APPLICATION OF ABSTRACT DATA TYPES
TO THE IMPLEMENTATION OF
DATA BASE MANAGEMENT SYSTEMS

by

A. J. Baroody
and
David J. DeWitt

Computer Sciences Technical Report #307
October 1977

APPLICATION OF ABSTRACT DATA TYPES
TO THE IMPLEMENTATION OF
DATA BASE MANAGEMENT SYSTEMS

by
A. J. Baroody
and

David J. DeWitt

ABSTRACT

This research describes the use of abstract data types
as a design and implementation tool for data base management
systems. Abstract data types, represented by generic ob=-~
jects and dgeneric procedures, are used to implement a net-
work data base management system. Generic objects are used
to represent the data model, instantiations of the objects
to represent the user's schema and subschema, and generic
procedures to implement the data manipulation language
verbs.

Traditional database management system design ap-
proaches are described in which run~time interpretation of
the schema and subschema is employed to preserve data in-
dependence. Application of abstract data types to the
design of a data base management system permits the elimina-
tion of the time-consuming run~time interpretation without
suffering any loss of data independence. Data abstractions
which represent the logical structure of the database are
bound at compile-~time to the user's program. The data mani-
pulation language verbs included in the user's source pro-
gram are implemented as parameterized calls to the pro-
cedures bound to those abstract data types which are used to

represent the logical structure of the database.

Application Of Abstract Data Types
To The Implementation of
Data Base Management Systems

A.J. Baroody
and
David J. DeWitt

1.0 INTRODUCTION

Research in programming methodology and programming
languages is an active area of computer science. A number of
developments in this area are relevant to the design of database
management systems. One of these is the development of tools to
support abstraction,

Three major abstractions which are supported by high-level
languages are procedural abstractions, data abstractions, and
control abstractions [Hoar72] [Lisk77]. Procedural abstraction
is supported in almost all programming languages, for example,
the FORTRAN SUBROUTINE and the ALGOL PROCEDURE [Naur63]. Data
abstractions are supported in terms of aggregate objects such as
records in PASCAL [Jens75]. Support for control abstractions is
relatively new and is provided in terms of constructs such as the
CLU iterator [Lisk77].

An important extension of data abstractions is the capabili-
ty to bind procedures and data abstractions together in a shared
environment to create abstract data types. Languages that sup-
port user definition of abstract data types include the class of
SIMULA 67 [Dahl78]1, the cluster in CLU [Lisk77], the form in AL~
PHARD [Shaw77], and modules in EUCLID [Lamp77], MODULA [Wirt77],

and MESA [Gesc77]. All of these language constructs provide the

capability to encapsulate an environment consisting of data
structures and procedures which access these data structures.

The external view of an abstract data type is a description
of a system component which does not specify all the details of
its implementation, but gives a global view of 1its properties
through the operations which are available as the procedures of
the abstract data type. Binding together data structures with
procedures thus allows extension of languages with the definition
of new types which are characterized not by the implementation of
the data structures, but by the operations that are performed on
them.

Hammer [Hamm76] describes the application of data abstrac-
tion to enhance the data independence of data bases by exploiting
the behavioral view of the semantics of the data. He also pro-
poses the use of abstract data types to map the external schema
onto the conceptual schema [ANSI75]. gmith and Smith [Smit77],
based on Hoare's discriminated wunion structure [Hoar72], have
formalized the concept of a generic object as a primitive for
describing models of the real world. Associated with each in-
stance of a generic object is a set of invariant properties which
must be satisfied by the data in the data base. Gries [Grie77]
has defined the concept of a generic procedure to be a "procedure
operating on a parameter of any data type for which cetain basic
operations have been defined."

