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by Bruce Ramon Rowland
Under supervision of Assistant Professor Charles N. Fischer

ABSTRACT

Attributed grammars, developed by Knuth, permit the
formal specification of context-sensitive syntax and
semantics within the framework of context-free grammars.
This thesis explores techniques to combine parsing with
attributed grammar evaluation. The methods of Lewis,
Rosenkrantz, and Stearns for evaluating the attributes of
symbols during a parse of a siring are expanded to irrclude
both S- and L-attributed grammars as special cases. An
extension that involves the tempofary r&tention of subtrees
and delays their evaluation during a parse allows evaluation
of all non-circular attributed grammars with LR(k) context-
free dJgrammars. An attributed pushdown processor using
left-corner parsing technigues 1is described to perform
efficient translations specified by attributed grammars. It
serves as a model for single-pass compilation that
formalizes and generalizes the use of a semantic stack to
encompass forward references. The applicability of the
processor in a practical translator writing system is
considered, and the salient table construction and run-time

properties are established.
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Chapter 1

Introduction

Automated Translation Technigues

Interest in translator writing systems has taken many
forms ever since compilers were first introduced.
Compiler-compilers [FG68], for example, have much to offer
the compiler writer in savings of time and reduction of
errors. Formal language specification techniques used in
compiler-compilers add to the theory of formal languages.
Automated compiler construction 1is often- easier than
conventional compiler writing because of the amount of
tedious work that is transfered to a computer. Those parts
that can be automated may be completed early in a compiler
project, so more effort can be directed to other less
tormalized areas, for example optimization, run-time
support, and user interfaces. The ease and speed of
constructor use paired with language testing encourages
design modification. Given compiler constructors, design
moditication can change the outward appearance of a language

or its internal semantics, or it can aid in making the
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recognizer more efficient without altering the actual
language itself.

Tne automatic generation of language recognizers also
aids the process of compiler bootstrapping and compiler
portapility [MBW70]. The more a compiler 1is driven by
tables, the simpler it will be to transport between
computers and to implement on a new machine. A first draft
compiler can then be used so that ensuing compilers are
written in their own language and made self-compiling.

Much of the early emphasis on translator writing systems
centered on syntax analySis. Use of Backus—Naur Form (BNF)
notation became widespread as a result of this work and 1is
now commonly used to express context-free aspects ‘of
programming language syntax. BNF became the meta-language
for syntax anélyzer constructors that produced tables or
programs (parsers) to accept sentences of the expressed
language [DeR69; Knu65; Flo63; Knu7l; AJ74]. Programs were
also developed to automatically construct lexical analyzers
to recognize the tokens of a language [JPAR68; Bak73]. The
token meta-language normally consists of regular expressions
tnat can pbe transformed into finite automata to perform
source program scahning. The early constructors worked well
in producing recognizers for well-formed programs in the
language but often terminated prematurely on an ill-formed

program. More recent research has considered the problems
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of constructing recognizers with error recovery [GR73] and
error correction [Iro63; AP72; FMQ77].

The proplems associated with the construction of
automated semantic analyzers have been more difficult.
Formal notations have been developed in which to express
various aspects of semantics. Marcotty, Ledgard, and
Bochmann in their "Sampler of Formal Definitions" [MLB77]
attempt to analyze the strengths and weaknesses of four
different techniques for formal language definition: W-
grammars, production systems, vienna Definition Language,
and attributed grammars. These methods are compared mainly
with respect to completeness, simplicity, and clarity.
Their overview supports the claim that formal definition
methods lay an important theoretical and practical
groundwoék in computer sciences, and they encourage further
study. The prgcticality or ease of the formation of
language translator constructors based on these methods,
however, was not considered. Of the four methods, not all
are equally applicable to the area of compiler
implementation. Attributed grammars are in fact well suited
for implementation; current research considers the problems
of practical implementatipn [Boc76% JW75; KW76].

The advantages of formal language specification are very
attractive. The development of a uniform and well-under-
stood theory of compilation would certainly be an asset to

potn compiler writers (and ultimately compiler users) and to
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the theory of computation. Such a theory, as it evolves,
should provide a notation needed for the communication,
teaching, study, and enhancement of compilation techniques.
A formal theory can also provide the necessary foundation
for work in establishing language and translator properties,
showing language and translator equivalence, and providing
meaningful comparisons.

A formal semantic specification technique 1s necessary
if automatic translator generators are to become a reality.
Languages then can be designed and defined in an unambiguous
and communicable medium. Implementations of the language
will follow from the specification rather than serve to
define the language as has often been the practice. Those
details to be left ope; to the implementation can then be
clearly demarcated.

This régearch develops techniques that enable practical
implementation of attributed grammar specifications for
language translation. Emphasis is placed on a single pass
model of the compilation process capable of dealing with
forward references. An important quality of the model is

that it formalizes semantic compilation techniques that are

now commonly in use.

Background: Attributed Grammars

Of the many attempts at language definition, attributed

grammars [Knu68a] are flexible and powerful enough to
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readily provide definitions of most programming languages,
while at the same time they provide a natural, concise and
formal means of specification. As a result, they can be
adapted directly to various types of translation schemes.

Attributed grammars are an extension to context-free
grammars. A context-free syntax ishdesirable because of the
efficient, automatically generated parsers that are commonly
available. However, context-free syntax often represents
only a superset of legal strings because much unacceptable
program syntax cannot be eliminated without context-

sensitive specifications.

A context-free language is a set of terminal strings

derivaple from a context-free ‘grammar. A context-free

grammar (cfg) G = (N,T,P,S) is a four-tuple with the
following restrictions and terminology [HU69]:

1) N is a finite set of non-terminal symbols.

2) T is a finite set of terminal symbols such that T
and N are disjoint.

3) P is a finite set of productions (or generative

rules). FEach member of P is of the form:
A ::= Bl B2 ... Bn
with finite n>@, where A € N and each Bi € (Nu T).

A is the left-hand side and each Bi is a member of

tne right-hand side of the production.

4) S is a distinguished member of N, the goal symbol.
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The language generated py G = (N,T,P,S) is denoted L(G).
rTerminal strings are generated in G by applying productions
to non-terminals in strings generated from S. Productions
are appled by contextually replacing a member A of N by the
right component of a production with A as its left
component. Notationally

XA Y==>XBlB2 ... Bn¥Y
denotes the application of (A, Bl B2 ... Bn) to X A XY where
X,Y € (N uT)*., Thus X A Y derives X Bl B2 ... Bn Y. The
reflexive and transitive closure of ==> is denoted by =*=>.
Formally L(G) may be defined as
{ X | s=*=>X, X € T* te

Mmucn theory is available from the study of properties of
context-free languages and gramhars and their recognizers
[HU69; AU73]. Automatically generated syntax recognizers
rely heavily on such theories [AU73; FG68; Fel66].

Attributed grammars were introduced by Knuth as an
enhancement of context-free grammars to satisfy two goals.
The first goal was to obtain syntactic specification where
context-free grammars are either very unwieldy or totally
incapable. The second goal was the specification of
contextually dependent semantic relationships between
elements of a cfg. 1Instead of language recognizers, such
grammars can be used as transducers to generate output such
as a translation to an intermediate target language. An

attributed grammar can represent a translation as an
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attripute value of the root node of a syntax tree.
Attributed grammars can also\be used to define procedures to
produce labelled trees for use in code optimization
algorithms [SU72; AN76; PAN76] .

Attributes are associated with the symbols in the
grammar (terminal or non-terminal) and can take on values
from different, possibly infinite sets. Each grammar symbol
has a fixed number of attributes; each attribute is either
synthetic or inherited. Synthetic attributes of a symbol
derive their values from attributes of éymbols that are
immediate descendants of the symbol in some syntax tree.
Information flows up a tree to synthetic attributes.
Innerited attributes of a grammar symbol derive their values
from direct ancestor and sibling nodes in a syntax tree,
permitting information flow down a tree. Inherited
information may indirectly have an effect on synthetic
attributes and synthesized information may eventually be
passed to other suptrees via inherited attributes.

Attributed grammars include sets of attribute evaluation

rules associated with each production 1in a context-free
grammar. Each rule contains a function and 1is wused to
define the computation of an attribute value of a symbol in
the production in terms of other attribute values of symbols
in the same production. The rule for an attribute of the
left-nand side sympol of a production defines a synthetic

attribute, and a rule for an attribute of a symbol on the
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right-hand side of a production defines an inherited
attripute. Attributed grammars pass contextual information
either between parent and offspring nodes or Dbetween

siplings in a syntax tree.

more formally, an attributed grammar is a context-free

grammar G = (N,T,P,S) in which

1) there 1is a finite set of attribute names and
domains A = {(a,Da),...} where Da is the (possibly
infinite) domain of the attribute a.

2) for each sympol X € (N u T) there are two disjoint
supsets of A. I(X) 1is the set of inherited
attributes of X and S(X) is the set of synthetic
attributes of X.

3) for each memper X@::=Xl...Xn € P, there exists an

indexed set of attribute evaluation rules for each

element of
S(XP) u I(X1l) u ... u I(Xn)
containing functions whose arguments occur in

S(Xi) u I(Xi) ¥ 1 € B,ee.,n

Notational conventions used in attribute evaluation rules
are as follows (the production involved is implicit in the

use of a function):



let B.a denote the attribute named "a" for symbol B in
the grammar.

let B(j).a denote the attribute "a" of the Jj-th
occurrence of B in a particular production.
Occurrences are counted from the left after con-
catenating the left and right sides of a
production. The first occurrence is indicated by
j=0. The subscript is dropped for convenience
when B occurs only once.

letks(j).a :=  Fi,k(<args>); represent the rule
evaluating the attribute "a" of the j-th occur-
rence of B in production 1. The subscript Kk
indexes the function within the production.
<args> includes other attribute occurrence
references from that production.

For example:

<HEAD> ::= <HEAD> <TAIL>
CHEAD> (1) .Position := <HEAD> (@) .Position (1)
<HEAD> (#) .Length := <HEAD>(l).Length + <TAIL>.Length

<TAIL>.Position := <HEAD>(@).Position + <HEAD> (1) .Length

In this example, the Position attribute is inherited, and
the Length attribute is synthetic.
Chirica and Martin’s [CM76] restrictions on attribute

grammars (which results in no loss of power) reguires the
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attripute occurrences in a production to be divided into two

disjoint classes.

The recipients are the targets of the associated

attribute evaluation rules. For a given production i:
A ::= Bl ... Bn
The set of recipient attribute occurrences in i is
Rec (i) = {(a,X)|X=A and (a,Da) € S(A) or
X=Bj and (a,Da) € I(Bj), 1<j<n}.
The donors are the attributes that appear as afguments
of attribute evaluation functions. The set of donor
attripbute occurrences in i is
pon(i) ='{(a,X)|X=A and (a,Da) € I(A) or

X=Ej and (a,Da) € S(Bj), 1<j<n}.

For purposes of translation and compilation, an extension to
Knutn’s definition of attributed grammars 1is desired.
Terminal symbols may have only synthetic attributes. The
values of the attributes are determined solely by the
appearance of the token in the input string. Terminal
attribute evaluation is typically done by a scanner Or
lexical analyzer. For instance, the synthetic attributes of
a constant might be its type and its value, those of an
identifier, its name and its hash value. In the same vein,
tne grammar s goal symbol may have inherited attributes.

These attributes are of necessity constants. They are
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useful to set or reset translation options for the evaluator

or to initialize attributes such as a symbol table.

Tne Use of Attributed Grammars

Mmany language defintions (eg. PASCAL [AW73]) state that
name scoping and some type checking is to be accomplished in
syntax analysis but do not specify how; such context-
sensitive analysis is certainly out of the realm of <cfg
parsers. Consider the following (typical) productions of a
statement oriented language that contains reals, integers

and Booleans:

i

1) <FACTOR> ::= <FACTOR> * <&PRIMARY>
2) <FACTOR> ::= <PRIMARY> (2)

3) <PRIMARY>:== <ID>

Tne operand type of a <PRIMARY> that was found to be an <1ID>
is a function of the name of the <ID>, a synthetic
attripute, and the environment of the <PRIMARY>, an
inherited attribute. if the name is not declared in the
environment or could never have been assigned a value within
tne environment, an attribute denoting illegal use could be
set "true" (if the language desires it), as is often done in
an ad-hoc manner in conventional compilers. In a
multiplication, the type of the resulting <FACTOR> 1is

clearly determined by the synthesized types of its
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constituent <PRIMARY> and <FACTOR>. Again an attribute
denoting illegal use could be set if the types of the two
operands are incompatible. Thus attributed grammars can
solve name scoping and type determination syntactically in a
natural, concise and complete fashion.

Translation may occur in various fashions with
attributed grammars. One such scheme is to have a ‘"code
sequence” attribute for the start symbol of the grammar
(call it <PROGRAM>) be the final translation of the program.

If tne following productions are added to (2)

4) <TERM> ::= <TERM> + <FACTOR>

5) <KTERM> ::= <FACTOR> . (2)
6) <PRIMARY>::= ( <EXPRESSION> )
as well as those for an assignment statement, "code

sequence" could be a synthetic attribute of <EXPRESSION>,
{TERM>, <FACTOR>, and <PRIMARY> that would be built by
insertion and concatenation functions. In production (4),
for example, the code sequence of the second occurrence of
<TERM> could be followed by that of the <FACTOR>, and code
for addition concatenated to its end depending (possibly) on
temporary locations (again synthetic attributes) and the
result transmitted to the left-hand side <TERM>.

A particularly attractive application of attributed

grammars in syntactic analysis 1is presented by Milton
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[Mil77] . He defines attributed parsers in which contextual
predicates are defined for each production in the grammar.
For a given production to apply at some point in the parse,
tne predicate (which is defined in terms of attributes local
to tnhe production) must yield a true value. Milton
describes another predicate used to disambiguate context-
free grammars. If the look-ahead function for a particular
parsing scheme fails to differentiate between production
choices, a disambiguating predicate on the root of the
productions and the look-ahead symbols is used to make the
choice. He modifies several parsing algorithms to perform
attributed parsing and shows how an underlying context-free
grammar can be made much smaller by including attributes in
many parsing decisions.

Other methods have been suggested to extend context-free
syntax checking. Property grammars [SL69] allow synthetic
information flow to occur when productions are recognized in
a bottom-up parse. Decisions can be made about the legality
of offspring according to the properties (attributes) of the
ortspring. Property grammars can always be replaced by
purely syntnetically attributed grammars.

Indexed grammars [Aho68] generate a class of languages
properly located between context-free and context-sensitive
languages. In this scheme, inherited indexes are passed to
offspring as a production is applied to an indexed non-

terminal. The indices control the generative capabilities
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of the offspring. Recognition procedures for indexed
grammars using an SLR(1l) skeleton are discussed by Solomon
[S0l77].

w-grammars, introduced by van-Wijngaarden [WMPK69], are
a means of specifying context-sensitive syntax information
(as well as semantic information). They consist of two
levels of grammar: metaproductions and hyperrules. The
metaproductions are context-free rules for generating proto-
notions. Hyperrules are templates from which a potentially
infinite numper of context-free syntax rules can be derived.
The unpbounded number of program syntax productions gives W-
grammars their context-sensitive power. Again W-grammars
are generative and not well suited to automatic recognition
techniques.

Previous work on semantic analysis has fallen into two
categories. String-to-string mappings occur in the realm of
the first category, syntax-directed translation schemes
(SDTS) . In this <class are syntax-directed transducers
[LS68], generalized syntax-directed translations [AU71Db],
pushdown assemblers [AU69b] and others [AU69a; AU7lal. Each
scheme is string-oriented and is based on pushdown automata
recognizers.

The second category, semantic specification systems,
generally extend or replace the conventional syntax schemes
as a framework on which to base semantics. In W-grammars,

the source program and input file are analysed together to
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produce an execution sequence, a technique not normally used
in compilation strategies. Vienna Definition Language (VDL)
[weg72] consists of tree-pbuilding predicate functions. VDL
semantics is pbased upon an interpreter that acts wupon the
VDL syntax tree. While Marcotty, Ledgard and Bochmann
[MLB76] find tnat production systems and attributed grammars
do not encompass semantics as completely as the other
metnhods, this is in large measure due to the fact that these
detfinition technigques were designed to be wused in
translators. The orientation of attributed grammars and
production systems makes them well suited for compiler

construction.

Problems with Attributed Grammars

There are several problems inherent in evaluating the
attributes associated with the symbols of a syntax tree.
First, the resulting definitions must be non-circular. A
circular attributed grammar is one whose language contains a
syntax tree with an attribute that depends functionally upon
its own value. Knuth has given a circularity test for
attributed grammars [Knu68a], and others have given
algorithms that reject all circular attributed grammars (as
well as some other grammars that do not fit their evaluation
schemes) [Boc76; KWi6]. Circular grammars are not of

interest and are eliminated from all evaluation schemes.
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Another ©problem in attribute evaluation is finding an
order in which to evaluate the attributes of a sentence.

