A THEORETICAL AND COMPUTATIONAL COMPARISON
OF "EQUIVALENT" MIXED-INTEGER FORMULATIONS

by
R. R. Meyer

Computer Sciences Technical Report #311

January 1978



A THEORETICAL AND COMPUTATIONAL COMPARISON
OF "EQUIVALENT" MIXED-INTEGER FORMULATIONS

by

R. R. Me)/elr"r

Computer Sciences Technical Report #311

January 1978

1'This research was sponsored by the National Science Foundation under

contract MCS74-20584 A02.



ABSTRACT

This paper provides a theoretical and computational comparison
of alternative mixed integer programming formulations for optimiza-
tion problems involving certain types of economy-of-scale functions.
Such functions arise in a broad range of applications from such
diverse areas as vendor selection and communications network design.
A "non-standard" problem formulation is shown to be superior in
several respects to the traditional formulation of problems in this

class.



1. Formulations: Equivalent and Optimal

This paper provides a theoretical and computational comparison of
alternative mixed integer programming formulations for optimization
problems involving certain types of economy-of-scale functions. Such
functions arise in a broad range of applications from such diverse areas
as vendor selection and communications network design. A "non-standard"
problem formulation is shown to be superior in several respects to the
traditional formulation of problems in this class.

This first section describes a rigorous approach to formulating
certain optimization problems through the use of "minimization models"
[4,5,6]. The minimization model concept is then used as the basis for
defining a family of "equivalent" formulations as well as means of de-
fining an "optimal" formulation. Sections 2 and 3 establish the opti-
mality of a very compact formulation for functions belonging to a class
of economy-of-scale functions. Computational results for a communica-
tions network problem are then given to illustrate the superiority of
this formulation as compared to a "standard" formulation of the problem.

The economy-of-scale property that we will consider is encountered
in a broad variety of cost functions for goods ranging from doughnuts
to telecommunications links. Roughly speaking, a function is said to have
an economy-of-scale property if the cost (per unit) of a commodity decreases
if certain "large" quantities of the commodity are purchased. A simple ex-

ample of such a cost functions, but one which serves to illustrate some



of the properties that we wish to consider is a "cheaper-by-the-dozen"
function defined as follows: let y, denote the number of single
units of a commodity with the cost per single unit being a positive
constant Cys let. Yo denote the (non-negative, integer) number of
dozens (groups of 12) purchased, the price per dozen being a positive
constant Cy < 12c] (so that it is cheaper to purchase a dozen than
it is to purchase 12 single units) and let k(x) (see Figure 1 for a
typical k(x)) denote the "cheaper-by-the-dozen" function that repre-
sents the minimum cost of purchasing at least X units (for simplicity
in this example, x and 2 will be assumed to be continuous variables).

It is easily seen that k(x) can be compactly represented as:

k(x) = min C1¥1 T CoYy
Y1sYo
(1.7) s.t. v ¥ 12 ¢y, 2 X

Y125 > 0, Yo integer.

That is, substituting any constant X for x in the RHS of (1.1) yields
an optimization problem (in the variables Y4 and yz) whose optimal
value is precisely k(x). Of course, the piecewise-Tinear function k(x)
can be represented in many other ways, but, as will be seen, the repre-
sentation (1.1) is not only compact but also is useful in formulating
optimization problems involving k(x).

The RHS of (1.1) is an example of a mixed-integer minimization model

(MIMM), a concept that was described in [4,5,6]. To define this con-

cept, suppose f is a function from 'R1 into (-w,+»], and that



the following equation holds for all x belonging to a subset S or "R]:
f(x) = min cy
(1.2) s.t. Ay =b - Ax,
y >0 and Y; integer for i ¢ I,

where 1 is a subset of {1,...,n}, b is an element of R", and

¢, A, and A are of dimensions 1 xn, mxn, and m x 1 vrespectively.
(We will assume that the optimization problem on the RHS on (1.2) has an
optimal solution if its feasible set is non-empty, and that the "optimal
value" is defined to be +» if the feasible set is empty.) The ex-

pression on the RHS of (1.2) is said to be a MIMM for f on S (for our pur-

poses, it is convenient to assume that S 1is convex, although for the
general theoretical development of MIMM's given in [4], this is not
necessary). As noted in [4], the utility of MIMM's arises in part from

the fact that for any set S < S the following two problems are equiva-

Tent:
min  f(x) + f(x,z)
XsZ
(1.3) s.t. X e §, (x52)e T,
and
min - cy + f(x,z)
XsYsZ

(1.4) s.t. xeS, (x,2)e T,
Ay = b - Ax,

y >0 and y, integer for i e I.



