-

i
nent, the state space I, is common to each m». The second

component, F. is the state successor function for the

ir

process P;.

i<n (2)

P, = AM.MMV~ 1

iA

F.: L~+L, l<ic<n (3)

We will elaborate the state space I by expressing I in
terms of a position space X and a velocity space V as

follows:
L =XxV (4)

Let aw ¢ £ denote the state space component of process

Py and let X, € X and v; € V denote the position and

velocity of particle i. Thus:

o; = (X;,V;), l<izn (5)

We can decompose each state successor m» into Mcbnnwonm

MMH" £ + X and MHN" L+ V. www

of particle i and Fin is the velocity function of

is the position function
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particle 1i:

Fylo;) = (Fy; (o) ,Fyy(0y)) (6)

The position and velocity of a particle at time step t+l
depend on its velocity and position at time step t and on
the position of other particles at time step t. We can ela-
borate the functions MMH and mww to indicate these
dependencies as follows: Let - At denote the constant simu-
lated time interval, m the mass of a particle, and ewﬁxwv

the forces exerted on particle 1. Then we have:

Fralog) = x, + (A£}F, 5 (04) (7)
Fiol0;) = vy + (BRe (xy) ®)

The function eH is defined by the following equation.

i-1 n
9, (x;) =mg + Blxy) + xwp R(x, 1 XCpj (x:)) + xuw+w R(x; ,XCyy (%)) .

(9)
Here g 4is the acceleration of gravity and B is the time-
dependent function which represents the force exerted by the
ocean bottom on the particles above. The function R is the
potential function which models the attractive and repulsive
forces between two particles, the coordinates of which are its
arguments. The second argument of each occurrence of R in
Eg. 9 above is an exchange function which exchanges the

coordinates of pairs of particles so that interactive forces



can be calculated. Note that the summations are constructed

so that exchange functions are named so each particle exchanges
with every other particle exactly once at every time step.

(For any subscripts i and j, 1 <4i<3j<n, xnwu appears
in the summation but xnuw does not.) However, no particular
order of summation or order of evaluation of summands is
implied by Eg. 9; such details are not important at this level
of specification. 1In particular either a serial or a parallel
computation of Eq. 9 may be used in implementation.

We could at this point considerx the functions B and R
to be primitives. We would then have a complete high-level
specification of the simulation model., However, we will ela-
borate the function R in order to illustrate our top-down
design methods. First we should note that an optimization for
our model is possible since particles interact only HOQNHW%.
This observation was exploited in [Gr77] to yield a computa-
tional complexity of O(n) in the number of particles as
opposed to conventional exchaustive interaction schemes of
order oA=m~. (Our computational complexity results apply
only to serial computation. On the other hand, our msrnnwosmw
specifications are in no way biased toward or limited to
serial computation; computational details becomes relevant at
a lower level of functional elaboration, as we have mentioned.)
Moreover, we can indicate our optimization at a high level so

that it could be implemented automatically at a lower level.

We simply define the function R so that the ocean becomes
segmented into vertical zones, where particles may interact
only within a zone or between adjacent zones. Let 2 be a
zone classification function. That is, the value of 2z(u)

is the zone for a particle with coordinate u. Using a Lisp-
like selector function (see [Fi77]) we can define R in terms

of a function R' as follows:

R(u,v) = (Z(u)

Z (v) :R; (u,v),
Z(u) = Z(v) = 1:R'(u,v),

Z (u)

Z2(v) + 1:R'(u,v),

0) (10)

The function R' can be expressed in terms of a primitive

distance function Dist and another function R".
R' (u,v) = (Dist(u,v) < d:R"(u,v), 0) (11)

This equation indicates that particles can interact only at
distances no greater than d. Finally, we define R" by the

formula

R"{u,v) = ¢ 1 - 1 (12)

(Dist(u,v))?  (Dist(u,v))?

where ¢ is a constant.
Several important conclusions can be drawn from the

simulation specification technique which we have used in this

section. First, the method of discrete simulation is perfectly
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3.4.3 Specification Language

suited to the modelling of continuous real-world processes to The specification language is essentially a subset of

any desired degree of accuracy. (Accuracy in this model is ordinary algebraic notation with the introduction of the
determined by the precision of the numerical computations and primitive exchange "functions" to define interacting discrete
by the time step At, both parameters of the model.) By processes. We suppose that the designer of a specification may
extension, we can model discrete real-world pracesses or wish to use a language that is specially adapted to a specific
hybrid combinations of both continuous and discrete processes, application area, thus our formal engineering laboratory should

for example, a hardware processor with both digital and analog be multi-lingual and accept a variety of specification forms.

components. Second, we have a specification in such detail This may easily be arranged by defining our specifications as
that implementation amounts simply to performing the calcula- a structured data object that serves as an intermediate form
tions implicit in the equations. In contrast, if we had given for our specifications. Any desired source language that can
a set of differential equations then the implementation would be translated to our intermediate form is thus supported. This
involve choosing methods for solving these equations, where intermediate form is not very suitable for humans as a source
not all methods would produce identical results. Furthermore, language, S0 we must introduce a prototype source language.

accuracy of the model would not be specified as a direct

. . 3.4.3.1 Informal Specification Langquage
parameter but would nevertheless need to be considered in the

. . The normal algebraic specification of distributed processes
choice of computation method.

is already a convenient notation that can be used informally

[Fi77] Fitzwater, D. R., "The Formal Design and Analysis of (with usual conventions) to develop and communicate specifica-
Distributed Data-Processing Systems," University of
Wisconsin Computer Sciences Department, Report CSTR 295, tions. We will occasionally present examples in just that way.

March 1977.
For example, the tidal wave model of the previous section is
{crcc76] Greenspan, D., M. Cranmer and J. Collier, "A Particle

Model of Ocean Waves Generated by Earthquakes," c:wcwuu defined in that way. This is a familiar and natural notation

sity of Wisconsin Computer Sciences Department Technical .

Report 277, September 1976. to use. The new aspect is the interpretation of functions so
[Gr77] D. Greenspan, unpublished results. defined as specifying systems. The caveat is that some

algebraic forms are too complex to be used in our specifications
and must be avoided. The next section will define the permissible

constructs.
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3.4.3.2 Specification Source Language

In this section we will provide a formal grammar and an

informal semantics for a specification source language to be

used by the systems designer. It may easily be mapped onto a

closely related language designed for internal coding in con-

junction with data bases and automated analyses. This latter

language is described in the next section and those following

it prefixed by 3.4.3.3. The correspondence between the two

lanquages is so close that direct semantic parallels will be

obvious to the reader and need not be pointed out. For the

formal description of the source language we will use a nota-

tion recommended by Wirth and described in Appendix C of this

report. The production rules are now numbered and listed

without intervening text. A detailed description of their

semantics will then follow.

(1)

{2)

(3)

(4)

{5)

(6}

DEFINITION = BLOCK|SPECIFICATION|SET|FUNCTION.

BLOCK = “LET® NAME “BE” DEFN_LIST “EB” [ATTRIBUTES].
DEFN_LIST = (DEFINITION|REPEAT DEFN_LIST")“){*, “DEFN_LIST}.
wmmmyeum«zmowmcmmanme,.\mcmmowuma,,\.

NAME = SYMBOL [SUBSCRIPTS].

SUBSCRIPTS = ﬁmcmewHWH_mxszb SUBSCRIPT “(“ SUBSCRIPT™ ~
I

SUBSCRIPTS “)"1{" “SUBSCRIPTS}.
s
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(7)

(8)

(9)

(10}

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

SYMBOL = {ALPHABET|DIGIT}ALPHABET{ALPHABET|DIGIT}.
SUBSCRIPT = SUB_CHAR{SUB CHAR]}.

SUB_CHAR = SUB_ALPHABET|SUB_DIGIT.

DIGIT = “0°|~1°{ 2"(*3"[ 47| 5| 67| 7"|~8" | 9".

SUB_DIGIT =

LA AP A RViS RN i e RPN B
ATTRIBUTES = “WITH” STRING {", “STRING}.

STRING = *"“{STRING_ELMT}""~.

STRING_ELMT = DELIMITER|NON_DELIMITER|STRING.
DELIMITER = “(“{) 7|~ [“|* 11~ 07| ysi~: =1 0 7

JO\_INX_)C\~IX\ .

NON_DELIMITER = DIGIT|SUB_DIGIT|ALPHABET|SUB_ALPHABET.
LITERAL = STRING|BOOLEAN|INTEGER.

BOOLEAN = “TRUE”|“FALSE~,

INTEGER = DIGIT{DIGIT!}.

SPECIFICATION = “LET” NAME “=° ™ (“FUNCT_LIST") “[ATTRIBUTES].

FUNCT_LIST = (FUNCTION|REPEAT FUNCT LIST")“){", "FUNCT_LIST}.
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(22) SET = “LET” NAME “z° [SET_EXP] [ATTRIBUTES]. (37) PFTUPLE = ~("EXP_LIST")",

(23) SET_EXP = SET_FORMER|SET_UNION|SET_CROSS|SET_INVOC. (38) EXP_LIST = (FUNCT EXP|REPEAT EXP_LIST")”){",”EXP_LIST}.
{24) SET_FORMER = ~{“ITEM LIST"}". (39) SELECTOR = “[”“[PAIR LIST", “]JFUNCT_EXP"]~.

(25) 1ITEM_LIST = (ITEM|REPEAT ITEM_LIST) ) {*, ITEM_LIST}. (40) PAIR LIST = (PAIR|REPEAT PAIR LIST")"){“, PAIR_LIST}.
(26) ITEM = NAME|LITERAL. (41) PAIR = FUNCT_EXP “:” FUNCT_EXP.

(27} SET_UNION = Ammexnwwg_mmzmor SUBSCRIPT" (“SUBSCRIPT y” (42) FUNCT_INVOC = LITERAL|NAME_LIST™ (”[EXP_LIST]")~.

SET_UNION)”) {"u”SET UNION}.
(43) NAME_LIST = (NAME|SYMBOL SUBSCRIPT

(28) SET_TERM = SET_FORMER|SET_INVOC|® (“SET_EXP)“. * (“SUBSCRIPT “o” NAME_LIST“}”} {“¢” NAME_LIST}.

(29) SET_INVOC = NAME. The following semantic descriptions of the productions

. above are numbered according to the production(s) to which they
(30) SET_CROSS = (SET_TERM|SYMBOL SUBSCRIPT" ("SUBSCRIPT"x”
refer. (Where productions are not discussed individually below,

sty ” “x“SET_CROSS : . . . :
SET_CROSS™) { £ } their purpose is considered obvious from related productions

(31) FUNCTION = “LET” NAME “:” SET_EXP "+~ SET_EXP and mnemonic nonterminal names.)
[“WHERE~ NAME [PARAMETERS] “=~ Mczoelhxmu~V66wchHmm_.
(1) Every sentence in the source language consists of a
(32) PARAMETERS = ~ (“PAR_LIST}”. definition, which in nontrivial cases is also a block.
(33) PAR LIST = (PAR_ELMT|REPEAT PAR LIST") ")} {“, PAR_LIST}. (2) A block is a named sequence of definitions. Each defini-

tion in turn consists of a name plus the set, function,

(34) PAR_ELMT [NAME] | PARAMETERS .

specification, or block associated with the name (see
(35) FUNCT_EXP = mwlez<on_mecwbm_mmbmneow“mcznalﬂz<on. production (19)). Since blocks may be nested we adopt

the usual convention that a name has scope only within
(36) PAR _INVOC = NAME.
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(4)

the block in which its associated definition occurs.
Further, if multiple definitions occur for the same name
in different levels of nested blocks then the innermost
definition supersedes all similarly named definitions
within which it is nested. Finally, multiple definitions
within a single definition list, that is, where neither
of two definitions with the same name is nested within

the other, are not vmna»w«mm for reasons of consistency.

A symbol used as an iterator (dummy) variable has scope
only within the set of parentheses which immediately
follows it, and the usual name scoping rules apply
wherever the iteration construct nests such variables.
The use of the iteration construct can be found in
production rules 3, 6, 21, 25, 27, 30, 33, 38, 40, and
43, where the construct is always of the form:

SYMBOL SUBSCRIPT ( “SUBSCRIPT DELIMITER o)~
and o stands for a series of one or more substrings all
separated by the same delimiter as that preceding the a.
(If the substrings are themselves iterator constructs
then they must be derived by the same production.)
Iteration implies merely a shorthand notation for writing
a list of items separated by some specified delimiter,
for example, the “x” in production (30). If we call the
integers associated with the subscripts in the iterator

construct sy and Sy then the number n of items in the
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(implied) expanded list which iteration indicates is
mwumw+v for s,>s, and zero otherwise. If the iterator
symbol does not appear in « then we indicate a list of n
identical items. If the iterator does appear in a then
we indicate a list of n items formed by textual substi-
tution of digits and/or subdigits (see productions (10}
and (11)) for the iterator symbol(s) in each item. More
specifically, the strings representing the integer values
mw.ww+w.mw+m.....m~rw~mm
are substituted for all occurrences of substrings match-e
ing the iterator symbol in the respective n items in the
expanded list. The matching substrings may occur within
symbols or subscripts. Each symbol or substring is
scanned from left to right for non-overlapping occurrences
of the substring matching the iterator symbol. Then all
substitutions of integers for symbols are made simul-
taneously to yield the new string. For example the list
mw.wm.mubh can be represented as simply wwﬁa.wwv~ where
the iterator symbol i occurs as a subscript. Other
examples of textual substitution of integers for iterator
symbols can be found in section w.».w.u.m.m.wb connection
with the semantic base language representation for the

iterator construct.
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(5)

(7)

(8-9)

A name is denoted by a symbol which may be accompanied

by one or more subscripts separated by commas (themselves
subscripts, as opposed to ordinary commas) . Two identical
symbols with different subscripts or different numbers

of subscripts are considered as distinct names. Wherever
n:mﬁwwmnwnou construct occurs, of course, we are referring
to the textually substituted subscripts implied by the
iterator symbol rather than the symbol itself. That is,
we consider the iterated list to be fully expanded for

the purposes of name identification.

Symbols may not be any of the following reserved terminal
strings: “PRUE”, “FALSE”, “BODLEAN”, “INTEGER’,
“~CHARACTER”, ~STRING”, “WITH”, “LET”, “BE”“, “EB”,
“WHERE®, “XC°, “XA”, or “XS”. The nonterminal ALPHABET
is not defined here since we have not chosen a particular
character set. However, it may be rewritten as w:% one
of a set of terminals which includes at least the letters
of the alphabet and which shares no characters in common
with sets of terminals for DIGIT, SUB_DIGIT, SUB_ALPHABET,
or DELIMITER. In this report we do not distinguish

between capital and lower case letters.

A subscript may be either an integer or a symbol, A
symbol used as a subscript must correspond to an lterator

symbol or to a named constant, Again, as for ALPHABET,
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(12)

the set of terminals associated with SUB_ALPHABET is not
specified. However, this set does not have any characters
in common with ALPHABET, SUB_DIGIT, or DELIMITER. In

this report all characters in the set for SUB_ALPHABET
are written as subscripted versions of ordinary letters

of the alphabet.

Attributes are uninterpreted comments which may be

appended to definitions.

(13-14) The left quote and right guote always occur in pairs

(20)

and are neither delimiters (see production (15)) nor
non-delimiters (see production (16)). Hence the non-
terminal ALPHABET cannot be rewritten as either quote

mark.

A specification consists of a set of one or more state
successor functions corresponding to a set of possibly
interacting asynchronous processes. Processes interact,
of course, via exchange functions, No interactions are
possible between processes defined in different specifica-
tions since exchange classes have scope only within the

specification in which they are defined.

(22-30) If no set expression occurs in production (22) then

the set named in that production is primitive, that is,

not specified in the source language. Otherwise, the
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rules for forming sets permit only explicit definitions
of sets in terms of literals and named constants
(productions (24-26)), in terms of unions of sets defined
elsewhere (productions (27-29)), or in terms of Cartesian
products of sets defined elsewhere (productions (28-30)).
Azm?mm constants (production (26)) differ from literals
in that they have no explicitly assigned value; they are
declared as distinct entities by their appearance in an
item list.) There is no operator precedence associated
with the symbols “y” and “x” and the syntactic rules
prohibit the mixing of the symbols in a set expression
without the use of parentheses. For example, AuBuC and
AxBxC are valid set mx@nmmmwomm but AuBxC and AxBuC are
not. The following, however, are legal set expressions:
(AUB)*C, Ax(BuC), Au(BuC), and (AxB)xC. The union
operator is, of course, both commutative and associative
so that the following set expressions are macw<mwmawu
AUBuC, (BuB)uC, and Au{BuC). On the other hand, the
Cartesian product operator is neither commutative nor
associative, so that no two of the following set expres-
sions are equivalent: AXBxC, (AxB) xC and Ax(BxC).
superfluous pairs of parentheses are ignored. Thus the

set expressions (Ax(B)), (AxB), and AxB are equivalent.

- 110 ~

(31-38) A primitive function is specified merely by its name,

the two set expressions for domain and range, respectively,
and possibly some attributes. fThat is, no mapping between
the sets is given. However, for non-primitive functions
we have in addition a parameter list, which must be of
the same data type as the elements in the domain of the
function, and a functional expression, which must evalu-
ate to a form which is of the same data type as some of
the elements in the range of the function. (By data
type we mean the tuple structure of set elements defined
by Cartesian products of other set elements.) A single
name always suffices as the sole parameter in the
parameter list., However, if the elements in the domain
of the function are defined by Cartesian products of
sets then the parameter list may be written in any
(syntactically correct) parenthesized fashion such that
each parameter and parenthesized list matches a set or
set expression in the domain definition. 1In a similar
fashion each function invocation (see production (42))
and parenthesized function tuple (see production (38)) in
the functional expression (see production (35)) defining
the function must correspond to a set or set expression
in the range of the function. A few examples will help
to clarify these statements.

If we consider the function

£ such that
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£: (Ax(BxC))xD + Ex(GxF),
then the following represent a few possible mappings
for defining f:

£(x) = gy (x)

£(x)

it

(g5 (x),94(x))
flu,v) = gylv,u)

flw,(y,2)),v) = (h,{2), (hy(w), hyly,v)))
where it is assumed for consistency that other defini-
tions in the specification allow us to infer that
dom £ < dom 9y mngv e Ex(GxF), dom £ < dom : 0%
aNAxv € E, dom £ < dom 94r 93 € GxF, Dx(Ax(BxC)) < dom 9y
maﬂc,cv € Ex{GxF), C < dom vw. VHANV € E, A c dom r-
hy{w) € G, BxD ¢ dom h,, and hy(y,v) ¢ F. By definition
the parameters n.,<. W, X, ¥, and z refer to elements in
Ax(BxC), Db, A, (Ax(BxC))xD, B, and C, respectively.
Parameter names {(but not ooyammv may be omitted from the
parameter list (see production (34)) if they do not
appear in the functional expression in the function
definition. For example, a constant function needs no
parameters. Finally, we should note that parameters
have scope only within the function definitions in which
they occur. Also the repetition of a parameter name in

a parameter list is inconsistent and so is not permitted.
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(39-41) A selector function allows the conditional evaluation

of functional expressions. The first member in each
pair of functional expressions (production (41)) must
evaluate to a Boolean result. Evaluation of the selector
function itself goes as follows. The first member of
each pair of functional expressions is evaluated in turn
from the leftmost pair to the rightmost until the value
TRUE is encountered for some expression. Then the second
expression in that pair is evaluated and constitutes the
value of the selector function. If no TRUE value is
encountered in any pair of expressions then the final
expression in production (39) is evaluated instead and
the result becomes the value of the selector function.

No functional expressions in the selector function are

evaluated except for those mentioned above.

(42-43) A function invocation is either a literal or a list of

one or more function names (indicating composition of
functions) with an expression list. In the latter case
the evaluation of the function(s) and expression list
follows the ordinary rules of algebra. The expression
1list must, of course, evaluate to some mwnm-w%mm which
conforms to the elements in the domain of the last
function named in the name list. Similarly for mmm:
contiguous pair of function names in the name list the

range of the second function must be contained in the
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domain of the first function. Note that the expression
list is empty only when the last function in the name
list has no parameters in its definition, that is, is a
constant function. However, parentheses are required
following the name list even for a null expression list
mm that function names and parameter names are always
syntactically distinguishable. Elements in the expres-
sion list are evaluated in indeterminate order, possibly
in parallel, precisely once, regardless of whether they
have a corresponding parameter name in the definition
of the function. Naturally, when expression lists are
nested the ordinary precedence rules of algebra apply.
zwamww. all of the arguments Wm a function muyst be

evaluated before the function itself can be evaluated.

A final addendum pertaining to the specification source
language is that blanks may be inserted anywhere mxomvﬂ with-
in symbols, strings, or integers without altering the syntax.
We require that reserved symbols (see note (7) above) be pre-
ceded by one or more blanks and that unsubscripted reserved
symbols (i.e., those other than XC, XA and XS) be followed by

one or more blanks.
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3.4.3.3 Semantic Base language

Our methodology consists of at least the following:
—- a set of procedures for producing specifications
-- automated tools to support the procedures

—- rules as to the applicability of each procedure and
tool R

Using the methodology, one starts with a “cloud" of vague,
informal, incomplete, possibly inconsistent or infeasible
vjdeas" of the desired behavior and generates an axiomatic
model. In the next stage, the axiom set and cloud are used to
generate the first effective, through abstract specification.
One then repeatedly applies the methodology to elaborate the
specification to arbitrary detail. From the first effective
specification onward, the design may be factored by any of a
number of techniques and given to several designers for
separate development. Each group may have its own set of
notational and managerial preferences, but each must produce
a specification which is, by nature of the earlier factoriza-
tion, a portion of the overall system specification.