One group of methods, known as tree-walk evaluators, relies

on tne prior completion of the syntactic analysis of a
sentence. The first work in this area was done by Isu Fang
[Fan72}, a student of Knuth. His proposal was to take a
syntax tree, start at the root and traverse the tree in a
depth-first search evaluating those attributes ready to be
evaluated. Those attributes that cannot yet be evaluated
are delayed until all the attributes they are dependent upon
are evaluated. TFull evaluation may require several trips to
each node 1in tne syntax tree. Fang ‘s approach is
non-deterministic because the number of visits to each node
of the syntax tree as well as the order of attribute
evaluation depend upon the sentence itself.

Later work by Jazayeri [JW75] and Bochmann [Boc76]
produced evaluators that again require the entire syntax
tree put rely on a prior dependency analysis of the
attributes. They determine the number of passes over any
syntax tree necessary to evaluate all the attributes in any
sentence of a language being processed. For each pass, the
algorithms identify which attributes are ready to be
evaluated. Bochmann considered only left-to-right preorder
passes. Jazayeri’s method 1is more general in that he
considers alternating left-to-right and right-to-left

passes. This scheme accepts more attributed grammars than
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Bocnmann’s. Neither accepts all non-circular attributed
grammars, out they can be considered deterministic in that
the same order of attribute evaluation 1is applied to any
sentence generated by an acceptable grammar.

Kennedy and Warren [KW76] describe an evaluation me thod
for attributed grammars that frees itself from strictly
left-to-right (or right-to-left) passes over a syntax tree.
They return to a tree-walk evaluator that starts at a root
and visits nodes carrying down inherited information or
bringing pack up synthesized information. The symbol
visitation order is predetermined for each production and is
dependent only upon the immediate offspring of a node; thus
the entire subtree below an offspring is not considered. A
node 1is marked with the state of the evaluation of the
attributes of its root and immediate offspring. The
combination of the state of the node and the evaluated
inherited attributes triggers an action sequence that
further evaluates recipient attributes whose donors are now
available. They present an algorithm that compiles
attriputed grammars into the necessary tree-walk evaluators

tor all attributed grammars that are absolutely

non-circular, a subset of the non-circular grammars. Warren

claims that this approach can be extended to all
non-circular grammars at the cost of increased subtree

analysis.
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A second class of attributed grammar evaluators
determines attribute values during syntactic analysis. Two

such parse-time evaluators were described by Lewis et al

|LrRS74]. A left-to-right bottom-up parsing method, LR(K)
for instance, finds all offspring and their subtrees before
any parent. As a recognized production right-hand side is
reduced to its left-hand side symbol, synthetic attributes
can be evaluated for the left-hand side if all attributes in
tne offspring are evaluated, and no attribute of the root
depends on any inherited attribute of the root. Synthetic

or S-attributed grammars meet this restriction.

The top-down parsing methods like LL(K) recognize nodes
of a syntax tree in a different mgnner. All parents are
recognized before their offspring, and each offspring 1is
found bpefore 1its siblings to the right. The LL(k) parse
performs a depth-first left-to-right walk through a syntax
tree. Any attributed grammar that is LL(k) and can be
evaluated by a single depth first left-to-right walk for any
sentence in the language can be evaluated during an LL (k)
~ parse. Details of a stack machine that performs the
evaluation are presented in Lewis, et al [LRS74]. The
machine maintains a single attributed state and a stack of
attriputed semantic nodes. The machine state represents the
most recently recognized grammar symbol and its attributes,
and the top stack node represents the grammar symbols to the

left of the state symbol in the most recently predicted
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production as well as the left-hand side of that production.
As another sympol is recognized, its recipient attributes”
donors must be a part of the current top stack node and the
machine state and can be computed. When a predicted
production is completely recognized, the top stack node is
popped and the attributes associated with the left-hand side
are transfered to the machine state. Structure recognized
and utilized prior to the current sentential form is deleted
as the ©parse progresses. The class of attributed grammars

allowed py this method is termed L-attributed and 1is the

same class described by Bochmann as evaluable in a single
pass through the parse tree [Boc76].
Tne definitions for L-attributed and S-attributed

grammars are adopted from Lewis, et al [LRS74]:

An attributed grammar G = (N,T,P,S) is S—attributed if

all attriputes are synthetic.

An attributed grammar G = (N,T,P,S) is L-attributed if

for each production in P of the form:
A ::= X BY
where X,Y € (N u T)*,
1) the synthetic attributes of A are only dependent
upon the inherited attributes of A and arbitrary
attributes of the symbol B and symbols in X and Y,

and
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2) the innerited attributes of B are only dependent
upon the inherited attributes of the symbol A and

arbitrary attributes of the symbols in X.

These two classes of attributed grammars, S-attributed
and L-attributed, do not include many desirable properties
of full attributed grammars that prove wuseful 1in the
translation of common programming languages. Forward
references, for example, cannot be handled in either <class

without undue complication. A forward reference can be

defined as the use of a name of an object in a portion of
code before tne definition of that object has occurred.
Forward referencing is very common in most programming
languages; it occurs in forward bfanching GO TO statements,
procedure declarations after their invocations, and PL/I
type declarations (which may occur anywhere in a given
scope). To satisfy forward references with an L-attributed
grammar, all object references and definitions must be
accumulated synthetically untii no more are syntactically
allowed to occur. At this point, the gathered references
must be updated according to the definitions. With
unrestricted attributed grammars only. the definition list
(acting as the traditional symbol table) need be collected
and can become an inherited attribute to any node needing

it. The function updating a single specific kind of
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reference from the definition list is far simpler than that
applied to reference types in general.

Relaxing tne ordering restrictions required by the
L-attributed class would thus allow elegant solutions to
many forward referencing problems. The LL (k) parse
restriction is often found unwieldy as well. The LR (1)
family of languages properly contains the LL(k) languages

for all k and is found more natural by many.

The Configuration Set and GLC Parsing

LR (k) parsing is based on pushdown states that keep
track of every possible production to which the next input
sympol could belong. The states, sets of parse

configurations called configuration sets, form a parse graph

connected by symbol transitions. Each configuration set
other tnan the start state is partially characterized by an

entry symbol, that symbol in the grammar (terminal or

non-terminal) that was recognized and caused the transition
into the state. Each parse configuration is an item which

consists of a production and a configuration symbol (".")

that is kept between that portion of a production already
recognized and that yet predicted. The basis of this set
contains the productions that could have generated the entry
sympol; it includes completed and incomplete items. The

configuration set and types of items are illustrated in
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figure 1.1. For a full development on the construction of

configurations sets for LR(Kk) parsing, see [AU73].

!
entry | BASIS ITEMS |

—————— S| = = = = = - = - = = =~

symbol | | === > exit 1
| PREDICTED | .
| oo
| ITEMS I :
| | mr > exit n
|
I

configuration set

[ LHS ::= . RHS ] (predicted item)

[ LHS ::= RHS . | (completed item)

[ LHS ::= Rl ... Ri . Ri+l ... RJ { (incomplete item)

configuration items in three possible forms
Figure 1.1 Configuration Set and Items

A hybrid parsing scheme has advantages of both the
top-down and bottom-up schemes that are useful in attribute
evaluation. For parse-time evaluation, monitoring the
evaluation of attriputes within partially parsed production
inst;nces necessitates a parsing technique based on
configuration sets. The generalized left-corner (GLC)
parsing technique described by Demers [Dem77] is as powerful
as LR and fits each of these needs. The left-corner parsing

scneme actually generalizes both the bottom-up and top-down



23

parsing techniques. The following definitions leading to a

GLC parser are adapted from Demers [Dem77].

A recognition rule grammar based on a cfg G =(N,T,P ,8)

is a cfg G = (N u R,T,P,S) where

a) R = {i!lgisIP'l} is the set of recognition symbols.

N and N are disjoint.
b) P contains {1 ::= e|l € R} and
for each i, exactly one production of the form
A ::=X1 ¥
for the i-th production: A ::= X Y € P° with
X, Y € (NuT)*

e represents the empty string

X is termed the left corner and

Y is termed the trailing part of production i.

The GLC configuration sets differ slightly from those of
LK. 1In particular, the configuration symbol does not move
beyond the recognition symbol since the production instance
is fully recognized at that point and the trailing part
sympbols are predicted. In GLC parsing, as in LR, a parse
stack is used to Keep track of tne incompletely recognized
items. A previous state is re-entered when it becomes the
top stack node, and recognition at that level of the syntax
tree is continued. In GLC configuration sets that represent

predicted symbol states, there 1is an item denoting the
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prediction of A, [::=.A], that represents the independence

of

tnis item from the predicting production. A state

representing a prediction of symbol A is denoted Q(A).

e

A generalized left-corner parser with k-symbol lookahead

for a recognition rule grammar G = (N u N,T,P,S)

triple M = (States,Action,Goto) where

a)

b)

c)

States is a finite set of states containing at

least distinguished states Q(S) and Q(a) for
each A that occurs in a trailing part of some

element of P.

k
the function Action: States X T -->

{error,pop,shift} U {announce ili é N3

Action describes how the stack is to be manipu-
lated in a given configuration.

the function Goto: States X (N u T) —--> States.
Goto (Q,X) = closure({items IlI=scan(I’) and X

follows . in I € Q})

scan(I) is the item that results from item I by

moving the configuration symbol past the symbol
to its right, but never beyond a recognition
sympol, and is undefined otherwise.

The closure of a set of items Q is the smallest
set of items containing Q and such that if

[A::=X.B Y] or [::=.B] is in closure(Q) then

is

a
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[B::=.%] 1is 1in closure(Q) for each B::=Z in P

(where X,Y,Z2 € (N u T)*).

A GLC parser starts as a top-down parser in a state Q(S)
to predict the goal symbol S. It then recognizes left-
corners (which may be empty) in a bottom-up fashion. After
left corner recognition, the parser predicts the symbols in
tne trailing part as it parses in a top-down fashion. A
formal algorithm is given by Demers [Dem77] and a revised

algorithm is presented here in chapter 4.

single-Pass Compilations

In a single-pass ;ompilation, all lexicaf, syntactic,
and semantic analysis of a source program 1is done on the
same scan of the input stream. ﬁultipass schemes generally
perform several scans over the source and/or restructured
representations of it. There are several arguments that
tend to favor a single-pass compilation scheme rather than
tne multipass scheme.

The multipass scheme is potentially slow and expensive,
since much intermediate storage is needed and many mass
storage 1I/0 requests are required to find and update
information. (Such overhead may be less obvious in systems
with virtual storage.) Single-pass compilations are an
attempt to overcome this problem; some languages, e.d.

PASCAL and SAIL, have been designed with a single pass




26

(excluding most optimization) in mind. Fang concludes
[Fan72] that whnile his multipass scheme seems fine for
language testing, it is inadequately slow for production
use. His FOLDS implementation, while capable of creating a
translator for SIMULA 67, can only handle SIMULA programs Of
up to 1¢® lines due to space restrictions.

with attributed grammars in particular, a single-pass
translation scheme is able to detect non-context-free syntax
and semantic errors at an earlier point than a multipass
scheme. There is a distinct advantage in detecting errors
as soon as possible. 1If error detection is delayed several
passes, a compiler most 1likely does a large amount of
preparation for code generation and perhaps optimization
that may be fruitless due to the error(s) recognized. Late
error recognition also hinders error messages based on
source code lines and any chance of error correction [FMQ77;
Iro63].

when attributes are desired for syntactic analysis in
methods analogous to Milton’s [Mil77], it is necessary to
evaluate attributes on-the-fly with the parse. His work
supports compbining syntax analysis with attribute evaluation
in a single-pass compilation.

There are programming languages and computer
environments for which single-pass compilations are
impractical. Multipass compilations are often necessitated

by small computer memories that require most compiler tables
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and intermediate results to reside on mass storage. The
mass storage is often most easily managed through the use of
sequential files. Each subsequent reference to the
intermediate results requires another file traversal and
thus another compiler pass. Such languages can still
penefit in a reduction in the number of analysis passes
required by making use of the techniques developed here. 1In
some cases, the structure of the language itself leads to
the necessity of many compiler passes. Languages that are
Gifficult to compile are perhaps more difficult for a user

to understand and read as well.

The Semantic Stack

‘The theory of single pass compilation often refers to

the notion of a semantic stack that 1is maintained and

operated upon by a semantic analyzer [Gri7l; WwWe66; LRS76].
Nodes on a semantic stack typically contain descriptors of
syntactic entities recognized by the parsing unit. A
descriptor (the semantic content of a node) is used
eventually in the evaluation of the semantics or translation
of tne sentence as a whole. Since syntactic entities are
found during syntactic analysis by a parser, the semantic
stack includes enhancements to the significant nodes of a
parse stack. A semantic stack is an attempt to compact the
information known so far about a syntax tree and its leaves

and retain it in a more manageable and accessible form.
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Normally, only the root of a fully recognized subtree is
retained to represent the structure and semantics associated
with the subtree.

A natural way to envision semantic stack nodes 1s as
attributed grammar sympols. Attributed grammars provide the
semantic functions describing how the attributes of a
semantic stack node are to be evaluated. With proper
restrictions placed upon an attributed grammar, various
parsing/semantic strategies can be implemented. Both the L-
and S-attributed evaluators are capable of evaluating
restricted attributed semantic stacks. With a GLC parser-
pased evaluator, advantages of both bottom-up and top-down
semantic evaluation are available.

The proplem witn current methods of dealing with a
semantic stack is that in practice, more information is
needed to evaluate attributes or make semantic decisions
than is available. A common recourse is to create auxiliary
taples and treat them as global variable attributes, or to
provide 1links through the translated output that are to be
filled in when a semantic attribute is eventually evaluated.
wnile such "fixes" solve the problem at hand, they also tend
make the compiler obscure and are certainly less amenable to
efforts in proving assertions about the translator or
language or to automating semantic evaluation.

To use more general attributed grammars in a single pass

compilation, thne concept of the semantic stack can be
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extended. The difficulty with an attributed semantic stack
is that a particular attribute may not be evaluable when a
node is removed from the stack when a reduction is made in a
pottom—-up parée or a match is made in a top-down parse. The
stack in the bottom-up translation could be a stack of

trees, a semantic forest stack. The roots of the forest

correspond exactly to the recognized portion of the right
sentential form, modelling the current position of a parse.
A reduction simply connects the top nodes (subtrees) of the
stack as offspring of the new root which replaces those
nodes (subtrees) as the top of the stack. This technique 1is
in a sense more primitive since it simply rebuilds the full
syntax tree (just what the stack was used to avoid), but it
does offer a sfructure through which all attributes of a
attributed grammar could be evaluated. 1f recipient
attributes are not immediately evaluable when a node is
recognized, a visit by an evaluator will be made at a later
time when the necessary donors become available.

A compromise between the full semantic tree (which grows
out of the forest stack) and the usual semantic stack is one
in which subtrees only occur under semantic nodes that are
not tully evaluated. Once a subtree’s root is fully
evaluated, the subtree below the root can be effectively
discarded. If a node is not fully evaluated, those
offspring with the needed donors must be retained. Each

offspring will either be a fully evaluated node in the sense
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above (without any subtree) or another partially unevaluated
suptree. In bottom-up parsing, the modified stack thus
allows a full range of possibilities simplifying to the
simple semantic stack in the case of S-attributed grammars
and potentially expanding to the full syntax tree in the

case of very complex attribute grammars.

Attribute Evaluation

The scheme for attribute evaluation developed in this
thesis is based on a semantic forest stack built and
maintained by a GLC parse-time evaluator. A single-pass
evaluator can recognize sentence structure and evaluate all
attripbutes simultaneously. When cases exist in which an
evaluator must retain &subtrees and return to them to
complete evaluation, the single-pass criterion appears
violated. However, subtree visits are only made to selected
portions of the sentence, and the attributes evaluated in
the visits are used in the remainder of the single pass.

A modified semantic forest stack as described offers a
vehicle to evaluators that will be shown to have three

important properties:

(1) It <contains a structure in which attributed

grammars can pe implemented elegantly and practically.
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(2) It is built on a sound theoretical framework
(stacks, trees, and well-studied parsing techniques)
that is essential to establishing its properties.
(3) The implementation is space-efficient because only
as much structure as is absolutely needed is used in

attribute evaluation.

This dissertation addresses the significant problems
tnat occur in attempting to make the modified stack a
workable solution. Chapter 2 defines and investigates the
notion of left «corner attribute availability. Boolean
availability vectors are used to determine at which points
in a parse particular attributes are ready to be evaluated.
In chapter 3, a machine (the attributed pushdown processor)
is developed to construct and manage a semantic forest
during a parse. The use of attribute availability in
constructing action sequences for the processor 1is
formalized in chapter 4. Methods are necessary to permit
eventual evaluation of those attributes not immediately
evaluable with the parse. The unevaluated subtree problem
is the topic of chapter 5. Finally, grammar classes that
work well with the modified stack (i.e. keep subtree

retention to a minimum) are identified.
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Chapter 2

Attribute Availability

To avoid delaying all semantic evaluation wuntil
syntactic analysis 1is completed, it 1is necessary to
investigate how and when éemantic evaluation can proceed in
step with a parse. Several special cases were brought to
light by Lewis, Rosenkrantz and Stearns |[LRS74]. They
showed that certain attributed grammmars (L~ and
S-attributed) can be evaluated by visiting nodes of a syntax
tree in -the same order that they are recognized by a
particular parsing algorithm.