The problems (1.3) and (1.4) are equivalent in the sense that (1.3)

has a feasible solution if and only if (1.4) has a feasible solution,
and (x*,z*) is an optimal solution of (1.3) if and only if there exists
a y* such that (x*,y*,z*) is an optimal solution of (1.4). From a
computational point of view the transformation from (1.3) to (1.4) may

allow the replacement of a piecewise-linear objective function term f(x)

by a linear objective function term cy. Thus, if an optimization prob-
lem has only Tinear constraints and objective function terms for which
MIMM's exist, then this conversion procedure may be carried out term-by-
term until the original problem has been transformed into a mixed integer
program (MIP). Note, however, that although this MIP will be equivalent
to the original problem, equivalence may be destroyed if the integrality
constraints on the newly added variables are deleted, a relaxation which
is usually the first step of an algorithm for the solution of an MIP. In
particular, the relaxation of the integrality constraints of a MIMM will

yield a parametrically defined family of problems (a linear programming

minimization model (LPMM)) whose optimal value must be (see [4]) a con-

vex function on all of 1R].

Thus, this relaxation will mean that a
nonconvex objective function term of the original formulation is re-

placed by a convex approximation. In algebraic terms, defining

f*(x) = min cy
Yy

(1.5) s.t. Ay = b - Ax, y >0,
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it follows that f* s convex on 'R], so that if f (as defined in
(1.2)) 1is nonconvex on S (in the sense that there exist points X1
+ (T-1)x

Xgs XeS and a A e (0,1) such that X = Ax and f(x) >

1 2
xf(x]) + (1—k)x2), then f and f* cannot coincide over all of S
(in particular, they would not agree at Xx). The difference

f(x) - f*(x) (which is always non-negative because of the relaxation

of the constraints) will be termed the relaxation error of the LPPMM

at x.

In the case of the MIMM (1.1), for example, the optimal value
function (for x > 0) for the LPMM obtained by relaxing the integrality
constraints of (1.1) is easily seen to be the linear function k*(x) =
czx/12. The relaxation error in this particular case is thus the dif-
ference between the values k(x) and k*(x) (see Figure 1). Note
that this difference is positive unless x 1is an integer multiple
of 12. (For x < 0, k(x) = k*(x) = 0, but we are concerned here only
with non-negative values of x.)

In comparing alternative MIMM formulations, a comparison of the be-
havior of the relaxation errors establishes the relative accuracy of
the approximations used in the first step of the solution of the re-
spective MIP's. Thus, if f** is the optimal value function of the
continuous relaxation of a different MIMM for f, and f*(x) > f**(x)
for all x ¢ S (which we write as f* ;_f**), then the MIMM (1.2) may
be considered to be at least as good (with respect to the relaxation
error criterion as the MIMM from which f** was derived. Moreover, if

S
it can be established that the inequality f* > f**, holds for all



Figure 1:

The functions k(x) and k*(x)



S
convex functions f** satisfying f > f**, then the MIMM giving rise

to f* will be optimal from the standpoint of error in a relaxation

solution strategy, and will therefore be said to be relaxation-optimal

on S. (As will be seen, a function may have more than one relaxation-
optimal MIMM, so additional MIMM criteria also will be considered.) In
order to more easily describe results of this type, it is convenient to
introduce some.additional terminology. If h s a function mapping a

convex set T into [-»,+~], the convex envelope of h on T (which

may be thought of geometrically as the largest convex function below

h on T), denoted by c*(h,x,T), is the function satisfying the relations:

(1.6) c*(h,x,T) < h(x) for all x e T,
(1.7) c*(h,x,T) is convex on T,

(1.8) if g(x) < h(x) for all x « T and g is convex on T,

then g(x) < c* (h,x,T) for all x e T.

(In places where reference to the variable is not needed, we will write
c*(h,T) 1in place of c¢*(h,x,T).) Existence and uniqueness of c¢*(h,T)
easily follow from the fact that the point-wise supremum of a family of

convex functions is convex. Defining on T the set of functions

C(h,T) = {g|g is convex on T, g < h},
c*(h,T) is simply the supremum of C(h,T). It might be noted that the

domain T plays a very significant role in determining the convex



envelope. That is, the value of the convex envelope at a particular
point may be different for different choices of T. This aspect of
the convex envelope will be taken up in Section 2.