OQur research uses generic objects to represent the data
model, instantiations of the objects to represent the user's
schema and subschema, and generic procedures to implement the

data manipulaton language (DML) verbs. We are investigating the

application of abstract data types, represented by generic ob-
jects and generic procedures, to the implementation of network
data base management systems. We foresee two major advantages of
this approach. First, by using abstract data types to structure
the design of a data base management system (DBMS), the resulting
software should be more reliable [ICRS75] [KRost76] [Lind76]
[LDRS77]. However, the significant advantage of our approach is
a potentially dramatic improvement in the performance of a DBMS
which is implemented using abstract data types. This is possible
because application of abstract data types to a DBMS permits the
elimination of the time~consuming run-time interpretation of the
schema and subschema. Instead, data abstractions which represent
the logical structure of the data base are bound at compile time
to the user's program. In addition, the data manipulation
language (DML) verbs included in the user's source program are
implemented by parameterized calls to the procedures bound to the
abstract data types which were used to represent the logical
structure of the data base. 1In this way we can eliminate run-
time interpretation of the schema and subschema without suffering
any loss of data independence.

In Section 2.0, we will describe the traditional techniques
which have been used to implement network data base management
systems. Then, in Section 3.0, we present a description of the
use of abstract data types as a design and implementation tool
for data base management systems. Section 4.0 contains a discus-

sion of our future research plans.

2.0 TRADITIONAL IMPLEMENTATION TECHNIQUES

Two alternative implementation strategies of a network or
CODASYL [CODA71,73] DBMS are possible [Wied77]. The first is to
encode the schema and subschema into an internal form, referred
to as the object schema and the object subschema. Using the
record types and set types referenced in a DML query, the object
schema and object subschema are accessed to retrieve the record
type and set type descriptors. These descriptors are then inter-
preted to perform the DML command. The advantage of this ap-~
proach is the high degree of flexibility provided by interpreta-
tion. The disadvantage is the execution time required to access
the object schema and the object subschema and to interpret them.

The alternative approach is to compile the user DML commands
into a directly executable form. The claimed disadvantages of
this approach are its lack of data independence and the necessity
to recompile all user programs for any change to the schema.

The traditional advantages of compilation are increased exe-
cution efficiency and the facility to utilize multiple program-
ming languages and library routines. An apparent advantage in
the DBMS application 1is that no explicit space is required for
the object schema and the object subschema. This advantage 1is
perhaps illusory, since in a compiled approach, the information
from the schema is still present, but is now distributed in the
code, rather than being isolated into an encoded representation.
However, the generated code is optimized for space since it only
contains procedures explicitly referenced in the schema.

The major disadvantages of compiling the schema are in the

area of programming language support for database management. The
first disadvantage is the necessity to recompile all programs
which access the database structures whenever the schema is modi-
fied. It is also more difficult to isolate the schema from user
programs and thus it is more difficult to guarantee that user
programs are not dependent upon the physical structure of the da-
tabase. Coupled with these two problems is the fact that few
programming languages have the capability to define structures as
complex as those that exist within a DBMS.

By contrast, translating the schema and subschema into an
object schema and an object subschema offers a number of advan-
tages. The first of these is that data-oriented modifications to
the schema do not require programs utilizing the database to be
recompiled. However, this advantage is not as significant as it
first seems. Modifications to the schema, which reflect changes
in the logical structure of the database, will, in general,
necessitate restructuring the database. Control of concurrent
access to the database is also easier since information about
each process accessing the database is available in an interpre-
tive environment.

The CODASYL verbs represent an example of generic procedures
since the type of each parameter is a generic "record" or "set".
User calls to these procedures specify actual parameters which
are the names of user-~defined record types or set types. Since in
general programming languages do not support generic procedures,
these procedures are implemented by accessing the object schema
and the object subschema to supplement the information provided

by the actual paramenters.

The interpretive approach has some significant disadvan-
tages, however. 1Interpretation will require increased processing
time to interpret the object schema and the object subschema. It
the object schema and subschema are stored on secondary storage
to facilitate their being shared by all programs accessing the
database, then increased I/0 cost will be incurred in addition to
the increased processing cost. Coupled with the use of generic
procedures is the DBMS environment which emphasizes concurrency
and real~time response. Few programming methodologies support
compile~time analysis and debugging of such programs.
Execution~time debugging in such an environment is very diffi~

cult.