A solution to alleviate the 1limitations of the two
methods of Lewis, et al mentioned above 1is one that
encompasses the power of both. It is desirable to have this
solution be flexible enough to extend naturally to more
general attributed grammar classes (like those handled by
Kennedy and Warren). An evaluator that allows both
L-attributed and LR(k) grammars would be attractive as a
starting point, though it would not cleanly solve the

forward reference problem.
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Availapility of Attributes During a Parse

An essential objective of a parse-time evaluator for
attributed grammars is to evaluate semantic attributes as
soon as possible during the parse. To know when specific
attribute evaluation can take place, a formal concept of

attripbute availability is necessary. The availability of an

attribute reflects whether it is ready to be evaluated at a
given point in an evaluation scheme. An attribute 1is
available for evaluation when its evaluation rule is known
and the donor attributes referenced by the function are
evaluated. In the rest of this chapter, the concept of
LC-availapbility is considered -- the point in an incomplete
GLC (k) parse at which any given attribute for an instance of
a specific grammar symbol is available. The evaluation
points are identified by augmenting parse states to express
attripbute availability. The augmented states are termed

availability-extended parse states. The GLC parsing

mecnanism can then be extended to perform attribute
evalutions shown possible in the states.

puring a parse only an, incomplete description of a

derivation is formed at any particular time. With an
incomplete structure, the attributes of some nodes might be
recognized as available for evaluation while many others are

not. Dealing with incomplete syntax trees forces attribute

donors to be considered unavailable until their
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corresponding grammar symbols are recognized and
incorporated into the (incomplete) structure. At each
intermediate step in the process of syntax tree
construction, the tree Dbecomes more complete and more
attributes may become available.

Attribute availabilities for a given state of a parse
can be determined before parsing and the availability of the
attributes for a given symbol can be used in choosing parse
state-to-state transitions. In this manner, available
attribute lists can be maintained for each item of each
state. Because different subtrees can result in different
synthetic attributes being available in the root of a
subtree, each potential combination of evaluated attributes
for each grammar symbol must be considered in "parse state

transitions.

A transition pair (A,v) 1s an element of (NuT) x

(6,1)* where |v| is egual to the number of synthetic
attributes of A. A transition pair, rather than the
sympbol alone, is used in the selection of the next

state of the parse.

The synthetic attributes are considered in transitions
pecause they characterize the structure generated by a

grammar symbol.
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It is sufficient to consider all combinations of
synthetic attributes available in the transition pairs of a
given symbol. However, for each transition possibility, a
distinct successor state exists. The successor states are
syntactically equivalent but they differ semantically due to
the variance in attributes available for use as donors.
Tnis approach could lead to a serious combinatorial
explosion in the number of availability-extended parse
states needed. Fortunately not all possibilities occur in
éeneral, and 1t can be determined by an iterative analysis
just which attribute availabilities can in fact occur during
translation.

In parse states that indicate the recognitioﬁ of an
instance of a production, the availability of donor
attributes can be used to determine available recipient
attributes. Recipient attribute availabilities of completed
items are used to determine legitimate transition pairs for
the left-hand side of the item. The availability
computations are iterative because each time a computation
is complete, new recipient attribute availabilities may be
discovered. Newly discovered availabilities require at
least partial recomputation of the availability-extended
parse graph, since different and new transitions are
possible. The iterations must halt, since for each pass,

recipient attribute availabilities for each completed item
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are monotonically non-decreasing and there exist only a
finite number of possibilities.
For each production and 1its associated attribute

evaluation rules, a Boolean dependency matrix can be formed.

Define MDi to be the dependency matrix for production
i of size |Rec(i)]| X |pbon(i)l. A row in the matrix
represents tne dependence of a recipient attribute

upon its donors. MDi is defined as follows:

/
1 if the m-th recipient attribute has

the n-th donor attribute as a
MDi(m,n) = argument in the associated defining

|
|
|
|
<
l v
| function Fi,m.
i
| & otherwise.
\
The dependency matrix is used in the calculation of specific
attribute availability for a production configuration item.
It represents the dependency graph [Knu68] with ones
representing a directed arc 1in the graph between two
attributes.

Using tne standard concept of ah item of a configuration
set [AU73], with the notation:

[ A HE A Bl e o 5 Bj o Bj+l o o o Bn ]

the notion of item-wise attribute availability can be
developed. In a parse state, two Boolean availability

vectors are associated with each item. The vectors have a
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position for each attribute in either Don(i) or Rec(i) for

the production i on which the item is based.

The Boolean vectors daav (1) (donor attribute
availability vector) and raav(l) (recipient attribute
availability vector) represent for item I the
guaranteed availability of donor attributes and the
potential availability of the recipient attributes,

respectively.

Algorithms are developed in this chapter to calculate the
two vectors at the time of parser generation. ‘Potential
availability ;s only used by an evaluator when it knows
exactly wnich item in the state truly represents the "~ parse
configuration. In the case of completed or recognized
items, the potential 1is guaranteed and is used for
scheduling attribute evaluation.

A different notation for availability is also useful.
In availability-extended items, each availability vector is
partitioned to the grammar symbols. Appearing with a symbol
is a parenthesized Boolean vector; the daav for a symbol’s
attributes precedes its raav and the two are separated by a
vertical stroke. Due to this construction, inherited
attributes are represented before synthetic attributes in
the left-hand side of an item and after synthetic attributes

in the right-hand side. Attributes brought into a
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production by a sympbol are indicated symbolically before
those evaluated at the production. For example, the string:

[ A(L1pl®) ::= B(1l1l|@80) . C(00|0) ]
represents an item whose production is A ::= B C . The
symbol C is predicted and the first two of three inherited
attributes of A and both synthetic attributes of B are
available. This string corresponds to the diagram below in

whicn available donors are marked with an asterisk.

R
A |11|12|13]|81]|
|* 1> 1t |
/ \
/ \
/ \
' / \
/ \
/ \
/ \
1 1T T 1 b 1
B |siis2|l11]12] C Islis2||I1}|
IS o I N [ T

The vector of donor attribute availability for an item
1, daav(I), specifies which attributes in the evaluation
have already been calculated and are ready to pe used to
evaluate new attributes. puring parser generation, the
.daav(I) 1is wused in conjunction with MDi (where 1 is the
number of the production used in I) to predetermine which
recipient attributes can next be evaluated. Equation (1)
describes recipient attribute determination Overscore

denotes Boolean complement.
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raav(I) = MDi X daav(I) (1)

The eguation follows dependency arcs from previously
available attributes to find newly available attributes.
As an example:

Suppose for the item I = [ A ::= B . C ]

1(aA) = {I1,1I2,13}
s(a) = {81}

S(B) = {s1,s2}
I(B) = {I1,12}
s(c) = {s1,s2}
I(C) = {Il}

the associated attribute functions of A ::= B C are:

A. Sl

B.S1 ‘+ C.S1;

B.Il

A.Il;

B.I2 := A.I2 + A.1I3;

C.Il := B.52;

the dependency matrix MDi and graph are:

6 060610180
10000080080
2110000
6 000100
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If it is determined that at this configuration of the parse,
the avalability characterization of the item I is:

[ A(11018) ::= B(ll|@08) . C(00IB) ],

i

then the daav(l) (1101160) . Applying eqguation (1) gives:

| l I l | I
| 1 | | 66 8610180 | | 2 |
| I | | l |
| 8 | | 10 6 00 0 0 | | 9 |
| | = | | X | |
{ 1 ‘ } 911060800 } % 1 }
| 0 | | 96 06 018 0 | | 8 |
| | | | I |
I 8 |
I |
I 1 |
| |
I 1 |
l |
or: raav(I) = (#161). This raav specifies that attribute

I1 of B and attribute I1 of C are available for evaluation
at this point of the parse under the assumption that I

correctly represents the parse configuration.
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To find the daav vector for items requires a more
detailed look into the relationships among items 1in a
particular configuration set and the relationships between
pairs of configuration sets.
when a 1left corner of a production is recognized in a
GLC parse, the synthetic attributes available in the left
corner can be used to determine the availability of
recipient (innerited) attributes that occur in the trailing
part. Some of the trailing part recipient attributes may
have donors in the trailing part attributes as well, but no
item in any GLC state explicitly considers having parsed
peyond the recognition symbol. For this reason additional
states are needed 1in the GLC availability-extended state
set. hThese states each include only a single item (since
the current prédpction is known) and contain the
configuration symbol (.) to the right of the recognition

sympol. The extra states, called ghost states since they

cannot directly be entered during a parse, are of the form:

1 I
| [ A

i
=
=1
<
.
(3

Ghost states exist for every production, A ::= X 1 Y 2 in P,
and for every combination of Y € (N u T)+ and Z € (N u T)*.

Those ghost states with the configuration symbol to the

extreme right are referred to as completed states.
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Three special attribute availability vectors take part

in the LC-availability calculations.
1) The recipient attribute availability vector associated

with a trailing part symbol is a predicted shape for that

sympol.
2) The recipient attribute availability vector of the symbol

on the left-hand side of a production is an entry shape

for the symbol.

3) A propagated-daav for a symbol is the donor attribute

availability vector associated with that occurrence of

the sympol in any predecessor state.

For the development of the availability algorithms
outlined above, several functions and associated notation °

are necessary.

Let CS(X) g if X = e (the empty string), or

|s(X)| if X € (N u T), or

|S(X1)] + CS(X") if X € (N u T)+

and X = X1 X°, X1 € (N u T).
The function CS returns the number of synthetic

attributes for a string of symbols X.

Similarly, CI(X) returns the number of inherited

attributes for a string X.
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Let raav(I/B,j) and daav(I/B,j) represent the portion of
the raav(Il) and daav(I) respectively that 1is
associated with the j-th occurrence of the symbol B

in tne concatenation of the two sides of the
production of I. Counting of symbols starts at

Zero.

Let [#]n and [lln represent bit vectors of length n

containing all £#°s or all 1's respectively.

Let a dot (.) represent the concatenation. operator for
pit vectors and or represent an inclusive "or"
operation.

For example: [8]3.[1]2 or (16688) = (10011)

The Prediction Step

This first step initializes the predictive states with
predicted donor attribute availability vectors. The
predictive states are a logical starting point, since they
have no entry arcs. For a state OQ(A&), syntactically
identical configuration sets are formed, one for each
possible predicted shape found for A. If an item in one of
these states has A as its ieft—hand side symbol, then that A
is recognized as referring to the same instance of the

predicted trailing part symbol A unless the grammar is left
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When the left-hand side A of an item 1is
predicted symbol, its donor availability is
predicted shape of A. Thus, if I 1s one
is the predicted shape of A, then

av(I) = v .[0]1CS(X)

where the production for I is A ::= X, X € (N u T)*.

An example of the prediction step follows:

Let Q(<stmt>) =

T

I
I
I
I
I
|
I
I
I
|
I
I

[ s:=
[<stmt>:
[<stmt>:

[<stmt>:

[<label>:

<stmt>]
:=.<label>I:<stmt>]
:=.2 begin<block>end]
:=;<var>§ 1= <exXxpr>]
:= . identifier 3]

= . identifier 5]

Let I(<stmt>) = {envir,block#,forw_refs}

and S(<stmt>) = {lab_defs,code,code_len,int_envir}

Let the predicted shapes of <stmt> be:

The

{(112),(111)}

prediction step creates the two following

availability-extended GLC(@) states:
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[::= . <stmt>(00BG|110)]
[<stmt>(110|0600)::=.<label>(0]0)1:<stmt>(0000]000)]
[<stmt>(110|06600)::=.2 begin<block>(0000|000)end]
[<stmt>(110|06600) ::=.<var>(08])3 := <expr>(00|00)]
[<label>(010)::= . identifier (00]) 1]

T
|
|
l
|
l
I
l
l
:
| [<var>(10¥)::= . identifier(801]) 5]
I

and

[::= . <stmt>(0000]111)]
[<stmt>(111]0000)::=.<label>(0]08)1:<stmt>(0000|000)]
[<stmt>(llll@@®ﬂ)::=;2 begin<block> (00800|000)end]
[<stmt>(111|08600) ::=.<var>(00|)3 := <expr>(00/00)]
[<lapel>(0|0)::= . identifier (8081) 1)

[<var>(|0@)::= . identifier (001) 5]

As <stmt> is moved from the right-hand side to

the

left-hand side, its raav is used as a daav. Attributes

shown to be evaluable are assumed to be evaluated

immediately and are available for use as donors.

Tne Propagate Step

The successor states to the predictive states and their

successors in turn are affected by the daav’s of their

predecessors. If an attribute is available in a
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configuration item of one state Q, it is still available in
the next state entered by the parse, an availability-
extended version of the state Goto(Q,A). Each item in the
pasis of a successor state exists because it is a result of
tne scan function applied to an item in its predecessor.
Thus availabliliy in the predecessor states propagate to all
successors. Each state represents the recognition of one
more symbol in the derivation tree (the entry symbol of the
state). The availability of the attributes of this entry
sympol is significant for each item in the basis. The
propagate step 1s applied recursively to the states
reachable from each prediction state. Whenever more than
one entry shape is possible, a syntactically similar state

is formed for each distinct transition pair.

Successor Item daav

Both the propagated-daav and the entry shape are used to
determine successor item donor attribute availability
vectors. Consider a state Q°, the successor to Q over
sympol B € (Nu T), i.e., Goto(Q,B) = Q°. 1If B has an entry
shape v, and the item 1° € basis(Q’) is scan(I) for some

I €Q, and I° = [A ::= X B . Z] then the daav for I is

found as specified in the propagate egquation (2).

daav(I’) = ([8](CI(R)+CS(X)) . v . [B]CS(Z)) or daav(I) (2)
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To continue the previous example:
The successor to Q(<stmt>) over transition <label> 1is:

<label>

|
| ! l
| [<stmt>::=<label>.I:<stmt>] |
| l

performing the propagate step from the first
availability-extended Q(<stmt>) to the availablity-
extended state Goto(Q(<stmt>),<label>) with entry shape
vector = (1) for <label> gives:

(<label>,1)

l

v
T l
I [<stmt>(11ml@@@m)::=<1abe1>(1l@).I:<stmt>(@@@@|ﬂaﬂ)] |
| tT |

All attributes that were available in the predecessor and

those that caused the transition are included in the

resulting item.

Entry Symbol Attribute Availability

If the entry symbol to the state is a terminal, then all
attributes are synthetic and calculéble from the instance of
the terminal. Thus the availability vector for a terminal
entry symbol x is trivally [1]CS(x). I1f the entry symbol of
a state is a non-terminal A, its entry shapes are found from

its occurrences as a left-hand side in completed states.
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For the completed item I in each such state, the entry

shape: raav(I/A,0) is used.

In the continuing example:

Since identifier is a terminal, all its attributes are
synthetic. Let S(identifier) = {name,hash}. The entry
shape of identifier is always (11), thus any transition
pair with identifier is (identifier,11).

Assume that

I(<Kvar>) =0

S(<var>) = {sym_tab,type}
I(<label>) = {address}
S(<label>) = {sym~tab}

and the following completed state exists:

[<var>(|11l) ::= identifier (11]).3]
(identifier,11)
[<label>(@|1l) ::= identifier (11]).5]

An entry shape for <var> is raav(ll/<var>,9) = (11) and

for <label> is raav(12/<label>,8) = (1).

Gnost State Items

The algorithm to compute daav’s for ghost state items is
the same as that for successor states. The Goto function of

tne GLC machine must be extended to map transitions
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correctly in ghost states as if the recognition symbols did

not exist.

Recipient Attribute Availability Vectors

As previously stated, the raav(I) represents only
potential availability for recipient attributes, unless the
item I is known to accurately reflect the parse. An item is

known to be applicable and termed a recognized item 1if the

configuration marker (.) 1is either to the right of the

recognition symbol (1) in the item or to the immediate left
of the that symbol. The evaluation equation (1) is usefully

applied to recognized items.
raav(I) = MDi X daav(I) (1)

Each time the evaluation eguation is applied to a recognized
item, a fresh prediction shape is obtained. If
I=1(A::=X1Y.BZ, BEN, then raav(I/B,j) is a
predicted shape for the j-th occurrence of B in production
i,

Assume, for example, that the first two inherited
attributes of <stmt> are passed identically to its

descendent <stmt> in production 1l. Then a predicted shape

for <stmt> is (110).
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(<label>,1)

l

v
hl l
| [<stmt>(11D|0060)::=<lapel>(1|0).Il:<stmt>(006001110)] |
| I

Chirica and Martin’s restrictions to attributed grammars
are used only to simplify equation (1) and several
definitions and theorems to be developed. In order to
modify equation (1) for fully general attributed grammars,
the set Don{(i) must be expanded to include every attribute
occurrence in the production. The dependency matrix MDi is
likewise enlarged by the size increase in Don(i). An raav
is calculated by taking the transitive closure of the
enlarged MDi and using an equation similar to (1). Because
of the.extra complexity of this more general method, Chirica

and Martin’s simple restrictions are retained.