The optimal value function of a LPMM, in addition to being convex,
is also piecewise-linear (PL), and it is also convenient to introduce
some terminology for piecewise-linear functions of a single variable,
which are our principal concern in this paper.

We will say that a real-valued function h defined on a closed

1

interval [uO,up] c TR 1is a piecewise-linear function on [ao,ap]

with breakpoints Gy < Oqee< ap if h s affine on each subinterval

[Oc.i > OL'I'H] and [h(u"l'*"] )—h(u'l )]/(OL'H'] ’0('1) 7 [h(u'l )"h(O‘.i_'l )]/(061'@1_])
for i =1,...,p - 1 (that is, the slope to the left of o differs

from the slope to the right of ui).
The basic result that will be used to establish that certain for-
mulations yield convex envelopes is the sufficiency part of the following

theorem:

Theorem 1.1: Let g be a lower semi-continuous (1.s.c.) function mapping
[ao,up] into  (-w,+o] with g(ai) <+ oo for i=0,...,p.

Let g* be a convex piecewise-linear function on [ao,up] with
breakpoints Gy < Ay <o 0> and let g*(x) < g(x) for x e [uo,up].
A necessary and sufficient condition for g* to be the convex envelope

of g on [ao,up] is that 9*(u1) = g(ui) for i =0,...,p.



Proof: To establish sufficiency, suppose that G e C(g,[ao,ap]).
Then for any x e [uo,ap] there exists at least one pair Css Oy
of breakpoints such that X e [ai’ai+1]' Choosing A ¢ [0,1] such

that X

Ao + (1—A)ai+], we have (using the convexity of §):

§(%) < AGloy) *+ (1-1) Glogyg) <

Aglog) + (1-1) glog,y) = Ag¥lay) + (1-2) g%(ag,q) = g*(x). Thus,

g(x) < g*(x) for any x e [ao,up] establishing that g* = c*(g,[ao,ap]).
To show necessity, suppose that g(ao) - g*(ao) =g, > 0. Since g

is 1.s.c. and g* is upper semi-continuous, there exists a 60 € (0,@0)
such that 4y <X <ok 8, implies g(x) z_g(ao) - eO/Z and
) - 60/2.

~

Now consider the PL function § (see Figure 2) with breakpoints

g*(x) < g*(ay) + e,/2 = g(ay

at a .0, + 60, a],...,ap and function values g(ao) = g(ao) - 50/2,

= * a — * 1 -
g(a0+60) g (a0+60), g(ui) g*(o,) (i =1,...,p). Note that

gla_ ) > g*(ao), but that g(x) = g*(x) for x e [a0+60,am] and that

un
—.
1723
Q)

convex function on [ao,um]. Finally, the relations

i
Q

(0) = glo) - €,/2 and GlaH,) = g*(0+8,) < g*(a,) + £o/2
= g(a.) - 50/2 imply §(x) j_g(uo) - 50/2 for x e [ao,ao+6], S0
that §(x) < g(x) for x e log.0 ]. Thus, Glx) « Clg(x) s [agsa,l)
and g(uo) > g*(ao), contradicting the hypothesis that

g*(x) = c*(g,x, [uo,ap]). A contradiction may be similarly obtained

if g(qp) > g*(ap). For an interior breakpoint o the construction

~

of a suitable § 1is similar (see Figure 3), except that the breakpoints

of § (where it coincides with g*) are taken to be



g(a)

€
9(ay) -7
g*(a,)
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Figure 2.

The case:

g*(a,) < gl

0

).
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9*(@1) < g(ai), where 0 < 1 < p.

The case:

Figure 3.
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O seesslls o -0, N S P
07t %17 %0 N I

is chosen so that, defining e, = g(ui) - g*(ui) > 0, we have, for
X € [ai'ai’ u1+61], the inequalities g(x) Z_g(ai) - 61/2 g*(x) <

g*(ui) + 81/2. Because of the change in slope at breakpoints, it may
be verified that g*(ai) < Q(ui), and thus a contradiction may be ob-

tained. g

Note that for sufficiency, lower semi-continuity of g s not
required. In this paper we are primarily concerned with the sufficiency
part of this theorem, but it should be noted that in [4] the lower semi-
continuity of optimal value functions of MIMM's was established under
rationality assumptions on the coefficients of the MIMM.