3.0 DBMS IMPLEMENTATION USING ABSTRACT DATA TYPES

3.1 Introduction

As shown in Figure 3.1, there are four components to a data
base management system which is implemented using abstract data
types. The collection of ABSTRACT OBJECTS forms the base of this
approach and is comprised of three abstract data types: Mass
Storage Record, User Work Area (UWA) Record, and UWA Set. Each
of these is composed of a collection of attributes which can be
divided into data attributes and procedure attributes. The Data

Manipulation Language (DML) verbs (e.g. FIND, GET, STORE, etc.)

are a collection generic procedures [Grie77] which are defined
completely in terms of the attribute procedures defined in the
three abstract data types. The abstract object instantiations
supplement the generic information provided with the actual
parameters in calls to the DML verbs (see Section 3.5). The
Schema is the first component of Figure 3.1 which is data base
dependent. The compiled schema consists of instantiations of the
ABSTRACT OBJECTS corresponding to the record and set types de -~
fined by the Data Base Administrator as the logical structure of
the data base. The SUBSCHEMA provides a means of restricting and
reformatting the user's view of the structure of the data base he
is accessing. Each of these four components will be described in

detail in Sections 3.3 to 3.6.

? ABSTRACT OBJECTS
data base
independent
DML VERBS
SCHEMA
data base
dependent ‘V
SUBSCHEMA
user interface

DML PROGRAM

Figure 3.1

The major features which must be supported by such a com~

piled schema include:

-10-

~ Representation of the complex objects within the data-
base

~ Sharing the schema and the subschema among user pro-
grams

~ Controlling access to the schema through the subschema

~ Controlling concurrent access to the database

-~ Providing facilities for protection, security, and

recovery.

3.2 An Example Data Base

Throughout this section we will use the SUPPLIER~PARTS data
base as an example to illustrate its representation when the DBMS
is constructed using abstract data types. The logical structure
of this data base is shown in Figure 3.2. There are three record
types: SUPPLIER, PART, and SP. There are two set types: SUp~

PLIES and SUPPLIED-BY.

SUPPLIER PART
S#|SNAME| CITY| STATUS P# | PNAME| WEIGHT| COLOR
SUPPLIES SUPPLIED-BY
SP
QTY

Figure 3.2

-11-

3.3 The ABSTRACT OBJECTS

The collection of ABSTRACT OBJECTS forms the foundation of
our approach to the implementation of a data base management sys-—
tem. This collection consists of three abstract data types:

Mass Storage Record, UWA Record, and UWA Set.

3.3.1 Mass Storage Record Abstract Data Type

The Mass Storage Record (Figure 3.3) represents a template
for record instances in mass storage. The data attributes of
this abstract data type are:

1. Record Type Information - this field is used to tag each
record instance in the data base with a type descriptor so
that run-time checking can be performed.

2. Data Items ~ fields which contain the data in a record oc-
currence. An instantiation of the Mass Storage Record for
the SUPPLIER record type in the SUPPLIER~PARTS data base
would contain four data items: S#, SNAME, CITY, and STATUS.

3. Owner Subabstraction -~ this component of the Mass Storage
Record is used to describe the set types which are owned by
this record type. The data attributes of the Owner
Subabstraction are a FIRST pointer field and a LAST pointer
field.

A SUPPLIER record type instantiation of a Mass Storage

Record would contain one instance of the Owner Subabstrac-

tion since the SUPPLIER record is the owner of only one set

type ~ the SUPPLIES set. The FIRST pointer field of an oc-

currence of the SUPPLIER record type in the data base, would

butes

OWNER
SUBAB

-12-

contain the secondary storage address (a data base key) of
the first SP member record occurrence in its SUPPLIER set
occurrence.