Graph Construction

One propolem in dealing with graph structures has been
ignored in the availability-extended item set algorithms
developed so far. As a part of a state graph, each
configuration set may have several predecessors, though
always over transitions with the same label. The algorithms
described work well on the basis of a single predecessor,
(treating the graph erroneously as a tree) but fail in the
more general case. It may be that one state will be valid

as a successor of several states; otherwise new states must
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pe created as valid successors. In the parse graph

situation sketched below

it might be the case that the propagate step and application
of equation (2) do not yield an identical successor Q for
each of Q" and Q". To determiné when multiple semantic
cop;es of a syntactic state are necessary (different
attribute availability vectors will apply in each case) the’
following information is needed: which predecessor to use
in the calculations and whether a given state is a valid
successor of both of two distinct states. Another method of
solution, creating unigue successors as soon as possible in
tne iterations, may never halt. This method is unable to
recognize the fact that each of the successors created (from
the same base state) may eventually be updated to become
equivalent states when the solution converges.

There is a simple way to choose unique predecessors for
grapn construction. As the GLC(K) machine is created from
state zero, it 1is has a tree structure until a successor

state is found to be a duplicate of one already created. A
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pack-loop is a transition to an previously created state.
"Back-looping" occurs only in the case of recursion in the
grammar (other than left recursion) and from newly created
states. Deleting the back-loops leaves a tree (and unique
predecessors) . Each iteration in the solution then ignores
the pack-loops allowing the recursive application of the
propagate step to eventually halt. When a series of
iterations halts because no new shapes can be found, a
separate check-up pass corrects any inconsistencies due to
ignored back-loops, perhaps creating new states. This
process 1s repeated until the check-up éass determines that
no inconsistencies exist. The full process must halt
‘pecause there are only a finite number of possible
availability-extensions for each base syntactic state.

Algorithm 2A details the steps required in extending the
GLC configuration sets with availability vectors that were
previously outlined. The algorithm consists of a main
procedure, Build LC-Availability Graph, and several

auxillary procedures to extend a GLC(k) parse state graph.
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Algorithm 2A: Total graph construction
Input: recognition rule grammar G=(N u N,T,P,S) and
the Goto function associated with the GLC(k)
recognizer.
Ooutput: LC-availability graph in form of availability
extended GLC(k) states.
Initialization:
let TP = { X € N | X occurs in a trailing part of some
production}.

Let PS(X), the predicted shapes for X, be initialized by

]

PS5 (S) {[1]1CI(8)}

PS(A)

{} for other A € N.
Let ES(X), the entry shapes for X, be initialized by

ES(a)

{[1]CS(a)} for a € T

ES(A) {} for A € N.
Build_LC—AvailaDility_Graph:
repeat
repeat
Prediction_Step;
Recognition_Step
until (no new members are added to any ES(X) or PS (X))
Check_Back_Loop

until (no new states are created in Check_Back_Loop);

end
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Prediction_Step:
for each X € TP do
for each v € P§(X) do

create state Q(X,v);

if X is not left recursive

then for each item in Q(X,V)
if LHS of item = X
then daav(item) := v.[B]CS(RHS of item)
else daav(item) := [@](CI(X)+CS(RHS of item));

for each exit symbol A from Q(X,v) do
Propagate (Q(X,v) ,A);

end

Propagate (Q,A) :
if Goto(Q,A) is not a back-loop
then for each v € ES(A)
create new state for Goto(Q,A) call it Q°
for each basis item I° in Q" of form: [L::=X A.Y]
find I € Q such that scan(I) = I7;
daav(I”’):=([0) (CI(L)+CS(X)) .v. [B]CS(Y)) or daav(I);
for each exit B from Q° do

Propagate(Q”,B);

end
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Recognition_Step:
for each state Q
for each recognized item I in Q

compute raav(Il):

it A € TP follows . in I

then PS(A) := PS(A) union raav of predicted A
else if I is completed with left-hand side B

then ES(B) := ES(B) union raav of left-hand side B

end

Check_Back_Loop:
for each DackLloop in the current graph
from Q over transition pair (A,v)

create new state Goto(Q,A) call it Q°

LY}

for each basis item I~ in Q° of form: [L::=X A.Y]
find I € Q such that scan(I) = I ;
daav(I”):=([0] (CI(L)+CS(X)) .v. [BICS(Y)) or daav(I);

if Q" (equivalent to Q7) exists

then Goto(Q,(A,v)) := Q";

eliminate Q7;

end

The algorithm presented 1is used to construct for any
recognition rule grammar an availability-extended GLC

configuration set Known as an LC-availability graph (LCAG).
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The attribute availability vectors within extended states
can be used to locate attributes that have been evaluated
and those that are ready to be evaluated in nodes recognized

during a GLC parse.

Theorem 2.1
1) Extended versions of all GLC states are created in
algorithm 2A.
2) All possible extensions fo GLC states are created
by algorithm 2A.

Theorem 2.1 and the correctness of the algorithm for
construction of the LC-availability graph can be
demonstrated by outlining a proof with the following
opservations. The underlying GLC parser correctness is
shown by Demers [Dem77]. The important ogservation is that
states are created by the prediction and propagate steps in
tne same order they would occur in any particular parse. In
2A, however, they are all generated in parallel. An
induction argument on the number of transitions taken in a
GLC parse can be used to show that the states entered by the
parse of a given string are availability-extended in at most
the same number of iterations of Build_ LC-avail-
apility_Graph. The same argument can be used to determine
tnat the predicted shapes and expected shapes sets include
the attripbute availabilities that occur in any particular

parse.
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Tne availability graphs alone do not detail how a parse

is to procede, how items are to be chosen, nor how and when
attributes are to be evaluated. A stack machine is
necessary to perform these tasks based on instructions

generated from the information content of the graph.
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Chapter 3

The Attributed Pushdown Processor

A processor is needed to provide a left-corner parse of
an input string and carry out the attribute evaluations
shown possible in the LC-availability graph. The pushdown
processor (PP) described by Aho and Ullman [AU7la] generates
syntax trees from strings and is guided by an LR parse. The
pushdown processor contains a semantic stack with pointers
to previously constructed subtrees, so the "semantic forest
stack model" of chapter 1 "can naturally be implemented
through a modification of this processor.

A modified processor presented in this chapter," the

attributed pushdown processor (APP), is designed to maintain

the semantic forest stack and evaluate attributes as it
performs a GLC parse. The look-ahead symbols and the top
stack node trigger a sequence of actions that manipulate the
forest. Recognized items in certain stack states may signal
further actions that evaluate and transfer attributes and
consider the disposition of subtrees in the forest. The
action sequence plans are determined from the left-corner

availapility graph (LCAG) for the grammar. The GLC(k)
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parser underlying the LCAG actually guides the movement
through the graph.

As an attributed derivation tree is being constructed,
the paths of information flow in the tree are connected. 1In
a one-pass translator, this flow directly follows the
construction so that it is not indefinitely blocked by

incomplete structure. Information flow in an attributed

derivation tree occurs between two nodes if an attribute of
one node has a donor in the other node. Due to the
definition of attributed grammars, information flow is local
to nodes tnat occur as the result of a single production
instance in a derivation tree. The concept of information
flow can be extended naturally to include the transitive
closure of the above defintion, and information flow graphs

(attribute dependency graphs) can be constructed in

derivation trees [Knu68].

Because the retention of subtrees in the semantic forest
and their supsequent evaluation introduces another level of
complexity to parse-time evaluators, it is important to
distinguish the <class of attributed grammars in which
subtrees are never required to be saved. After this class
is identified in the next section of this chapter, the
mechanisms that allow more general grammars to be evaluated

will be elaborated.
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LC-attributed Grammars

The S-attributed and L-attributed evaluators are capable
of evaluating exactly those grammars in which dependency
graph arcs closely follow the movement of the associated
parser. These methods rely on (1) knowing the exact parse
configuration, and (2) having the ability to evaluate all
attributes whenever a reduction is recognized. The price
that traditionally has been paid for these abilities has
been either severe limitations on the allowable underlying
cfg’s or sharp restrictions on acceptable attributed
grammars. The APP represents a compromise made to gain
power, and thus semantic expressibity, in exchange for
delays in attribute evaluations due to the uncertainty of
~the configuration of some states of the parse. It
encompasses the particular combinations of attributed
context-free grammars mentioned above. This gain 1in power
is made through the wuse of the configuration sets of the
GLC(K) parse machine.

The GLC parser of the APP recognizes syntax tree nodes
in two fashions. While a parse employs bottom-up
recognition, all synthetic attributes can be evaluated in
the natural way. After a production is announced, both
inherited and synthetic attributes can be wused in the

trailing part of the production. An LC-attributed grammar
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can pe defined in a manner analogous to that of L-attributed

and S-attributed grammars.

An attributed recognition rule grammar G=(N u R,T,P,S)

is LC-attributed iff for each production of the form:

L ::= XAY12ZBW

where X,Y,%2,W € (N u T)*, L € N, and A,B € (Nu T u e)

1) A has no inherited attributes.

2) The donors of an inherited attribute of B are
inherited attributes of L (if L 1is not left
recursive) or arbitrary attributes of the symbols
in X, A, ¥, and Z.

3) Donors of synthetic attributes of L are inherited
attriputes of L and arpbitrary attributes of X, A,

YI ZI B, Or Wo

If a language G is known to be GLC(kK), then the
restriction involving left recursion 1in L is unnecessary
since the recognition symbol will never occur to the extreme
left in a left recursive production. 1In this case, a left
recursive symbol must exist in a left corner and cannot have
inherited attributes.

In the discussion of classes of attribﬁted grammars, a
distinction is made between the types of context-free
grammars and the restrictions on attribute evaluation rules.

A classification involving both is termed an attributed
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grammar, context-free grammar pair. Several properties of
LC-attributed grammérs are contained in theorem 3.1 and its

corollary.

Theorem 3.1
a) Every LC-attributed grammar is L-attributed and
b) every S-attributed grammar 1is LC-attributed.
Proof:
Both containment claims are straightforward. For (a)
none of the restrictions 1, 2 or 3 violate the
restrictions in the definition of L-attributed in
chapter 1. For (b) LC-attributed requires no
restrictions on the use of synthetic attributes. ]
Corollary 3.2
No LC-attributed grammar is circular.
Proof:
All LC-attributed grammars are L-attributed and

L-attributed grammars are non-circular [LRS74]. 1

Translation Stack Nodes

The purpose of the attributed pushdown processor is to
perform syntactic analysis and semantic anaysis at the same
time. It does so by Kkeeping a single compile-time stack
that is a combined syntax and semantic stack. To avoid
confusion and emphasize both functions, the stack is refered

to as the translation stack. Nodes on the translation stack
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contain LCAG states and represent both the "state of the
parse" and a grammar symbol in a sentential form or an
entire production. The state of the parse is represented by
tne underlying configuration set, and the grammar symbol 1is
the entry sympol or predicted symbol of that set.
Translation stack nodes have attribute value vectors
associated with them of length equal to the number of
attributes of the grammar symbol or production they
represent. As will be described later in this chapter, each
node may also point to its subtrees (see figure 3.1).

AVAVAVAVAVAVAVS
-

sub- .| translation
trees .| state

e
°

|

| attribute
| value

| vector
I

|

I

l
I
|
l
|
l
<=-] |
I
I
l
|
I
I

VAVAVAVAVAVAVAN

Figure 3.1 Translation Stack Node

The APP is only restricted in that it uses some type of
GLC{(k) parse. Both the length of look-ahead used and the
means of choosing the look-ahead functions are independent
of the semantic aspects of the processor. The parser must

only be able to choose which completed item in a
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configuration set correctly represents the right-hand side

that is being formed when it signals production recognition.

manipulation of the Translation Stack

The item sets of the GLC(K) machine either refer to a
scan just completed or a prediction just made. The states
can be used, in a natural way, as translation stack nodes
that encompass both syntax and attributed semantics. A scan

item set is a state entered as a result of bottom-up

recognition. A node on the translation stack marked with
such a state contains a buffer for the synthetic attributes

of the left-corner symbol recognized. A predictive 1item

set, denoted Q(A) for a prediction of A, is a sbate stacked
during a top-down prediction. The corresponding predicted
node bpuffers the inherited attributes of symbol A. When a
GLC (k) parser determines that predictive and scan item sets
refer to the same instance of a given symbol, the inherited
and synthetic attributes can finally be merged together.
Tnis decision is made in a GLC parse when a pop action is
indicated.

Predictive item sets are stacked as a result of an
announce action. A prediction occurs for each symbol in the
trailing part of the production. In a translation, one
otner node will be stacked prior to the predictive nodes.
The extra node represents, in effect, the left-hand side of

the recognized production. Since the entire production is
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known, this node may be wused to hold all attribute
information known for that instance of the production in the

derivation tree; it can be termed the production node.

Before pushing the production node, a GLC parser pops the
nodes that represent the left corner of the production.
Like the typical bottom-up semantic stack manipulator, the
synthetic attripbutes of those popped nodes are transferred
to the production node that replaces them. When the left-
nand side of the production refers to the same symbol
instance as the most recent predicted symbol, inherited
attributes can be copied directly from the predicted node to
tne left-hand side portion of the production node.

For example, with the production A ::= U W i X Y, the
following sequence illustrates the announce action. A

predicted node is denoted by .X and a scanned node by X. .




66

Tattr]
I | attribute I I
| We | transfers | .Y |
| | T
jattr | Tattr]

! n l
| U, | |1
| | | |
[attr | lattrl
| | l |
| .A | | .A |
I I |
[attr | lattr |
l. Il

l
I e
| . | Announce 1
The node marked with i represents the production node for i.

witn availability-extended GLC(K) item set states in APP
translation stack nodes, the standard algorithm of Demers
|Dem77) is modified. A state with a recognized item marks
the top stack node at the time an announce action occurs.
When a predictive node is popped, a transition in the LCAG
occurs over the popped sympbol and its raav from the
production state into a ghost state. The ghost state
updates the production translation stack node. At the time
a production translation stack node reaches the top of the
stack, it is popped and a transition is taken from the state
of the node now on top of the stack over the left-hand side
of the production (considering its available attributes).

This treatment of the left-hand side of productions differs
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from Demers  algorithm since, in parsing, the announce
action immediately pushes the state that results from having
seen the predicted sympol. The push is delayed here because
at this early point, the recipient attributes available in
the root cannot in general be known to characterize the new
state. The replacement of the availability-extended state
representing the production is required in order to keep
track of the intermediate changes in the availabilities of
the attributes of the trailing part and the root.

Both predictive and production nodes contain inherited
attribute information associated with the predicted symbols.
The predictive nodes need inherited information in order toO
pass it on to descendants. A production node requires a
collection of all attributes since the predictive nodes will
be popped when recognized.

Two problems are associlated with the GLC translator
model outlined above. It performs well when the underlying
attributed grammar is LC-attributed, because all recipient
attributes are available in symbols occurring to the left of
tne configuration symbol in recognized items. This
availablity allows the direct and immediate computation of
each attribute’s value as a symbol is recognized in the
parse. 1t is desirable (and possible) though to allow more
general attributed grammars.

One problem exists at the discovery of a new production

instance in a derivation tree; it is not- necessarily known
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now this production instance attaches to the last predicted

non-terminal, although it must be an offspring (see below) .

A last prediction

/I\ discovered
/ | \  production i

It is the unknown structure between B, the left-hand side of
production i, and its ancestor A that inhibits the transfer
of inherited information available in A to B and B’s
offspring in grammars that are not LC-attributed.

The second problem is associated with the handling of
forward referenceé. Since the parse procedes from left to
right, some retention of subtrees will be necessary to
satisty attributes that are not evaluable when their nodes
would normally be popped. Maintaining attribute
availablility vectors within the states of the evaluator and
using the semantic forest structure enable the attributed

pusndown processor to overcome these difficulties.

Scheduling Attribute Function Application

A GLC parse has an action function that maps states and
input symbols into actions to be taken on the stack. The

actions include shift, announce i and pop. The APP driven

py the GLC parse extends the action function to include
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steps necessary for attribute evaluation. The announce
action, as pointed out previously, can evaluate attributes
marked as available in the recognized item of the LCAG
state. The action consolidates synthetic attribute
information from the left-corner sympols about to be popped
into the production translation stack node. Inherited
information available in the first predicted node is
evaluated as that node is put on the stack.

For example, the raav(I) for a recognized item
I = [L(110106)::= P(11]1111) .I R(@|01) T(02010)]
that characterizes a production node, shows that the second
(but not the first) inherited attribute of R is ready to be
evaluated at this point. With the pop action both inherited
and synthetic attributes of the predicted and production
stack nodes are merged and then transferred to the

production node that placed the predicted node on the stack.

For example, assume B and C are the trailing part
sympols of production i, and A 1is the left hand
side. Q3 1is the state that causes i to Dbe

announced; the signifigant portion of the graph is:




/T \ (B,bv) /T \ (C,ev) /T N\
L .ghost states..