It might also be noted that the argument used in the proof can be
used to show that g does not have a PL convex envelope if g(uo) = oo
or g(a.) = +o , since this would mean that g*(ao) < g(uo) or

g*(a_) < g(up) for any PL function g*. On the other hand, a PL con-

p
vex envelope may exist if there are interior points x of [ao,up]
with the property that g(X) = +e. This allows the domain of g to
have "gaps" on which g may be thought of as being . Such gaps
often occur in optimal value functions of MIMM's.

From Figure 1, one might conjecture that k* 1is the convex en-
velope of k on Rl. This is indeed true, and in Section 2 we will

use the approach of Theorem 1.1 to establish a more general result from

which this follows as a special case.

20y where 0 < §, <min {og-ay_qs ui+1'ai}
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2. The Unbounded Case

In this section we will consider MIMM's for a broad class of
economy-of-scale functions that includes the economy-of-scale func-
tion k(x) of the previous section. Specifically, we will develop re-
laxation-optimal MIMM's for the class of functions whose elements may
be represented as optimal value functions of the following type:

(2.1) f1(x) = min ¢y
Y

s.t. ay > X
y >0, v, integer for i e I,

where ¢ = (C]""’Cn) >0, a= (a1,...,an) > 0,

and I is a subset of {1,...,n}.

(The case in which there are Cj = 0 is not of economic interest,

but is included for mathematical completeness. The sign restrictions
on c and a do serve to guarantee the existence of an optimal solu-
tion for all x, but, as shown in Appendix A, could be replaced by this
hypothesis. In the next section, where bounds on the y; are assumed,
it will be seen that these sign restrictions have greater significance.)
Note that the class of functions representable in the form (2.1) in-
cludes fixed-charge functions and economy-of-scale functions allowing
several different volume discounts (as opposed to only one in the case

of k(x)). (The computational results in Section 5 deal with an example

in which n = 3.) For notational convenience we will assume that the
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variables have been ordered so that

11!

(2.2) ci/ay Eryp S cfay Ty <. e fag =

From a cost viewpoint, this means that, on a per unit basis, the
most "economical" purchase quantity is ays the next most economical
is 355 etc., and the right-hand side x represents the minimum amount
to be purchased.

Consider the continuous relaxation of the MIMM in (2.1), which has

the optimal value function defined by

(2.3) f1(x) = min cy
s.t.ay >x, y>0
*
The following lemma states that f] is Tinear on Rl, and provides

the basis for a proof of the relaxation-optimality of the MIMM on the
RHS of (2.1).

'] *,
Lemma 2.1: For x e Ry, f1(x) = rpex .

Proof: Note that, for any x > 0, the dual of (2.3) may be written as
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1 * = * = * = - K = * =
By setting Y3 x/a] and Y5 =y3 = oo T VY 0 and v rys
we obtain primal and dual feasible solutions with common objective

function value riX. This is thus the optimal value, fT(x). E

Having obtained a closed form representation of f?(x), the relation-

ship between f1 and f? is easily established.

Theorem 2.2: The following relations hold between f] and f?:

(2.5) f1(x) = f?(x) for x = k-a] (k=0,1,...)
(2.6) 3= c*(fy, IRl)

(2.5) may be established

Proof: Since fT(x) < f](x) for x e 'Rl,

by showing that, for x = kea, (k = 0,1,2,...), (2.1) has a feasible
'] D

solution with objective function value f?(ka]) = r]-ka1 kcn. Such

a feasible solution is obtained by setting Yy = k and Yo = Y37 ceeTY = 0.

To prove (2.6), it suffices to show that for any x' ¢ R}, there

exist xi, xé € ‘Rl such that, for some A' ¢ [0,1], we have

i I - 1 ] - 1 *% ] - 1 i - f ] -
Axg ot (1-2") Xo = X and f](x ) = A f](x]) + (1-2 )f](xz), since
any f e c*(f],]Rl) must satisfy f(x') g.x'f1(xi) + (1-1") f](xé).

These quantities are obtained by taking xi = 0, xé = k-a], where k

is an integer chosen such that ka] >x', and A' such that

(1-2')ka, = x'. Then A'f](xi) + (1-21) f1(x') =0 + (1-%')r]ka]
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It is of some mathematical interest to note that the constraint
ay > x in (2.3) is satisfied as an equality by an optimal solution
of (2.3). The observation may be used to establish that f? is also
the convex envelope on IRl of the optimal value function in the cor-

responding equality-constrained case:

(2.8) s.t. ay = x

integer for i e I.

This result follows since f1(x) = f§(x) for x = kea; (k=0,1,...).
Since fT may be written in the form (2.3) with the constraint ay > x
replaced by ay = x, it follows by the analog of Theorem 2.2 that the
modified MIMM is relaxation-optimal in the equality-constrained case
(2.8) as well.