A SP record type instantiation of the Mass Storage

Record abstract data type would not contain any instances of
the Owner Substraction.
Member Subabstraction - this component of the Mass Storage
Record abstract data type is used to describe in which set
types the record participates as a member. The data attri-
butes of the Member Subabstraction are PRIOR, NEXT, and OWN~
ER pointer fields.

A SP record type instantiation of a Mass Storage Record
would contain two instances of the Member Subabstraction
since the SP record type is a member of two set types. The
PRIOR, NEXT, and OWNER fields of a SP record occurrence in
the data base are mass storage addresses of the prior, next,
and owner record occurrences for each set occurrence in

which the record occurrence participates.

The Mass Storage Record does not have any procedure attri-

MASS STORAGE
RECORD

{RECORD TYPE CODE
DATA ITEMS

MEMBER
STRACTION SUBABSTRACTION

FIRST
POINT

LAST PRIOR| NEXT OWNER
ER | POINTER POINTER |POINTER| POINTER

Figure 3.3

-13-

UWA RECORD

DATA ITEMS
CURRENT
NUMSETSOWNED
NUMSETSMEMBER
UWA SET INSTANCE POINTERS
LOCATE PROCEDURE
ALLOCATE PROCEDURE
STORE PROCEDURE
LOAD PROCEDURE

Figure 3.4

3.3.2 UWA Record Abstract Data Type

the

The UWA Record abstract data type (Figure 3.4) represents

template of a record type in the User Work Area. 1Its data

attributes are:

1.

type

Data Items ~ the fields which contain the data in a record
occurrence.

Current - current of record type

UWA Set Instance Pointers - a pointer to all UWA Set instan-
tiations to which the record type instantiation is an owner
or member. A SP Record instantiation of the UWA record
would contain two instances of the UWA Set Pointer attribute
-~ one for the SUPPLIES set type and one for the SUPPLIED~BY
set type. NUMSETSMEMBER is the number of sets in which the
record type participates as a member. NUMSETSOWNED is the
number of sets in which the record type participates as an
owner.

The procedure attributes of the UWA Record abstract data

are:

-14-

LOCATE Procedure ~ this procedure is responsible for locat-
ing a record instance in mass storage and making it current
of record and current of all sets in which it participates.
It is a VIRTUAL procedure attribute. For example, assume
that the LOCATION MODE of the SUPPLIER record is CALC
(hashed) on SNAME. Then, the LOCATE procedure of the SUP-
PLIER record type instantiation of the UWA Record will be a
procedure which locates the desired SUPPLIER record oc-—
currence by hashing on the SNAME value in the UWA supplier
record instance.

ALLOCATE Procedure - This VIRTUAL procedure allocates a new
mass storage record for the record type according to the
record type instantiation of the corresponding MASS Storage
Record utilizing the procedure specified in the schema.

LOAD (STORE) Procedure -~ This VIRTUAL procedure is used to
load (store) the items in a user work area record occurrence
from (to) mass storage after the mass storage record oc=-

currence is located (allocated).

3.3.3 UWA Set Abstract Data Type

The UWA Set abstract data type (Figure 3.5) is used as a template

for the set types in a data base. 1Its data attributes are:

1.
2.
3.

4.

Set Type Information - for run time checking of Set types.
Current - current of set type
OWNER UWA Record Pointer

MEMBER UWA Record Pointer

The procedure attributes of the UWA Set abstract data type are:

1.

INSERT - a VIRTUAL procedure to insert a new member record

-15-

occurrence into the set using the SET ORDER clause from the
schema.

2. LOCATE -~ a VIRTUAL procedure to locate an occurrence of a
set based on the SET OCCURRENCE SELECTION clause of the
schema.