The seguence of changes occurring in
translation stack is pictured below.

production node is marked with *.)

T T
I l | B |
[ Q3 |* | |
| | | | l l
| l | .C | | .C |
|left] | | | |
lcor-| [ I I l
il i Bal
T T T 1 T T
| Q1 | | 01 | | Q1 |
I | Announce i | | «..pop B | |
| I | | | i

£y o
scan

| 01 | production | Q1 |
...pop C | | root | I
T T

the

(The

70



71

Scheduling Suptree Elimination or Retention

The APP machine must make the choice at each reduction
to act either as an Aho and Ullman pushdown processor and
construct the syntax tree or as a simple stack machine and
pop tne left corner nodes. 1In general a combination could
occur. It is simpler to consider a machine that builds the
syntax tree and then prunes those branches no longer needed.
The decision regarding which branches are to be removed is
made at machine generation time independent of any
particular parse. A popped translation stack node 1is
eliminated if all its attributes are evaluated. For
example, from the raav(I) for the item

I = [L(119]90)::= A(11]1111) B(100|01) .1 Cc(eoll)],
it can be determined that the subtree of A is fully
evaluated and no longer needed, but there are two synthetic'
attripbutes of B not yet evaluated. While A <can be
discarded, B's subtree must be saved. The attributes of a
subtree will always have been evaluated by the processor if

the LC-availability graph shows them to be available.

APP EValuation

The machine for semantic attribute evaluation thus far
described omits one phase of attribute evaluation. Those
suptrees that were retained during a reduction require

further evaluation to obtain all necessary synthetic
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attriputes. It is difficult to fit this phase of attribute
evaluation into typical parse-time evaluators. To avoid the
problem an attempt can be made to find attribute grammar,
context-free grammar pairs that never require subtrees to be
retained. One such pair is (LC-attributed,GLC(k)), as will
pe shown. A more general solution utilizing retention will

pe developed in chapter 5.
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Chapter 4

A Formal Model of the APP

Thnis chapter details the specific inter-relationships
petween the LC-availability graph and the attributed
pusndown processor. The APP is formalized as a machine, and
it is shown how the machine is constructed from a GLC(Kk)
state graph and the LC-availability graph that extends it.
Properties of tne APP will be established through theorems
pased on availability notions and GLC parsing. The formal
evaluation model developed in this chap£er does not include
the retention of subtrees and their eventual evaluation.

Tnis version, the simplified APP, is capable of producing

translations of all LC-attributed GLC(k) grammars (which
includes all S-attributed LR(k) and L-attributed LL (k)
grammars) .

Tne attributed pushdown processor is a machine that acts
in a manner very similar to a generalized left-corner parser
put operates with a stack of translation nodes as described
in chapter 3. One major difference is that the Goto (or
next state) function operates on transition pairs and thus
considers the state of the evaluation of attributes. A

second important distinction in the operation of the APP is
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tnat it occasionally reaches below the top stack node to
update the state of a previously stacked node. The depth of
updating is bounded by the length of the longest trailing
part 1in tne set of productions. The stack qualities of the
APP are not really violated since the machine can provide
temporary storage for the nodes above the one being updated,

and replace them after the update.

Translation and Notation

Formally, each node on the translation stack is a
4-tuple. The four components of a translation stack node
(abpreviated TSN) for an attributed recognition rule grammar
G= (NuR,T,pP,S) are:

(state) an availability-extended state of the LCAG(G),

(symp) a sympbol from N u R u T,

(attr) a vector of attribute values from the union of

all attribute domains,

(1ink) an integer denoting the distance down the

stack from a node to its parent production
node.

A configuration of an APP is a pair (Tstack,Input) where

Tstack is a stack of translation stack nodes and Input is an
attributed string from T*. Tstack represents the combined
syntactic and semantic translation stack, and Input holds

tne unscanned portion of the sentence to be translated. For
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the APP algoritnms, the following notation and functions are

useful.

let

let

let

let

let
let
let

let

let

POP (Node) = Node, and assume it has the side
effect of removing Node from the translation
stack. POP is only applied to the top of the
stack.

PUSH(Node) have the side effect of placing
Node on top of the translation stack.

k:x = the first k sympols in x € T* 1if X
contains at least k symbols, otherwise X.
TSN[{n] represent the n-th node from the bottom
of the translation stack, starting at zero.
TSN{n] .<f> represent the <f>-field of‘ESN[n].
V1&V2 be the concatenated value vector result-
ing from V1 and V2.

@ denote an undefined attribute value.

[#ln represent n occurrences of @.

vVl merge V2 be the component-wise merging of
value vectors V1 and V2. Both V1 and V2 must
be the same length. If two components have
identical values (or are both undefined), the
merged result is that value (or undefined) .
1f exactly one component 1is undefined, the
result is the defined component. Otherwise,

an error results.
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let Q(A,v) = the availability-extended version of
predicted state Q(A) with predicted shape v.

let PREaav(I) = raav(I/B,3) where the Jj-th
occurrence of B in I directly follows the
configuration sympol or the configuration,
recognition sympol pair. It is not defined if
I is completed.

let LHSaav(I) = raav(I/L,8) where L is the left-
nand side of the production of I.

let Goto(Q,(s,V)) be the availability-extended
next state function for the LCAG. The
argument 0 is a state and (s,v) 1is a
transition pair.

let C(X) = CI(X) + CS(X), the total number .of
attributes in string X.

let SI be the initial value vector of the

inherited attributes of the goal symbol S.

Tne APP translator starts in a configuration (Z,w) where
w is the sentence to be translated and
Z2 = (Q7,0,[8)C(8),B) (Q(S),S,SI&[@]CS(S),1).
In the two nodes of Z (top appearing to the right) Q" is the
initial state of the GLC(k) machine which automatically
announces the augmented production zero: <sentence>::=0 S.
Thus its sympol field is 0 and it has an empty value vector.

The sympol field in R identifies this node as a production
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node. A production node assumes the special role of
maintaining attribute value vectors for the entire
production similar in manner to 1its counterpart in Lewis,
Rosenkrantz, and Stern’s L-attributed evaluator [LRS74]. As
an automatic result of the action "announce 0," the
predicted state, Q(S) = closure({[::= . S]}), is entered.
Its corresponding translation stack node contains the state
Q(s), tne sympol S, an attribute value vector SI&[@]CS(S)
and a link of 1 referencing the production node just below
it.

The processor then procedes to change configurations
according to algorithm 4A below until an error is
encountered or the terminal configurétion (z " ,e) is reached.
%° will contain only the bottom node of 2z with an attribute
value vector relecting the completely parsed goal symbol.
Due to the basic similarity of the APP with a GLC parser,

the following algorithm is a generalization of algorithm 3.4

of Demers [Dem77].

Algorithm 4A: APP Translation
1) Let the initial configuration be (Z,w) as defined
above.
2) (repeat this step until it halts indicating error
or the terminal configuration (27 ,e) is entered).
Let (TSN[®]...TSN[m],x) be the current configura-

tion and u = k:X.
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Perform whichever of the following steps applies to
the configuration.
a) Action(TSN[m].state,u) = shift. Perform the
extended shift step, algorithm 4B.
p) Action(TSN[m].state,u) = announce 1. Perform
the extended announce i step, algorithm 4C.
c) Action(TSN[m].state,u) = pop. Perform the
extended pop step, algorithm 4D.

d) Action(TSN[m].state,u) = error. Halt.

The extended pop, shift, and announce i steps are explained
in detail after an “overview of the actions they perform.
Each time part of the step relies on a function based on the
LCAG(G), the computation of that function is explained.

Tne Action function of algorithm 4A is that of the
left-corner parser for G: the triple (States,Action,Goto).
Thus the driver of the APP is the underlying GLC parser, and
attripute transmission is accomplished during APP actions.

Synthetic attribute evaluation takes place in two
instances. when a snift consumes a token, its attributes
are accessed in lexical analysis and incorporated into the
translation stack. when a production node reaches the top
of the translation stack and is to be popped, all synthetic

attributes of the root are evaluated.
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Inherited attribute evaluation occurs when a predicted
non-terminal reaches the top of the translation stack. A
function EvalInh is applied to it to compute inherited
information from its root and left context.

Attribute wvalues vector are transferred to the
production node in several cases. Synthetic information
from the left corner is inserted when an announce action
occurs. Because a pop signals subtree recognition,
synthetic and inherited information of a predicted symbol is
entered into the vector of its production node as it 1is
popped. when a production node 1is placed upon the node that
predicted its left-hand side, a function GetlInh retrieves
its inherited attributes.

An example LC-attributed graﬁmar is presented in figure
4.1, and its LCAG appears in figure 4.2. 1Illustrations will
depict the translation of a sentence of the language as each

action is detailed.
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EG = (N,T,P,R)

N = {A,B} T = {x,y,z}
S(A) = S(B) = {typ,val}
S(x) = s(y) = s(z) = {val}

I(B)

{op}

P includes:

A 1= XY

B.typ

B.val

b.typ

1Bz
:= x.val + y.val;
:= B.val + y.val + z.val;

B.typ:

2 z B

:= x.val * y.val;

:= B.val + z.val;

:= B.typ;
Y
:= if B.op > @ then x.val + y.val

else x.val - y.val;

:= (sign(B.op) * x.val) / z.val;

:= 2

Figure 4.1 LC-attributed Grammar : EG
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QL | ::=.A(001) | ot | =.a |
| A(1D0)::=.x(0)y(0)1 B(0BI0)2(0) | | ———mm |
| A(160)::=2x(8)y(0)2 z(@)B(00]0) | |
I_T-_——I———7-—_7—___—--—_-———_T—--I | (a,[1]Cs(a))
(A,11) | |=====m—=—m—m—-
(x,1) 1 9770 ::=A(111). | | —mm e |
l | smmm I op | ::=a. |
| -Ymmmm—mmmmm e m e | | -———== |
03 | A(lww)::=x(1).y(8)1 B(0DIOB)Z(0) | (where "a" is
| A(lYB)::=x(1).y(0)2 z(0)B(0D|8) | any terminal)
| mm e | I
e I l¢ I (y.1)
04 | A(lve)::=x(1)y(1).1 B(0OI1)2(0) |
| A(180)::=x(1)y(1).2 z(0)B(00O]|1) | | (B,11)
i ————————————————————————————————— | I (z,1) :
————————————————————————————————— ¢ |
05 | A(I0G)::=x(1)y(1)2 2z(1).B(B6I1) | |
: ————————————————————————————————— : :(B,ll) ;
06 | A(I11)::=x(1)y(1)2 2(1)B(11i1). < | '
_________________________________ |
07 | A(l110)::=x(1)y(1)I B(11l1).2(0) |
: ————————————————————————————————— | (z,1)
————————————————————————————————— le |
Q8 ‘ A(]11)s:=x(L)y(1)I B(1111)2(1). }
| =——=mmmmmmm s I
Q9 | ::=.B(1100) | (B,11) _|-—==——=====——= I
| B(1Tow)::=.x(8)3 y(0) | 0187} ::=B(111L1). |
| B(llow)::=.x(0)3 z(0) | | =mmmm I
: ——————————————————————————— : }(x,l)
011 | B(ll1®)::=x(1).3 y(0) 1<
| B(1110)::=x(1).2 z(0) l | (z,1)
[ === e e : I (v.1) ||
I ___________________________
Q12 = B(1l111)::=x(1)3 y(1). %é {
| ==—=——mm e m e | |
Q13 = B(1l111)::=x(1)% z(1). i\
Figure 4.2 LCAG(EG)
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The Extended Snhift Action

The shnift action is used to remove a terminal from the
input string and then enter a new state. This action alone
atfects the Input section of configurations of a

translation.

Algorithm 48: Extended Shift
Assume (TSN[@]...TSN[m],a Input’) is the current con-
figuration and Vt 1is the synthetic attribute vector
determined for "a" in lexical analysis
1) Input := Input’
2) Next := Goto (TSN[m] .state, (a,[1]C5(a)))

PUSH( (Next,a,Vt,0)) 1

The following sentence will bDbe translated using the

attriputed grammar EG in the ensuing examples:
x(3)y(2)x(4)y(2)z(5)

The parenthesized number following each terminal represents
its attribute value. The translation stack 1is illustrated
with its bottom to the left. Attribute values (within
prackets) are partitioned into symbol portions by ":" and
within sympbols by "."; a hypnen "." jdentifies missing
values. Wwitnin symbols, innerited attribute values procede

synthetic attribute values.
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Tne initial shifts of the translation are presented

pelow in sequences of configurations.

Tstack Input
(Ql,Al-.~]1,1) x(3)y(2)x(4)y(2)2z(5)

* shitt x(3) *
(Q1,A[-.-1,1)(Q3,x[3],0) y(2)x(4)y(2)z(5)
* gnift y(2) *

(Ql,A[-.-],1)(Q3,x[3],0) (Q4,y[2],D) x(4)y(2)z(5)

The Extended Announce Action

when Action(TSN[m].state,k:x) = announce 1, enough
iéformation exists in the parse configuration to signal the
recognition of a production instance. At this point, the
parsing stategy turns from bottom-up toO top-down. A
production node is created to represent the recognized item
and serve as a repository for its evaluated attributes. The
effect of announce i is to remove the left corner of
production i from the stack, absorb its attributes, and
predict the production’s trailing part. Because the
predicted shape of trailing part symbols is not known until
they reach the top of the stack, the state field is not set
until tnat time. The production node state will not reflect
the recognition of the left-hand side until it reaches the

top of the stack as a result of a pop step. It is necessary
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to Kkeep ghost state information at the production node, soO
that available attribute information correctly reflects the

parsed offspring.

Algoritnm 4C: Extended Announce i
for production i = L ::= Rl ... Rj I Rj+1 ... Rn
Assume current configuration is (TSN[@]...TSN[m],X).
"Top" is always the 1index of the top node on the
translation stack.
let I be the item from TSN[m].state that caused 1 to
pe announced.
1) Buffer := e (the empty vector)
create node TEMP := (TSN[m].state,l,Buffer,f)
2) (remove left corner, gather attributes)
for k from 1 to j do -
pegin LCS := POP(TSN|[Topl)
TEMP.attr := LCS.attr & TEMP.attr.
end
3) (stack the production node,
copy inherited information)
PUSH (TEMP)
GetInh(TSN[Top])
4) (push all but first node of trailing part)
for k from n down to (j+2) do
PUSH( (Nil ,Rk, [@]C(RK) ,n+1l-k))

(Nil is used to represent an
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undefined state part)
5) If n>j then
(push first predicted node, if one exists)
PUSH((Q(Rj+1,PREaav(I1)), [ﬁ]C(Rj+l) y=3))

EvalInh (TSM[Top])

Tne procedure GetInh copies inherited attributes of the
left-nand side of a production node from the predicted node
that exists below a production node when they are known to
reference the same sympol instance. In terms of attribute
occurrences, GetInh(Node) is the following set:

{ L(¥).a | a is the n-th attribute in I(L),

daav(Item/L,0)(n) = 1, and

L is the left-nand side of Item

which is recognized by Node }
when a true vector element of daav(I/L,0) exists for the
root of a production node, the predictive node and
production node root refer to the same instance of the
sympol. Tnis equivalence is determined 1in the prediction
step of algorithm 2A.

EvalInh evaluates the inherited attributes of a
predicted symool according to the state of the production
node that predicts it. The attribute occurrences selected
for evaluation by EvalInh(Node) are:

{ B(j).a | a is the n-th attribute in I(B),
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raav(Item/B,j) (n) = 1, and
the j-th occurrence of B follows . in
Item which is recognized by Node }
Tne attribute function rules selected by Evallnh are applied
to tne production node value vector, and their results are
merged into the value vector of the predicted node.
The translation example is continued to illustrate the
announce step. Qt is the state used to predict any terminal

and Qp is the state entered upon a shift of any terminal.

(Ql,a[-.-1,1)(Q3,x[3],0)(C4,y[2],0) x(4)y(2)z(5)
* agnnounce 1 *
(0l,A[-v=Jey1) (Q4,1[-e=-:322:5.~0=:~],0) (nil,z[-],1)
(Q9,B[5.-.-],2) X (4)y(2)z(5)
* shift x(4) *
(01,A[-.-1,1)(Q4,1[-.-:3:2:5.-.-:-],0) (nil,z[-],1)
(Q9,5[5.-.-1,2) (Q11,x[4],0) y(2)z(5)
* announce 3 *
(Q1,A[-.-1,1)(Q4,1[-.~:3:2:5.=.=:-],0) (nil,z[-],1)
(QY,B[5.-.-],2)(Q11,3[5.1.~-:4:-],0) (Qt,y[-],1) y(2)z(5)

The Extended Pop Action

The underlying GLC parser signals a pop action when a
predicted sympol is finally completely parsed. The two top

nodes are actually removed from the translation stack. The
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tirst popped node represents the parsed instance of a
trailing part symbol and it synthetic attributes. The
second node represents the prediction of the same trailing
part sympol and its inherited attributes. Since these nodes
are apout to be discarded and their attributes may yet be
used as donors, their attribute value vectors are merged
into the production node that made the trailing part
prediction. The link field of the predicted node references
the production node and is used to locate it. After merging
the attribute value vectors, the production node state is
altered to identify any new attributes received from the
popped nodes. Which new attributes will be available cannot
pe predetermined _in general, making this parse-time update
necessary. If a production node becomes the new top stack
node, then it is altered to reflect the completed parsing of

the production instance.