On the other hand, it is not always possible to establish relaxation-
optimality if a positive constant is added to the RHS of the constraint
with RHS x in (2.1) (negative constants pose no difficulty, as we will
show in Section 3.) An example illustrating the difficulties that may
arise in this case is given in Appendix B. However, it is possible to
extend the results of this section to the case in which non-negative bounds
are imposed on the variables. This case is taken up in Section 3.

Finally, in the case that the a, are all rational, Theorem 1.1 is

a special case of a result of Blair and Jeroslow [3], who considered a

system of constraints and showed that the convex envelope of the optimal
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value function of the MIMM (for x eIRn)

min cy
(2.7) Y
s.t. Ay > x, ¥ >0, y, integer for eI,

coincides with the optimal value function of the continuous relaxation
of the MIMM. The thrust of the next section can thus be viewed as an

extension of this result to certain cases in which non-zero constants

are allowed in the constraints of (2.7). (In general the Blair-Jeroslow
result does not extend to the non-homogeneous case, as may be ascertained

from the examples in Section B.)
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3. Bounds on y

For most integer programming codes, it is necessary to have
bounds on the integer variables. If the range of the y variables
in (2.3) is restricted by the imposition of bounds, then the corres-
ponding optimal value function on IRl is piecewise-linear (where
it is finite), but the relaxation-optimality property of Section 2
may nonetheless be extended to this case. We first consider the case
of upper bounds, and then the case of upper and Tower bounds. As in
Section 2 we assume that ¢ > 0 and a > 0. (By making some obvious
extensions, the constraint a > 0 may be removed, but as may be seen
from an example in Appendix B, sign restrictions on ¢ are needed in the

bounded case to guarantee relaxation-optimality.)

Specifically, instead of the MIMM in (2.1) we first consider

Y; integer, i el

where ¢ > 0, a > 0, the ordering assumption (2.2) is assumed to be
satisfied, and the u; are non-negative constants with U integer
for i e I. To prove relaxation-optimality we will show that the con-

vex envelope of f2 on D = [0,au], denoted by c*(fZ,D), is given by
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the optimal value function of the continuous relaxation:
fg(x) = min cy
(3.2) s.t. ay > x
O0<y=<u

(We are not concerned with x > au since fz(x) = f;(x) = 4+ for such x.)

For notational convenience in stating a closed form expression for

f;(x), we make the following definitions:

where it is understood that b, = 0 and d,=0.
The following is the analog of Lemma 2.1:
. * = -
Lemma 3.71: fz(x) rj(x bj) + dj for bj < X j_bj+1

(j=0,...,n=1)

Proof: The proof is analogous to that of Lemma 2.1. For any x, the

dual of (2.8) is given by

In addition, for any x ¢ D, the optimal solutions of the primal and
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dual problems are as follows: if bj < X 5-bj+1’ set y? = u, for

i<Jj, set y? =0 for i > j+1, and choose y§+] such that ay* = x;

set v* = rys wh = ridg - for i< j, and wi=0 for 1>3j. M

Note from Lemma 3.1 that the breakpoints of f§ are contained in

the set {bo,...,bn}. By applying Theorem 1.1, we can obtain the

following analog of Theorem 2.2:

Theorem 3.2: The following relationships hold between fz and fg:
(3.3) fz(x) = f;(x) if x = bj (j=0,...,n),
(3.4) fg = c*(fz,D).

Proof: The relation (3.3) follows from considering the feasible solu-
tion and y? = U, for i <Jj and y? =0 for 1i>j. The relation

(3.4) then follows directly from (3.3) and Theorem 1.1. B

In a branch-and-bound algorithm in which the y; are used as the
branching variables, the formulation (3.1) has the additional very
nice property of yielding a relaxation-optimal formulation at each
node in the tree, since relaxation-optimality is not affected by the
imposition of additional integer upper and lower bounds on the Y; in
(3.1). This is because introduction of non-negative lower bounds is
equivalent to the addition of a negative constant to the RHS of the
constraint ay > x. Since a constraint of the form ay > x - vy, where

vy >0 implies an optimal value of 0 for x < [0,y] in both the cor-



- 21 -

responding MIMM and its relaxation, it is easily shown that a transla-
tion of variables leads to the following result (see Appendix C for

details):

Corollary 3.3: For x > 0, let

s.t. ay > x
(3.3)
L <y<u'