3. REMOVE - a VIRTUAL procedure to remove a specific member
record occurrence from the set occurrence.

4. REORDER - a VIRTUAL procedure to reorder member record ocC-—
currences in a set occurrence based on a key specified in

the SUBSCHEMA,

UWA SET

SET TYPE INFORMATION
CURRENT
OWNER UWA RECORD POINTER
MEMBER UWA RECORD POINTER
INSERT PROCEDURE
LOCATE PROCEDURE
REMOVE PROCEDURE
REORDER PROCEDURE

Figure 3.5

3.3.4 Discussion of VIRTUAL Procedure Attributes

Every procedure attribute of the UWA Record and UWA Set
abstract data types was declared to be VIRTUAL. When a UWA
Record (or Set) abstract data type is instantiated to form, for
example, a SUPPLIER record type, a customized procedure for each
VIRTUAL procedure will be generated based on the SCHEMA defini~
tion of that record (or set) type. Furthermore, by using en-

vironment concatenation, each VIRTUAL procedure can be redefined

~-16~-

based on the subschema through which a user program accesses the
data base. (See Section 3.6)

However, as we will demonstrate in Section 3.5, all DML
verbs (e.g. FIND, GET, STORE, etc.) are generic procedures writ-
ten solely in terms of the VIRTUAL procedures defined in the UWA
Record and SET abstract data types thus insuring no loss of data

independence.
3.4 An Example

Figure 3.6 represents the SUPPLIER-PARTS database in terms
of UWA Records and Sets. For clarity not all of the currency

pointers have been drawn in.
3.5 DML Verbs

The DML verbs are generic procedures. For example, the FIND
verb is a procedure with only one actual parameter, a mass
storage record type. Each record (set) declared in the schema
provides a detailed description of a record's (set's) charac-
teristics. All of these characteristics must be known to execute
the verb. The traditional implementation techniques uses the
generic information supplied by the actual parameters and the
contents of the encoded schema and subschema (obtained through
interpretation) to perform the requested action. When a DBMS is
implemented wusing abstract data types this information is bound
to instantions of the UWA Record and UWA Set by environmental
concatenation of the schema and the subschema to the user's pro-
gram. Thus all the additional information reguired by the DML

verbs is bound at compile time and no run time interpretation is

Database PART

> SPn

SUPPLIER

UWA RECORD PART

UWA SET SUPPLIEDBY

UWA RECORD SP CURRENT
MEMBER

OWNER

CURRENT
MEMBERQF
N

UWA RECORD SUPPLIER UWA SET SUPPLIES

~-CURRENT
OWNEROF-

CURRENT
~MEMBER

f:::::::::::::::::::::::::;~OWNER

FIGURE 3.6

-17-

reguired.

Figures 3.7 and 3.8 contain, respectively, implementations
of the DML verbs FETCH and STORE. 1In both of these examples
RECPTR points to an instantiation of the UWA RECORD abstract data

type (ie. a record type).

DML FETCH VERB

FETCH (RECPTR) ; REF(UWA_RECORD);
BEGIN INTEGER I
/* use the schema location mode to find the mass storage record*/

/* copy mass storage fields into UWA record fields */

/* Make record occurrence current of record type */

RECPTR.CURRENT :~ RECPTR.LOCATE;

/* Load all data items into the UWA */

RECPTR.LOAD (RECPTR.CURRENT)

/* Make the record occurrence the current of */

/* set in all sets in which it participates */

FOR I=1 STEP 1 UNTIL RECPTR.NUMSETSOWNED DO
RECPTR.OWNER(I).CURRENT :~ RECPTR.CURRENT

FOR I=1 STEP 1 UNTIL RECPTR.NUMSETSMEMBER DO
RECPTR.MEMBER (I).CURRENT :~ RECPTR.CURRENT

END;

Figure 3.7

-18-

DML STORE VERB

STORE (RECPTR) ; REF (UWA RECORD) RECPTR;

BEGIN INTEGER J; REF (MASS STORAGE_ RECORD) MSREC,OREC;

/* generate a new mass storage record using the schema
MSREC :~ RECPTR.ALLOCATE;
RECPTR.STORE (MSREC) ;

RECPTR.CURRENT :~ MSREC;

information */

/* make the mass storage record the current of set for */

/* each schema set it owns */

FOR J := 1 STEP 1 UNTIL RECPTR.NUMSETSOWNED DO

RECPTR.OWNER (J) . CURRENT :~ MSREC;

/* 1Insert the mass storage record into all sets in which */

/* it is a member.