Algorithm 4D: Extended Pop
Assume current configuration is (TSN[@]...TSN[m],X).
"Top" is always the index of the top translation stack
node.
1) (remove parsed instance of symbol)
Sym := TSN[Top].symb
TopSt := TSN[Top].state
TSN[{Top-1].attr := TSN[Top-1l].attr merge TSN [Top] .attr

POP(TSN|[Top])
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(update production node attribute value vector)
Link := TSN[Top].link
let PROD = TSN[Top-Link]

(assume production of PROD is L::=Rl...Rj 1 Rj+l...Rn)

K := Link+]j
AV := [@]C(L.Rl...Rk) & TSN[Top).attr & [@]C(Rk+l...Rn)
PRUD.attr := PROD.attr merge Av

POP (TSN [Topl)
let TItem be the completed item of TopSt for Sym.
(update production node state)
PROD.state := Goto (PROD.state, (Sym,LHSaav(TItem)))
let PItem be the item in ghost state PROD.state
(set state of predicted node
or replace broduction node)
If PItem is not a completed item
then TSN[Top].state := Q(TSN[Top].symb,PREaav(?Item))
EvalInh (TSN [Top])
else PROD.attr := EvalSyn (PROD)
PROD.state:=Goto (TSN[Top-1] .state, (L,LHSaav (PItem)))

PROD.Symb := L

One new function is introduced in the extended pop

algorithm 4D. EvalSyn evaluates synthetic attributes of the

left-hand side of a production node. EvalSyn (Node)

evaluates the following set of attribute occurrences:



{ L(P).a | a is the n-th attribute in S(L),
raav(Item/L,0) (n) = 1, and
L is the left-hand side of Item

which is recognized by Node }

89

Its resultant value 1is the updated attribute value vector

for tne left-nand side.
Tne translation is completed to demonstrate the

of the extended pop step.

effects
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* gnift y(2) *
(Q1,A[-.-]1,1)(Q4,I[-.-:3:2:5.~-.-:=],0) (nil,z[~],1)
(09,B[5.~.=],2) (Q11,3[5.1.~-:4:-],0) (Qt,y[-],1) (Qp,y[2].,8)
* pop y *
(0l,A[-.-],1) (Q4,I[-.-2:3:2:5.-.-:-],0) (nil,z[-],1)
(09 ,B[5.=-.-1,2)(Q12,3[5.1.6:4:2),0)
* which immediately becomes *
(01,A[-.-1,1)(Q4,1[~.-23:2:5.~-.-:-],8) (nil,z[-],1)
(Q9,B[5.-.-],2) (Q16,B[5.1.6],0)
* pop B *
(01,A[=-.-1,1)(Q7,1[1.-:3:2:5.1.6:~],0) (Qt,z[-],1)
* snitt z(5) *
(01,A[-.-],1)(Q7,1[1.-:3:2:5.1.6:-],8) (Qt,z[-],1) (Qp,2[5],8)
* pop z *
(01,A[-.-1,1)(08,1[1.13:3:2:5.1.6:5],0)
* which immediatlely becomes *
(01,A[-.-1,1)(Q2,A[1.13],0)
* pop A *

Halt state is reached with z° = (Q°,A[1.13],0)

Simple APP Properties

Lemma 4.1 is instrumental in establishing the result
that the APP is capable of performing translations of any
LC-attributed grammar without subtree retention. It shows
that in any given stacked translation state, all necessary

donor attributes will be marked available.



Lemma 4.1

Any LC-attributed recognition rule grammar G =
(v u 8,T,P,S) has a LCAG(G) such that for each item I
in a state Q that marks a node on the translation
stack during a translation, if

I=[L::=X_.Y]
then: (a) daav(I/A,j) = [1]CS(A) if the j-th occurrence
of A is in X, (i.e., all synthetic attributes
of A have been evaluated),
and: (p) daav(I/L,8) = [1]CI(L). (i.e., all inherited
attributes of L have been evaluated)
proof:

Tne ©proof of lemma 4.1 requires a look at
translation stack configurations and how they change.
An induction argument will show that both (a) and (b)
are true for the initial configuration (Z,w) and
continue to be true for any number of actions that are
applied in the course of a translation.

Base step: number of actions = 0.
Tne configuration is (%Z,w). Consider state Q(s).
Tne items in the state are of tne following two forms:
(1) [ 8 2:= . Y ]
(1i) [B::=_._Z]withB#S
pecause no sympbols have yet been scanned. Condition
(a) clearly holds in both (i) and (ii) since X is

empty. In tne case of (i), daav(1/S,0) = [1]1CI(S)




pecause all inherited attributes of S, the goal
sympol, are constant and must be available by
detinition. Since the item (ii) exists in the closure
ot {l::=.8]}, its left-hand side B must occur in a
left corner pbecause predictions are not made beyond a
recognition sympol in a GLC state. Thus B cannot have
inherited attributes and (b) is true vacuously. A
similar analysis shows that in general any state
Q(A,[l]CI(A)) satisfies both (a) and (b).

Induction step: number of actions = n, assume (a) and

(b) hold for number of actions < n.

case: n-th action is a shift.

A shift action pla&es one more state on the
translation stack. A transition is taken over the
transition pair (a,[1]CS(a)) according to algorithm
43, step 2. The lemma holds for each item in the
state on top of the stack.

Let any basis item in the state entered be
1llustrated by:

I=[Bz::=Xa.Y]
By equation (2) of chapter 2, daav(Il/a,j) = [1]1CS(a)

where the j-th a is the a of the transition pair,

since \ {11Cs(a) . For any symbol A in X,

I

daav (I/A,k) iaav (I /A,k) for scan(i”) = I, again due

to equation (2). I~ is from a state already on the

92



stack so daav(I'/A,k) = [1]CS(A) by the induction
nypothesis.

For items outside of the basis, (a) is true since
the X parts are empty and (b) 1s true since the left-
nand sides have no inherited attributes (because they
are in 1left corners). Thus in general, any stacked
state with an entry symbol shape of [1l]n satisfies
poth (a) and (b).

case: n-th action is announce 1i.

The announce action removes states from the
translation stack and pushes the production node and
prediction nodes for each trailing part symbol. The
lemma nolds already for the state of the production
node since 1t is a state that was already on the
stack. For every predictive node other than the top,
the state field is still undefined, and may be
ignored. In the top predicted node, the predicted
shape is raav(I/B,kK) where the k-th occurrence of B is
Rj+1 for the announced item in TopSt. The raav(I) is
found by equation (1) of chapter 2. If daav(Il/C,n) =
[1]CS(C) for all symbols C(n) of the production in
which attribute donors of RJ+l can reside and
daav(1/L,8) = [11CI(L) for the root L, then
raav(Il/B,k) = [1]CI(B). Since the grammar is LC-
attributed, all attribute donors of Rj+1 s attributes

must pe in the root or in symbols appearing left of
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tne configuration symbol. The donor availability
vectors for these symbols must be [l]ln by the
nypothesis since the item occurs in TopSt. The fact
that tne grammar is LC-attributed precludes any donors
peyond what has peen parsed and shown available, so
tne predicted shape must be [1]CI(Rj+1l). As shown,
Q(Rj+1,[1]CI(Rj+1)) satisfies the lemma.

case: pop 1is the n-th action.

The pop action deletes the top two nodes from the
translation stack and changes the states of two other
nodes. The new top stack node is either a predictive
node (TSN[m-2] in step 2 of algorithm 4D) or the
completed production node (PROD in algorithm 4D)’. The
states of the new top stack node and scanned
production node are updated. For the production node,
the transition pair (Sym, LHSaav(TItem)) leads to the
next state. The previous state had all donors to the
left of Sym availaple., For the scanned symbol, Sym,
the entry shape is taken from the left-hand side
sympol of the popped state. The popped state
represented a fully par sed production and by
nypothesis all donors were available 1in that
production instance. The entry symbol shape
LHSaav (TItem) = [1]CS(Sym), so the state satisfies the
lemma. For the updated predictive node (if one

remains), PREaav(PItem) again must be all 1°s (or
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totally available) as tne first predicted node was (by
tne same argument as in the announce case), so this
node’s state satisfies the lemma. I1f no predictive

node remains, tnen the production node on the stack is

replaced. Its new state must satisfy (a) and (b) in a

manner similar to the scan case since the LHSaav must

pe all ones, and the state below it already satifies

(a) and (b).

The induction is complete. ]
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Lemma 4.1 will be used to show that whenever EvallInh or

EvalsSyn are used in an LC-attributed evaluation,

the

recipient availability vectors referenced are all 1°s, and

tnus all attributes in their scopes are evaluable.

Theorem 4.2

Algoritnm 4A for the APP constructed for an

LC-

attributed recognition rule grammar G from LCAG(G)

successfully evaluates all attributes of each symbol

pefore it is removed from the translation stack.

Proof:

In order to establish theorem 4,2, two facts must

ne demonstrated.

1) Tne daav eqguations are accurately reflected by

the APP actions.




2) The evaluation functions evaluate all attributes
of tne grammar before they are popped from the
stack.

Two equations set bits in the donor attribute
availability vectors. The propagate equation ((2) in
chapter 2) sets bits in the entry symbol of an item
and copies set bits from a previous item. As a node
is stacked in the translation (a transition is taken
in the graph), evaluated attributes are retained 1in
their respective nodes and the copying is justified.
If the entry symbol is a terminal, then the lexical
analyzer evaluates all its (synthetic) attributes
verifying the use of the shape [1l]ln. If the symbol is
a non-terminal, then EvalSyn evaluates the -synthetic
attriputes marked available in the raav associated
witn the sympol just prior to the transition. The
raav is computed to be all 1°s since all necessary
donors are guaranteed available by lemma 4.1.

In tne prediction equation, bits are set in the
daav of the predicted sympol when it occurs as a left
hand side and is not left recursive (directly or
indirectly) . Such attributes are copied to- the
production node when announced by GetlInh.

The predicted shape is accurately reflected by the
APP since EvalInh is applied to each predicted node as

it reaches the top of the translation stack. In an
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LC~-attributed grammar, all the inherited attributes of
a predicted sympol B can be evaluated since the raav
associated with B shows them all to be available. The
attributes are available because the dependency matrix
in equation (1) of chapter 2 can reflect donors only
in the root and symbols occuring to the left of the
predicted sympol. The donor attribute availability-
vectors were shown to be fully available again by
lemma 4.1.

Evallnh is applied to every trailing part symbol
as it 1is stacked providing for the evaluation of all
inherited attributes. EvalSyn 1is applied to every
production node when 1t reaches the top of the
translation stack resulting in the evaluation of every

synthetic attribute. ]

Theorem 4.2 demonstrates an important property of the
attributed pushdown processor and LC-attributed grammars.
It shows that the LCAG is not needed in its full generality
to provide stack states for the APP when G is known to be
LC-attriputed. Much simpler state computations could be
made . There 1is a simple linear (in size of grammar)
algorithm to check for the LC-attributed quality, and it has
pbeen snown that the attributes are always ready to be
evaluated. The proad usefulness of the LCAG is that it can

be used with any LR(K) grammar, any left corners for that
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grammar, and any attribute sets and functions defined on the
grammar. (Many important properties do rely on minimal left
corners tnough.) The extent of tnis usefulness will be

shown 1n the next chapters.
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Chapter 5

Subtree Retention and Delayed Evaluation

For grammars more general than LC-attributed, the LCAG
item-wise attribute availabilities still identify donors
known to be evaluated and recipients known to be evaluable.
If the APP algorithm is used as presented with a more
general attriputed grammar, EvalSyn and EvalInh can evaluate
just those attributes that the associated raav’'s show to be
availapble. Those attributes not availaple when their stack
node 1is popped cannot be evaluated in this simple scheme.
The LCAG thus isolates those parts of an arbitrary grammar
that are not LC-attributed.

Several techniques are available to handle more general
grammars. The problem can be returned to the language
designer to rewrite the attribute specifications (perhaps
using Knuth’'s algorithm to alter inherited attributes into
synthetic ones [Knu68a]) S0 that the grammar is
LC-attributed. According to Knutn, this solution is gquite
awkward; the resulting grammar often tends to be very
unreadable, much more complicated, and less convincing. The

aim of this research is to make the language designer and
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implementor s work simpler, but  this first  solution
complicates the task.

A second solution involves layers of attributed
grammars, each of which is LC-attributed. The evaluation
tecnniques of the APP can be coupled with the attributed
tree transformations of Schulz [Sch76]. Schulz details a
theory of n-pass compilations with attributed grammars
utilizing tree transformations that is based on Jazayeri's
alternating semantic evaluator [JW75] . Because Schulz
leaves the particular method of parsing open to choice, the
APP evaluator could be used to allow more flexible
attriputed context-free grammars. Finding the appropriate
LC-attributed layers to accomplish a desired translation is
a suitaple areacfor further research.

another possibility is to retain subtrees and use
attributed tree evaluators for delayed attribute evaluation
during the APP pass. Several advantages are apparent.
suptrees are retained only when necessary and only as long
as necessary. Tree evaluators are constructed only for the
(presumably smaller) languages of retained subtree root
sympols. Attributes of some symbols that could not be
evaluated until a second left-to-right pass in other
evaluators (pass tnree in the alternating evaluator) because
of earlier missed attributes are evaluable on pass one with
retention and delayed evaluation. The fact that multiple

passes over tne complete syntax tree are unnecessary makes
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tnis solution attractive. Depending upon the complexity of
the rorward references in the language, relatively smaller
portions of the derivation tree will in general have to be
committed to storage.

The simplified APP presented 1in chapter 4 may be
generalized to deal with translation stack nodes that would
normally pe discarded during a parse but are not fully
evaluated semantically. The semantic forest stack model
alluded to in chapter 1 <can be implemented by suitable
modifications to the extended actions of the processor. The
retention of unevaluated subtrees is introduced because it
allows an elegant formalization of unresolved semantic
translation decisions without resorting to multiple full
‘syntax tree passes. When attributes are evaluated in a
retained suptree during the single pass of-the APP, that
subtree can pe released from the semantic forest and its
attributes used in the remainder of the translation. 1In
this fasnion, the APP is able to overcome the difficulties
involved 1in forward references, left recursion, and other

prediction problems.

Plans and Visits

Tree-walk evaluation visits within the semantic forest
are applied to fully parsed subtrees to finish evaluation of
attributes in these subtrees. The subtrees are pruned as

much as possible during evaluation visits. with reasonable
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language specifications, the subtree storage allocation
requirements can pe kept at manageable levels. The storage
allocation strategy, it appears, is best handled by standard
neap management techniques [Knu68Db]. For this reason,
translation nodes that are part of a retained subtree are

said to exist on the translation heap, rather than on the

translation stack (although they are found through the
translation stack).

There are three new functions that must be added to the
generalized version of the APP. The APP " must decide (1)
when to prune constructed subtrees, (2) when to make a visit
to a retained subtree, and (3) when attributes at the
visited nodes are ready to be evaluated. The difference in
operation petween tne generalized APP and the simplified APP
is an enhanced evaluation mechanism that replaces Evalinh
and EvalSyn. The evaluation mechanism is an ordered
instruction sequence called a plan which includes the

following instruction types:

1) Fp,n -- apply the semantic attribute evaluation
rule for production p, ;ecipient attribute n.

2) Visit(k,VS) ——- vyisit either the k-th offspring if
k>) else tne parent of the currently visited node
witn attributes marked in the availability vector

VS.
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3) Prune(K) -- release the k-th subtree of the visited
node.
4) Update(Q) =-- replace the state currently marking

the heap state by Q.

A visit instruction uses a function PLAN that maps the
states and availablity vectors into plans to select an
instruction seguence. PLAN can either perform a table
lookup to find the sequence, Or it can compute the sequence
(see algorithm 5D). A visit instruction is initially issued
wnenever a node 1is popped from the stack with the POP
function in the extended announce (algorithm 4C) or Ppop

(éléoritnm 4D) steps.

Algorithm TA: Generalized POP(Node) function .
let POP(Node) have the following side effects:

1) remove Node (must be the top) from the translation
stack.

2) if Node is associated with a production node N° that
it has replaced as a result of a production node
update (after reaching the top of the stack 1in
algorithm 4D, step 3), then let either the node PROD
(in the announce step) or node TEMP (in the pop step)

reference N° as an offspring on the heap.
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3) scnedule the instruction: visit(®,LHSaav(Item)) for
execution at the end of the current extended action

for Item that is recognized by the state of Node. 1

Visits are made to a parent node when one of 1its
oftspring 1is popped. Visits to offspring are made when a
plan is executed as a result of a visit to a parent node.
The visit algorithm 5B 1s an extension of Kennedy and

warren s algorithm [KW76].:

Algorithm 5B: Visit(k,VS)
k is an integer from zero .to the length of the
right-hand side of the currently visited production
node.
Vs € (B,1)*
tne current production node 1is (Q,1,attr,D)
the visited node is (Qk,j,attr-k,0)
1) Merge attributes of the symbol shared between
productions i and j from attr to attr-k.
2) Execute PLAN(Qk,VS) on the relative.
3) Merge attributes of the shared symbol from attr-K

to attr.