In this section we describe a common design data base
representation language (a semantic base language) that will
provide the object structures to be managed in an implementa-
tion of our methodology. The Semantic Base Language (hereafter
called SBL) will serve as the common means for representing

specifications for the proposed Computer Assisted Formal
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Engineering Laboratory. It is envisioned that several user or
application specific languages will evolve in which to express
specifications and these will all be transted into the SBL.

In this way, diverse groups of designers may use their own
favorite notation to produce a specification which is part of
the overall system specification and may be tested and
analyzed with the same common tools. A set of "de-translators”
will also exist to map the base language into a form familiar
to the designer. In this way, diverse designers can see a
specification in a manner they are familiar with. It is also
envisioned that interpreting procedures will use the base
ianguage to simulate directly the system and display the
dynamic behavior. Figure 3.4-1 depicts these attributes.

We will describe SBL by a formal grammar which states
rules for forming sentences in the language. These rules are
called productions of the formal grammar and only represent
syntactic rules (i.e., the form of sentences in the language).
One may say something that is syntactically allowed in the
base language but is semantically disallowed (i.e., it can be
said in the base language but has no valid meaning in the
context of a specification).

T+ is our goal to explain informally the semantics of
each vnomronwo: in terms of common algebraic concepts.

In order to specify the production we have adopted (with
slight modification) a set of notational rules proposed by

Wirth and given in Appendix C.
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3.4.3.3.1 SBL Principles
A brief discussion of some of the design goals for SBL

may help in understanding the SBL structure described in the

next section.

3.4.3.3.1.1 Content

The SBL language consists of definitions (primitive and
nonprimitive) of sets, functions, specifications, and blocks.
Each such definition must mxwwwnwwww code the corresponding
source language definitions so that a de~-translator from SBL
to source language can be constructed. This property ensures
that the required specification properties are testable and

preserved in SBL.

3.4.3.3.1.2 Block Structured
The definitions in a specification should be collected

into blocks in order to control their scope and allow distribu-~

tion of blocks over a network of interacting design laboratories.

These block structures should be nested so that blocks may be
themselves split into subblocks.

The definitions in the nested blocks should have extent
(in the normal Algol way) so that designers may freely choose
their definitions without conflicts in symbols. As a conse-
quence, we will use the Algol block and declaration structures
as the basis for SBL. We include here a brief discussion of

block structure concepts.
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A block structure creates a tree-structured environment
for elements in the specification such that each element has
a unique "range" over which it applies. Any element defined
in a given block is known to innermore (leafward) blocks and
unknown to outermore {(rootward) blocks. Algol scope and
extent Hmwmm specify which elements are applicable as you move
from environment to environment. Refer to Figure 3.4-2 for
the following discussion of block structured, Algol-like scope
and extent.

The outer most block (root) is block A which has two
innermore blocks {(branches) B and C. Block C contains the
innermore block D.

- anvwonw A function X is mmm»:mn. its scope is all of
block A including blocks B, C and D (since they are in A).
similarly functions Y and 2 defined in blocks B and C
respectively have B and C as their scope. Note, however that
2 is also defined in block D. This causes the meaning of 2
+o reflect the definition of 2 at the beginning of block D
whenever a reference to 2 appears inside block D. This means
that any reference to 2 outside of block D must have been
defined elsewhere in the current environment, as specified by
the block nesting.

The environments in the example are:
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A: A only
B: B (innermost) - A (outermost)
¢C: C (innermore) - A (outermost)

D: D (innermost) - C (outermore) =~ RA{outermost)

Anything not defined in present block must be defined in an
outermore block. Note also that anything defined in an inner

block is unknown to an outer block.

3.4.3.3.1.3 Machine Independence

The SBL should be machine independent so that the design
laboratory and the methodology may be readily transported to
design subcontractors and used on many projects. We will
define all of our methodology in terms of SBL constructs. A

new implementation will require only an implementation of an

interpreter for the definitions. It is essential that designers

be insulated from individual implementation idiosyncracies
since designs produced on many different implementations will
be integrated into the final specifications.

We will require the SBL to be recursive in the sense that
a specification can be treated as a data object in another
specification. We can thus design our laboratory and define
its structure in the same way that we design application
systems. Evolutionary operations may then be defined in the

same formalism.
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3.4.3.3.1.4 Tuples

We will use the abstract algebraic structure called tuples
to represent sentences in SBL. In effect, tuples represent an
abstract data type and our design laboratory will be defined
in terms of that data type. Each tuple will be typed so that
it is possible locally to identify the context and proper
interpretation of definitions. Thus SBL will be a strongly
typed language. General strong typing implies that one knows
the type of an element gimply by inspection. In the case of
the base language, all tuples will contain as their first
element a unique tuple type tag, hence very strong typing is
used.

In addition, the base language will be represented by a
context-free grammar. Thus for each production there will
be only one nonterminal on the left side, implying that there
are no places where a nonterminal's meaning depends on the

context in which it is used.

3.4.3.3.2 Semantic Base Language Description

We shall proceed in the description of the
semantic base language in a bottom-up fashion., We give a
precautionary note that some nonterminals do not derive
terminal strings. This is due to one of two cases: (1) the
productions are dependent on the particular character set

chosen, or (2) the exact terminal string(s) derived are not
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important to the present discussion. some examples of the
second case are the different nonterminals for the different
tuple types. The exact coding for a particular type indicator
(for example BOOLEAN TYPE) is not important to the present

discussion.

3.4.3.2.1 LITERALS
LITERAL = ,A\moovm>2|nmmm,.\moovmvz,v\_
,A\Hzamomxaﬂmmmq.\Hzemmmw,vs_
* (*STRING_TYPE", "STRING™) .
BOOLEAN = “TRUE’|“FALSE’.
INTEGER = DIGIT{DIGIT}.
DIGIT = ,o\_,w\_,w\w,u\_,»\_,m\_,m\ﬂ
1741%87]%9". )
STRING = ~“{STRING_ELMT}""~.

STRING_ELMT = ZOZIDcoam_mHNHZQ.

A literal is a boolean value (TRUE or FALSE), an integer
value (sequence of digits), or a string. A string is a
sequence of characters and (sub) strings enclosed within
quotes. The nonterminal NON_QUOTE has not been expanded; it
should derive every character in the character set except left
and right quote marks. Note that left and right quote marks

are not permitted in a string except to indicate substrings.
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3.4.3.3.2.2 Names

NAME = SYMBOL|™ (“NMT", “SYMBOL[","SUFFIX_LIST]")~.

SYMBOL = NON_DELIMITER{NON_DELIMITER}.

SUFFIX_LIST = (SUFFIX|>("ITT", “ITERATOR_CONTROL", ~
SUFFIX_LIST")”){", "SUFFIX_LIST}.

SUFFIX = SYMBOL|INTEGER.

ITERATOR_CONTROL = SYMBOL", “SUFFIX", “SUFFIX.

A symbol is a sequence of characters which does not include
one of the delimiters “(°,)", *,”, *°7, or “““. We place a
further semantic restrictions that a symbol is not an integer
nor is it one of the reserved symbols “PRUE”, “FALSE",
“BOOLEAN”“, “INTEGER”, “CHARACTER”, or “STRING”. Now a name
is either a symbol as described above or a name tuple. A
name tuple is a subscripted symbol. The suffix list provides
the list of subscripts. Before we describe the suffix list
we will explain the iterator construct (which, as we shall
see, provides a macro-like facility).

Often we are required to list a large number of items,
for example a large number of suffixes. An explicit listing
would be cumbersome, so we add a facility to list the items
in a rather concise fashion. (An analogy can be drawn to
Fortran which provides an implied DO-loop for listing array
elements in a rather concise fashion.} Here we will provide

the iterator construct.
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The iterator consists of an iteration control followed by
a list which is to be iterated over. The iteration control
consists of an index {(the symbol) which is like the loop
index in Fortran. The next two items are suffices indicating
the starting and ending values of the index. These suffixes
for starting and ending values must be either an integer
constant or a symbol which is an index for a containing
iterator. (Iterators may be nested, as may implied DO-loops
in Fortran.) With this restriction on suffixes we can look
merely at the iterator to tell the number of iterations; no
"run-time" values are needed.

The iterator generates a list of items {suffixes in this
special case). For each value of the index in the specified
range, a copy of the m:mmwx list is added to the
iterator-generated list, with each textual occurrence of wvm
index replaced by the text for the integer value. (If the
ending value is less than the starting value the list generated
is empty.) The replacement is done in a left to right fashion.

Some examples may help clarify the situation.

(1T, I, 1, 10, I)

is equivalent to 1,2,3,4,5,6,7,8,9,10
(rrtr, I, 1, 5, ~s1”, SI)

is equivalent to ~s1”,s1,%s2”,s2,%837,s83,
~54°,84,%857,85

- 123 -



(IrT, M, 1, 2, (ITT, N, 1, M, NM, MN))

is equivalent to (ITT,N,1,1,N1,1N), (ITT,N,1,2,N2,2N)

is equivalent to 11, 11, 12, 21

We can now continue with a description of the suffix list.
A suffix list is a list of suffixes and iterators (over suffix
1sits). A suffix is a symbol, an integer constant, or a

named constant.
3.4.3.3.2.3 Sets
SET = * (“SET_TYPE", “NAME[", “SET_EXP][", “ATTRIBUTES]") .

Here we have a set definition. Each set has a unique
name. The set expression, if present, gives a definition of
the set (as explained below). If absent, the set is considered

to be a primitive set.

ATTRIBUTES = “(“A_TYPE{“, “ATTRIBUTE}")”.
ATTRIBUTE =  (“USER_ATYPE", “STRING") ",

USER_ATYPE = ZOZIbMBHBHamWmZOZIUMUHEHHMWw.

Attributes are informal comments that do not affect
formal properties of specifications. The tuple of attributes
is given a type via our nonterminal ATYPE. (Remember we have
not and will not expand it here.) For the tuples within this
one the user is free to define his types. However, we must

make a semantic restriction that the type not be one of the
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types we use in our Bemantic base language
SET_EXP = SET_CROSS|SET_UNION|SET_INVOC|SET FORMER.

A set expression is used to produce a set result. Set
cross produces the cross product of the two or more sets.
Set union produces the union of two or more sets. mmw
invocation allows us to use @Hm<wo¢www defined sets. Set

former allows us to construct a set by listing its elements.

SET_CROSS = " ("CROSS_TYPE", “"SET_LIST") .

SET_UNION

it

* (“UNION_TYPE", “SET_LIST")”.
SET_LIST = Ammelhxv_rA\Heer.\Hamw>6HOZIhOZHWOhr~‘

SET_LIST")“){*, "SET_LIST!}.

Here we define cross products and unions of a list of
sets. A set list is a list of set expressions and iterators
over set lists. We place a semantic restriction that the

set list contain at least two sets.
SET_INVOC = S ("SINVT™, “NAME") “.

Here we invoke an intrinsic set (for example integer) or
a set previously defined by the user of our formalism. The

set invocation will be used in a set expression.

SET_FORMER = “~(“FORM_TYPE“,” ELEMENT LIST")".

ELEMENT_LIST

ELEMENT_LIST")“) {“, ELEMENT_LIST}.
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(SYMBOL|LITERAL|" (“ITT",” ITERATION CONTROL™,”






Here we explicitly construct a set by listing its members. £: A x B + A where f(a,b) = a. The second argument need not
Its members may be literals or symbols, which are interpreted be named since it is not used, as can be seen in the following
as named constants. Named constants mvaoﬁ normal pame scoping specification of £.
rules. The appearance of a named constant in a set former is
an implicit declaration of that named constant. (roNCT, £, (PEEHE. @0 )+ (CROSS_TYEE: (SINVE, ), (SINVE, B}
(SINVT, A} , (PARINVT, a))

3.4.3.3.2.4 Functions
Also note that the nesting of parenthesis is important. That

PUNCTION = “~(“FUNCT",” NAME (“,” PAR LIST] ~,” js, if £: A x (B x C) x D+ E, then a description of arguments
SET_EXP",” SET_EXP [",” FUNC_EXP] should be (PELMT, a, (PELMT, b,c},d) and not (PELMT,a,b,c,d),
[*~,” ATTRIBUTES]"™)". which would be proper if £: A x B x € x D + E.
Here we have a function definition. Name is the function FUNCT_EXP = PAR_INVOC | SELECTOR| FTUPLE | FUNCT_INVOC.

name, followed by a (possibly empty) list of parameters,
: A function expression is simply a parameter {see example
followed by two set expressions giving the domain and range,

of projection function above), a selector function (a
followed by a definition of the function's computation,

functional form of a case statement with an otherwise part) .,
followed by some informal comments. If the function expres-
, . . a tuple of function expressions, or an invocation of another
sion is not present, the function is considered to be a

f o sas function. Before we continue and elaborate the permissible

primitive function.

forms of a function expression, we will define the semantics

PAR_LIST = ([NAME]|>(“ITT>,” ITERATION CONTROL®," of function evaluation. In order to evaluate a function
PAR_LIST"} |" ("PELMT", “PAR_LIST")") £(51,E2,...En), all its arguments El,E2,...,En are evaluated
{*,“PAR_LIST}. ) first to come up with associated values vi,V2,...,Vn. Then

. vi,Vv2,...,Vn are used in the defining computation. So our
Here we list the formal parameters for the associatlon
R evaluation of functions resembles call by value. Notice that
function. Name is optional because we may not want to name
the reason that we are forced to discuss this issue is that our
part of a domain, An example of this is the prajection function
functions may have side effects {because of asynchronous
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interactions via exchange functions), so we must specify when right. If no Bi evaluates to TRUE then En+l is the result of
and how many times an argument is evaluated. Without side evaluation. Otherwise let Bi be the first B that evaluates

effects these considerations are not important. to true. The result of evaluation is then Ei. Note that Bj

is not evaluated where i < j < n.

PAR_INVOC = ° (“PARINVT",” NAME®)~.

FTUPLE = ° (“FTUP~,” FUNC_EXP_LIST")”.
Here we invoke a parameter. The result of a parameter
FUNC_EXP_LIST = (FUNC_EXP|" (“ITT",” ITERATION_CONTROL™,”

invocation is the value of the associated parameter (as
FUNC_EXP_LIST") ") {",” FUNC_EXP_LIST}.
described in the previous paragraph).

Here we define a function tuple, which is just a list of

SELECTOR = “ (“SELT {*,” PAIR_LIST], FUNCT_EXP")~.
- function expressions. Again we can use an iterator to list

PAIR LIST = (PAIR|®(’ITT",” ITERATION_CONTROL®,” PAIR LIST") ")
- - - some of the function expressions. The value of the function
{*~,” PAIR LIST!}.
- tuple (El,...,En) is (Vl,...,Vn) where Vi is the result of

PAIR = ~ (“PAIRT",” FUNCT EXP",” FUNCT_EXP")‘.
- - evaluating function expression Ei, 1 < i <n.

A selector function consists of a list of pairs of
FUNCT INVOC = LITERAL|" (“FINVT",” NAME_LIST {~, "FTUPLE]™)".

function expressions followed by a single function expression.
NAME_LIST = szzm_;n\Heﬂr.\ HewwweHOZIhOZHNObr.s

We can use the iteration construct to 1ist some of the pairs,
NAME_LIST)"){“, NAME_LIST}.

A pair consists of two functions; the first is a boolean

function, the second a function that produces a result in the Here we have a function invocation. A function invocation
proper range for the selector function. can be literal, that is an expression whose result is always

The selector function is a functional form of the case the same. In the second choice for the function invocation
statement with an otherwise part. Let amw"mw.....msnmb.m:+wu production, the 1ist of names are functions which MHm composed
be a selector function. For 1 < i < n, Bi:Ei is a palr where to operate on the arguments (the function tuple). The function
pi is a boolean function and Ei is a function whose range is tuple is optional as some functions can have no arguments (for
the same as Ej for 1 < j < n+l. The evaluation of the selector example, a function that reads a clock). An example of a
function is done as follows. The B's are evaluated left to function invocation would be fegoh(x) (or equivalently

s
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i a h
£(g{h(x)))), which would be encoded as (FINvT,£,9.D) 3.4.3.3.2.5 Specifications

(PTUPT, (PARINVT, x))).

SPECIFICATION = *(’SPECT", “NAME [*, F_LIST]
£~ , “ATTRIBUTES] ") “.
FLIST = (PUNCTION|> (“ITT", ITERATION CONTROL,~”

F_LIST")") {,”F_LIST}.

A specification is a named listing of asynchronously
interacting processes. The list of functions are state
successor functions for processes (and thus have the domain and
range identical). We place a semantic restriction that there
are no inter-specification exchange classes.

Given initial values for the domains of the processes in
the specification, we could then simulate the behavior of the
processes by applying the state successor functions. Note

again that the processes are asynchronous.
3.,4.3.3.2.6 Blocks

BLOCK = ~ (“BLOCKT", "NAME [~, DEF_LIST]
{*, “ATTRIBUTES] ).
DEF_LIST = AUMMHZHHHOZ_/A\Haar.\HﬂmwbﬂHOZIhozewObr~\

DEF_LIST")?) {*, DEFINITION}.

A block is a named list of definitions (to be described

below). Thus we can provide Algol-like name scoping rules.
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3.4.3.3.2.7 Definitions

DEFINITION = SET|FUNCTION|SPECIFICATION|BLOCK.

B

This is the start symbol of our data Ummm representation
language. With thig representation language we can encode set,
mcsoﬂwozp and specification definitions with an Algol-like
block structure. The representation language was chosen to be
an encoding that is easily manipulated by machine and not as a
language to be written and read by humans. The actual strings
in the representation language are typed tuples as described

by the above productions.
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3.4.4 Computer Assisted Formal Engineering Laboratory (CAFEL)

The specification semantic data base becomes the object
of our DDP methodology. The implied computer system must
support a large, distributed, multi-user, data base that can
easily evolve with our desiagn theory.

The data base will be large because of the scale of the
gystems being designed. The data base must be distributed
since many contractors may be involved in the associated
development processes. Many designers may be operating on the
data base in parallel and distributed control must be provided
to maintain integrity and consistency of the specifications.

We may use our specification methodology to develop this
CAFEL. We have only begun such a development and most of the
design work remains to be done. Even so, the exchange graph
characterization of the proposed CAFEL design at a high level
of abstraction provides an interesting example of a distributed,

hierarchical, real time data base system.

3.4.4.1 Buffered Interactions

We will require the processes of CAFEL to operate as free
running with only XS type of interactions. Thus they may be
distributed freely without design constraints. In effect, each
process is autonomous in nrm.mmSmm that any local operation may
be done locally no matter what the other processes may do.

Synchronization between such processes is voluntary. We may
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accomplish this autonomy by the use of a standard buffer
process.

The buffer process is parametric and for each value of
the parameter, a new buffer process will be generated in the

specifications. The buffer process is defined in Figure 3.4-3.

3.4.4.2 User Processes

The user processes in Figure 3.4-5 are mere shells that
specify only that they generate commands for the data base
manager processes. Their elaboration may be user dependent.
The user process will be mapped by the local implementation
onto a "command channel." Several users may cooperatively
share a command channel. The control of access will be via
control of command channels. ermnm.SWPH be a unique “right
to receive" for each command channel that will exist in. some
data base manager (DBM) process. Users of that command
channel will access directly only the DBM that has the
corresponding right.

Each command channel may have at most one outstanding

command and the channel j buffer, BUFC_j, will not accept a

new command until the results of the previous command have been

returned to the originating user,

3.4.4.3 Data Base Managers
The data base managers contain the semantic data base,

which is a tree structure of nested blocks. The data base

- 134 -

XSX. XSDX
S ——
Ay ) xsrx XSDRX,
A i
XAX, XADX
PR G T
s xcrx, | BUFX.J  Ixcprx s
..... ol pidits T
xSX XSDX,
it 4
Ay XSRX XSDRX
S I ———— d

BUFX_1§ = xnwxuﬁxvcwxuawaxuﬁxbxuﬂmwbmmvuvv

Figure 3.4-3. Generic Buffer Process Model

The processes =Vw= will compete for the buffer by execut-

ing xmxu until the buffer accepts one of them. The buffer
will then provide the message to the first =mu= process that
executes xmuxu. A response by =mu= is then returned to the

buffer and then transferred to the originating "A" process.

The buffer process is simply (BUFX_j,) with a null state space.
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A Uwzw managers will also be tree structured and the semantic tree
blocks will be mapped onto the DBM tree while preserving the
nesting relationship. An example of this mapping is given in

1 A2 n3 PBM, y DBM, 2 Figure 3.4-4.

The definitions in a given DBM are in terms of other

vww vmw www wwu Umxwwp definitions in that DBM or one of its ancestor pBM. Thus all
definitional environments extend rootward in both the DBM and
BLOCK TREE ) MANAGER TREE block trees.

The command channel "rights" are originally vested in the
root DBM and are allocated to child DBM by the local policy of
each parent DBM. A DBM that has suballocated such channel
rights will not make any modifications in its associated blocks.
This constraint will prevent update conflicts between DBM,
and ensure an invariant environment down to the level of the
DBEM that is making local modifications. .

Each DBM will have a mcmzx buffer process where k is the
index for the parent DBM. This buffer is used for requesting
information from the more global data base blocks contained

in ancestor DBM. All of the siblings will compete for the

Figure 3.4-4. gemantic Data Base partitioning. use of this parent buffer. At most one parent request will be

A possible distribution of the blocks over the DBM is serviced at a time.

given by the following: 3.4.4.4 Service Processes

DBM; has A and Ry, DEMy, has A, and Ry - Each DBM may require a set of service processes to carry

UmZHm has Aj, A3y and Ripr Umzwww has wHH * out its commands. The requests for service will use BUFV_sm
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where & is the service and m is the DBM. At most one outstand-
ing request for each service by each DBM is possible.