FOR J := 1 STEP 1 UNTIL RECPTR.NUMSETSMEMBER DO
BEGIN
OREC ¢~ RECPTR.MEMBER(J) .LOCATE;
RECPTR.MEMBER (J) . INSERT (MSREC,OREC) ;
RECPTR.MEMBER (J) . CURRENT :~ MSREC;
END;

END;

*/

-19-

Figure 3.8

3.6 The SCHEMA and SUBSCHEMA

One of the most crucial concepts reguired to support the im-
plementation of the schema and the subschema is environment con-—
trol. Two very different environment control capabilities are
necessary to support the schema and the subschema. The first of
these concepts is environment concatenation. The CODASYL DBTG
Report describes compilation of the schema, the subschema, and
the DML program as independent separate steps. 1In an interpreta-
tive approach the encoded tables produced by previous steps are
available at each subsecuent step and are utilized by the DBMS to
interpret the wuser's DML program. In a compiled approach, each
step can be regarded as compilation of a separate module. Each
step in this compilation represents an enhancement of the user
environment. Technigues of separate compilation allow a compiler
to encode the environment of a module and pass it to a module
compiled later. To make both the schema and the subschema en-
vironments available to the user DML program, the programming
language used to implement the DBMS must support the ability to
concatenate the environment defined by the schema with the en-
vironment defined by the subschema. This concatenated environment
is then available as a "global" environment to the DML program.
However support for the schema and subschema reaguires another
level of environment control. The subschema must support the
following abilities:

o0 Removal of one or more areas declared in the schema

-20-

o Removal of one of more set types declared 1in the

schema

0 Removal of one or more record types declared in the

schema

o Removal of one or more record items declared in the

schema

o Renaming of an area, set type, record type or data

item declared in the schema

o Associate a new data type with a data item declared

in the schema

0 Associate a new set occurrence selection clause with

a set type declared in the schema

o Allow reordering of the data items within a record

type declared in the schema.

The major programming language concepts needed to support
the relationship between the schema and subschema are binding and
environment or name scope control. Binding is the establishment
of a value to be associated with an identifier. In the case of
the schema or the subschema, binding a record type means associ-
ating the entire declaration of a record type with the identifier
for the record type supplied in the schema or subschema.

ALGOL employs block-~stuctured binding. It allows an iden-
tifier to be declared in more than one name scope. However,
usage of an identifier is at all times unambiguous as the inner-
most accessable definition is always chosen. Block structure
with the concept of parallel inner blocks is very close to the
hierarchical structure of the schema and multiple subschemas.

The ability to concatenate name scopes can be examined very

-21-

readily in the context of ALGOL block structure conventions. The
schema represents the outermost block and the subschemas
represent a collection of parallel nested blocks. Name scope
concatenation allows the environment of the outermost block, the
schema, to be concatenated with the environment defined by each
of the subschemas. This combined environment, with compiler sup-
port for separate compilation, can be made available as the en-
viroment for the DML program. Thus the DML programs sharing the
subschema represent another level of blocks which are nested
within the subschemas so that several user programs can share the
same schema and subschema.

Examining the function of the subschema, what programming
language features are required? The ability to define a new
identifier to represent an area, set type, or record type re-
guires that the language support the ability to define new data
types, such as records. Given this capability, the subschema can
declare a new identifier of the desired area, record, or set
type. Code is then associated with the subschema to initialize
this new identifier to have the same value as the area, set type,
or record type declared in the schema.