Plans carry out the EvalSyn evaluations when right-hand

side sympbols of a production are popped. The Evallnh
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evaluations result from a visit to an offspring node that is
on top of the stack after an announce step Or the pop of a

sibling.

States in the Extended Processor

{
The stack and heap nodes for the generalized APP require

availability vectors for items to identify evaluated and

evaluable attributes. The synthetic yield, information that

identifies the effect of subtree visits, also characterizes
production nodes. The synthetic yield is a function that
maps sets of inherited attributes of a particular symbol
into sets of synthetic attributes of that symbol. The
resultant synthetic attributes are those that will become
available for evaluation if the symbol’s subtree is visited
with the input set of evaluated inherited attributes. The
syntnetic yield can pe used to determine if a visit to a
suptree is worthwhile or to identify new attributes that
will be evaluated (and perhaps cause other attributes within
tne production instance to become available). Yield
information is kept in production nodes for every parsed
non-terminal of the production. LCAG states and transitions
are to be augmented to maintain this information; details

are described later. A stacked production node containing

tne necessary information is diagrammed as follows:




1p6

Cmm | i, link |

| mmmmmm e |

o LCAG state |

of fspring o |mmm——————————————— |
o offspring |

| yield |

G e I information |

suptree Retention

Subtrees are automatically appended to production nodes
py the generalized APP when nodes are normally popped in a
GLC parse. Left corner nodes are popped during an announce
action. Trailing part nodes are popped when a predicted
sympol is totally parsed. Subtrees are constructed by
linking the nodes on the heap to their parents and
oftspring. The decision to release an appended node with a
Prune instruction is made when no missing attributes are
discovered in availability vectors of the recognized item.
A missing attribute is identified by a zero in the attribute
availlapbility vector. For example, if an offspring B is
missing attributes as marked in the item

[ A(G1ll1lpp) ::= B(lglllp) . 1 C(BO|110) D(0|0B) 1.,

tnen B must be retained. In this case, B’s second donor is

unavailable. When attributes cannot be evaluated due to

missing donors, the local subtrees with missing donors
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cannot pe released. 1If an offspring is not fully evaluated,
it exists as a production node with the attribute values of
the production of which it is the left-hand side. A heap

node linked to the stack is diagrammed below.

I I

| .C |

I |

jattr |

| I

| .D |
I [ I
| prod.| attr|
| node |
| with |4€-—-=-me—- | 1 1=
| LHS | I |
| B | factr |
| | I I
| attr | I I
Translation Translation

Heap Stack

As the parse procedes 1in an APP translation, more
information is accumulated about the syntactic structure of
tne sentence. As a result, more attribute flow paths are
aiscovered. Eventually all flow paths are completed in any
attriputed grammar. If the grammar is non-circular, visits
can pe made following those flow paths to evaluate all of a
tree’s attributes. If enough information is maintained
apout retained subtrees, these paths can be followed

correctly as soon as they become completely connected.
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scheduling Visits

yisits occur as a result of applying POP to a node.
They may also be scheduled in a plan. During execution of a
plan, it new attributes are transferred to symbols already

parsed (those that appear to the left of a configuration

sympol) , furtner evaluation can be planned. Such parsed
symbols pecome candidates for visits because other
attributes in the tree may depend upon their wvalues. In

particular, some of the synthetic attributes of the parsed
sympol may be evaluated after a visit is made to its
subtree. 1f a translation 1is formed as a synthetic
attribute of the grammar s goal symbol, then only the
syhtnetic attributes .0f the root of a visited tree are

significant attributes in the translation. Action symbols

[LEkS76] are attributed terminal grammar symbols that are
associated with a position in a production right-hand side
put do not occur as an input token. They cause attribute
dependent semantic routines to be invoked when the symbols
to their left are are recognized. If action symbols are

used to perform a translation, then every attribute may be

considered significant. APP plans can be arranged to

evaluate all significant attributes in either of these
cases. An advantage of tne former scheme is that no subtree
needs to Dbe visited unless it will yield new synthetic

attributes. In either case, a visit is included in a plan
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when it is found that significant attributes can be
evaluated in a previously parsed symbol.

For example, consider the pair of recognized items
pelow, each from distinct states connected by the transition

(C,11):

[ A(6111p0) ::= B(1l61118) . i C(pp1110) D(0I00) ]

[ A(B11100) ::= B(1lV1l1ll) i Cc(1l1l118) . D(@I11) ]

[

The second inherited attribute of B has become available due
to the completed parsing of C. This pair of availability-
extended items denotes the evaluation staée of the subtree
pefore and after parsing C. The raav of the second ‘item,
reflecting the completed parsing of C, identifies newly
available recipient (innerited) attributes of a right-hand
side symbol of the production. At this point, a visit can
pe made with the (input set) attributes that are newly
available. A visit is made to A’s leftmost offspring, B,

with the second inherited attribute of B (the first being

previously evaluated) as illustrated below.
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[ [

| .D |
l l | |
| prod.] visit jattr |
| node | with
| witn lx.‘¢=========| 1 | *
| Las | (B,11) I I
| B | fattr |
| | I |
| attr | I I
Translation Translation

Heap Stack

As another example, 1f a completed ghost state

containing the item

| E(¥1]10B) ::= E(100191) I F(111l11) . 1
is visited with the first inherited attribute éf the root E
and .

E(1).I1 := E(9).1I1 ,
then a visit is made to the first offspring of the root E as
well. The attribute evaluation according to the function
apove leaves the item as follows:

[ E(11]188) ::= E(160]11) 1 F(111]11) . 1.
The evaluation of the missing attribute in the offspring E

may allow another visit to be scheduled.

Determining Suptree Yields

Kennedy and warren [KW76] used Knuth's original
algorithm for circularity [Knué68a] (later modified to

correct an error) to precalculate the minimal synthetic
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yield for each non-terminal symbol in a grammar. When they
scheduled a visit to a production node with a particular
(visit) set of inherited attributes, the guaranteed yield
was used to formulate evaluation plans. The weakness of
tnis method is that more attributes than the minimal set may
pecome available as a result of the visit, but plans will
not schedule tnheir evaluation.

Rather than simply considering the minimal synthetic
yield of a suptree, the total yield may be found. The total
yield of a visit to a particular subtree root with a set of
inherited attributes of the root 1is the exact set of
synthetic attributes of the root that can be evaluated. A

yield matrix of Boolean values can depict the dependency of

tne synthetic attributes of a non-terminal symbol upon its
innerited attributes. It is of size (CS(A) by CI(A) for
sympol A. The corrected Knuth algorithm may be used to
tapulate functions that determine the total yield matrix of
tne left-hand side of a production based on right-hand side
yields. Each symbol in general has a set of distinct yields
pecause each individual yield reflects the dependency graph
constructed from a particular set of subtrees. Algorithm
5C, adapted from Knuth [Knu68a], is used to compute the sets
of possible total synthetic yield matrices TSY(A) for each

attributed grammar symool A.
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Algorithm 5C: Total Synthetic Yield

1)

Input: c¢fg G = (N,T,P,S) and MDi for each production 1 in
P.

Output: a) relations RYi that associate the yield matrices
of right-nand side non-terminals of a
production i with a yield matrix for the left-
hand side.

p) sets TSY(A) of possible total synthetic yield
matrices for each sympol A in N.
(initialization) Set RYi to the empty set for each
production 1 in P. For each production i (A::= X) in a
grammar, construct a matrix of size CS(A) by CI(A). Set
row j, column k to 1 if the j-th synthetic attribute of A
depends upon the k-th inherited attribute of A. Includde
the matrix in TSY(A).
As long as there exists a production i: Af::=Al...An € P
and elements Yj € TSY(Aj) for each Aj € N, j>1, such that
(Yl,...,¥Yn) is not yet included in a member of relation
kYi, do the following:
a) Construct a square matrix MD’i with |Don(i)| +
|Rec(i) | rows and columns. Each row and column of
MD 1 represents an attribute occurrence of the
production. Each entry is a Boolean value denoting
the direct dependence of the row attribute upon the

column attribute. Set the entries of MD'i from the
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yiela matrices ¥l,...,¥n and production dependency
matrix MDi in the following manner:

i) If the j-tn attribute occurrence in production i is
a recipient attribute dependent upon the k-th
attribute occurrence, a donor, (as shown in MDi),
set MD i(j,k) = 1l.

ii) If tne j-th attribute occurrence in production i
is a donor attribute of the m-th right-hand side
symbol and is shown in ¥Ym to be dependent upon the
k-th attribute occurrence in production i, set
MDD i(j,k) = 1.

b) Replace MD i witn its Boolean transitive closure to
determine all indirect attribute dependencies.

c) Extract from MD'i the yield matrix of its root, YO, as
the matrix determined by deleting all rows and columns
not representing attribute occurrences of the left-
hand side. Include ((Y¥l,...¥Yn),¥8) in RYi and include

Y@ in TSY(AQ). 1

Circularity in tne grammar is indicated if, for some i and
5, an MD i is constructed such that MD i(j,j) = 1.

The relations RYi are used at LCAG generation time to
determine the yield matrix of the left-hand side of any
completed ghost state based on the yields of its non-
terminal offspring. The synthetic yield of the 1left-hand

side of production i witn a right-hand side of all terminals
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can be found from MDi alone. Since yield information is
necessary in visit scheduling, it must accompany each parsed
sympol in recognized items. The yield matrix thus becomes a
part of each parsed symbol instance and like the raav, it is
used in ghost state to ghost state transitions. Yield
matrices can be simplified when they are being added to
availability-extended states by eliminating rows in which
syntnetic attriputes are already evaluated and eliminating
columns in which inherited attributes are evaluated. This
simplification potentially leads to fewer éossible states
and in effect smaller matrices. The state chosen for a
production node as a result of an announce action must
consider the yields of each left corner symbol.

Membgrs of TSY(AE, yield matrices, are used at.
evaluator-generation time to construct plans. When a
subtree witn root yield matrix Y is visited with the set
I_in of inherited attributes evaluated in the root, a set

S _out of syntnetic attributes yielded from the tree is found

by the eguation:

S out =Y x I in (1)

Plan Construction

plans are constructed for a production node state by
considering the recognized item of the state and the daav’s

tnat will potentially update it. At the termination of the
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construction of a plan, the next state to be entered by the
translation is determined. The process of constructing
plans can create new states, which again require new plans.
The plan formulation algorithm 5D is a minor modification of
kennedy and warren’s. It treats the case in which only

syntnetic attributes are significant for visits.

Algorithm 5D: Creation of Plans
Input: recognized item I in state Q
update to daav(I): VS € (8,1)*.
Qutput: PLAN(Q,VS)
1) Let PLAN be an empty sequence of instructions and
daav “(I) = daav(I) or VS.[B8]CS(X)
if I is of form [A::=X.]
= daav(l) or [B] (CI(A)+CS (X)) .VS. [B]CS(¥)
if I is of form [A::=X.B Y]

2) Compute raav (I) for daav (1) by equation (1) of
cnhapter 2. Include in PLAN all evaluation rules
Fp,n marked by newly available attributes in
raav’ (I).

3) Using equation (1) of this chapter for each
offspring in turn that appears before the
configuration marker with I_in = raav (I/B,j), find
s _out. If S_out for the k-th offspring includes
attributes not currently evaluated then include in

PLAN the instruction visit(k, raav’ (I/B,j)), where
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the k-th offspring is the j-th occurrence of B in
the production. Update daav’ (I) with the yield
S_out of the visit. Repeat (2) if a visit was
scheduled in this step.

4) For each symbol B prior to the configuration marker
witn daav(I/B,j) # daav ' (I/B,j) = [1]CS(B), include
Prune (k) in PLAN such that the j-th occurrence of B
in the production is the k-th symbol in the right-
hand side.

5) Transform Q into Q° by replacing daav(I) with
daav’(I). The new raav can be calculated in the
regular fashion. If ¢ 1is a completed state,
include Update(Q”) in PLAN. If B is not completed
then Q° will bpecome its successor in the state

graph. 1

when all of a tree’s attributes are significant, step 3 1is
modified to allow visits with empty yields as long as the
visit set 1s not empty, and step 4 delays pruning
instructions until all attributes are evaluated.

States need to be created for every combination of daav
and right-nand side yield matrices for each completed item.
For each sucn combination, plans are constructed for each
potential visit set of attributes. A visit set is possible
for a state if a visit is scheduled for a symbol, yield

function pair that matches the left-hand side of the state’s
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production. A state is considered visitable if a wvisit 1is
scheduled to its root symbol during complete plan
construction.

The following algorithm is used to construct a complete

set of plans and find all possible visit sets.

Algorithm 5E: Complete plan scheduling
1) Compute TSY(A) for each A in N using algorithm 5C.
2) Enhance the LC-availability graph to include yield
matrices witn each parsed symbol in recognized
items and transitions from recognized item states.
3) Repeat this step until no more plans can be

constructed. o

a) It tnere exis;s a state Q with a non-completed
recognized item and a transition (A,V,Y) out of
Q such that PLAN(Q,V) has not been constructed,
compute PLAN(Q,V) using algorithm 5D. Replace
the state Goto(Q,(A,V)) with the resultant state
Q" of algorithm 5D.

b) If there exists a completed state Q with left-
hand side A with yield matrix Y in its only
item, and a visit with visit set V has Dbeen
scheduled in some plan to a symbol A with yield
matrix Y, and PLAN(Q,V) has not been contructed,

then compute PLAN(Q,V).
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The above algorithm must halt since there are only a finite
numper of visit set, visitable state possibilities.

After a suptree visit is terminated, the APP continues
in its parsing-and-evaluation mode, properly reflecting the
total yield of the root of the subtree visited. The
resultant state Q° (determined 1in the PLAN construction
algorithm 5D) reflects such changes and becomes the new
successor to non-completed recognized item ghost states.
States on the heap are altered to identify the evaluation
cnanges that occur as a result of a visit by an Update

instruction in tne plan.

Translation Example

To illustrate the generalized APP translation, the
grammar EG of chapter 4 is altered to include a forward
reference. The inherited attribute "op" of B is dependent
upon the synthetic attribute of 2z rather than Yy in
production 1 (figure 5.1). The LCAG and plans of the
grammar EX are presented in figure 5.2. The sequence ©of
configurations with references to the heap in the
translation of the same sentence of chapter 4

x(3)y(2)x(4)y(2)z(5)

appears in figure 5.3.



EG = (
N = {a

S(A)

S(x)

I1(B)

P incl

N,T,P,R)
B} T = {x,y.,2}

s(B) = {typ,val}

s(y) = S(z) = {val}
{op}

udes:

xy 1Bz

op := x.val + z.val;

val := B.val + y.val + z.val;
typ := B.typ;

Xy 2 2z B

op := x.val * z.val;

A.val := B.val + y.val;

B.

w

B.