In turn, a service process may need informatior from its
agssociated DBM (or its ancestors). The BUFS_m will be used
and at most one such request by the set of service processes

associated with the m DBM will be permitted.

3.4.4.5 Exchange Graph

The exchange graph of Figure 3.4-5 formally defines the
relationships between the processes. All of the possible inter-
actions are explicitly shown. The process specifications them-
selves are not shown and must vm developed. The exchange graph
has allowed the early recognition and resolution of the
distributed, multi-user, and hierarchical properties of the
data base system. mcvwmncm:n design decisions can be made on a
local basis and will not violate those described in the exchange
graph. This design also provides minimal constraints on the
local design decisions while allowing significant parallelism
and distribution in the mmmwm: data base management. This is
the beginning of the CAFEL design and a framework for subsequent

design.

3.4.5 Specification Analysis
Our formal specification language has the properties we
required. We am<m a brief description of why each of the

properties hold.
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The parameters are Ny, Ny, zm. No and each parameterized process represents a

process for each value of its index.
lines to all others in the same class.

clarity.

BUFC ¢ is used for commands from users to DBM.

wcmzua is used for commands from children to parent DBM.

BUFS_m is used for commands from services to the associated DBM.
BUFV_sm is used for commands from DBM to associated services.
Pn is the index of the parent DBM of DBM m.

Cy is the CHAN_j assigned to user u.

Exchange functions are connected by dashed
The connecting lines are suppressed for



3.4.5.1 Formality

A specification in our specification language is a sentence

in a decideable context~free language. Therefore it is a
formal specification.

The test for being in the context-free language is simply
a parsing algorithm that can readily be automated. The
existence of syntactic errors can be detected, analyzed, and

"displayed to the designer, just as for conventional programming

languages.

3.4.5.2 Consistency

A specification will be consistent if it is interpretable
as a system. We must require the definition of each symbol,
the matching of function domains with the corresponding argu-
ment, and the matching of the state space with the process
successor function.

Provided these conditions are met, the process mwmnwmwnml
tion is readily interpreted as a system generator, and thus
consistency holds.

The checks for these conditions may easily be made by
algorithms built into the parser for the context-free language.
All inconsistent conditions will be detected, analyzed, and

displayed to the designer.
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3.4.5.3 mmﬂmnnw<m=mmm

The specifications will be effective if there is a
universal interpreter for the state successor function that is
an algorithm. The only condition preventing that interpreters
existence is that of "logical blockage" of an exchange function.
Such a blockage would prevent the interpreter from finishing
the state successor function evaluations. Sufficient condi-
tions for testing for exchange blockage, are given in Appendix
A. If these conditions are met, the specification will be
testable for the algorithmic property.

The analysis for this property will mmnmon.mwwwcnmw of
synchronization at an early development stage or will certify
that interprocess interactions are consistently synchronized.

An important by~product of this property, is that a
specification is its own simulation model. It can be auto-
matically translated to executable code that wlll generate any
desired computation of the specified system. The designer may
thus carry out simulation experiments, confident that his
experiments match his designs.

The simulation experiments may include the "real world"
processes that drive the designed DDP system. The same design
theory and specification language can be used to specify the
desired "real world" processes and thus form a closure with

the control processes.
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Clearly, the development of the desired "real world"
behaviors, the desired control system behaviors, and simulation
models must all be carried out in parallel. ipn: our specifi-
cation language, these objectives can all be achieved in the

same specification.

3.4.5.4 Homogeneity .

The operator, E, can define a primitive function or set as
a consistent expression in a specification. The new specifica-
tion will be for a system that is contained in the more general
initial specification. The homogeneity of our specification
language follows immediately.

The automation of the operator E will provide a way for a
designer to introduce elaborations of primitives to a lower
level of abstraction {(i.e., in terms of more basic primitives). .
The consistency of this design change is ensured. The previous
design decision will still be valid since the effect of the
elaboration will be only to restrict computations in the
jnitial set to a subset that is the new system. No new behavior
will be introduced. Undesired old behavior can be eliminated.
This operator alone will allow substantial development progress

with completely automated validation.

3.4.5.5 Modularity
Our specification language is modular with respect to

asynchronous processes. The synthesizing operator is the
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asynchronous composition and the elaboration operator is just
as above.

Our specifications are hierarchically modular with respect
to the definitions of functions. The elaboration can be the
same as above and the synthesizing operators are the allowed
forms of functional expressions.

As a result of this property we can partition specifica-
tions into modules that can be locally designed. This will be

important for our subsequent methodology.

3.4.5.6 Informal Extensibility
The provision of attributes for each definition in a
specification is sufficient to produce the extensible property.
our formal analysis tools will not analyze these attri-
butes but CAFEL will preserve them and make them available for

any operations specified by designers.

3.4.5.7 Distributed

Our specifications include asynchronously interacting
processes. Any distributed system can thus be specified with
explicit requirements for synchronization and interprocess
control at any desired level of abstraction.

The simulation of such specifications will allow study of
the intrinsic distributed data processing system properties and

behaviors.
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3.4.6 Simulation

An important result of specifying systems using our
formalism is that the evaluation of a mmmnwmwnwnwos.mmwwwmm to
a set of initial states for the component subsystems is well
defined. A specification may be interpreted {or compiled to
implementing procedures) as a generator of computations. Thus
a specification at a suitably detailed level could be used to
produce automatically its own implementation via a suitable
compiler. In effect the distinction between system and program
design is one of level of detail, and of binding to either hard-
ware, software or firmware by the implementing compiler.

The simulation (generation of computations) of a
specification can proceed antomatidally to the level of detail
provided by the primitive functions and sets used in that
specification. There are several types of simulation
possible, based on the interpretation of primitives in the
specification. The values produced by reference to primitive
functions may be obtained at each of several levels of
approximation.

The first level is to interpret a primitive function by
making a stochastic selection of a value (with given probability
distribution) from its range. Thus, at this level, all
primitives can be simulated by the same parameterized procedure.

The next level is to provide some approximating procedure
for the primitive function that can be used to generate function

values.
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A third level is to provide an exact (but possibly not
optimized) procedure to generate function values. If the
specifications have been elaborated to very low level primi-
tives, the mwmnwmwcmﬂwos of the corresponding procedures will
permit the implementation of the system by a "compiler.”

The conventional discrete event simulation technique
requires that all vevents" must be mapped into instants of
simulated time and each "event procedure” must be evaluated
in a linear sequence of such procedures. Thus a distributed
system is simulated by a central (sequential) system in which
all asynchronous conflicts have been resolved as part of the
definition of the simulation experiment. This may easily lead
to the omission of critical distributed behavior problems from
the model. Certainly, the guantum of time resolution may be
decreased and, at great inefficiency, a "eorrect” simulation
may be produced. However, the inefficiency is frequently
prohibitive. A distributed system requires also a distributed
simulation. The conventional centralized simulation languages
make distributed implementation of the simulating system very
difficult. Our formal specification language is also a
distributed simulation language.

We must design our simulator so as to permit distributed
wamHmSmnﬁmnwoa. indeed, in the limit, the simulator system
will simply generate an implementation of the specified system.

Wwe will design our simulator using our formal methodology.
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Thus a CAFEL may be formally specified and a prototype simulator

may be used to generate a new implementation.

3.4.7 Conclusions

We have designed a prototype formal specification language
that has at least the formally required properties developed in
the previous sections. This language is a slight extension to
ordinary algebraic notation and can specify asynchronously
interacting processes with great generality.

We have started the design of a Computer Assisted Formal
Engineering Laboratory (CAFEL) that will provide the semantic
base for the development and analysis of specifications.

. Algorithms for the testing of the specifications can be
constructed in terms of the semantic data base structures. The
data base will serve as the common vehicle for further analysis
and development. .

The behaviors of the specified systems may be automatically
displayed by means of a universal interpreter (simulator) for
the formal specification itself. Thus the correspondence
between the design and its simulation model is ensured.

The present language specification should be viewed as a
prototype. We need to implement a version of the design
laboratory based on the current language in order to gain
necessary design experience. As a result of that experience,

we will surely wish to modify and extend the current language.
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It is difficult to acquire such experience by hand simulations
since the required analyses are designed for computer processing.

The immediate future work must then involve the design and
implementation of CAFEL. With the CAFEL we can support experi-
ments designed to validate the formal concepts, to identify
deficiencies, and to extend the current techniques of distributed
system design.

Upon completion of the above experiments, we amw design a
production version of CAFEL that would be suitable for general

utilization by system engineers and designers.
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3.5 Methodology

Our methodology consists of a set of procedures for
generating specifications, a set of automatable transformation
and analysis tools, and a set of rules for their use. As was
discussed in Section 3.1, we twww constrain our procedures to
support a homogeneous development process starting with very
abstract specifications (requirements) and ending with very.
detailed specifications (hardware and software designs).

In effect, the set of methodology procedures defines a
space of development processes. Each development process will
congist of some sequence of application of methodology proce-
dures to the results of previous development steps. Each
specification will define the ocnumdﬁ state of a development

process.

3.5.1 Introduction
Each methodology procedure must terminate in a speclfica-

tion that is testable for the propertles incorporated by that

procedure. This implies an automated validation of the results,

and is a severe constraint on our methodology.
Each methodology -procedure must also be practicall

applicable to very large specifications. This eliminates many

types of analysis and transformation, Fortunately, we can show

how to support a large set of powerful development processes

based only on procedures that satisfy our requirements.
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There are three types of methodology procedures, designer
generated, designer guided, and algorithmic procedures.

A designer may simply generate a specification as the
next state of the development process. This places a sevére
burden on the development of automated validation of the
resulting specification. Such a step is feasible only in
certain special circumstances as discussed below.

A designer may guide an automated generator for the next
specification. The required validation may be obtained by
either generating only valid results or by generating only
results that can be automatically tested and rejected if
unsatisfactory.

The methodology procedure may be an algorithm that will
simply produce a valid result. A designer could supply param-
eters to such an algorithm, but validation of the results wm
assured by the algorithm.

We have identified a set of methodology procedures that
are sufficient to support a large set of powerful development
processes. These procedures are briefly described in the
following subsections. Clearly some experience in their use

may lead to their modification and extension in future work.

3.5.2 Approximation
There are two types of approximation procedures, informal

and formal. In the former, satisfactory behavior of the
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resulting specification as confirmed by the designer is
gufficient for development process step completion. In the
latter, there is some formally specified correct behavior for
comparison with the resulting specification. In both cases,
the resulting specification is a formal one that precisely
specifies a system that may be an approximation to the desired

system.

3.5.2.1 Informal Approximation

A development process step may consist of a designer
producing a specification that, upon analysis, is more
satisfactory than the previous specification (if any). The
required tools are simply those provided in the Computer
Assisted Formal Engineering Laboratory described in Section
3.4.

The "more satisfactory" condition is informal and not
validated by CAFEL. The engineering laboratory will allow the
designer to run whatever gsimulation experiments or analysis
required to conclude that the specification is "more satisfactory."

This type of development step is particularly suitable as
an initial step of a development process that will subsequently
elaborate and optimize the specification. If this type of step
is used later in a development Process, CAFEL does not
automatically ensure the consistency of the resulting specifi-

cation with the preceding specification, Thus previous design
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decisions may no longer be valid for the new approximation
specification.

A development process consisting of only steps of this
kind is essentially similar to current practice with the addi-
tion of our formal specification techniques for describing
design decisions and of significantly greater analysis and
simulation tools in CAFEL. The use of CAFEL for this type of
development process already constitutes a significant improve-
ment of contemporary design methodologies for large scale
systems. The existence of CAFEL itself is sufficient to

support such development processes.

3.5.2.2 Formal Approximation

If we develop a formal way to specify required system
properties independently of the processes that would produce
them, we could provide a CAFEL analysis tool for comparing a
specification with those originating requirements. This would
be somewhat analogous to validating a proposed implementation
of an abstract data type. (If the required properties were
axiomatically specified by process independent relations
between system attributes we might not be able wo.hmsmnmnm a
suitable metric for ordering approximations.) CAFEL could then
compare using that metric and formally validate that a new

approximation is closer to the desixed system.
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wWhen a metric of "correctness®" can be established, we can
introduce a formal approximation procedure to our methodology.
We do not, currently, have such a metric to propose. An
alternative to formal approximation steps does exist in the

form of elaboration steps described in a subsequent section.

3.5.3 Decomposition/Integration

The complexity and scale of the development processes
require some way to decompose them into simpler development
processes whose results may be subsequently integrated. We
may distinguish two kinds of decomposition, informal and formal.
We must consider decomposition and integration procedures
together since, in general, how something is to be put together

depends on how it was taken apart.

3,5.3.1 Information Decomposition/Integration

If we informally generate several specifications (each of
a subset of the reguired system properties) that jointly
specify the entire set of system properties, we could then
carry out a development process for each of the specifications.
The subsequent integration of the resulting designs must also
be informal.

An example of this type of decomposition is to produce
separate specifications for site implementations (e.g., power,
weight, size, color, etc.), hardware implementations (e.g.,

TTL logic, CDC 7600, etc.), and software implementations (e.g.,
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functions to be performed, responses to be generated, etc.).
Each mwmnwmwnmw»os could be used to develop designs with some
interactions between the development processes. This is a
common way to decompose development processes.,

The major difficulty with informal decomposition is
discovered during the subsequent integration step in which the
separate designs must be consistently combined. As long as
the decomposition is informal, the composition {integration)
must also be informal. It is thus impossible to provide formal
analysis tools sufficient to insure that the separately
developed specifications will be consistent.

The existence of inconsistencies at system integration
time results in very expensive problems. The use of informal
decomposition and integration steps will be supported by CAFEL
only to the extent that the separate development processes are
supported. Interactions between development processes will also
be supported by the interactive distributed data base in CAFEL.

1f designers wish {or need) to use this type of decomposi-
tion, CAFEL will allow them to do so. However, CAFEL cannot
ensure the consistency either of the separate initial specifi-
cations or of the resulting specifications. CAFEL cannot
automatically generate the integrated specifications. It can,
of course, analyze and display the behavior of any specifica-

tion. A designer may thus carry out any desired tests or

studies using CAFEL. The existence of CAFEL itself is sufficient

for supporting this type of development step.
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3.5.3.2 Formal Decomposition/Integration

The difficulties involved in an informal decomposition
may be partially overcome if we can find a way to validate the
equivalence of the decomposed set of specifications with the
original specification. If we also constrain the decomposition
by requiring that the resulting designs can be consistently
integrated, we would then insure that the development process
would work properly (without introduction of errors) if the
separate decomposed development processes worked properly.
This type of decomposition thus insures the validity of the
overall process based on the validity of the separate processes.
There may be many different formal decomposition/integration
procedures, but the simplest one may be adequate for our
purposes and is described below. :

The decomposition procedure is to simply copy the original
specification and constrain subsequent development of each
specification to disjoint subsets of the functions in the
specification. Thus each development is carried out in the
context of the entire system. All functions not delegated to
a particular development process will remain invariant until
some subsequent integration. The equivalence of the decomposed
specifications with the original specification is trivially
ensured mW the copy operation.

The separate development processes must make only local

design decisions for those functions that can be modified in
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that process. Thus, if each development process produces a

specification with mmnwwmmonouw behavior, they may be automatically

integrated into a specification that has satisfactory behavior.
The integration step consists of constructing a specification
by combining the noninvariant functions from each of the
separate specifications.

The only possible difficulty with this integration is that
the resulting system may have been "overdesigned” since each
development must provide proper: responses to the original
behaviors of the invariant functions in spite of the possi-
bility that another development process may have specialized
those functions. The integration step will thus not introduce
any new behaviors or errors. It may discover overdesign, but
the resulting system still works correctly.

CAFEL can thus provide both formal decomposition and
integration procedures that are entirely automated. Decomposi-
tion may be carried out in any development state and integration
among the component development processes may be done in any
subsequent state. Intermediate integration of pairs of
component processes can be done at any step with the resulting
processes integrated with the remaining processes on some
subseguent step. Asymmetric interactions, in which one process
integrates results of another, but both continue separately, are
also supported by CAFEL. Intermediate integration is a manage-

ment tool to avoid the over design problem previously mentioned.
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Management may decide when and how much to decompose and
integrate at each development step without affecting the
validity of the development processes. This capability alone
will greatly simplify the task of managing a development

process while delegating design responsibilities.

3.5.4 Elaboration

An elaboration procedure will transform a specification §
into a resulting specification 8' such that S is an abstraction
of S§'. For example, if a primitive function is defined as an
expression involving new primitive functions and only local
exchange classes, the behavior of the new function will be only
a subset of the possible behaviors of the old (primitive)
function. Thus an elaboration procedure consists of accepting
a new definition for a primitive function or set, and testing
for the subsetting of Umrmwwon of the old specification. An
algorithm for this procedure can be defined and the resulting
abstraction relation between S and S' is automatically w:msnmmL

The effect of an elaboration step is not to introduce new
behavior but rather is to eliminate unneeded behavior. Thus a
development process that starts with a very abstract (general)
system can progress via elaboration steps to a detailed speci-
fication of what must be done. At each step the validity of
previous design decisions is preserved and errors caused by
violating them cannot be introduced. Thus specifications cannot

only be shown to be consistent, but a sequence of specifications
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can be shown to be formal abstractions. Invalid elaborations
will be detected and prevented by CAFEL.

CAFEL will support elaboration steps and the required
analysis may easily be localized to a small portion of the
specifications. Thus the sophisticated analysis required is

still practical.

3.5.5 Optimization

The intrinsic nature of an optimization procedure is to
transform a specification 5 into an equivalent specification S°'
such that some objective function of the attributes of a
specification will have a better value for S' than for S. A
true optimum (i.e., there is no specification S" that will
provide a better value) for a complex design is probably
neither attainable nor recognizable. We are interested in
supporting a designer's efforts to produce a better specification.

There are two problems involved in an optimization step.
The first is to evaluate the objective function on a specifica-
tion. The second is to show that S and S' are equivalent in
their behavior.

The formal nature of our specification and their associated
attributes for analysis and objective function evaluation.
The analysis and simulation tools in CAFEL should be adequate
for most practical purposes, Certainly, any practical objective
function defined in terms of attributes ({(formal or informal) of

our specifications can be expressed as an analysis procedure in
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CAFEL operating on the design data base. Thus CAFEL itself may use his skill, experience, or optimization theory in

provides a suitable framework in which all possible objective guiding his use of these tools in finding a better specifica-

functions may be evaluated. tion. CAFEL will ensure that the resulting specification is
The second problem of equivalence mentioned above is not equivalent (we haven't lost or gained system behaviors) and

so trivially solved. In general, a demonstration of the provides a better objective function value. The decision as

equivalence, or lack of it, between two arbitrary specifica- to when to stop trying for a still better specification is left

tions is impossible. Even with severe constraints that make to the designer. Again, CAFEL will prevent the introduction of

such an analysis possible, it will usually be impractical. We errors in an optimization step.

must find another way. One such way ig to find a set of

: 3.5.6 Evolution
equivalence transformations that when applied to s will
i The ordinary computational processes of a system leave

produce only equivalent S'. We then constraint our optimization

that system itself invariant. An evolutionary step of a system
search to systems generated by such transformations. We may

. . is one that transforms the system into a new system. A

still be able to generate more equivalent systems than we can
particularly simple type of evolutionary step is one in which
afford. The search technigues to be used may be dependent on

the state of the system is invariant to the step. The initial
the objective function. This problem is gquite analogous to

state (the last state in the old system) of the evolutionary
that of producing an optimizing compiler and some of that
step becomes the initial state for the new system. The only
optimization theory may pe useful here, In any case the

thing that changes in this type of evolution step. We can
essential thing is to provide a set of powerful and general

define evolutionary processes and realize them in system
equivalence transformations.

implementations containing generators of the new system. We
A study of such equivalence transformations has been

could design a kernel system that realized a set of evolu-
carried out and is reported in Appendix C. A general and
tionary processes and permit it to evolve as required over its
complete set of vstructural equivalence" transformations have .
life cycle.
been developed.
In effect an evolutionary step is a redesign and re-
CAFEL will provide both the objective function evaluations

realization in real-time and on-line. Such evolutionary processes
and the equivalence transformations of Appendix C. A designer
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correspond to computations of a "design system" and their
realization involves incorporating part of the design system in
the system being designed. Thus such design decisions may be
deferred until the system being designed is in its operational
environment.

Our formal design system is well suited to specify both
the evolutionary and computation processes of an application
system. The formal nature of our design system makes it
possible for many types of evolutionary operations to be
realized in application system implementations. We have not
studied, as yet, the structures of such realizations since our
design theory is focused on the earlier phases of development.
It is easy to see that at least some of our methodology steps
can be deferred to operational systems.

We may define a "re-elaboration" procedure as part of our
methodology. If this procedure can be deferred to operational
systems, it would be a powerful evolutionary operator. It is
an important procedure for our design methodology since it will
enable a designer to change system behavior, in a controlled and
controliable way, while responding to changes in requirements,
technology, or understanding of solutions.

A re-elaboration step consists of changing some non-
mnwawww<m.mmnm and functions into primitives, The behavior of
the resulting system will thus be a generalization of the

initial system. New behavior may be introduced, with the scope
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of the new primitives. A re-elaboration step can be followed
by a redevelopment with different design decisions

By tying the changes to abstractions and elaborations, we
can formally determine the ramifications of those changes and
constrain them to be only local if desired. The previous design
decisions down to the level of the new primitives will be
invariantly maintained and such errors will not be introduced
by the changes. The formal behavior of the new specification
can, of course, be compared automatically with that of the
previous specifications.