Yi integer, 1 eI,

where & >0 and £, and u% are integer for i e I; then the

MIMM in (3.3) is relaxation-optimal on any interval [a,au'], where

a e [0,az].
In the next two sections we will compare these results to a "stan-
dard" approach to formulation that yields relaxation-optimal MIMM's for

quite general piecewise-linear functions.
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4. An Alternate Approach

A standard and quite general approach to modelling continuous piece-
wise-1inear non-convex functions is to employ the so-called "A formula-
tion" of separable programming with the additional restrictions that at
most two Ki are allowed to be positive and that these must be "consecu-
tive". We will see that, while this approach also yields relaxation-
optimal models, it can, in contrast to the approach of Section 3, lead to
computational difficulties in the absence of special provisions for han-
dling the variables.

Assume that f is a piecewise-linear function on [ao,up] with
breakpoints Gy < 0q <e.n< ap. (It is possible to deal with 1.s.c. "piece-
wise-linear" functions by a slightly different formulation technique (see

[4]), but, aside from the need for more complex notation, the results are

essentially the same.) Consider the following MIMM for Fe

p
Y 8. =1, 8. >0 and integer (i=1,...,p)
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and let f* denote the optimal value function corresponding to the con-

tinuous relaxation of the RHS of (4.1). Note that ;* € C(f,[ao,up]).

Theorem 4.1: The MIMM on the RHS of (4.1) is relaxation-optimal on

[ao,ap].

Proof: Llet X e [ao,up] and Tet X, be chosen so that %*(i) is ob-

tained by setting Ai = Xi in the corresponding LPMM, so that

FH(R) = TF(os) R
]

~

ghehs 2 ZC*(faais[&O,&p]) z,C*(f,i’[uo,ap]). Since

X,

i

* *
f* ¢ C(f,[uo,ap f

i
), this implies that (x) = c*(f,i,[uo,up]) and the

conclusion follows. ]

While Theorem 4.1 implies that the standard MIMM will also be re-
laxation-optimal for a continuous economy-of-scale function in the
class considered in Section 3, the MIMM (4.1) has several computational
disadvantages. One obvious disadvantage is its sheer size, since the
number of constraints and variables in (4.1) is determined by the num-
ber of breakpoints of %, whereas this is not the case for the formu-
lations of Sections 2 and 3. A more subtle disadvantage is the failure
of the integer variables 61 of (4.1) to directly reflect physical
quantities. In particular, the 61 all have cost coefficients of O
and, moreover, a 0 "branch" on a 61 has no effect on the allowable
range of x values unless it has the Targest or smallest index of any
§. not yet fixed. While these disadvantages may be alleviated via the

;
use of "Special Ordered Set" (S0S) strategies for branching (see [1]),
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such strategies are often not available in MIP codes (see [3]). In par-
ticular, SOS strategies are not fully implemented on the Univac FMPS-MIP
code in use at the Madison Academic Computing Center, and in the next
section we compare results obtained with FMPS and the formulation approaches
of Sections 3 and 4. (It should be noted that the use of an SOS strategy
has the advantage of imposing disjoint upper and lower bounds on the range
of the variable x in (4.1) when SOS branching is performed. Branching

on the Y; in (3.1) imposes upper bounds on x, but does not directly
impose lower bounds. Lower bounds on the range of x may be directly im-

posed by adding to (3.1) constraints of the form
X > ay - daz,

plus additional constraints of the form Z, <Y By selecting the co-
efficients a to reflect maximum "surpluses" so that for any x e [0,au],
ay yielding an optimal solution to (3.1) for x = x will satisfy

X > ay - 3z for some feasible z, relaxation optimality will be pre-
served. This follows easily from the fact that, by assumption, the optimal
value function of the MIMM remains fz(x), while the optimal value of the
continuous relaxation, which cannot increase beyond c*(fz,[O,au]) (in
spite of the added constraint) must also remain the same. Some theoretical
and computational aspects of such lower bound constraints as well as some
other modelling refinements to deal with upper bounds on x are currently

under investigation.)
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5. A Computational Comparison

In this section we consider a comparison of solution times for
different formulations of the following communications network problems:
determine the minimum cost networks (see Table 1) that meet specified
demands (see Table 2) between six distinct pairs of cities (A,B), (A,C),
(A,D), (B,C), (B,C), and (C,D), where the communications traffic be-
tween the elements of a city-pair may be routed via any acyclic path

between the cities (there are 5 such routes between each city-pair).