D

typ := B.typ;

val := if B.op > @ then x.val + y.val

else x.val - y.val;

typ = 1;
x 14 z
val := (sign(B.op) * x.val) / z.val;

typ = 2;

Figure 5.1 Attributed Grammar : EX

119
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Ql | =.A(001|) | ot | =.a |
| A(1B0)::=.x(0)y(0)] B(BO|0)2Z(B) | | mmm - |
| A(low)::=Tx(0)y(8)2 z(8)B(B0I0) | |
t-——-—-—-——--——————-——-—-———-———-l---—l | (a,[1]1Cs(a))
I (Arll) l I ”””””””””””””
(x,1) | 9771 ::=A(111) | | —mmmmmm I
| | m— = I op | =a. |
| =Y———m e e m [ | m = l
03 | A(lop)::=x(1).y(0)1 B(BBID)Z(B) | (where "a" 1is
| A(16D)::=x(1).y(0)2 z(0)B(00]|0) i any terminal)
| e e I l
l “““““““““““““““““““““““““““““ lé l (YIl)
04 | A(lpY)::=x(1)y(1).1 B(0BI0)2(0) | :
| A(loo)::=x(1)y(1).2 z(8)B(0018) | | (B,10)
l[ """""""""""""""""""""" : } (z,1) :
Q5 | A(l6b)::=x(1)y(1)2 2z(1).B(00I|1) € |
} ————————————————————————————————— I :(B,ll) {
06 | A(111)::=x(1)y(1)2 2z(1)B(11l1). {Q %
- ’ _________________________________
I ————————————————————————————————— ‘/ l
07 | A(I1R)::=x(1)y(1)1 B(1Bl0).2(0) |
'l ““““““““““““““““““““““““““ : } (Z,l)
Q8 } A(l111)::=x(1)y(1)1I B(11i1)2z (1) ;é
| m—=m e e e l
Q9 | ::=.B(1]00) |  (B,11) _|==——————————m |
| B(1T00)::=.x(0)3 y(0) I QIp | =B(1111). |
| B(1100)::=.x(8)2 z(0) | | mmmmmmmmm e T
; """"""""""""""""""" = {(Xll)
011 | B(1i1¥)::=x(1).3 y(B) i<
| B(l11®)::=x(1).2 z(0) I | (z,1)
| =—m e : : (y,1) I|
l ___________________________
Ql2 { B(1111)::=x(1)3 yv(1). } {
| = e I I
013 | B(ll1l)::=x(1)3 z(1). I~

Figure 5.2

Generalized LCAG(EX) with Plans
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Q15

Qle

Q17
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::=.B(6|00) |  (B,10) ,|-======——————= |
B(0T00)::=.x(0)3 y(0) I Q20°| ::=B(0110). |
B(Y|0W)::=.x(8)4 z(0) | | -—— e ————— |
““““““““““““““““““““““““ I l(X,l
--------------------------- | I
B(0118)::=x(1).3 y(9) 1<
B(0]10)::=x(1).2 z(0) l | (z,1)
““““““““““““““““““““““ : : (YI]-) li
B(6118)::=x(1)3 y(1). < l
——————————————————————————— | I
--------------------------- l/ l
B(B110)::=x(1)3 z(1). IS
___________________________ |
PLAN(Q4,z (1)) = {F2,1; Prune(l); Prune(2); Prune(3)}
PLAN (Q4,5(16))= {Fl,1; Prune(l); Prune(2)}
PLAN(Q5,B(11))= {F2,2; F2,3; Prune(4)}
PLAN(Q7,2(l)) = {F1l,1; visit(3,(1)); Fl,2; F1,4; Prune(3)}
PLAN (Q15,y(1))= {F3,2; Prune(l)}
PLAN(Q15,z(1))= {F4,2; Prune(l)}

PLAN (Q16,8(1))= {F3,1;

PLAN (Q17,B(1))= {F4,1;

Update (Ql2)}
Update(Ql3)}

Figure 5.2 (continued)
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Istack input
(Ql,A[-.=},1) x(3)y(2)x(4)y(2)z(5)
* snift x(3) *

(Ql,A[-.-],1) (Q3,x[3],0) y(2)x(4)y(2)z(5)

* ghift y(2) *

(Q1,A[=-.=-],1) (@3,x([3),0)(Q4,y[2],0) x(4)y(2)z(5)

* announce 1 *

(QL,A[-.=],1) (Q4,1[-.=:3:2:=.=.=:=],0) (nil,z[-],1)
(Ql4,B[-.-.-]1,2) x(4)y(2)z(5)

* shift x(4) *

(Ql,A[=.-),1) (Q4,1[-.-23:2:~.=.=:=],0) (nil,z[-],1)
(Ql4,B[-.-.-1,2) (Q15,x[4],8) y(2)z(5)

* announce 3 *

(Q1,A[-.-1,1) (Q4,1[-.-23:2:~.=.~2~],0) (nil,z[-],1)

(Q14,8[-.=.=),2)(Q15,3[-.1.-:4:-],0) (Qt,y[-],1) y(2)z(5)

* gnift y(2) *

(01,A[-.~-],1)(Q4,I[-.-23:2:~.~. :=1,0) (nil,z[-],1)
(Ql‘i,B["‘.-."] 12) (lelg[—'l'—:4:-] I@) (QtrY["] Il) z(5)

(Qp,yl2],0)

Figure 5.3 Translation with EX



* pop Yy *
(Ql,A[-.-),1)(Q4,1[-.-:3:2:=.=.=:~],0) (nil,z[-],1)
(014,B[-.=.~1,2)(Q16,3[~.1.-:4:2],0)
* whicn associates Q16 with Q20 and becomes *
(01,A[-.-],1)(Q4,1[-.-23:2:=.~.-:-],0) (nil,z[-],1)
(014,B[-.=.=],2) (Q20,B[-.1.-],0)
* pop B *
(Ql,A[-.=-1,1)(Q7,1[1.-:3:2:=.1.~-:-1,0) (Qt,z[-],1)
|
Heap: (Q16,3[-.1.-:4:2],0)

* gnift z(5) *

123

z(5)

z(5)

z(5)

(Q1,A[-.-],1) (Q7II[1-“:3:23"-10"‘:"] y8) (Qt,z (-] rl‘) (Qp,2[5],0)

l

heap: (Ql6,3[-.1.-:4:2],0)
* pop z, PLAN(Q7,z(l)), PLAN(Ql6,B(l)) *
(Q1,A[-.-],1)(0Q8,1[1.13:3:2:8.1.6:5],8)

i

Heap: (012,3[8.1.6:4:2],0)
* which immediately becomes *
(Gl,A[-.-],1)(Q2,A[1.13],0)
* pop A *

resulting in: (Q°,A[1.13],0)

Figure 5.3 (continued)
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eralized APP Properties
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and

Tne important properties of the APP are summar ized
following theorems concerning its capabilities and t

space execution reguirements.

Lemma 5.1

In an APP translation with a non-circular
attriputed grammar in which all attributes are
considered significant, 1if, in a heap node, an
unevaluated attribute "a" has all direct and indirect
donors in stécK nodes evaluated, then the next plan
executed at the heap node’s ancestor on the stack will
"

cause a sequence of plans and visits during which "a

will pe evaluated.

pProof:

The proof is by induction on the length of the
longest dependecy path from an unevaluted attribute
"a" on the neap to any evaluated donor attribute.
Dependency path length 1is well-defined since the
attributed grammar is assumed non-circular. Without
loss of generality, only attribu£es of symbols on the
right-nand side of productions need be considered
since all symbols with attributes on the heap occur as
part of a right-hand side.

Base step: dreatest path length = 1.
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All donor attributes for "a" must occur in symbols
of the production in which "a" occurs on the right-
hand side. One such donor must exist in the left-hand
side sympol (which is on the stack) or "a" would have
been previously evaluated. 1If all donors were in the
right-hand side and were evaluated, then the last plan

executed at the node would have had "a" scheduled for
evaluation in step 2 of algorithm 5D. When a plan
evaluates tne inherited donor(s) of "a" on the stack,
a visit will 'be scheduled to this node in algorithm
5D, step 3 since all attributes are considered
significant. The visit (algorithm 5B) copies any
needed donors from the left-hand side symbol on the
stack. All other donors must have been previously
evaulated, since the longest dependency path length is
one. Thus the raav’ in élgorithm 5D step 2 will show

"a" available for evaluation and schedule it.

Induction step: greatest path length = n, hypothesis

holds for length < n.

By tne induction hypothesis, all direct donor
attributes must nave greatest path length to evaluated
attributes less than n. Thus by the hypothesis they
will have evaluations scheduled in a sequence of
visits. All such donors exist in the right-hand

sympols or the left-hand side sympol of the production

containing "a". when the 1last direct donor is

125



126
evaluated by some visit plan, then "a" will also be
scheduled for evaluation by step 2 of algorithm 5D in
tnat plan (if the last attribute was in the right-hand
side), or a visit will be scheduled by step 3 of
algorithm 5D to the node containing "a" from its
parent node and the ensuing plan will evaluate "a" (if
tne last donor attribute evaluated occurs in the

left-hand side). 1

Theorem 5.2
In a translation with the APP in which all
attributes are considered significant, if an
unevaluated attribute "a" exists in any node on the’
rranslation stack or heap, ‘then either:

(1) that part of the syntax tree siructure containing
tne dependency paths that lead to "a" is not
completely recognized, or

(2) attribute "a" will be evaluated by the time the
parser consumes another input symbol, or

(3) the attributed grammar is circular.

proof:

Case i: the state of the node containing "a" does not

contain a recognized item.
The structure is not complete, so condition (1)

holds trivially.
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Case ii: the node containing "a" is a production node

on the stack.

1f all donors for "a" are evaluated, then the last
plan executed at the node (if any) would have
evaluated "a". 1If an unevaluated donor (direct or
indirect) occurs in a symbol beyond the configuration
sympol, then (1) is satisfied due to the unrecognized
sibling. Unless (1) and (3) are true, all inherited
donors are evaluated due to successful predictions and
oftspring visits. Before the next scan step can
occur, a plan 1is executed with the latest pop oOr
announce action. Unless the grammar is circular, by
repeated application of Lemma. 5.1, all direct and
indirect donors of "a" become evaluated by a sequence
of plans and visits stemming from that plan. 1In the
return from that visit "a" will be evaluated due to
step 2 of algorithm 5D. Thus (2) must hold.

Case iii: the node containing "a" is on the heap.

Unless (1) or (3) is true, Lemma 5.1 shows that
ma" will pe evaluated when the last ancestor node on
any dependency path to "a" jigs recognized by an

announce or pop step. [

The next corollary follows directly from theorem 5.2 and

the fact that Demers’ parsing method with minimal 1left




corners recognizes productions with the minimal number

scanned input sympols [Dem77].

Corollary 5.3
The APP evaluates each attribute of a non-circular

GLC (k) attributed grammar with minimal left corners at

the earliest possible time.

Theorem 5.4

Ignoring tne complexity of the evaluation rules
and assuming that attribute values can be represented
in a pounded space, the APP operates in time and space
at most linearly proportional to the length of its
input.

Prbof:

The 1linear space result for the APP is based on
tne observation tnat the size of any syntax tree for
an unampiguous context-free grammar is at most
linearly proportional to the length of the sentence it
represents [AU73]. The space used in an APP
translation stack and heap is bounded above by the
size of the syntax tree of the sentence, and the size
of each node is bounded by a constant fixed by the
size of the attributed grammar. To fix a bound on the

size of any node reguires the assumption that all
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attribute values can be represented 1in a bounded
space.

For a given attributed grammar, there is a bound
on the numper of attributes associated with any one
sympbol. Tne GLC parse itself is linear in its time
requirements [Dem77]. It must be shown that the
numper of visits made by the evaluator is also linear.
Since (1) no visit is ever made without evaluating at
least one attribute, (2) there are at most a linear
numper of symbols to visit, and (3) there 1is a
constant bound on the number of attributes per symbol,

there are at most a linear number of visits made. 1

The APP in its full geﬁerality is impressive in
capability put potentially very unwieldy in both the time
required to generate it and the storage required to hold its
states. Jayazeri, et al [JOR75] have shown that the worst
case execution time of Knuth's circularity algorithm is
exponential. The number of parse evaluation states is also
potentially exponential. Wwhether or not attributed grammars
used to specify typical programming languages approach the
worst case is unknown. Research and practical experience in
tne use of attributed grammars is needed.

There are reasons to believe that typiéal programming
languages are not difficult to deal with. The construction

of SLR(k) parsers tor programming language syntax from BNF
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specifications is frequently undertaken despite exponential
worst case time and space bounds [DeR69]. Knuth’s algorithm
for circularity and the construction of the generalized LCAG
pecome expensive when many possible yield functions exist
for each of the non-terminals in the grammar. In practice,
this situation does not appear to arise. A specification
would be extremely difficult to comprehend or design 1if a
given input set of inherited attributes to a subtree
produced many variations in output sets of synthetic
attriputes for the tree, dependent always upon the structure
of the subtree. Attributes should most 1likely take on
variations in value for corresponding structural variations,

rather than undergo variations 1in availability. Clearly

tnis principle is a useful guideline in language
specification design and might be made a requirement. | The
current trend of limiting forward references in programming
languages also aids in the simplification of APP translation
since grammars become more nearly LC-attributed and subtrees
are less likely to be saved.

several simplifications to the method of visit plan
scheduling are worth describing. One 1is the previously
mentioned metnod of Kennedy and Warren. Only a single
minimal yield function is associated with a particular
grammar sympol. Each state then has only a single ©possible
configuration of yields and the plans are simpler to

construct. More visits to a particuar subtree may be
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necessary due to tne imperfect specification of the yields,
and a smaller class of attributed grammars can be evaluated
[AWT6] .«

A second simplification permits another interesting
supset of attributed grammars to be defined: those that are

partial order attributed.

A partial order attributed (PO-attributed) grammar

is an attributed context-free grammar G =
(N,T,P,S) such that there exists a partial
ordering of the right-hand side non-terminals in
any production, such that the attributes of one

symbol are not donors for any attributes of the

<

symool itself or of symbols preceding it in the

ordering.

PO-attributed grammars are guaranteed non-circular because
inherited attributes cannot indirectly depend upon synthetic
attriputes of the same symbol; any dependency cycle is
proken at the top. Grammars can be recognized as members of
the class by a simple topological sort [Knu68b] on each of
tre production right-hand sides (worst case execution time
is O(n**2) where n is the length of the longest right-hand
side) . The recognition algorithm simply looks for symbol-
wise dependency cycles of the right-hand side of each

production.
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when evaluating attributes of PO-attributed grammars, no
subtree need be visited twice if its visit is delayed until
all its inherited attributes are available. All inherited
attriputes of an offspring become availapble by the time its
parent and siblings that precede it in the ordering have
been visited. plans in the scheduling algorithm are
tnerefore trivial for PO-attributed grammars and are optimal
in the sense of minimal tree traversal path length.
L-attributed grammars are a special case of PO-attributed
with the partial ordering being the left-to-right position
in the right-hand side.

Experience will tell if typical attributed grammars do
indeed fit these simplified grammar classes. wWwhile the
modifications that come with the more restrictive classes
are attractive, the general model is an important foundation

in the theory of attributed grammar evaluation.
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Chapter 6

significance of the Attributed Pushdown Processor

Tne attributed pushdown processor makes several
significant contributions to the theory of translation. It
provides a parse-time attribute evaluator that generalizes
all previous evaluation methods. A formal model 1is
established for efficient single-pass compilations that is
not hampered by forward references. Inspection of the
algorithms involved in ‘APP construction uncovers several
gttributed grammar specification princ}ples that aid in the
simplification of processor construction. Algorithms are
developed that can be used to automate the generation of
semantic analyzers.

The use of the generalized left-corner parser enables
the APP to surpass the power of previous evaluation
techniques. The methods of Lewis et al [LRS74; LRS76] allow
evaluation of two small portions of the specification space
of attriputed grammars (see figure 6.1). The simplified
attributed pushdown processor, because it takes advantage of
poth LL(k) and LR(k) parsing techniques, covers the
additional specifications that fall between the L-attributed

and S-attributed processors. Both those techniques are
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context-
free
grammars
! |
| [LRS74] |
I/ |
LR(K) ® = = = = = = = = = = = = = = = = = = = = = =~ |
T I\ |
I\ |
I\ |
I \ generalized |
GLC (k) | \ attributed |
| | \ pushdown |
| | simplified processor |
| | APP \ l
v o \ /ILRS74] |
LL(k) | 8 |
L | | l |
S—attr L~attr PO-attr absolutely non-
| «LC-attr>| non-circular circular

attributed grammars

Figure 6.1 Attributed grammar specification space

L4

included as special cases of the APP with no degradation of
efficiency. The 1inclusion of subtree retention and a
powerful tree-walk facility for delayed evaluation (modelled
atter the work of Kennedy and Warren [KW76]) allows enhanced
capapilities that now cover all LR (k) non-circular

attributed grammars.

Tne efficiency of the APP is demonstrated in its linear
time and space properties and its ability to keep syntax
trees well pruned. Attributes are evaluated at the earliest

possible point so that they may be used in the remainder of
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a single-pass compilation for parsing decisions, error
recovery and correction, code generation and optimization.
Attributed grammars are a powerful tool for language
specification and with the APP they become a powerful tool
for translator design and automated implementation. There
remain many areas for research in attributed grammar theory
and application. Much experience can be gained in the use
of attributes gJrammars to specify current and new
programming languages. several particular applications

would benefit from further 'study:

1) Investigation of the use of the APP and LC-attributed
grammars coupled with Milton’s attributed parsers
[Mil77].

2) &ne use of LC-attributed grammars in error recovery and
correction. The top-down corrector of Fischer et al
[FMQ77] might be expanded to more general parsing
techniques.

3) Consideration of details for efficient representations
and implementations of code generation and symbol table
specification using attributed grammars.

4) Metnods for producing layers of LC-attributed grammars,
to be parsed and evaluated in separate passes using
transformations similar to those of Schulz [Sch76]. In
this scheme, subtrees would not be retained, nor would

visits be required, but forward references could occur
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and be satisfied on distinct passes. This method might

provide significant improvements in storage reguirements.

The design principles for attributed grammar
specification take into consideration the factors that can
either increase the number of LCAG states or make the plan
algorithm more tedious. A symbol s attribute availabilities
are pest made independent of the symbol's subtree. Further,
plan construction is vastly simplified by knowledge of an
offspring attribute evaluation ordering that is consistent
for each instance of a production. The subclass of
pO-attributed grammars is a usable result following these
principles.

An important feature of this model for single—pass
compilation is its natural correspondence to common compiler
designs. many of the features and operations are modelled
after current translation techniques, which makes the model
easy to comprenend and compare to existing compilers. It
provides an enhanced formalism in which to describe existing
methodology, encompassing ideas such as semantic stacks,
semantic routines, forward references, and environments.
Finally, it allows the development of automation technigues
which free the language designer from many tedious
implementation details and allow him to concentrate on

formal language specification at high levels.
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