CAFEL can provide the automatic analysis of the scope of
such changes, validate their locality and preserve more global
design decisions if desired. The subsequent redevelopment is

supported in the same smw as the original development by CAFEL.,

3.5.7 Conclusions

We have identified a set of automatable procedures that
can, with designer interaction, transform specifications in
useful ways. The set of procedures include the following:

~- approximation

~- decomposition/integration

-- elaboration

-- optimization

-=- evolution,

Each step can be supparted in CAFEL and the validity of the step
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insured by analysis tools in CAFEL. Many sources of development
error thus become impossible.

The required analysis and transformation procedures can be
practically carried out even on large scale specifications.

The validation and design feedback generated by CAFEL will
allow the designer to concentrate on analysis and solution to
critical design problems. The resulting design decisions can
be introduced into the specifications by sequences of the above
methodology steps. The computer becomes an active partner in
the development process but does not dictate the design deci~
sions. A poor designer may still produce a poor design. But
if he does, it is possible to analyze and compare it with
other designs prior to implementation.

The methodology procedures above are more than sufficient
to support conventional development steps. In addition, many
formal development steps are possible with automatic validation
of the changes made in that step.

Future work must include the detailed development of
algorithms for the above procedures, of variants of those
procedures, and identification of potentially useful new kinds

of procedures.
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3.6 Design Principles

We have done little work on this area since all such
principles must be tested by practical experience to gain
credence. Most such principles will arise from practical
experience. We must complete a design and implementation of
CAFEL in order to gain the required experience. Clearly, our
formal methodology will not prevent (and may provide substantial
support for) using any design principles found effective. CAFEL
provides a methodology for carrying out design not an enforce-
ment of a particular design process. We can, however, identify
some general principles that can be plausibly justified

a priori. They must still be tested by experience.

3.6.1 Formal Methodology

The first principle is to maximize the use of a formal
methodology and to minimize introduction of informal steps in
a formal development process.

This principle can be justified on the basis that maximal
use of the formal methodology will maximize design automation,
testability of specifications, traceability of design decisions,
and early detection of errors while minimizing oxr eliminating
many types of development errors.

Informal steps that produce specifications not formally
related to the initial specifications introduce discontinuities

in the step validation and prevent automatic assurance of
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previous design decision invariances. Many types of new errors
could be undetectably introduced and all previous analysis
would have to be repeated. All relationships between previous
and the new specifications must be established by analysis.
Unfortunately, such analysis is frequently impossible since
arbitrarily difficult worst case conditions may arise. Within
the formal methodology, such worst case conditions are care~
fully avoided by generating the new specification from the old.
Such steps correspond to approximation steps in our methodology
and can be supported as such by CAFEL,

The current method of using different specification
languages in each development phase and informally (by hand)
generating “equivalent" output in the language of the next
phase is a gross violation of this principle and severely
handicaps a design validation program.

The current methods alsc use informal specifications (that
are quite imprecise) as approximations to the desired system.
The amount of automated analysis that can be done on such
specifications is quite limited in comparison to those provided
by CAFEL.

A corollary to this principle is that the initial
approximation step should be as abstract as is possible., This
provides maximum scope for a formal methodology designed to

produce less abstract specifications,
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Another corollary is that the final formal specification
should be sufficiently detailed to be input to an automated
implementation methodology. We should not leave the formal
for the informal (realization) until required, and we should
generate the realization using tested and validated tools.
The problem of validating an implementation is otherwise very

difficult and expensive.

3.6.2 Closure

We can distinguish between open and closed system design.
An open system is a subsystem with exchange functions in some ;
inter~subsystem class. The external exchange functions that
complete the exchange class are left unspecified. The one-
sided specification of such external interactions is equivalent
to a conventional interface specification. The behavior of an
open system specification may only be formally analyzed with
respect to all possible external designs (closures) and all
subgystem design decisions must he satisfactory for any
closure. These are significant design constraints,

A closed system has no external interactions. For example,
a control system and the things being controlled wmay form a
closed system and all behavior of the control system may. be
defined in terms of behaviors in the controlled systems. Our
formal specification methodology will support the specification

of both control and controlling systems.
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The normal decomposition method is to partition a system
into open subsystems and design each separately until system
integration time. At that time, the inconsistencies, errors,
and over-design are discovered. In the meantime, each sub-
system &mmwasmﬁ has had to produce some environment simulation
driver to test his designs. The design of these environments
is similar to the design of the controllers and is fraught with
the same problems. Inconsistencies in these designs can lead
to serious development errors that are detected no earlier than
system integration. These difficulties suggest a design closure
principle.

e&w design closure principle is that system specifications
m:m:wa be closed and formal decompositions (rather than parti-
tions) should be used to factor development processes.

The benefits of using closed system specifications are
many. We not only provide automatically consistent environment
models to each decomposed development process, but also provide
an easy integration technique for absorbing improved models as
the development processes proceed.

In particular, it should be noted that, using closed
system specifications, the design of the processes to be
controlled (the problem space) and the design of the controlling
processes (the solution space) can be carried out jointly at

each level of abstraction. Control system behavior can be
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studied in terms of controlled process behavior. A customer may
then analyze simulation results provided by CAFEL entirely in
terms of his problem space, independent of an understanding of
the details of the solution processes. A close formal relation-
ship can thus be established between originating requirements
and proposed closed system specifications. CAFEL can provide

complete support for such analysis and simulation.

3.6.3 Unbounded Resources

The performance evaluation of a system specification is a
severe problem. The full complexity of a design problem arises
from attempts to optimize performance. If we are given an
unbounded amount of resources for use by the system realiza-
tion, the subseguent optimization can deal with the resource
constraints as discussed in the next section.

The unbounded resource principle is that we should first
design (to a testable level of abstraction) without realization
resource constraints until we have a satisfactory design in all
other respects.

At the end of the above design we will have a valid system
that may be overdesigned in terms of performance, Because of
the comparative simplicity of the design it will be much easier
to validate the functional relationships and predict the
performance. If the system does not overperform, we know we

must redesign immediately., Further investment in complex
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optimization could not produce better results. Thus we know at
this point whether the system could be realized and meet the
logical and performance requirements. It might of course be
much too expensive, etc., to actually build in this form. A
subsequent optimization phase may be required.

We have thus simplified this phase of design and obtained
a valid design. This design may be used as the input to the
various equivalence transformations useful for optimization.

CAFEL will support this type of development process as a
sequence of approximation and elaboration steps with full ‘

analysis of each specification including performance.

3.6.4 Optimization

If we have a valid design that overperforms we may optimize
by £inding an eguivalent design in which the overperformance
has been degraded. This may easily (?) be done by introducing
resource contention by sharing resources used by overperforming
functions.

First we can use CAFEL to identify the overperforming:
functions and the redundant resources causing them to overpex-
form. We need not guess, since the analysis of an initial
unbounded resource specification is relatively easy to automate
in CAFEL..

Second, we can degrade (and minimize resource cost}

performance by sharing resources and decreasing resource
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redundancy. This step consists of an equivalence transformation
to a new specification with contention (and sharing) of mini-
mized resources. The equivalency transformations will be
automatic and provided by CAFEL. The contention resolution
mechanisms introduced will be constrained to those for which a
jower bound on resulting performance can be evaluated.

Third, we can analyze the resulting specifications to
ensure that the requirements are still being met. This is a
potentially complex analysis and more research on contention
models (operating system theory) may be required. We do have
control over the complexity (at the price of resource waste) of
the contention models introduced above. Thus we can produce an
optimized system without introducing errors and knowing if
performance nmaSWﬂmEmuﬁM will be met.

The resulting specifications will be far more complex than
the unbounded resource specifications input to the optimization
phase. For example, evaluation path performances are coupled
(even if otherwise completely independent) via contention for
shared resources. Since the sharing of resources may be on a
global basis, it is no longer even possible to do performance
analysis locally for each function, What used to be local
functional elaborations (and locally testable) may be turned
winside out®™ by global interactions with shared resources.

We sorely need a theoxry of operating systems that will

allow us to improve our resulting utilization of resources and
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still to predict lower performance bounds. It does us little
good if our overperforming unbounded resource specification is
so optimized that it fails to meet the performance requirements.
By following the above principles, we can produce valid systems
that will be testable for performance reguirements. They may
still be too expensive at the current level of operating systems
theory. But they will work. Consider the alternatives.

The recent experience with technology and the analysis of
life cycle costs suggest that some waste of realization
resources may be very cost effective. The resulting simplicity
may produce far greater payoffs in the development process.

A further interesting question is when and how often to
optimize the design. A possible solution would be to optimize
at the end of each phase to demonstrate feasibility of the
design, then to "throw away" the optimized specification, .and
start the next phase with the unoptimized design. This will
lead to a simpler development process and a maximally global
optimization just prior to implementation,

There may be useful hierarchies of resources such that
optimization with respect to the resources of the current phase
can be carried out and preserved through subsequent phases.
This requires the establishment of a theorem similar to those
underlying the current state of compiler optimization theory.

This would be an interesting avenue for further work.
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We must gain experience in the use of CAFEL to validate
this ovw»swnmnwos principle. The potential payoffs are enormous.

But only experiments can assess the validity of this principle.

3.6.5 Evolutionary Adaptation

Hindsight is always better than foresight. 1In a world of
rapidly changing requirements and technology, hindsight may be
the only insight available. A logical extension of this fact
suggests the following principle.

At each step of development, make only those design
decisions that are required in order to delegate all the rest
of the design decisions to subsequent steps.

The consequences of this principle are to preserve maximum
freedom of re-elaboration changes with minimum scope of conse-
quences. In the limit, the principle requires maximal exploita-
tion of evolutionary operators in the deployed system, Hind-
sight during operation may then be employed in a practical way
to faciliate adaptation. This allows earlier deployment and
greater adaptability to change,

CAFEL and the associated formal methodology will greatly
improve our ability to deferx design decisions even, until opera-
tional status due both to the precision of constraining and
specifying those evolutionary changes and to the automatability
of the "run time" redesign and re-realizations made possible

by the formal methodology.
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3.6.6 Conclusions

The area of design principles to be used in selecting
sequences of formal methodology steps and in guiding, design
decisions is a fruitful and little explored area. A major
advantage of a formal design methodology is that it provides a
theoretical and practical framework within which precise
principles may be developed and validated.

The current structure of our formal design theory is
clearly adequate to formulate and validate a large variety of
potentially valuable design principles. The generality of our
theory makes such a research and experiment investment worth-
while since they can be applied to a vast domain of distributed
m%mnma developments and to each wvwwm as well.

CAFEL provides an excellent vehicle for capturing such
design experience in formal principles, methods, and specifica-
tions. CAFEL itself is designed to be highly evolutionary so as
to incorporate subsequent design experience as an incremental
improvement of our design theory.

Given such experience the next work on the design theory
would consist of developing a suitable operating system theory
and formally incorporating performance properties in our formal
specifications. In other words, it would then be time to go
around our research procedure one more time while experience

with the presently conceived CAFEL guided and Ypaid" the way.

Tt is clear that CAFEL, even as presently conceived, would
significantly improve the current state of design theory and
practice. A demonstration of this is, of course, required for
creditability but must await a prototype implementation of

CAFEL and the design of suitable development experiments.
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4, Patient Monitoring Example
This section represents the major portion of the paper
"The Use of Formal Asynchronous Process specifications in a
System Development Process" by D. R. Fitzwater and Pamela
Zave, presented at the Texas Conference on Computing, Fall

1977.
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4.1 A Development Process

A spectrum of design methods and a gtart on a design
theory, all based on these formal specifications, have been
developed [FD]. This report is intended to illustrate the use
of these specifications in development without aiming towards
a particular development process. They are aimed towards a
more formal development process that can be substantially
supported with automatic design tools and analysis. Each
specification can be effectively tested for the behavior of its
specified system as well as for completeness and consistency.

A major point to notice is the distinction between
informal (vague) specifications and formal (precise) specifi-
cations. We can provide-few design and analysis tools applic~
able to informal specifications since information content is
not automatically analyzable. We must, therefore, introduce
our formal specifications at the earliest possible point in
development.

At early stages, only approximate specifications can be
given. This does not imply that the specifications must be
informal. We can instead give a formal specification of a

precise system whose behavior approximates the desired system.

[FD] FITZWATER, D. R. “The Formal Design and Analysis
of Distributed Data-Processing Systems."” Computer Sciences
Technical Report 295, March 1977. pDepartment of Computer
Sciences, University of wisconsin, Madison, Wisconsin.
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We can then study the degree of approximation by analysis of
the specification. This is not feasible with informal
specifications.

The level of abstraction of our specifications is entirely
dependent on the primitive functions and sets used in its
definition. We assume that any development process will start
with very abstract primitives and end with detailed realiza-
tions. The following examples are thus ordered by their
expected sequence of occurrence in a development process.

They are not unique, and need not occur in any given develop-
ment.

For convenience and economy of presentation, the definition
sets that constitute a specification are also ordered. All
definitions hold for subsequent definition sets unless
explicitly redefined. Thus definitions will usually appear
only once even if they are used in several specifications.

The design problem used for the examples is quoted from
{SMC] as (statement numbers wnm added) :

"}. A patient monitoring system is required
for a hospital.

2. Each patient is monitored by an analag
device which measures factors such as
pulse, temperature, hlood pressure, and
skin resistance.

{sMC] STEVENS, W. P., Myers, G, F,, and Constantine, L. C.
"Structured Design." IBM Systems Journal 13, Na. 2, 1974,
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3. The program reads these factors on a
periodic basis (specified for each
patient) and stores these factors in
a data base.

4. For each patient, safe ranges for
each factor are specified (e.g.,
patient X's valid temperature range
is 98 to 99.5 degrees Fahrenheit).

5. If a factor falls outside of the
patient's safe range, or if an analog
device fails, the nurse's station is
notified."”

Since a customer for our design is not present to validate
our assumptions as to what behavior is reguired in detail, we
will make as few as possible and keep our development to a high®
level of abstraction. From these examples it should be obvious
that we could elaborate the specifications to arbitrarily low
level primitives. 1In particular we will stop prior to
deciding which functions will be hardware and which will be
software.

We will also start with the assumption that processes and
functions are not scarce resources and produce specifications
that utilize maximum resources. A performance test at that

point will decide if there is any point to continuing with

that specification (i.e., does it meet performance_ requirements?) .

If it does, we could then share processes or function evalua~
tiona to decrease performance where allowed, Preliminary
results with dynamic analysis strongly indicate that this is

a good development plan. Any sharing of resources for

optimization purposes will complicate dynamic forecasting
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because it couples previously independent computation paths
via resource contention. The design should be made correctly

and tested prior to such optimization.
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4.2 7Idealized Behavior

The first example is not one of our specifications. It
is an interface characterization of idealized behavior
consistent with the original problem. We will use this
example for comparison with our process specifications.

Figure 4.2-1 defines, as equations, the relations between
values and set members in the sets patient, data-base, range-
space, and nurse-station-space. The defined values are not
time dependent and no process of evaluation is specified.
These equations are formal definitions of the relationships
described by the problem. Note that questions of performance
are irrelevant, since nothing is "done."

If the problem were much more complex, the sets and
equations could become too complex to generate, and too
lengthy to be practical. There are in general no algorithms
for deciding whether a system of equations is complete or
congistent and the equations involved might not be solvable
to yield information about the specified system.

This interface definition is more abstract than subse-
quent process specifications and cannot be exactly realized
since no time lag is allowed between patient factor values and
the resulting notify-status value. We could interpret such
equations as idealized (but not sufficient) constraints on

further design and can compare the behavior of the system
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YP-F ¢ DATE-BASE, & Y RANGE ¢ RANGE-SPACE,
PATIENT-MONITOR (P-F,RANCE) = A».qg.o&w«m&» s > Py s v P-Fy 3 > HB ._v
where P-P E C.ﬂﬂﬁ-?w»“_......mwnwm:
RANGE = ﬁu.hﬁkuwwmm»py.....Arm»xm.mupxnvv
V(4,TIME,STATUS) € PATIENTS,ANALOG-DLVICE {{4,TIME,STATUS) ) = n».ammu..mﬂpu.....1~n~mvy
.....um_»._ are implicitly defined in terms of patient status.”
PATIENT-MONITOR: DATA-BASE X RANGE-SPACE + NURSE-STATION-SPACE
"defines notificationa.”
AMALOG-DEVICE: PATIENTS + DATA-BASE
"ys primitive function defining patient 1 factor valuen from status at time.”
DATA-BASE = ID x TIMES X FACTOR-SPACE “"patient i bas factors at times."”

PACTOR-SPACE = I%Ax FACTOR "factors cre common to all patients. Factor ¥y 18 device status.™
|m

RANGE-SPACE = ID X BOUNDS "bounds are local for each patient.”

1y = = " 3
POURDS Q.ALﬁMwm FACTOR-FPAIR "defines renges
PACTOR-PAIR = FACTOR X FACTOR “element is (1ow-bound, high-bound)™
PATIENTS = ID x TIMES x STATUS-SPACE "defiges observable ‘patients”
RURSE-~STATION-SPACE = ID X TIMES x FROTIFY-STATUS
HOTIFY-STATUS B O.M.w_Mx B "an out of range Boolean tuple”

2

= :.....xwu "patient identiffcation” TIMES ¢ B “times at vhich associated status is defined”

3
2 & {r,F} "7,F are Boolecan values true, false”

FACTOR ¢ R "yalues of patieut factors”
3
k, ¢ §_ "parameter 1s number of patients”
1 Ky STATUS-SPACE "patient status is primitive set”
k, ¢ B "paraneter is number of factors” kg e N "bound on integer space”
3
r_ = {0,1,...,5;} "bounded intcgers” H = {0,1,...} "integer space”
nw 3

Pigure 4.2-1. Definition Set 1: Idealized Patient Honitoring Interface Equations.
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(when effectively specified as in following examples) against
these constraints.

Substantial elaboration of these idealized equations is
not attractive since they are not effective and cannot, in
general, be used to generate observable behavior for the
customer. The essence of the early development process is
to specify precisely successive system approximations that
can be tested to see if their behavior satisfies the customer
for the system. At that point we can then elaborate the

specifications to produce a detailed design.
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4.3 Process Approximation

The first system specification has very abstract processes
whose behavior approximates the interface functions in the
previous section. We will first discuss this specification in
(possibly redundant) detail as a specification example and
then discuss it as a patient monitoring system.
The system contains ky patient processes and xw monitor
processes. The only interactions are between fixed pairs (of
same subscript values) of vmnwmsww and aonwnonw processes. XSM xn=w
The @mnwmanw only executes waw ~3w represents the class sub-  ( paPIENT WV
script) exchanges and computes a sequence of status-space
values. The patient does not synchronize with the monitor
(i.e., if monitor is too slow, patient continues to change).
The monitor must synchronize with the patient to receive
patient factors ({(i.e., patient status may not be well defined
at a given instant in time). The xmzw is executived for its
side effects only, the mW projection function discards any
XsM, value. The analog device function transforms the primitive
status information into a tuple of factor values.
The state space of the monitor process has five components.

The first is an integer that represents the number of process Figure 4.3-1. Patient-Monitoring System. This is an exchange graph of a high level specification that

approximates the idealized interface in Definition Set 1. This figure represents 2k

steps until the next measurement of the associated patient processes. 1

process. The second defines the valid ranges of factors. The

third is a bounded stack to hold the previous w» observations.
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V>ﬂ.ng|§=umdazolm<uﬁmuaw s (PAT1 m....._.u -Saﬂdmw yors .1>u.umz.~.r .zozﬂ.oﬂr }
u. N

PATIENT, = (PATIINTF, ,STATUS-SPACE} "is process specifying potient 1"

PATIENTF, {STATUS) = vm (psIM Ama>acu‘amzuA>z>vonsum<mnmnwn>a=mvvv .

PSIM: STATUS-SPACE - STATUS-SPACE "generates change in patient status”

HOFTTOR, H A:ozwq,omm» JMONTTORS) "is process monitoring patient i"

MOUITORS & zwu X RAWGEZ-SPACE X STACKS X PARSET x NOTIFY-STATUS

HONTTORF, (TIME,RARGE,DATA,PAR,KOTICE) = {NEQ(TIME,0): (DECR(TIME),RANGE,DATA,PAR,FOTICE),
T: zozuﬁxnxuawv.m»zam.u»a>.w>z.zoeuan~

_aapan>naomm.m>=nm.u>a>.m>w.*aqwnmv = (SCHED(FACTORS ,RANGE,DATA ,PAR,NOTICE) ,RANGE,
PUSHE(FACTORS,DATA ), PAR, OUT-OF-RAKGE( FACTORS ,RANGE) )

mmu HA..m_Mu z *Z "projects J-tuple onto k element, k < J.

Z.can dbe any set”
ANALOG-DEVICE: STATUS-SPACE =+ FACTOR-SPACE "does A-D conversion”

NEQ: N, % K - B "predicate on inequality™
3 3

DECR: N -+ N_ "integer decrement”
k. k
3 3
SCHED: FACTOR-SPACE x RANGE-SPACE X STACKS X PARSET x NOTIFY-STATUS -+ nrw i
"generates time interval for next messurement” -
OUT-OF-RAKGE: FACTOR-SPACE x RANGE-SPACE -+ NOTIFI-STATUS "tests patient factors for range violations”
PUSH: FACTOR-SPACE x STACKS + STACKS
"pushes first argument onte ._a_. ‘tounded stack of second argument. If bound

18 resched, bottom element of stack 1s deleted.”

ky e R - "is bound on size of stacks" RANGE-SPACE = BOUNDS

3

STATUS-SPACE = i, N "is status tor™
ks € R "is size of patient status-space element" HUﬂMwm kg veerer

XSM,: PACTOR-SPACE + (F}

ko € zr "{s size of parset" i
3 XCM;:  {F} + FACTOR-SPACE
= ” i -
PARSET = | Mwmaww is scheduling informution" STACKS = ummmwa:ww "is stack of size <k for data base”

Figure 4.3-2. Definition Set 2: Patient-Honitering m«.mnnﬂw.
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The fourth is a set of parameters to be used in scheduling.
The last is a Boolean vector defining the out-of-range status
of the previously measured factors.