Arc Single Channel 12 _Channels 60 Channels
A-B 789.75 7028.77 17690.40
B-C 878.25 7992.07 21341.47
C-D 1407.70 13232.38 42512.54
D-A 654.90 5697.63 13098.00
D-B 1045.60 9619.52 28022.08
C-A 1236.57 11500.10 35860.53

Table 1. Costs

City-Pair Demand Set I Demand Set 11

4
10
64

5
10
14

D o—
B CITOON

Table 2. Two Sets of Communications Demands
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Algebraically, this problem has the form:

6
min ) hi(xi)
X,z i=1

th

where Zj K represents the number of channels on the Jj~ path between

the Kkt
th

city-pair, dk is the total number of channels needed by the
k™" city-pair, A, 1is the set of pairs (j,k) such that the corresponding
path uses arc i, x, is the total number of channels on arc i, and hi(xi)
is the minimum cost of leasing at Teast X; channels on arc i. (Note that
the hi are economy-of-scale functions of the type considered in Sections
2 and 3 with n = 3. For computational convenience the variables asso-
ciated with single channels on arcs were assumed continuous. Because
of the fixed demands, bounds could be imposed on all variables. Gen-
eral integer variables were decomposed into 0-1 variables, since the
FMPS-MIP code requires this.)

The computational results of Table 3 illustrate the dramatic dif-
ference in solution behavior and times between the formulation approaches
of Sections 3 and 4. The MIP code used was the Univac FMPS-MIP code

(level 7R1) and the problems were run on the Madison Academic Computing

Center Univac 1110. For demand set I, the Section 3 formulation requires
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only about 1/4 the computer time of the Section 4 formulation. For de-
mand set I1I, the solution time for the Section 3 formulation is 15 seconds,
whereas the FMPS system was unable to solve the Section 4 formulation.
Similar behavior was observed in runs using a Jocally-developed MIP code,
IPMIXD, which successfully solved both I-S and I11-S, but failed to solve

either I-L or II-L because of storage overflows.

Problem Rows Columns 0-1 Varijables Solution Time (Sec.)
I-S* 12 54 18 4
I-L** 76 122 40 15
11-S 12 60 24 15
II-L 116 202 80 ok

* T denotes demand set I; S denotes "short" formulation
** | denotes "long" standard formulation
**%* FMPS system forced termination of run with message "numerical errors"

Table 3. Problem Sizes and Solution Times

A number of other versions of the problems were run in which some
of the cost function terms were modeliled via the Section 3 approach and
the remainder via the Section 4 approach. In all cases the results were

worse then those obtained via the Section 3 approach.
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6. Conclusion

For piecewise-linear functions belonging to a broad class of
economy-of-scale functions, a compact mixed-integer-programming formu-
lation has been described. This formulation was then shown to behave
at least as well as any other mixed-integer formulation of the function
in terms of the approximation error resulting from the relaxation of in-
tegrality constraints. Moreover, a computational comparison (using a
communications network problem as a test problem) showed the superiority
of the compact formulation over a standard mixed-integer formulation of

the same problem.
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Appendix A

To justify the statement in Secticn 2 that the restrictions
a>0 and c¢ >0 can be replaced by assuming that (2.1) has an optimal
solution for x > 0, we consider the remaining cases: (1) i such that
c; >0 and a, <0 (2) i such that c; < 0 and a; > 0, and (3) i

such that Ci <0 and ai < 0.

Case 1: For those 1 such that Cs > 0 and a < 0, one may obtain

an equivalent problem by deleting the corresponding variables Y; from

the problem, since, for any x > 0, an optimal solution may be obtained

in which such Y; 0.

Case 2: If there are i such that ;i < 0 and a; > 0, then clearly
the objective function of (2.1) must be unbounded from below, so this

case is ruled out by the existence of an optimal solution.

Case 3: If, for some 1, ;i < 0 and a; < 0, then either all a < 0,

in which case (2.1) is infeasible for x > 0, or there exists at least
c

one j such that a; > 0. In the latter case let r' = min { k/aklak>0}
c

and v = max { k/ak|ck<0, a<0}. If r §.r+, then, assuming that

the yariab]es are ordered so that 3, >0 and C]/a] = r+, it may be
seen from obvious extensions of the proofs of Lemma 2.1 and Theorem 2.2
that the desired result holds. On the other hand, if r > r+, then the

objective function of (2.1) is unbounded from below for all x. This



+ 9 _ cp/ -
follows by letting r = /a] and r = ap, noting that
o a
1/—c < ]/-ap , and choosing a rational 6 > 0 such that
c a
]/-Cp <9< ‘/-ap, from which it follows that a; +a >0 and

Cy + cp6<0. Now choose an integer M > 0 such that M6 is in-
teger and note that the relations ay * M+ ap - M6 >0 and

c]M + cp- M6 < 0 imply unboundedness.
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Appendix B

Here we consider several examples to illustrate the difficulties
that can arise when one attempts to extend the results of Sections 2 and
3 by either (1) inserting a positive constant on the RHS of the con-
straint involving x, or (2) relaxing sign restrictions in the bounded
case, or (3) allowing more than constraint involving x in the bounded
case.