The monitor process successor function simply steps and
counts down the current interval time once each step until zero.
When time is zero, the SOZw function is evaluated after its
first argument, XCM,, is evaluated to receive new patient
factors measurements. The MON function generates a new
interval time via SCHED, pushes the new measurements onto the
local data base stack, and updates notice via out-of-range.
The process then takes another step.

In order to produce a specification (completeness and
consistency is required) a few assumptions had to be made.
These should have been checked out with the customer. We
have assumed that the sizes of all numbers (represented as
integers), the size of the data base, the size of an element
of status-space, and the number of patients are all bounded
by parameters. We have assumed that an analog device is local
to each patient, can measure each patient state, and reports
its own status as factor zero. The parameterized scheduler is
the same for all patients although the parameter values need
not be. We also assume that ‘saving the notifications from
only the latest measurement is sufficient. If any of these

assumptions are invalid, the specifications should be changed.
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Although there is little detail in this specification and The results of these conclusions are given as the next
few design decisions have been made, we can simulate the example specification.
specified system automatically by giving either standard
stochastic models or simulating procedures for the primitive
functions. The designer or customer can then do memH»amanm
and observe specified system behavior from the point of view
of the customer.

Performance requirements are now meaningful. How long
can a patient process step be and still sufficiently model the
patient? The analog device must be as fast. How long can a
monitor process step be and still sample often enough? Monitor
steps must be of uniform length since they are self-timing.
This specification can only be considered an approximation to
the interface specification since it can only approach the
axiomatic behavior in the limit of infinite performance.

Let us suppose that the designer and the customer come to
the following, not very surprising, conclusions. The designer
doesn't want monitor to be self-clocking since he anticipates
difficulties in making steps uniform in length. The customer
agrees with the stated assumptions and notices that patient
status—-space values are not affected by performance of monitor.
He asks to expand design to include feedback from nurse-station
via a "nurse" to the patient. The customer also adds that the
nurse-station must run independently and that a data~base
system already exists for other purposes. The new monitor

system should use it to save information.
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4.4 Closed Loop System

The second system specification is a better approximation
to what the customer wants. An independent (but shared) clock
has been added. Both the data base and the nurse-station have
been factored into independent processes.

The mmwm|Ummmw process executes only xmmw exchange func-
tions and does not synchronize with the monitor process. It
may be run freely as desired. The data-base process need model
only that aspect of the data-base system that is currently
relevant to our patient-monitoring system. The design of this
system can thus be decoupled from the data base system design,
while ensuring that subsequent integration will not introduce
new problems.

The clock process does not synchronize and may easily be
implemented in constant length steps since interactions are
always immediate, if at all. A process may "read" the clock
by executing the XACK exchange function. Only one process may
read the clock at a time since it was specified that way.

The nurse-station is specified as a free running process
that does not synchronize to interact and executes only XS
exchange functions. The scnmmlmwmwwosw simply buffers the
latest out-of-range information for patient i and passes it
when requested by nurse; . .

Nurse, synchronizes with :cnmm:mnmnwosH to obtain notify-

status values, and must synchronize with mmnwmsnw to pass along
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Sy XCN, XSN, XsM,  XCM,
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DATA-BASE
1

Figure 4.4-1. mmnﬁmsnlznv:»non»smnmwmamam. This is an exchange graph of a decomposition of previqus
gystem with addition of féedback via nurse. This figure represents mf.ﬁ. processes,
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PATIFRT-ROSTWORIES-6YaTeny . § (CLOTK KGR, FATIFNT

= 1o | NONTIOR | IRTA-BASE, | .
BURSE-STATION ..o ..r.”,wmnp AT E..,J ._._.o"..ncwrp . ..,?-mexn .E.wwm-w._.\,ﬁoznpv
CLOCK = nnvun;u\.r.v ) iz stared tiner process for ell processes.”
3

CInCK(ThE) £ ww (HraerT o, XaCK(NEWT TN Y )
vhere IISTINE T sUS (TIIE)

BUC: N N

sUC(X) = _E.Q.Jr 0,T: ATDONE(X)]

zdmmmu m ﬁﬂ.wmmw.».n..._mmmmv ..»mE._.ﬁuunumn:unﬁ—.ﬁ :Fcunu....
Ruses = JL R,
uluqu £y

FURSEF, (STATUS) = _..w {KSL(STATUS, FOTICE) , XCK, (TREAT(STATUS,50TICE) })

vhere KOTICE = xnu.wc.v

"

mﬁeuﬂ.ﬂ» z ?»eum"n..u».mﬁmdmnmmmamv "{s process simulating unﬂnnn»
w>ﬁm5ﬂﬁmﬂ..éﬂ H m.m (PED(STATUS X nwi_.xm...ﬁa..ﬁao.vwﬁwﬁ@ﬁﬂ:

MONITOR, = ¢§a.mowwh LNOTITORS) “is FATIERT, monitoring process.”

4 1
WORTTORS £ By RASGD-SPACE X PASSET
HODTTORF, (TIME,RARIE, PAR) = [CRT(TIME, YACKL(F)): (TIMZ,RANGE,PAR),

T Em&ﬁ.urpa.wﬁam.?n.xn:.?v:
YON, (TTHE, RATIGE, AR FACTORS) ¥ (SCHED(DEZ,RASIE, PAR, FACTORS),
PP (rarcE, X2, (T, FACTORS))),
P2(PAR, XCD, (0UT-07-RARGE (FACTORS RANGE) )))

g»mEMu H ?»q»..u»mmw».mﬁnmmv "this process models ?Snuuw dats-base.”

DATE-BASEF, (DATA) = [HOMSG(SG): DATA,T: PUSH{3SG,DATA)}]
vhere MSG E uwuwﬁ.v .

. ,..
RURSE-STATION, ¥ A~uwmm|ma»awo=w».mcﬂﬂ.-wﬂ.@mv "is process madelirg patient, purse-station.

s 52 ([nors5{Ms6): NOTICES,T: ¥s6), xmauc..oﬁnmmz

: 2
vhere MSG I XSU(F)

EURSE-STATION, (HOTICES }

3
3 3
ESIM: DURSDS x NOTIFY-STATUS + FURSES "eimulules nurss stote change.”

SCHED: N. X PAMGF-SPACE x PARSET x FACTUR-SPACEZ = K "generetes tize for next measuremeat.”
2 B IGF-¢

AAEAT: NURSFS X NOTTF(-STATUS - TMT “gersrates patient treotzent.”

ADDONE: Ny o+ H, “integer cuccessor fuaction.” HOMSG: Z -+ B "NOMSG(Y} 3 1f Y = F then T elsc F7
3 "3
4 " = rrzent.™
2433 zxw x zwu + B “squality yreiicste.” _J € :—..w ‘bound on murce space elemen
- . ey ®
GRT: mx x nk + B "greater-than predicate.” THT = :_-u “gpecifics petient trestment.
3 3
XSTy: ROTIFY-STATUS + {r} xerT, : AF} + BIAIFL-STATUS
XCH,: TT - {r} xsH, s {r} » 0
XCB,: Ny X FACTORS-SPACE -+ {r) 1B, 3 {F) » znu x FACTOR-SPACE
3
ISCE: K = {r} xnek: {7l - =~u
'3
7EN, s BUTIFT-STATUS < {r) 15D * {F} -+ KLIIFY-STATUS

Figare 4.4-2, D-~finftlen Set 3% 1.:un_._n-.rs...:o_.___n.mwanﬁnn.
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a TMT value that specifies the desired vww»msaw treatment.

mmnwmnnu is free running and does not synchronize any
interactions but may interact on any Step. Patient status is
simulated and interactions are left to the "initiative” of
other pirccesses.

zo:wnonw must synchronize with all of the processes it
interacts with, and thus an interacting step length may be
greater than or equal to the maximum of the step lengths of
the other processes.

The remaining changes are relatively trivial adjustments
to the ones described below.

This specification can again be analyzed and the specified
system simulated with whatever experiments the customer or
designer may care to mmmwsm. There are many additional
aspects the customer or the designer may notice as mmmwowmmnwmm.
even at this abstract level, that may require new specifica~
tions. The current specification is complete and consistent.
It is the customer's business to decide whether he wants the
specified system, whose behavior he can study as he wishes.

We are here interested in illustrating a succession of
development steps rather than producing a fully elaborated
design. We will consequently assume that the customer is happy
with the behavior of specified system to the extent that it
is elaborated. He does believe that there should be fewer

nurses than patients. The validity of that belief cannot be
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tested by analysis of our specifications without more elabora-
tion of the nurse and patient processes. We will accept it
for now.

The designer, using the performance estimates obtained
as answers to the questions of the previous specification, now
decides that he does not need multiple monitor, nurse-station,
and data-base processes and that he can save resources by
multiplexing them.

We are thus led, by minimizing performance where it is
too good, to the more optimum, shared process model. in the
next specification. Until this point, there has been no
performance coupling between processes associated with
different patients and performance analysis has been compara-=

tively simple.
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4.5 Process Sharing

when we consider processes to be a scarce resource and
share them, previously independent design decisions and
performances now become coupled and we must ensure conflict
resolution in the shared processes.

The mmnwmznw and clock processes remain the same. We
must introduce buffer processes to save notices and introduce
minor adjustments in the other processes. Only monitor, data-
base, and nurse-station require significant changes. Nurses
are modified only to resolve the contention for patients and
notifications.

The interactiions of monitor remain the same, except that
the data-base message must now include patient identification.
synchronizations are the same as before. SCHED must produce
not only the time of the next measurement, but also identifica-
tion of which patient is to be measured.

The data-base operates just as before except that the
state is a XHlﬁcmwm of stacks and that only the selected one
is updated.

The vsmmmnw processes are the residuals of tke old
nurse-station processes and simply buffer the out-of-range
notices without synchronization. O0l1d notices are averwritten;

newest notices are passed to nurse-station.
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Figure 4,5-1.

mmnumanlzoswnostw.nmwmnmau.
of the previous specification. This figure represents NWH + rm + 4 processes,
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This 18 an exchange graph of a shared process version

TOHLKG -mw._,.,.mu. = {cLock TOR, DAT/-RASE  KURSE-STATION,

3 . MELE pATIENT, JFUFFFR .., PATIENT. ,BUFFEK
RURSE)4e0 U #.a.rs:., o FUFFER) oo PATTER . c,.:y
MOKITOR = (MOKTIORF MNITCR:) "is process that ponitors all patients.”

BIITORS £ NEXT-OUZ X F-SPACES x pasnais

FrXT-~03 E zr x nw "l1gme 1) drfines time and patlent for npext measurczest."®
3 3
BONTTORF ({TIME, 1), RANGE, FAR) 2 [GRT( .Ef..ﬁ.,nlc.: ({511, 1),RANCE,PAR),

T: MSOACKY(F), § RAXCE, FAR, [¥2{1,1): xn:u:.v.mo:.urzanww..?:.f (R
1
MOM(TIME,E RANSE, PAR, FACTORS ) £ (SCHED((T1:%,1),FARGE, FAR, FACTORS ),

1 (RARGE,XCB{(TT:2,1) ,FACTORR) ), m,.n Av>m.—mn:.wv"<w....q.“<r m
1
) 3

vhere ¥, = XCD, (OUT-OP-RASCE{FACTORS, P (RANSE)))
DATA-BAST T (DATA-BASEF,DATA-BASES) "is process that stores dats for all patients.”
DATA-BASES £ R STACK "is X ,~tuple of 811 stacks.”
19k

E;-?.rnm.lmp....mwpw 2 [nomsG(Msc): Ew...., v T: SAVE(MSG, N w._.:

vhere MSG £ xmwp:d

m><12?~.5.:.§n3mm?w.:.mvaEG.SNQ.....m_.:.elm.m.:k:
AR 1 X, 1°°2 X’ 172 K,

3 F FUSH{(TIME,FACTORS) ER

vwhere Y
wuwmﬁmn H awgﬁu JROTIFY-STATUS) “is process holding previous rotices.”
wcm.m.mmmuwﬂ.:.oq.ucmw m_&m. {[nonss(Mse): HOTICE,T:M55])
vhere MSG = Nmu (F)
mﬁm. {NOTICE) & w (ROTICE, H.mn (NoTICE))
FUESE-STATION 2 (NURSE-STATIONF,) va "process 'displays' motice on patient at a time in a cycle."
BURSE-STATIONF(3) = v (I2t,x, )2 1,72 suc(y)],
xs7((3,(£2(4,2): xanp:ar...ea“nowuﬁg::
FURSE, QCW.:u.ﬁcmﬁmuv "process simulstes :E.mnw.:
FUKSEF, (STATUS) = v (rs1r(sTATUS,Y), [FQ(y,1): XN 1(2),s..,7:

(z)])
1

vhere Y = FATM(F), 3 = m (Y}, 2 = TREAT (STATUS, Y)
BCHFD: FEXT-OBS X RANGE-SPACES X PARSETS X FACTOR-SPACE x NEXT-OBS
"generates paticnt ID and time for next messurcment.”

KS1H: KURSES x KOTIFY~STATUS, + KURSES "sinulete purse change of state.”

S
BOTIFY-STATUS, I ID x KOTIFI-STATUS
IST: KOTIFV-STATUS, - {r} XCT:{P} + KOTIFY-STATUS
vR : n - {F) xsh (P} » v

XCB: NEXT-OBS X FACIOR-SPACE =+ {F}  XSB:{F} + KIXT-OBS » FACTOR-SPACE

X3C,: RUTIFY-STRTUS =+ {r} Nnni:.u + KOTIFY-STATUS
kg € r.ww *is nunber of murses.”
RANSE-EPACES 2 Tmé UNHGE-SPACE _.J-?.:?, of all ranges.”

AkarT Tk - i~
1) X PAKSET wu. tuple of all [arimnters.”

Figure 4.5-2, Lefinition Set 4: u.nnr.:.,':o:—no—.n._m;m«n_as...
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The new nurse-station process now must cycle through the
buffer processes, displaying each notice in turn, without
synchronizing with any nurse who might see the notice. Each
notice will be delivered to at most one nurse.

All of the nurses share the nurse~station and compete for
notices. Only one will receive a given notice that identifies
the corresponding patient. That nurse then specifies treat-
ment for the identified patient.

This sytem specification can now be analyzed and simulated

by both the customer and the designer. There are now some

nontrivial and interesting performance guestions to be resolved..

The important thing to notice is that they can be observed and
resblved, even at this high level of abstraction, since all
nonlocal interactions are specified. There are a number of
issues likely to be discovered by such an analysis and simula-
tion and their resolution will probably involve producing new
specifications. We will assume, in the interest of getting on
with our examples, that no such changes are required.

The next step will be to elaborate our specifications by

making some further design assumptions.
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4.6 Process Elaboration

We have so far carefully selected our primitive functions
so that only local interactions would be required in their
elaborations. We can thus do such elaboration without destroy-
ing either the previous specifications or the results of
their analysis. Elaboration may place further constraints on
previous behavior and make more detailed analysis and simula-
tion possible.

We have not been given sufficient information, as yet,
to specify a scheduling policy.

We will assume (subject to customer approval of the
resulting behavior) a linear scheduling policy. The scheduled
time, NEXT, for the next measurement of wmnwm:ww will be given
by the sum of the previous measurement time and a constraint
DEL; given for each patient.

The linear assumption implies changes to the function
MONITORF without changing previous process interactions. A
new definition of MONITORF is given in definition set 5
(Fig. 4.6-1).

Again, further analysis and simulation may be carried
out with resulting changes in the specification. We will
again assume that none ﬁwamnmvmvwmv are needed, and get on
with our development process.

The next step will involve mapping our elaborated func-
tions onto “"hardware." We must digress in our next example to

produce the specifications of a piece of "hardware."
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STORAGE-A, -PARTITION 2 Amaom.pmm.?.nmwﬂoi. .. .nmE.w.t
STORAGE-A, = (STORAGEF-A, {k}) ,
STORAGEF-A(k) = Eozmﬂzmnrw.e"mm ?.Smibuu.xrxom»m?v.
T: Hmﬁgu.orxnmﬁoamv....e" xom>Hw83::
where MSG = xmm@E. ADD = mm (M5G),0P = memE

CELL,-A £ (CELLF ~A,K_

~—

CELLF, -A(m) = [EQ(XCSAT, (F),1):XCS,(F),T: mw (m,XCSA, (m))]

XCSAI, : {F} + {0,1}, {0,1} » {F}

XSSA, : {r} {o,1} x af XASA, : {0,1} % N+ {r}
7
xcsa: N, ~ {F}, {F} + K

2’ My g

Figure 4,7-2, Definition Set 6: mnOﬂmmmlbwtlmmﬂnﬁn»ou.
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4.7 A Storage Model

One of the less complex pieces of hardware is a storage
unit. Figure 4.7-1 describes one such model. There is a
control process meoxymmxwws and k+1 cell processes. Each
cell will hold one value, an integer of maximum value w.

The mﬁonwmmlwxz process receives an access command via
xmmvH to read or write. At most m:m such command can arrive
in a given step. If the address is out of range {there are
only k+1 cells) the control unit returns a false-valued message
to the requesting process. No synchronization is required mOHo
the initial access command. The subsequent transfer of informa-
tion is synchronized to lock out other access commands until
the initial one has been serviced. It is assumed that the
accessing process will execute either a read or write function
as specified in Figure 4.7-2. If the address is in range, the
addressed cell is sent an "operation code" of 0 or 1 for read
or write.

Each cell;-A has a state specified by an integer within
range. The cell is synchronized and waits for the control
process when an access is to be made. Upon receipt of the
"operation code," the cell transfers the desired information
and resumes its normal cycle of remembering "m."

The storage-A; is a tuple of processes but is not a
gystem since those processes do not form a complete mvmowquwr

tion. The interface to the partition is specified by the
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PATIENT-MONITORING-SYSTEM, = (CLOCK,MONITOR,DATA-BASE,NUKSE-STATIUN,
BURSE, , - Lammmwm,mﬁgzau.wcﬂ.mmw. .. .m»ﬁmze_m ,wcéwpv
MORITOR = (MONITORF,MONITORS) "uses a linear schedule."”

MONITORF ((TIME,i),RANGE,PAR) = [GRT(TIME, XACKL(F)): ((TIME,1) ,RANGE,PAR),

XASA, XSSA T zoiﬁomrmv.».w»znmkQﬂau.umrpv...Lquﬁbemqrumfrumvur
R STORRGE-Ay,, .:Emﬁ.ww.uﬁw ), [BQ(1,1): Xom (F),..,T: X (F)])
1 1
\ XCSAT, |\ XCSAIy vhere PAR = ((NEXT,,DEL,),..,(NEXT,,DEL,),..,(NEXT, DEL, ))
4 0 \  XCSAI 17 oy
\xnmwuo k or MON(TIME,i,RANGE,PAR) = hﬁigﬁ.:gfr
mw (RANGE, XCB((TIME,1),FACTORS))),
TS 2 » .
cee ) AxCsa, AXCEA, P (PAR, [BQ(1,1): Y,,EQ(1,2):%,,..,T:, 1)
vd 7
T b - where Y,  XCD, Aoce.o?goﬁgoeomm,mw (rance))) 1
xcsa, 1 1

il

OUT~OF-RANGE( (X, - . , X r:H.o.mor:.aﬁwuwmv: Aémimo.ao.mor:.emmiuwm.;m.mw
2 ¢

TEST(X,L,H) £ EOR (GRT(L,X),GRT(X,H)) "tests may be done in parallel.”

SUM: N, x N =+ N "is modular, integer sum."

k3 k3 kg
: N N - NEXT-OBS "let x, = MINIMUM{x,,..,x, ) then MIN(X) = (x,,i)."
Figure &4.7-1. Storage~Ay,-Partition. This is an exchange graph of a model of a STORAGE-A-unit with ktl M 1<i<k ww i 1 .ku. i
words of maximum value w, This figure represents k+2 processes which are gne element of -=1
M Mw.mnma partition. Any process in the system may read or write by executing-the EOR: B x B + B "exclusive or."
ollowing:

wm»un»"zw + {rl u zs...mm»u:»amv = if a > w then false clse m"

READ-A(ADD) = nx?&§w>w?o.§85

WRITE-A: N X N+ {F} "always returns false,"

WRITE-A(ADD,m) = N0m>NAB.x>m>H2H.g3v:. Figure 4.6-1, Definition Set 5: mmn»m:nlzghnonw:m..m%mnmsk.
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XSSA, and XCSA, functions. The XCSAI, functions are local to
the partition.

We may now get our process specifications onto somewhat
more familiar ground for programmers or hardware designers by

implementing some of our wmnwmsnlao=Mw0H|m<wnm5b functions in

terms of a storage unit as in the next example.
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4.8 Process and Storage Partitioning

We can now use our storage specification to contain state
information in a conventional way. We now introduce a conven-
tional (ALGOL-like) language shorthand for declaring data
structures and variable references., A variable name may be
subscripted or unsubscripted (e.g., X, x[i,3]1) and the variable
names must be declared as part of some data structure that
maps them onto some storage in a conventional way. The actual

expression represented by a variable name is a function that

can be automatically generated (e.g., FACTORS [j] = SUM(FACTORS,3)) .

pata structures and variables are convenient abstractions of
storage process interactions. Note that it is only now that
conventional programming language constructs of variable and
assignment are meaningful abstractions of the specifications.
Their specification and elaboration can thus be deferred until
the required contexts and performances have been developed.
Now that storage processes have been introduced to our design,
we can study questions of data structure and allocation to
various storage units. Such allocation introduces additional
performance couplings.

Except for monitor, buffer and nurse-station, all other

u-.~
processes are left unchanged. The patient, clock, and data-

base interactions with monitor are also unchanged, zcummu

and nurse-station interactions are the same as before.
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The cammmnw processes have now been mapped as a Vector in
storage, with storage itself serving as the buffer. The
nurse-station has changed only by "reading” buffers from
storage instead of the Ucmmmnw processes.

The only major changes are in the monitor process that
now has a null process state and serves only as a "processor"
operating on storage. All value access to former state vari-
ables is via read and write functions. There are some argu-
ments, local to monitor, that do not appear in storage.
Ultimately these would be mapped to temporary cells in some

storage or into registers in a "processor." MONITORF is the

same function here as it was in the previous specification,
although here it is specified in terms of operations (read,
write) on a storage. We must now introduce "type" conversion
to store our notices into an integer memory.

Our specifications may now be analyzed and simulated in
substantial detail. We could test many performance require-
ments and will have generated quite detailed performance

specifications by now. We could now continue with our design

by transforming the monitor process to hardware as a processor,

to firmware as a microprogram, or to software as a program
placed in storage and interpreted by some processor. All of

these alternatives can be easily specified in the same way as
our other specifications. The uniformity of the specifica-

tions, from requirements to hardware, allows us to use the
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Figure 4.8-1.

Patient-Monitor-Systems.

partition to hold state information of the monitor and nurse-station processes,

replaces the previous buffer processes,
this figure represents Wm + wH + 5 processes.
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This is an exchange graph of a system incorpoxating a atorage
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ﬁﬁ?ﬁ.zw (xa0i (F) KEITF-£ {PAR-AET AL (115 ], SN REAR A
(raa- oL (B AG1e ) 5aek (1)),
MW (REAR-A{PIN) ERTaEECeAL220)) ) )]

viTa(s) = QEL }

10Ty,
vhere Y, £ VEITT-A{FASTORS[ 3], <CV
a 19 ? cort
and ¥y, 5 7y C,rd:.:
Hos(t,1) = (SRITE-A(TY S0m,

SRITE-ALFIN, TS (2o D)),

SRITE-A{FFTRRI ), OUT-OF-RASGE(1),
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same analysis and simulation tools from start to finish. Most
importantly, the customer may study the design, in his terms,
by simulation at each step of the development process. The
designer may also do that and can achieve substantial and

early feedback on the conseguences of his decisions. The

early specification of 50:~momw interactions facilitates
subsequent system partitioning with confidence that parallel
elaborations are still logically independent. Some performance

information can be obtained even at early stages.
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4.9 Conclusions

We have introduced a specification formalism based on
both "exchange" functions and asynchronous processes, and
illustrated their use in a sequence of specifications linked
by a hypothetical development process. We have shown that the
highly mathematical specification language easily extends the
domain of discussion to include a large and interesting class
of asynchronous processes,

We now have a useful and common language in which to
specify, discuss, and solve many interesting system development
problems. Such specifications have heen designed to make
analysis and simulation possible if not always easy. Clearly,
mcm: an analysis, even when trivial, can be accurately done
only when automated. These specifications must (and can) be
checked by such automated tools prior to confidence that they
really are complete, consistent, etc. These tools, mwwwo:ms
made possible by this formalism, have not been implemented as
yet. Consequently, errors may exist in the example specifica-
tions.

We believe the sequence of examples has shown that formal
specifications may be practical even at the earliest stages of
development where primitives are very high level indeed.

The sequence of examples has also shown that asynchronous
processes (with their freedom from premature details of hard-
ware or software) are generally applicable to specifying

systems at any level of abstraction.
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This specification formalism ls useful to system
developers in its own right, without prejudice as to the
design methods and theories employed. As a conseguence, our
specifications make an excellent basis for further study of
design methods and theory.

We are currently pursuing such studies on a broad front
and many preliminary results have been developed [FD].
Exchange functions have also been used in anocther approach
[DW] to requirements specifications. We invite others to try
out both this notation and asynchronous processes. We would

be pleased to see your results,

[DW] DEWOLF, J. Barton, and Principato, Robert N. "A
Methodology for Requirements Specification and Preliminary
Design of Real-Time Systems." Report C-4923, July 1977. The
Charles Stark Draper Laboratory, Inc., Cambridge, Mass.
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5. Fuonctional Specification of a Microprocessor

5.1 Introduction

This section gives a formal high-level functional
specification for a particular configuration of the Motorola
M6800 hardware microprocessor. The notation used is that of
the specification source language of section 3.4.3.2 with
minor modifications as noted in section 5.2. In such a high-
level description we functionally designate transitions be-
tween well-defined states of the component sub-processors of
the microprocessor. This means that many possible hardware de-
signs besides that of the M6800 are capable of realizing our
specifications at the physical implementation level. In con-
trast, a very low-level specification could, for example, rep-
resent every logic gate and control signal within the hardware
and thus allow for far less flexibility in hardware design
choice. Presumably in a top-down design scheme we would arrive
at the present level of specification only very late in the
complete design process. Further, we would not expect to gen-
erate functional specifications in order to match previously
existing hardware as we have done here since this constitutes,
in effect, a design process in reverse. Our intent in this and
other examples is to show how functional specifications can be
applied over the entire spectrum of design steps in a top-down

design process.
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The M6800 microprocessor was chosen as our example for
demonstration of the use of functional specifications on the
basis of its simplicity of design, especially in that memory
and peripherals are addressed uniformly on the same bus by the
central processor. Only the most basic information on the
M6800 will be reproduced here from [M75] as we elaborate our
specifications. Reference to Chapters 1 and 3 of that docu-
ment will be necessary for a thorough comprehension of the
specifications presented ﬂwnocmwocw this section. The par-
ticular configuration of component processors which our
specifications define consists of the central processor (or
MPU for “"microprocessing unit"), a random access memory (RAM) ,
a read only memory Awozv~;m:m a mwnw@:mnmw.wsnmnmmnw adapter
(PIA). We have omitted specifications for a reset switch and
a power-down switch (both trivial) and for two peripheral
devices which may be attached to the PIA, such as a CRT or a
line printer.

Our processes can be represented graphically by an inter-
action diagram (Figure 5~1) which illustrates all exchange
functions used in subsequent specifications. Reset signals
and power-down signals are sent to the MPU via the channels

RES and NMI ({(non-maskable interrupt), respectively. The chan-

[M75] M6800 Microprocessor Applications Manual, Motorola
Semiconductor Products, Inc., 1975.
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RES ’
Xs <
NMI
Xs
RAM
XC & > XC Random
DATA Access
Xc XA Memory
Microprocessing ROM
Unit XC xc Read
DATA only
Xc XA Memory
PIA CAl
XC X8 X5 K—
DATA X5 nm A2
XC XA DAA
Peripheral XS [&—-
RP Interface CBl
XC XS Adapter XS K—
CB2
HWI XS &—
XC P Xs DAB
XS j—

Figure 5-1. Exchange function interactions for a
microprocessing system.

nels RAM, ROM, and PIA each send addresses and read/write
signals to the processors of the same name, and channel DATA
sends data between the MPU and the other three processors.
The remaining channels all involve the PIA. Specifically,
the MPU resets the PIA via RP and HWI sends interrupt status

information from the PIA to the MPU. In addition, CAl, Caz2,
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CBl, and CB2 are control channels for peripheral devices,
whereas DBA and DAB are data channels with CAl, CA2, DAA
reserved for one device and CBl, CB2, and DAB reserved for
a second device. In the definitions which follow we use
numerical subscripts on exchange functions rather than the
mnemonic symbols. This is purely a convenience and is not
required by the specification source language since named
constants (having distinct but unspecified values) are also
acceptable. The correspondences are as follows, where nu-
merical values in parentheses are followed by their mnemonic
equivalents: (1) RES, (2) RP, (3) NMI, (4) HWI, (5) RAM,
(6) ROM, (7) PIA, (8) DAT3, (0,1) CAl, (0,2) CA2, {0,3) DAaa,
(1,1) c¢B1, (1,2) cB2, and (1,3) DAB.

5.2 Notation and Organization

Before we elaborate each of the four microcomputer
processes in turn, thus clarifying the use of the exchange
functions shown in Figure 5-1 it is necessary to introduce
the notation and basic functions which will be used through-
out our specifications. The notation is essentially that of
section 3.4.3.2; however, a few differences should be noted.
For the sake of brevity in section 5.3 we have permitted the
addition and subtraction of subscripts, as in ordinary alge-
braic notation. This augmentation of the language would sure-
ly not complicate in any significant way the analyses of mvmnwr

fications using the feature, and so it is justified by the ef-

- 213 ~



fort it saves. Another change is purely notational and

involves the iterator construct explained in note (4) of
section 3.4.3.2. We will in section 5 simply invert the
order of the terminals and substitute "<" and ">" for "("

and ")" respectively, so that, for example, the list ayrag,

a

3 is represented via iteration not as wwﬁu.mwv but as

HpuA.w > instead. Another modification of the source lan-

i
guage is the use of the semicolon in place of the comma after
pairs of functional expressions in selector functions (see
section 3.4.3.2, notes (39-41)). These latter two changes to
the source language are trivial and do not add to the com-
vwmxmn% mm parsing or analyzing mvmnwwwnmnwonm. Finally, we
have used expressions of the form "replacing @ by $#" within
definitions where attributes (i.e., comments) would normally
appear. Each such expression merely indicates the textual
substitution of § for @ everywhere within the definition.
This device saves space and writing effort and again does
not add to the complexity of analyzing specifications.

We have not written our microprocessor specification as
a sentence in the specification source language of section
3.4.3.2 since we have interleaved lists of formal definitions
and informal English language text for each process. Thisg is
necessary because of the great length of the formal definition,
which is primarily of a pedagogical nature and so is ﬁnomnwnmm

accordingly. On the other hand, a formal specification entire-
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ly in the source language can easily be constructed from our
definitions by placing the four successor function definitions
for the MPU, RAM, ROM, and PIA in a specification definition
(section 3.4.3.2, note (20)) along with (here non—-existent
but easily supplied) definitions for a reset switch, power-
down switch, and two peripherals. This specification and

all remaining definitions need then only to be embedded with-
in a block definition (section 3.4.3.2, note {2)) in order to
produce a complete, syntactically correct specification in

the source language, as augmented in this section. It should
be noted that name scoping rules apply to our existing defini-
tions as if they were in fact included in a single block.

That is, definitions in one list may refer to definitions in
another list.

The functions introduced in section 5.3 are used repeat-
edly throughout the rest of section 5, but are of a miscel-
laneous character and so are included as a unit. They may
thus be passed over by the reader and then referenced later
where appropriate function names from that group appear in
subsequent sections. The function names tend to be mnemonic
and fairly self-explanatory. For example, Eor is the exclu-
sive or function, and Ovflow is the arithmetic overflow func-
tion. Note that although we have mentioned a purely arith-
metic concept and will introduce a function called Add, these
are interpretations of values consisting mmwmww of bit vectors.

Integers as such do not occur in the present low level of
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abstraction; however, as we have mentioned, it is possible to

have mapped integers onto bit vectors at some earlier design
stage. Because the M6800 is a byte-oriented processor with
16-bit addressing we have represented the states of the pro-
cessors primarily as vectors of 8-bit strings (8-tuples) and
16-bit strings (16-tuples). Presumably integers or floating
point numbers were mapped onto bit strings at an earlier

stage of the design and so are not appropriate for the cur-

rent description of process states.
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5.3 - Basic Definitions

1Pyp<.let Vo= Ha:Axﬁo 1}>>,

A~Hu=A.uwaA.ﬁmw Pr. V> <w|u+a where

1716384 j,k,n*'n

WH.U.LA ﬂﬁH&5A~NNVV B AMBWA-XEVVVVV-

h <,Let u:a.w"<:x<w + Vi where

107%71117
Ing 5 (PR x> o iy Ty <o XD 2 TS x )

1

HuHQAhmw u:: ..<:x< x<u -+ <s+»+w where

v.w~uaw~:.<v m 3+P.uhu53 pAn :~<v.

1ky7<tet Inp g s VRV OVSVE 2 Visiagek

Q33~w‘u~xﬁﬁ~c~<~€v = 35+H+u~xaQ=7 1,3

<Let Qd?-w-uLn I <~ux<u..x<ux<unx<& +

Jn
where

(t,u,v),w),
1*16

Vheitj+k+s

where un: 1,50k, nﬁn.=~<~£.xv E
u=w+w+u+x.xﬁuar i,9.k ) (Er2ev W) o x),

P HmAbmn u:v ..u.x.h~5" <7x< x<ux<xx<nx<a -+

where &:r.w (t,u,v,w,x,y) =

<w+»+w+x+~+a 13k,

q=u+w+u+x+s.agusa~w.u X, man.s.c.s.xv.wv.

1Pg<tet Iny 5 5k g,mnt VRV VOV VRVt

where Jng (t,u,v,v,x,y,z) =

<r+w+u+w+n+a+= /i,3k,2mn

(Jn (t,u,v,w,x,y),z)>>>>>>>,

Iy i egekeram,n 90,1, 9.k, 2,m

Let Eqq: IntegerxInteger + Boolean with ,Mﬂwﬁx~wvum
True if x equals y, otherwise mawﬂx.wv = False”

<, Let Eq : <=x<: + Boolean where mnaax.wv =
(¥)):

2"14

{BEq, _, (Pr (x),Pr

1,n-1,n 1,n~-1,n

Hmawﬁmn=.=.uaxv‘mH=.=~=A%," True, Falsel; PFalsel,?
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Let Equiv: V,xv, » V, where Equiv(x,y) & Let Add,: V, + V, where Add, (x) =

1° 73
[Bq, (x,¥y): 1;0], [Eq4(x,(0,0,0)): (0,0); Eqg,(x,(0,0,1)): (0,1);

.

HuppA~bmn zmms. <=x<s + Boolean where mauax.ﬁo.p.cVV" (0,1); mmw~x~ﬁo.w~wvv“ (1,0);

zmasﬁx.wu = ﬁmnsﬁx.wv" False; Truel>, . mauax.*w.c~ovv" (0,1); mmwﬁx.ﬁw.o~wwv" (1,0):

Let Comp,: V, + V, where BEqy{x,(1,1,0)): (1,0); (1,1},

Comp, (x} = [Eq, (x,0):1;0], aMyg<sLet Add s V XV XV, > V., where

oNyg<.Let Comp : V + V  where Comp (x) = Add (x,y,k) = ussaw.wﬁwmmuuwAmnw.znw~=ﬂxv.vnv.ssw.ahwv.
5 " "
u::sH.Haoosvvnwavnw~=nw.s~xvv.noamwawnn.s.saxvvvv. wnw.w.uAva.mnu.m.mﬁuvv replacing "z" by
Let And;: VyXV; + V; where And, (x,y) = =vmmwﬂmn:~=.=axv,mn=.=~=ﬂwv~xv=v.

(Bqy (x,0): 0; Eq,(y,0): 0; 1], 10yg<rLet Adj: VXV XV, >V where

w:wmA~hmn »nmau <=x<= -+ <= where >bm=Ax.<v H ymzax.w.xv H mnw.s+w.=+wﬁbmm=~x.<~xvvv.
Ing_y,1 (A0 g (Pry p (X ePEy g a9 1Myg<sLet Zero : V -+ V; where Zero (x) =
>smwﬁmns~=,sﬁxv~mH=.=~:A%vvvv~ Hmasﬁx~*wwnA-ovvv“ 1; 01>,
Let Ory: V,xV, - V; where Or,(x,y) = Let Zero: Vg » V, where Zero(x) = Zerog(x),
Hmawﬂx~wv"wn mnwaw.wv“ 1; o1, Let Sign: Vg + V, where Sign{x) = MHH~H.mAxv.
mzpmA~bmn OH:" <:x<: -+ <= where OHsAx.wv z Let Carry: <w -+ <H where Carry(x) = mnw.w,uﬁxv.
Q=s|H~HAOH=IHAMHH.nuw.bev~wnw.=np.=a<vv. Let Ovflow: <mx<mx<m + v where Ovflow(x,y,z) =
Ory (Pr | LX) ,Pr o o¥1))>, (And, (Equiv(Pry ; g(x),Pry ; g(¥)),
Let monwu <Hx<w -+ <H where nonpax~<w = ooawwﬂmacwcax.%vv‘ macp<awhw.w.mﬂxv~noavawﬂw‘H,mAvavv.
mmeA~hmw mons“ <=x<= -+ <= where monsﬁx.wv = Let moH" <Hm -»> <Hm where mowﬁxv -3 >mwmﬁx.ﬂHMHmA~cvv.Hv.
u::;w.wﬁnon uwﬁmnw.slw.sﬁxv.wnw.uuw.:awvv. ong<,Let Sc : Vi + V,o where Sc, (x) = HpnAomoHAwav.
Eory (Pr, o, n(X)/Pr o (¥)))>, Let Pd;: V . + V,. where P4, (x) = Adyg(x,(;i,.</1>),0),
mbmA.hmw mmsn <wm -+ <Hm where mmbﬂxv = wwnAommHAxvvv
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LETTER_A = CAP_A[SMALL A

SMALL A = “a’.

CAP_A

]
’
>
N

Both “a” and “A” are terminals in the grammar.
If these three productions were to specify an entire
grammar, thén the language would be the set {A,a}.

Modifying the grammar somewhat we get the following set

of productions:

LETTER A = CAP_A|SMALL_A

SMALL A = “a”{*a’}.

cap_A = “A°{*a’}.

This grammar will produce an infinite number of sentences.

Examples of such sentences are:

aa
aaa
A

AA
AAAAA

etc.

The use of Wirth's notation allows a compact and clear

representation for a context-free language.
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Appendix D - An Investigation of Digital
System Equivalence in the Context of a
Comprehensive Design Theory
This appendix consists of the original unedited text of
a paper by Pamela Zave. The original page numbering, to which
the tabie of contents of this paper refers, can be found in
the upper right hand corner of each page. Page numbering for

the present report continues uninterrupted at the bottom cen-

ter of each page.
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AN INVESTIGATION OF DIGITAL SYSTEM EQUIVALENCE
IN THE CONTEXT OF A COMPREHENSIVE DESIGN ‘THEORY

Abstract

In the context of the comprehensive design theory being developed
by Fitzwater, Zave, et. al., the problem of digital system equivalence
takes on a new and nore tractable form. The design steps in which
equivalence is useful are identified. For these steps, & set of
equivalence preserving transformations is identified, proved to be
m&&ﬁwmznw-vnmmmzwﬁ. and shown to be useful by examples. This
approach to equivalence is compared to other work, with reflections

on the design theory.
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AN INVESTIGATION OF DIGITAL SYSTEM EQUIVALENCE
N THE CONTEXT OF A COMPREHENSIVE DESIGN THEORY

I. INTRODUCTION

This is the final report on vwork done under Scientific m.mu.&nmm Program
Contract DAAG29-76-D-0100, Battelle Columbus Laboratories.

The scope of this contract was to investigate the equivalence problem
in the context of the digital system design theory being developed by
D. R. Fitzwater at the University of Wisconsin - Madison, the author, and
others, the point being to determine whether equivalence-preserving
transformations were useful and feasible in the system development process.
For information about the design theory, the reader is referred to [Fil, [ZF],
and [FZ] in the published literature, jnterim reports by D. R. Fitzwater on
BMDSC-ATC-P  Contract DASG60-76-C-0080, and finally to the reports still
in preparation on this work.

The goal of the design theory is to produce a representation, method,
and decision theory for the development of digital systems. The represen-
tation is a formal system specification language which ensures that relevant

properties of systems are efficiently decidable. The method is a heuristic

effective procedure, i.e. an automated procedure operating on the representation

and using the interactive guidance of a human designer, which develops the
system by successive transformations. The decision theory contains the
information and tools which the human designer uses to guide the procedure
toward the most efficient development and the best developed system.

Part 11 of this report discusses the role of equivalence in this
design theory. Parts III and IV present the basic theoretical approach to

the form of equivalence found most useful. In Part V, specific equivalence-



preserving transformations, equivalence proofs, and examples are given.
Parts VI and VII compare this work to other approaches to equivalence,

and present conclusions and recommendations.
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11I. THE EQUIVALENCE PROBLEM

A. Definition

In its most general form, the equivalence problem is to determine whether
or mot two arbitrary formal objects are identical with respect to a set
of formal attributes. The set of attributes defines what is important;
the objects are equivalent only if they are alike (equal-valued) in important
characteristics (attributes), but may differ in other characteristics .
Thus equivalence is the natural vehicle for expressing formally the invariance
of properties, and can be used regardless of the level of abstraction at which
the properties are defined.

The equivalence problem is also very hard, and most non-trivial
cases are undecidable many times over, For this reason we must confine
ourselves to studying the equivalence of very similar objects. Fortunately,
this is consistent with our need: to show that certain properties are
preserved under simple changes to formal system specifications.

At present, only 'logical' or "functional" attributes are sufficiently
well understood to have been elaborated in our specification language.
Other attributes, such as comments and "per formance' attributes, are now
represented only as undifferentiated "attribute 1ists' associated with
certain syntactic entities. Thus we can only deal explicitly with logical
attributes here, while ensuring that all results will be applicable or
extensible to later versions of the specification language.

Since useful applications of equivalence theory are to be defined by
steps of a design process (i.e. simple changes in a specification), we

will next consider what these steps might be.
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B. Equivalence of Open Systems

Two common design ma.mvm are partition and assembly. In a partition
step, a system is broken into subsystems, each to be carried independently
through further design steps. An assembly step is used to put the subsystems
back together later., The subsystems are ‘"'open systems,'' because they exist
for their interactions with other subsystems, and are not self-contained.