The following illustrates the difficulties that may arise when a

positive constant appears in the RHS of a MIMM (see Figure 4):

k](x) = m;n vy ¥ 10y2

s.t.yq t 12y2 > x + 10

Y15 Yy > 0, Yo integer.

1

+ is easily seen

In this case, the convex envelope of k](x) on R
to have a value of 10 on [0,2], so that it does not coincide at x =0
with the optimal value function of the continuous relaxation of the MIMM
as given by:

* - 3
k](x) = m;n vyt 10y2

s.t. Y1 + 12y2 >x + 10

Yy» ¥p 205

f—
(@)

since kT(O) =10 - < 10.

j—
N
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* & & » e+ & s e &

12

aovd
£~

Figure 4. k1(x) on [0,14]
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Note also that the addition of bounds does not help, since de-
fining

k2(x) = m;n Yyt 1Oy2

w
-
b
p—
+
—r
N
~<
no
Y

> x + 10

(@w]
A
~
i
A

<10

yp integer

yields k](x) = kz(x) for x e [0,12], and k](x) coincides with its
convex envelope on [0,12], whereas the optimal value function of the
continuous relaxation is again strictly less than k](x) at x = 0.
Now consider the following example in which a RHS constant is
not present in the constraint involving x, but there are negative

coefficients:

k3(x) = min -y; 4 10y2
Y1s¥p

s.t. —yi + 12y2 > X
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Making the change of variables yi =10 - y] we have
k3(x) = =10 + min yi ¥ 10y2
.y]SyZ
s.t. y] + 12y2 >x + 10

Yo integer,

so that k3(x) = -10 + kz(x). It is easily seen that while k3 coincides
with its convex envelope on [0,12], it differs from the optimal value
function of the corresponding continuous relaxation at x = 0.

In our last example, we consider the case of two constraints with

positive coefficients and RHS x:

k4(x) = min ¥q tY,

v
>

s.t. Zy] + 4y2_;
4y] + 3y2 > X

0 <¥ys ¥y 21

Y1:¥5 integer .

In this case the optimal value function is finite for x < 6, and is
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easily seen to have the values:

0 for x =20
k4(x) =<1 for 0<x <3
2 for 3 <x<4g.

Thus the convex enveiope of k4 on [0,6] is simply x/3. On the
other hand, for x = 5 the continuous relaxation of the above MIMM
for k4 is easily seen to have optimal value 3/2 for x = 5 (choose
Yy © %-,yz = 1), and therefore it does not coincide with the convex

envelope, which has value 5/3 at x = 5.
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Appendix C

We wish to establish relaxation-optimality in the case of both

upper and lower bounds as considered in Corollary 3.3. Define

f3(x) = min cy
y
s.t. ay > x,
(C.1)
2 <y<u
Ys integer, i ¢ I
and
fg(x) = min cy
y
(C.2) s.t. ay > x
L <y<u',

where ¢ > 0 and 21 and u% are integer for i e I. By making the

substitutions y =z + 2, x =t + al, and U = u'-%, we have

fg(x) ¢l + min cz

s.t.az>t, 0<z <, z; integer, i e I

i
@]
=
..§-.
-h

(3]
———
-+
g
fi
(]
IS

+

—h
P
=

I
je3)
)

S
-
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where

min ¢z
z

111

£,(t)
s.t.az>t, 0<z <, Zs integer, i ¢ I

Similarly, fg(x) = ¢ + %ﬁ(x—az) where

—+
N¥*
—
-+
~—
Hi
=3
—
-
(o]
N

s.t.az>t, 0<z <.

~ ~

Note that, for 0 < x < af, fz(x—az) = f;(x-az) =0, so that for

0 < x < ak, f3(x) = f§(x) = ¢, and for x > a%, the breakpoints
of f3 are obtained by translations of the breakpoints of ?2 by at.
Relaxation-optimality is then easily established by considering the

analog of Theorem 2.2.