Partition and assembly steps themselves do not involve any interesting
equivalence problems, but they do require that some strong form of behavioral
{"black-box’") equivalence be preserved, for muu;m:vmwmnmam. during the steps
between partition and assembly. Otherwise a subsystem could rnot be operated
on independently, and partitioning would be vacuous. We will now show
that this requirement makes it impossible to carry out any kind of usefully
top-down, independent des ign of the subsystems. Since this follows directly
from the definitions of partition and assembly steps, the conclusion is
that these steps have no place in a top-down design process.

This form of design might work! if it were possible to specify the
behavior of a subsystem independent of its internal structure, and to relate
the structure-independent description to the various structures it might

have. The former is necessary for partitioning without overly constraining

the subsystems; the latter is necessary for proving that the behavioral inter-

face is preserved.

Neither of these is impossible if the subsystem is merely a sequential

procedure: the interface description consists of an argument set, a value set,

1 There is the additional problem of allocation of performance attributes,
which has no apparent solution in this form, but is outside the scope of
this report.
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* and an assertion relating the two; this description can be related to

procedure code using axiomatic proof techniques (see [Ho] for a seminal
reference) .~

In the interesting case, however, the subsystem is itself a set of
asynchronously interacting parallel processes. Behavioral descriptions of
these have been investigated in [Za] and [Ri]. Consider, for example,
the subsystem of Figure 1, in which the action of process A is to emit a
message "a" on each step, and the action of process B is to emit a 'b" on
each step. Its behavioral interface must be described in terms of the
sequences of messages received by the environment, since messages are the
only form of interaction here. The behavior could be described as {a, b,
aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, aaab, aaba,
aabb, abaa, abab, abba, abbb, baaa, ...} , which is an infinite set of
sequences suffering from combinatorial explosion due to the arbitrarily varying

relative rates of the two processes. Such a description has the virtue of

Figure 1. An open subsystem

2 .
Note that this cannot be done in all cases, but "'structured programming'
rules are intended to weed out the .w:nnmnﬁmvmm ones. progr
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being structure-independent, but it is difficult to imagine any means by
which it n.ocE be related to particular structures, either to verify or to
generate them.

Using the event expression motation of Riddle ([Ri]), on the other hand,
the behavior can be described as a* A b* - where the & ("shuffle")
operator denotes an arbitrary interleaving of strings from a* and b* .
This expression is simple because it reflects the process structure. It
is not structure-independent, and it cannot be used to verify or gemerate
structures other than the one from which it came, because equivalence of
event expressions is undecidable!

We conclude that there is no way to describe a behavioral interface
that is both independent of and commensurate with parallel process structure,
wa that in the absence of such a scheme, we must deal only with closed

systems (Figure 2).

Figure 2. A closed system.
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€. Equivalence in Closed Systems

The possible design steps on closed system specifications are elaboration,
evolution, optimization, decomposition, and integration. Decomposition
refers to breaking a specification into several complete specifications of
the same system, each with respect to a different set of attributes.
Integration refers to the recombination of these, after independent design
steps. These are interesting design operations, but are not sufficiently
well understood at this time to be dealt with here.

Elaboration is an operation which adds additional attributes by
replacing primitive entities by non-primitive entities, and is the funda-
mental design step. Sufficient conditions must be defined for elaboration
steps so that if they begin with valid, complete and consistent specifications,
they end with valid, conmplete, and consistent specifications having the same
attributes as before, and also some additional attributes. No additional
equivalence concepts appear to be needed.

Evolution is an operation which involves backtracking to a less
elaborated version and re-elaborating. It also appears to need no additiornal
equivalence concepts.

The final type of step, optimization, transforms a specification into a
more desirable form. Specifically: an elaboration step defines a (formerly
primitive) entity, an evolution step redefines an entity in such a way
that the old and new definitions need mot be related, and an optimization step
redefines an entity in such a way that the old and new definitjons are logically,
or functiomally, eguivalent. Obviously, here equivalence assumes its importance
in the design method.

How might the equivalent definition be more desirable? There seem to
be two ways. At some point the formal development process stops, ard its
present state is realized as a digital system. A more desirable form may be
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one vhich is closer to the form of the intended realization, and thus takes
less intellectual effort to realize.

The other possibility involves performance attributes, which are mt
yet elaborated. But consider this hypothetical (yet probable) example:
Every function declared in a specification has an attribute which is an
estimated evaluation time. This attribute of primitive functions is supplied
by the designer; for non-primitives it is calculated from the attributes
of primitive functions uwsed in its defining expression. Now if a non-primitive
function is defined in terms of a sequence of four primitive function
evaluations, each estimated to take n seconds, the time attribute of this
function will be 4n . If an optimizing transformation could find a logically
equivalent expression in which there were two parallel evaluations of two
functions each, it could also recalculate the time attribute to be 2n, This
nonﬂmmvommm to the traditional idea of opitmization.

Based on this reasoning, the rest of this report will concern itself

with optimizing transformations on closed systems.
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1II. AN OPTIMIZATION-ORIENTED VIEW OF SPECIFICATIONS

A. An "Evaluation" Specification Language

Optimizations will be operations on specifications as data objects.
Unfortunately, there are two quite different principles which can be used
to organize the data:

{1) the definitional principle, under which the specification is a
block-structured set of definitions;

(2) the evaluation principle, under vwhich a specification is a graph
structure isomorphic to the function evaluations occurring when it is
interpreted.

The specification language being designed as part of our theory follows,
for sound reasons, principle (1). The problem is that equivalence concerns
evaluation structures, and thus optimizations are most conveniently carried
out on data objects organized by principle (2).

The ultimate solution to this problem is a matter of good design of a
database and algorithms on it. It would be premature to attempt it here.
Our interim solution is to define an “evaluation' language (based on (2))
and use it for present purposes. A grammar for this language is given in
Figure 3.

The correspondence between the definition and evaluation languages
should be intuitive. These are the most important ideas:

(1) In the former, a ron-primitive set or function can be defined as
an expression in terms of other sets or functions, and that definition can
be used in many places. In the latter this is not possible: only primitive
set and function names appear, and structure must be explicitly specified

everyvhere it is used.
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< sys-spec>, ((< 3 >.< mwvu. ceny (R 5 > y < mwv 1)}

(2) Yk €N

(g >, <f>) - By X °oX gy (< fpq>reer< £,>))

(3 vieN ,keNceN, seh

<fy> + (SEj >0 £4>)

+

f; (<argg> .. B,wwo&
s <y > <Ep <y s>t < e ™

) true ¢ < mw.Nr >]
-+ xnmn (<argjy >)

-+ x>mn (<argy; >)

+

s
X6 (< mwmww.vu

(4) v;eN,keN 2N

"Amﬂwwv‘q Amwv

£

Figure 3. Grammar of the evaluation language. N is the set

of positive integers, and N is the set of finite
sequences of positive integers. <> indicates a
non-terminal.
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(2 In the former, a primitive set or function can be given any name,
and used in many places. In the latter, each instance is given a unique
name based on its place in the structure.

A formal definition of this correspondence shall be relegated to the
design of the language interpreter and database. As the evaluation language
is not necessarily suited for any analyses but those of immediate interest,
we will assume that all specifications are complete and consistent in their
definitional form.

In the evaluation language the notion that some values yielded by
exchange evaluations are needed in several places must be encoded explicitly,
vmnw:mm the language requires a separate exchange instance in each place.
Superscripts do this job: if several instances in the same process, with
the same type and class, have the same superscript, they represent only one
evaluation. Otherwise they represent several gmugmwosm.u

Non-terminal names in the grammar can and will be used to refer to the
substyuctures they generate. Not all structures which could arise in a
definitional specification can be named, however,

We refer specifically to the fact that the "top level” of the specifica-
tion is a simple cross-product of sets and a corresponding simple tuple of
functions. This includes forms which are jsomorphic to a tuple of tuples,

a single successor function, etc. What is leaves out is the case where a
single function yields a structured value for the next state. We are ruling
out the direct expression of that case for the purpose of having a clean

notation relating state components and the functions which compute their values.

3 Since only exchange functions have side effects, they are the only functions
for which single or multiple evaluation makes a logical difference.
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The importance of this should not be exaggerated, The evaluation
granmar cerves to name things so that they can be manipulated easily.
In the cast at hand we are merely refusing to name, not precluding in the
definition language, a structure which has no particularly useful manipu-

lations.

B. Relevant Analyses

In this section two simple analysis algorithms, needed for subsequent
discussions, will be presented. They operate on specifications generated
by the grammar in Figure 3.

The first algorithm forms from a process specification (generated from
(<t 3 >, < ».u. >) in the grammar) a finite set of exchange precedence
graphs, any one of which may characterize the exchange behavior of a step
of the process. There must be a set of grpahs because each selection
construction may create a value-dependent set of different possibilities
for what can happen.

The grammar attaches structural names to both non-terminals and primi-
tive functions. In this presentation the structural name of an exchange
function will be stored in the mﬂwvr as a pointer to the location of the
exchange in the specification.

‘The nodes of the precedence graph are triples (type, class, pointerset),
vhere type € {XC, XA, XS}, «class € N, vowzﬂmﬂmmﬁm Nz+. Let G be
the set of all precedence graphs with nodes of this wﬁxw.

We will also generate preliminary graphs whose nodes are quadruples
(type, class, pointer, superscript), type € {XC, ¥A, XS}, class € N,
pointer € z+. superscript € N . Let mm be the set of all precedence
graphs with moamm of this type or distinguished null nodes.

i
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Let A be the set of all constructions which can be generated by the
specification grammar from < arg;>, w.m N*. Then noéaﬁw&az of the
precedence graphs requires two functions, graph : A+ No and comnect :

& + G, defined below. )

The "graph" function maps a specification fragment onto a set of prelimi-
nary precedence graphs. It is defined recursively, and graphs are represented
pictorially. A circle is a node and a box is a graph or subgraph. It is
to be understood that if an application of"graph" to a partially completed
member of a result set yields a set value, then the elements of this new
set are all added individually to the result set - not as a set element

of the Tesult set. In other words, the result set contains graphs, but no

sets of graphs.

graph (< mﬂmM.Vu =
if <arg; > (< £59 >peenn< mwAVu

then

~ graph(< £,;>) _ graph (< £5, )|

else if <arg; > = mw (< argyy> ... < argsy >)

then

[graph (< argy;?)| ++ | graph(< arey?)

else if < argg >=[< £y >:< £ >0 F g™ <F 07

S.cm"AmWNxvu
?

then
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_Imﬂmv: (< £, (< mwwvuu ye v oy

[graph (<£; 5 p> (S5 gy (o< Ey D)

| _
graph (< mf Nx (< mw.Nx.wV (re(< mﬁvv...uuu
s S
else if <arg; >=XC_ (<arg>)

then
_

graph (< mwmﬁvu

XC,c,i,s

else if < arg; > = x>mn (< B.mﬁvu

then

graph (< aTg;;>)

XA,c,i

else if < arg; > = xmmn (< wﬂmﬂ.vu

then

graph (< mﬁmwwvu

Qm.n.w.m v

clse if < wnmwv = % or < mnmw >a mw

then

@ad
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As an example of the use of "graph,” Figure 5 shows the value yielded
by "graph" when applied to the specification fragment in Figure 4.

The “connect" function maps a preliminary graph into one without null

nodes, in which sets of nodes, all of which represent the same exchange
evaluation, are merged into single nodes. This is done by checking super-
scripts.

"Connect" simply eliminates all null nodes, and merges all sets of nodes

with same type, class, and superscript. When a null node is eliminated,
all its input arcs are joined to all w,ﬂm output arcs, to preserve precedence
constraints. When a set of nodes is merged, a single node representing the
whole set is formed. It has the common type and class, and a pointerset
containing the pointers of ali merged nodes. It has the predecessors of

all merged nodes, and the successors of all merged nodes.

Since ‘'‘connect" operates only on one preliminary graph, the characteristic

set of graphs for a process (<I;>, < £, is {g : 3h g graph (<5 >3,
g = connect (h)}. Figure 6 shows the set of graphs for the process whose

<f.>m=
1
( 1 1
£i(F51p O (Fyppgdeop) o XC,b (£330 08 (Bypaq10) s 03))

1 .
g OC (Fyppy)) ¢ X5 (£555)
8,530, (ypmp)) XC;t (£124)

true : oy

Figure 4. A specification fragment.
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XC,1,i1211,1

XC,2,i12,1

XC,1,i111,1

XC,1,i211,1

XC,1,i1211,1

Xc,2,i12,1

&

T

nuil)

XC,4,i24,1

Figure 5. A member of 2= .
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Definition of an actual

successor function is specified in Figure 4
be straightforward.
an

algorithm to find this set should

One of the most important properties of interaction is determinacy:
of an exchange

exchange class is said to be determinate if for every instance

e,

-

XC,2,1i12}

X, 4, {i24}

xc,2,1i12}

N e
S~ ~_<______/ \/““"""--w

Figure 6. A member of Nn .
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of that nwmmm in the specification, there is at most one other instance
with which it can match. The second -analysis algorithm uses the graph
sets produced by the first to define simple sufficient conditions for
establishing determinacy.

Basically, the idea is to rule out the obvious non-matches for an
exhange: itself, those of the wrong type, those of the wrong class, and
predecessors or successors in the same process. If the remaining set of
exchanges in a specification is called a "potentisl set" for the exchange,
then a detectably deterministic class is one in which no mermber has a
potential set with a size greater than one.

Why is an exchange ruled out as a match for itself? Each exchange in
a specification is instantiated by a sequence of evaluations (during different
steps of the same process), but there is a strong precedence constraint
separating members of the sequence. The same is true, of course, of exchanges
in the same process step with a predecessor/successor relationship. We mnote
for future reference that any transformation which purports to preserve
determinacy, as detected by this analysis, must also preserve these precedence
constraints.

Let N be the set of all nodes appearing in all graphs produced by
the preceding algorithm applied to a specification, and let

Wth th .th

Nk~ mn&w. Ci5ke v&.ru be the node in the j-— graph of the i-—

process. Exchanges in the specification are uniquely identified by pointer-
sets, and the predicate deterministic (€) = [V Pijk 3 S5k " & , | potentials
F&xu j = 1] decides determinacy of a class ¢ . The potential set is

found using: potentials (p) = {p:[pFPJ&[3 Ny ?&.w. Ciyk0 nwu.xu.

=w.u.x. = Q‘..,.p.u.w.. nw.u.w: vw.u..x.v.mz wvm...u.x =P vw..u.x. = w : _”nwu.w ®
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Cirgrr J B [tggp = tojuge = XA T &= Uty = Tyojue = X5 1 6

(L5 =41 v I3 = 3'T6mInggp = Pred (agojod] & = [ngog e = pred (nggpd 11000,
where pred(node) is the set of all predecessors of a node in a directed

graph. As before, a straightforward graph algorithm is implied by these
expressions.

All deterministic classes can be split w,.no new classes, each of which has
only two exchanges (XC/XC or XS/XC}, without changing the semantics of the
specification. This “canonical form" encodes the determinacy explicitly,
making detection trivial, since all potential matches but one can now be
ruled out on the basis of the first two clauses in "potentials." Henceforth

we will assume that all specifications use this canonical form.

C. A Particular Definition of Equivalence

This section presents m._.m formulation of equivalence which seems most
suitable for the problem at hand, i.e. optimizing transformations on closed
systems.

In a closed system, the environment which uses the open digital system
being developed must be represented approximately as another open digital
system, as shown in Figure 7. There is no apparent loss of generality in
requiring that the dividing line be drawn between (rather than through)
processes, since digital processes cannot be synchronous with the continuous
processes being approximated by the "environment" digital processes.

An optimizing transformation operates on the “subsysten” without changing

the "environment." To be correct, it must preserve the functional properties

4 There may be more than one node in N with the pointerset p , but since
all represent the same exchange, all have the same type, class, and process
membership.
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of the subsystem as seen by the environment. Our formal definition of
equivalence must be designed so that transformations from systems to equivalent
mv.Wﬂm:m are correct by this standard.

An equivalence relation on a set of asynchronously interacting processes
can actually be defined without explicit mention of the interaction mechanism.
Let S be the system whose specification is Qmw.mwu. HHN.mNU....Qa.msS.
vhere I, is a state space and f; is a (possibly non-deterministic)
successor function. Then formally S is the set of all (possibly infinite)
Sequences  Sp, 51,57, .. such that .mw € u._mmﬁ

-
55 = maw.am.....qmv. Si41 = (91 49 yerer9n ) there exists a k such

1 1
that op = £ (9, oy =9 if jAk.

Let py be the function which projects a tuple onto some of its elements,

;0 Yy and, ¥y, if

namely those whose indices are contained in the integer set J. Thus if
t is an n-tuple, and J contains k integers between 1 and n inclusive,
the Py will project the n-tuple onto a k-tuple.

behavioral
.\ interface

SUBSYSTEM | ENVIRONMENT
l

Figure 7. Parts of a closed system
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Let mummu be (t: 3 q €S, q= 50151550t ® T tiatarenees and Y,
t = v.uhww:. Then we can say that 5 is equivalent to S' with respect
to J enviromment processes, or § = §', if vummu - mmﬁm.u.
This definition says that two mv..wﬂmsm are equivalent if their environmeat
subsystems, viewed as systems, contain the same computations. Since the

..smwzwsm._ of a closed system is presumably what the environment part can do,

this simple definition seems adequate and appropriate.

D. Preliminary Observations

Now that we know what equivalence is, we must ask ourselves what kinds
of transformations can be proven to preserve equivalence, and are useful as
optimizations.

A conputation of a system can be viewed as a large number of primitive
function evaluations, governed by precedence constraints. Some of the
constraints are the "matural” ones determined by the functional structure,
e.g. a function cannot be evaluated until its arguments have been. Others
are the "artificial" constraints induced by process membership, i.e. that
all function evaluations belonging to one step of one process must be completed
before any evaluations belonging to the next step of that process begin.

We could not optimize by changing the primitive functions (or, by
implication, their data structures), or their "natural" precedence constraints,
without introducing some form of axiomatic definitions of primitives with
which to carry out the equivalence proofs. There seems to be little advantage
in doing this, because:

(1) the proofs would still be impossible in general and difficult in

particular;

(2) such changes can be properly termed evolutions, and done without

proof of equivalence.
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Thus, the possible changes remaining concern the number of instances of a
function in the specification, the "artificial" precedence constraints, etc.
These are important examples because the first concerns quantity and utiliza-
tion of implementation resources, and the second concerns the distribution
of computations over an asynchronous network. Section V.A contains the
complete classification of transformations discussed in this report.

In the proofs found in Part V, the environment consists of all processes
in the system whose specifications do not change. This is not necessary
for equivalence with respect to the smaller :».o.mw: (i.e. user-defined)
environment, but is a sufficient condition which holds, we believe, for all

practical proofs.
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IV. A FUNDAMENTAL THEOREM

In this section a theorem will be proved, establishing some sufficient
conditions for the preservation of equivalence under a transformation. These
conditions are tailored to the anticipated optimizations; subsequent
proofs about specific transformations will refer to this thecorem rather
than to the definition of eguivalence.

We remind the reader that transformations are assumed to be from
valid specifications to valid specifications. This means that it is not
necessary for us to consider here the possible introduction of inconsistencies,
such as exchange blockages, by the transformations - because these do not
appear in valid specifications.

Since transformations are applied to specifications rather than systems,
it is first necessary to extend the definition of equivalence to specifica-
tions. A specification T generates a system S under a mapping I called
an interpreter (which will be specified in the near future}. Equivalence

of specifications is simply defined as T = T' if and only if I(T) = I(T'}.
J J

To learn more about equivalence, we must decompose I . Let i :! 'x [x{ .f.v

.

P ,lcm an interpretation function such that I(T) = {q: 3s m.r‘.m.. ar mw/ <
n

i(T,s,r) = (g, 1} , z:mnm\....m is the state space II Ty of T. ¢ is the set
k=1
of all specifications, \‘ is the set of all states of specifications, and \ﬂ

is a set whose members encode choices about relative rates, exchanging matching

etc. in such a way that all time-dependent events are determined. , is the set
of all Qu.__ﬁ:nwnwo:m (state sequences), and \ 1 is a set of directed graphs.

The nodes of a graph in .. represent primitive function evaluations, under
rnon-unique definitional names, and the arcs represent functional precedence

constraints, i.e. those induced by the necessity to evaluate all the arguments
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of a function before the function itself (the evaluation constraints on
primitives in a selection construction are also included here). In addition,
two exchange evaluations which match are joined by a double-headed arrow.

The "meaning" of i is as follows: For a particular specification,
a state and an encoding of time-dependent decisions uniquely determine what
will happen when the specified system is started with that initial state.
*%hat will happen' can be, and is, expressed in two different ways:
as the resultant computation, and as an "execution trace" graph of what
functions were evaluated and what necessary logical relationships these

evaluations had to one other.

Fundamental Theorem:
t

Let T = ((53,6)),eeer (Epf)) 80d T' = ((5's §"seee(Ey'sEp )
be specifications such that pj(T) = py(T') for some index set J. Let
K={1,2,...n} -J, XK' = {1,2,...n'} -J , and let there be a pernutation
m: I (0 R Q.—pru

keK 2 keK!
Then T zT' if mo.n all pairs (s,s') such that s ¢ : M Teads
n' J k1
s' ¢ xwﬁ Mgy py(s) = Byls), and pls) = m™ (B (1)

(1) G=(g: 3, i(T,s,v) = (g,q)} = G' = (g :3r, i(r,s',r) = (g,
(2) if f is a node (function evaluation) in g € G, G* such that
one of its arguments is an initial state component, and n. ¢! are

ﬁrm projections which select the cm& component out of : E mx p

k=1 k=1 L k=1
Proof:
We must show that for all g € G,6') i(T,s,7) = (2,9 and i(T',s',1") =

(8,q') for some 1, =>py(q) = py(a').
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We know by assunption that the processes indexed by J are identical
in the two systems, and also receive identical initial values. Thus the
only way that their computations could differ would be if they received
different values, through exchanrges, from the processes indexed K and K',
respectively.

There is no way, however, that any function evaluation can have different
arguments or yield a different result in the two computations, because:

(1) the common graph g shows that the same primitives were evaluated
and that the argument - passing structure was the same (including
that involving exchanges, because of the identical matches);

(2) the theorem specifies that the initial values Teceived by

primitives in both cases are the same. a
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V. EQIVALENCE-PRESERVING, OPTIMIZING TRANSFORMATIONS

A. Classification

In this part a set of optimizing transformations will be given, with
proofs that they preserve equivalence. Although the equivalence relation
itself is symmetric, the transformations and accompanying examples will be
motivated by the design theory as a whole, and therefore go in the direction
which seems most useful. Should transformations in the other direction be
required, it should be easy to provide them.
As noted in II1.D, a computation consists of a number of primitive
function evaluations {implying the data structure) linked by precedence
constraints, and we do not intend to include operations on primitive
functions and "natural" precedence constraints in our optimizations. All
this leaves us to manipulate are:
(1) “artificial” precedence constraints originating in process membership
rather than argument-result structures;
(2) the existence of duplicate or superfluous primitives in the
specification.
Subdividing these gives us our four possible kinds of optimizing
transformations:
(1a) changes to the scope of precedernce constraints associated with
the endpoint of a process step (see Figure 8);

(1b) changes to the frequency of precedence constraints associated
with the endpoint of a process step (see Figure 8);

(2a) addition or deletion of duplicate primitives;

(2b) addition or deletion of logically superfluous primitives.

- 342 -

‘B. Transformations of Type 1a: 'Process Splitting”

Ea:o.cwr type la refers to splitting one process into several or joining
several processes into one, our design theory strongly favors application
of the former. This is because design is most fundamentally a process of
elaboration, and an unelaborated specification exhibits less structure
that can be exploited with parallelism than an elaborated one. In other
words, designs begin with one or a few processes; as these are elaborated,
new structures arise which can be split off as separate processes. Thus a
"process splitting" transformation is the fundamental tool by which compu-

tations are distributed. Such a transformation is given here.

=> "l effe
1 o T 1

}& * steps

effect on
precedence
graphs _M —=>

(a) . (b)
Figure 8. Transformations of type 1.
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Transformation la splits one process of a system into two. Any of the
state nowaonmzﬂm of the original process, and of the functional structure,
can be removed to form the second process. Arguments and values are

commmicated between the two processes using deterministic XC/XC interactions.

Transformation la:

Let an.mwu....ﬂﬁ X Dpg Xeeo¥ Ty (<fy > <fyg >peees < mrsvuv.
cony (Tp.< £,>)) be a system specification, and let P,Q be index subsets
of N and z*‘. respectively. This means we want to form a new process
containing all mwﬁ y PE P, and all < mﬁ >, q€ Q.

The new state space of process k will be U_MHV J& , and the state
space of the new process n+l will be umﬁ mw“._ . The functions appearing
in the specification of k will be {< m_a >:3£Q, and those appearing
in ntl will be {< m@ >: j €Qt . Pieces of the functional structure
can stay intact as much as this index-set partition allows. The only
restrictions on Q are that no substructure of a selection structure <an
be separated, and exchanges which are "equivalenced' by superscripting
to the same evaluation cannot be separated.

For every component of a state space, there must be a function which
generates its next value. If nwu. and < m& > are left in the same
process (k or n+l), this is no problem. But if they are separated, then
nxu. must have a new component Successor function anﬁ@ to get its value,
where i is a unique class jdentifier. How the value will be transmitted
is shown below.

In fact, any time a function is missing an argument because that argument
is evaluated by a function in the other process, uﬁw (null) is substituted
(each time a new unique 1 is used).

The final problem is to invoke functions whose values are needed in
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the other process, and to pass on the generated values. Suppose process k
owes m. uses of such functions to other processes. Then the successor

function of k is

1 2 L

J
v

3&”5 (< fig > < g >0ee < B > Xy (<£>), X; (<£'>),
« 2

jpe P
n P

:.u. m
xnwa (< »p ***1 5)) °, where the primed f's are the functions to be
invoked, and the i's are the exchange classes defined at the point of use
of these functions.
Example: Distributing a Computation

A process has been developed with a state space I3 x I x Iy and a
successor function Q.w.mN.muu. where mwuw?w.u%. ».N - m?N.omv. and
mu = Equu. 1t has been decided that the computation done by this process
should be distributed over two nodes of a network, one of which contains
By Iy and mw ,» while the other contains Es, fj, and ».u .

Then the resultant processes, after applying Tranformations la with
P = (2,3}, Q=(3}, are:

3

HMH x MN.NﬂﬂOuN ﬂQﬁQH.QNu. vﬁxm::u.wu- uﬁ%ﬁauuuu«

(z3, proj; (hloz), XCx(B0T,(null),0))).
Example: Isolating a Function

A process has been developed with state space Iyy and a successor
function ﬁmxwu = mnwﬂ.nqﬁuuu. The function h will run much better on a
special processor, and so it is decided that this function should be evaluated
in a separate process which will then be implemented with specialized hardware.

The resultant processes, after applying Transformation la with P = { },

<&4m

5 . .
The function proj, =~ projects an (i+*m)~ tuple onto its first £ components.
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Q = {ki11}:
(B » Proj; (e(80C, (i), Xy (0)0);
(Epaz PrOj; (ml, XC,(h(XC, (mil1))))).

Repeated applications of this transformation can produce as many new
processes as desired. Note that the possibility of exchange blockage does
not arise because the invocations of "missing' functions appear in a vector

unconstrained by precedence.

Theorem 1a:
Let T be a specification with n processes, and let T' be the result
of applying Transformation la to process k of T with index sets P and Q.

Then T .mH T', J = {1,2,...,k-1,k+1,..,,n} unless:

(1) the two new processes are completely independent, and each has
an XS which interacts with an XC in the environment, or

(2) Q 1is such that it includes an XA or XS5 , while excluding
an XA or XS, respectively, of the same nummm.o
Proof:

The mapping between states m“ of T and states s' of T' is the
obvious pernutation, and the transformation ensures that no%o:mnﬁm are used
as arguments to the same functions as before, Thus the Fundamental Theorem
tells us that all we need to show is that for initial states s, s' =m(s) ,
there are relative rates for which T and T' exhibit the same function
evaluation, argument passing, and exchange matching structures.

The transformation is designed to ensure that the function evaluations
and argument passings are preserved. Since it is not possible to split up

a selection construction, all "new" exchanges are unconditionally evaluated,
% of course, tiie two examples meet the conditions of this theorem.
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and the two altered processes either run in a '"loose lockstep” (one car never
get more than a fraction of a step ahead of the other) or are independent.
Thus all that needs to be checked is the exchange matching.

For deterministic interactions, the only possible variation in matches
is which XS in a sequence an XC matches. The loose wonwwﬂmm of the
split processes will provide the same range of possibilities to the environment
as would the original process.

For non-deterministic interactions, the possible configurations for
exchange of a certain class within the original process are:

(1) one XA, XS, or XC;

(2) multiple XA's;.
(3) miltiple ¥S's.’
One of anything will look the same to the environment, regardless of which
new process it goes to. If multiple XS's or XA's are spiit by the transformation
the environment might see a difference, but this case is precluded by the

theorem. O

C. Transformations of Type 1b: 'Scheduling"

Although type 1b refers to increasing parallelism within a process by
making the steps longer, or decreasing parallelism by making the steps
shorter, the latter is much more likely to be called for than the former.
Automatic detection of parallelism is likely to yield no more than trivial
results, especially in a context in which specifications are being developed

top-down - for the best time to recognize that two computations can be done

7 The reasons are as follows. No non-deterministic class need have more than
one XC: they are either multiple XA/XC or possibly-multiple XA/possibly-
multiple XS. And it is easily shown that putting members of a non-deterministic
class which could match (as multiple XA's and XS's cannot) allows the possibility
of blockage.
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in parallel is when elaboration first differentiates them as separate
computations!

Scheduling, on the other hand, will always be needed as we move from
sufficient-resource models to scarce-resource models. Equivalence-preserving
transformations which introduce precedence constraints are the vay to
introduce this to our formal design method.

Transformation 1b turns a single step of a process into two, with the
values of the ''phase one'' evaluations being stored in the state between

steps, and used as the arguments for the evaluations in "phase two".

Transformation 1b:

Let QE: Ipg x*orx n_a_. (< mE. >, < mwN >0, < mw: >}) be a process
specification and let Q be an index set, o.m k® N+, such that if
kt €Q, then ke mgQ, Ym. The elements of Q represent the 'cutoff
points"” between the first and second steps, and are restricted so that two
exchanges which are "equivalenced" to the same evaluation by superscripts
cannot be separated. Also, a 'cutoff" cannot come between substructures of
a selection structure.

The state space of the new process is (1,2} xnmw x n—.nN Xeeox n_.S R
vhere J.a. is the union of nd , and the cross product of n& and the
ranges of all < mxu:. > such that kj 2 €Q . mxc s (1,2} + {1,2} is:

mﬁaxouu?xcuH"N.axoumnwu_.
so that the first state component is the phase counter.

In the new process, < mua > takes the following form:

?wo =1: ?5. AmEnvu&n €Q
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where < ».5_ > differs from < mu.w > in that all < man.v s kireQ,
are replaced by E&wﬂw ﬁo—av. vhere y is the number of all kjz € Q, and
x is the index of this temporary value in the y-vector of them.

If all or none of < mu.w.v is to go into phase 1, then an identity

transformation must be inserted in phase 2 or 1, respectively.

Example: Scheduling

A specification contains this process:

(fq * Tyg % Igz s (logg = gloyp) * hyloyi)s true : hyloyg)l, (s1(oy9)s
mnﬁnw~u. mu?WNS. nwﬁﬁuﬁnwﬂoxu:uu. Since the resources are not available
to do .a11 these function evaluations in parallel, nor is it necessary to
meet real-time mmmmuwsmmm. it is decided to apply Transformation 1b with
Q = {k1,k22,k23,k311)} . The result is this new process:

({1,2) x 5g x Typ U (T memNu xgmmuu * Tyg U (T3 xgﬂuﬁ

’

~Q—AQIHuN-QEINnH.._

logg = 1 ¢ logg = Bloyg) * Mylogg)y true & hyloy)] s opg = 2 2 )

logg = 1 & {9z S2(%)s S3(ep0))s
oy = 2 ¢ (s, (proi} (o)), proj] oy, Proj3 ()]
logo = 1 ¢ (o3 t3(okp))s
¢ oy = 2t (L, (proj5 ()]
),

8 1n fact, we think it likely that the way to meet speed and cost requirements

js to start with the most parallel design, then reduce its performance by
scheduling, as time permits, to meet cost limits.
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where \Q now signifies the range of a fumction. The effect of the

transformation is shown pictorially in Figure 9.

Theorem 1b:
Let T be a specification with n processes, and let T' be the
result of applying Transformation 1b to process k of T with index set

QekoN+ . Then ew.w.. J = {1,2,...,k-1,k#1,... n} , unless:

’ A s 7 V r} v
| — each continuous line
represents 8 function
evaluation
Y
N v v
, LYY, )
before
’ ¢ ’ v_ ’ , ) *phase counter"
= ' not shown
, ,
c.. ) dotted lines indicate
AL \l.v~ I / 2 ¢ ! identities, i.e. no
\ ' \ computation
L |
! !
‘ /
NGRS ISP )
after

Figure 9. Transformation 1b in action.
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(1) there are at least tw X5's in the specification of k which
interact deterministically with the environment, and one is put in phase one
while another goes to phase two, or )

(2) there are at least two XA's or XS's, respectively, of the
same class and interacting non-deterministically with the environment, and

one is put in phase one while another goes to phase two.

Proof:

The mapping from states s of T to states s' of T' is
EQE. o) ....axnu - Q.qxw.arw- ....agv . We need not concern ourselves
with the fact that phase two states have mo inverse mapping, because equivalence
is defined on a projection in which states of process k do not appear.
The transformation ensures that state components are used as arguments to
to the same functions as before, and that the same functions are evaluated.
Nothing remains to be altered except exchange matching.

The only effect on the variety of exchange matches would be to separate
exchanges into separate phases, thus constraining one to follow the other,
always. But we have precluded all cases in which such a difference would

be visible to the environment, O

D. Transformations of Type 2a: "Resource Sharing"

Type 2a refers to the addition or deletion of duplicated primitives.
Addition would mean adding extra resources to get a job done faster, a
straightforward transformation. It is unlikely to be used in our method,
however, because development from sufficient resource specifications to
scarce resource specifications seems indicated. In such a development process,
the standard transformation would be to delete duplicated primitives, i.e.

share resources.
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Before we can claim to be "sharing resources”, of course, we must

establish what a resource is. Investigation of this topic is E,.mmﬂzmv..m

In the meantime, we will restrict ourselves to a special case which is clearly

understood: the type of process, containing a single function remotely

invoked, created by Transformation la in the "Isolating a Function" example.
The transformation operates on a specification in which there are

several such processes, each housing the same function. It reduces these

to one multiplexed process.

Transformation 2a:

Let T be a specification, and let P be an index set of processes
in it such that if p ¢ P, then process p has the form:

(Epay » PPO2 (mull, XC, (30, (miD))))).

The finction g must be the same for all such processes, but the exchange

classes x and y will be different in each case.

Transformation 2a creates a system in which all but one of these
processes is gone. Let the one remaining have exchange classes x; and Yo
Then in the remaining processes of the specification, any occurrence of xnx“— N

being a class which is used as an x (above) in some process p € P, is

is replaced by xf.c .

!
replaced by xnxo. Similarly, any xnv.
1

Example: Resource Sharing

Two applications of Transformation la have produced this specification:

.2
:MH.E’O.._H mmmuﬁxmsawu?xnvkwﬁqu.:uu
?

e proj (null, XC, (h(XC, (null))}})

3 By D. R. Fitzwater, as part of the study of operating systems.
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(2 41 Proj 2 (5 (K, (D)), XC, (£ (03))))
(T3 1PF0) - (U1, XC (h(XC, (nul1) )))
).

The next step of development is to share the resource which is the

implementation of h, i.e. apply Transformation 2a with P = {2,4}.
It yields:
((51,Pr0] HEOC, (aulL), XA (g(o7))))
(5,010 PPO3 H(RULL, XC, (hOIC, (nul1)))))
(25,703 2 (XC, (nulD)) , XA, (£(03))))
).

Theorem 2a:
Let T be a specification with n processes, and let T' be the
result of applying Transformation 2a to T with index set P. Then

T = T

N-P
Proof:

By inspection. O

E. Transformations of Type 2b : "Identities"

Type 2b refers to the addition or deletion of logically superflwus

primitives, i.e. identity functions. Since it is not yet clear at what
points in the development process a need for this might occur, we will disucss
a few examples only,
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The processes:

@ @, 06}

@ 06! (@) #o: £051(0)), true : o)
are logically equivalent in an environment with a single xnw. regardless
of whatever side effects evaluation of f may have, because £ is evaluated
in both cases only when the environment XC, has an argument to exchange.
The difference is that between these times, (1) waits while (2) cycles
on an identity transformation, i.e. busy waits. Form (1) might seem.
superior in most cases, but (2) corresponds better to a physical perinheral
device, for example.

Another possible transformation would be to introduce *delay element”
on a commmication path. By this we mean a process which acts as an inter-
mediary between two exchanges which would have matched each other, matching
both, introducing some delay, then matching a second exchange evaluation
from each side to pass the information. The purpose of this would be to
allow explicit modeling of commmication delays. It is also discussed in [ZF].

In general, insertion and deletion of jdentity transformations should be

easily done and proved equivalence-preserving, as needed.
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“VI. COMPARISONS TO OTHER EQUIVALENCE STUDIES

Tue to the difficulty of the equivalence problem when approached in the
wrong context (see Part VII), there is 1ittle work which is directly comparable
to this. In [Kn] Knuth mentions the idea of an automated lab for making
optimizing transformations on programs - in ?n: the same spirit as this
work - without offering any particular hope of its realization.

Axiomatic proof techniques, originally developed for sequential
programs ([Ho}]), are now being extended to so-called “parallel programs",
vhich are models limited to multiprogrammed wa.&msmsnwﬂwo:m ([ke], [0G], [Lal).
These can be considered related in the sense that a proof of correctness is
a statement of equivalence to some standard of correctness. But there is
actually a very significant difference, because they are dealing with
arbitrary cases in a way that requires a great deal of human ingenuity.

We are dealing with highly structured cases algorithmically. o@ﬁmﬂwmo:m
of their relative utility for very large systems must inevitably favor the
latter.

The closest work to that presented here is reported in [Ri] and [Za]. In
both cases equivalence of open systems is formally defined. But because of
the inherent complexity of these general, relative-rate-dependent definitions,
efforts to use them productively are not particularly successful, The

contrast between our present work and these will be discussed futher in Part VII.
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VII. CONCLUSIONS

In m._w.m report we have characterized exhaustively one branch of our
proposed design method, and shown significant, useful results within that
branch. As far as we know, non-trivial results on system equivalence are a
unique achievement.

Just as important as the success of this work are the reasons for its
success, because they reflect on the proposed design theory as a whole,
We believe that this work has succeeded where [Za], for wumﬁmanauo , failed,

because:
(1) [za] used open systems, and we are now using closed systems. It

is much easier to prove the equivalence of two subsystems with respect
to a particular environment, than with respect to any environment.

The different forms of equivalence relations in [Za] were an

attempt to restrict the operative mq..ﬁqo_ﬁmzﬂ. but just weren't

good enough.

(2) ~ [Za] was done without assumption of any knowledge about what source
systems would be like or what target systems would be needed. Now
our design theory gives us strong guidance about what transformations
will be needed, greatly restricting the problem domain.

(3) The fatal flaw of the notion of equivalence in [Za] was that
computations and the definition of equivalence itself were so
completely dependent on relative rates, resulting in a combinatorial
explosion of complexity. This problem has plagued all other research

on the subject, of course.

1035 is the best possible comparison because the goals are known to have
been identical, and differences of results cannot be attributed to differences
in the quality of personnell
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Exchange functions, with their amazing Bv:mgmm?uu

promise to
be the best tool for coping with relative rates to come along yet.

Two aspects of this work have a disappointing appearance. The first is
that there are so few transformations given here, and that they are so simple
conceptually. In fact, this simplicity is another sign of success.

The reason that so many possible optimizations come to mind for programs,
for instance, is that programs, with their procedural structure, fixed set
of primitives, etc., force a high degree of over-sepcification on the progranmmer.
He must make many decisions about data and control structures before it is
possible to understand the implications of these decisions for resources
and performance. It is mot at all surprising that he would like to revoke
some of these decisions when their- implications are understood. But by then
it is usually too late, because the impact of changes on the rest of a highly
developed system cannot be assessed - hence the dismal Tecord of attempts
at anything but code (very local) optimization.

In our design method, by contrast, it is never necessary to over-specify.

What was not specified ?d:wﬂﬁmwv.s

need not be optimized later. This explains
the small nuber of transformations in our set. But the transformations we have
are just the ones we need to carry out our development steps - at least the
ones we know about so far. .

The other troublesome aspect is the formalism, the notation for expressing
transformations and carrying out proofs. It is crude, and far behind our
intuitive understanding of the subject.

The problem is simply that the notation here is premature. At the time

11 por instance, a deterministic XC/JC interaction will do the same thing
regardless of any variation in relative rates.

12 1his is not meant to Tule out iterative design, which will always be necessary
in some cases. Iterative design leads to evolution steps (see 11.0).
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of this writing we have just finished designing the syntax of the specification
language. Formalism on which to base algorithms needs to be developed now
in approximately this order:

(1) the form of the design data base;

(2) completeness and consistency checks;

(3) analysis of exchange blockage;

(4) equivalence-preserving transformations.

There seems to be no reason why these formalizations cannot be carried out
within an appropriate time frame.

In conclusion, the parts of our proposed design method which Tely on
algorithmic equivalence-preserving transformations seems to be entirely
feasible. At the level of our present understanding, mo complexity issues
are raised beyond those of handling a large design database and performing
consistency checks on it (including exchange analysis). Furthermore, the
fact that we can make progress so easily on a problem that has been considered
too hard even to attempt in other contexts, is a strong recommendation for our

design theory as a whole.
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Appendix E - Index to Definitions in Section 3

abstraction

abstractions of discrete processes
algorithmic procedure
asynchronous

asynchronous combination
complete

component

component language
component relation
computation

computation space
computation step
consistency

containing abstraction
discrete process

effective

effective procedure
embedded abstraction
formal

formal language

heuristic procedure
hierarchy of modularization
homogeneous

homogeneous development process

homogeneous methodology
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3.3.4
3.1.1
3.1.3.3
3.3.7.2
3.3.7.1
3.3.8
3.3.5
3.3.5
3.3.5
3.1.1, 3.3.1
3.3.1
3.1.1
3.3.2
3.3.4
3.1.1
3.3.3
3.1.3.3
3.3.4
3.3.1
3.1.3.2
3.1.3.3
3.3.5
3.3.4
3.1.3.3
3.1.3.3

informal attribute relation
informal attribute set
informal attribute set language
informally extensible
interpreter

methodology

modular

phase of a development process
process

process step

specification

specification language

state

system

system space

system specification
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3.3.6
3.3.6
3.3.6
3.3.6
3.3.1
3.1.3.3
3.3.5
3.1.2
3.4.1
3.1.1
3.3.1
3.1.3.2,
3.3.1
3.3.1
3.3.1
3.1.3.2

3.3.1