The remaining subschema functions are more difficult to sup-
port. Eliminating wvisiblility of identifiers in the subschema
can be implemented using several approaches. The first approach
is an extension of the concept of environment concatenation. The
basic function of environment concatenation is in strong conflict
with the desire to restrict access to an identifier. The ALGOL
convention makes all identifiers visible in the outer block visi-

ble within an inner block. The problem in controlling access

-22-

rights is to provide a means to restrict at the subschema level
those identifiers which are declared in the schema. To accom-
plish this it must be possible to declare at the subschema level
that an identifier declared in the schema is HIDDEN and is not
accessible to user DML programs using the subschema.

An alternative approach is based on the concept of EXPORTED
and IMPORTED declarations which are wused in EUCLID [Lamp77],
MODULA [Wirt77], and TELOS [Trav77]. The subschema and schema
can be implemented in the following manner. All identifiers in
the schema are declared as EXPORTED, e.g. available externally.
The subschema then declares that only the identifiers explicitly
referenced in the subschema are IMPORTED, or available to the DML
environment. Thus all identifiers from the schema are available
and may be referenced by a subschema. Only those identifiers ex-
plicitly referenced within a subschema are available via the
subschema. The major difficulty with this approach is the prob-
lem of controlling the DML program so that it does not attempt to
declare any schema identifiers as’ IMPORTED and thus bypass the
subschema.

Redefiniton of data types for items within a record type can
be handled automatically if equivalences can be defined which re-
quire coercions, or type conversions, to be performed automati-
cally when the egquivalenced identifier is referenced. If such
coercions are not automatically generated by the compiler, an al-
ternative approach is available. The most general form of this
approach is related to languages which allow encapsulation of
data structures and procedures. In such a language an eguivalent

type declaration can provide an identifier with a new data type

-23-

value and a coercion procedure. Such redefined attributes are
actually virtual since they are computed from the data item value
occurrence using a coercion from the type declared in the schema.
The problem with this general solution is the problem of assign-
ment to the virtual identifier. The reference to the virtual at-
tribute is actually a function call, and most programming
languages do not provide syntax which supports assignment to such
a function. This problem can be solved by encapsulating two
coercion procedures one for references and the other for assign-
ments.

The redefinition of the set occurrence selection clause is a
more complex problem. It allows the subschema to rebind part of
the schema set type declaration. A techniqgue to provide this
ability is based on VIRTUAL procedures. The programming language
used must allow certain tokens to be declared as VIRTUAL names.
Associated with the declaration of the VIRTUAL name is a declara-
tion of the set occurrence selection clause which is associated
with the set type declaration in the schema. Subsequently this
declaration of the set occurrence selection clause may be re-
placed by a declaration in the subschema which is bound to the
VIRTUAL name. If no redefinition occurs in the subschema, the
schema version is used.

CLU and ALPHARD provide a more elegant solution to this
problem, Both languages allow the definition of abstract data
types to be separated from implementations of such an object.
Thus, a set type could be declared as an abstract data type with
one implementation of the set occurrence selection clause provid-

ed by the schema and another possibly provided by the subschema.

-24-

3.7 Concurrency

A major source of complexity in a DBMS is the concurrent ex-
ecution of user programs which modify the database. Substantial
research has been done in this area utilizing an abstract data
type known as a monitor [Brin75] [Hoar74] to control resource al-
location. Monitors bind information about the state of the
shared resource to procedures which implement semaphores in order
to schedule processes which regquire mutually exclusive use of the
resource.

Monitors can be employed in a compiled schema to manage con-
currency. Associated with each record type in the schema is a
monitor which implements procedures to lock and to unlock record
occurrences within the database. This technique requires that
each record occurrence have a unique identifier and that each
user program have a unique idenﬁifier know to the DBMS. The
structures local to the monitor are a 1list of all record oc-
currences which are currently locked and a gueue of user programs
which are waiting on a locked record. All DML verbs which modify
a record occurrence incorporate calls to the monitor procedures
to lock and unlock the record type.

As described by Brinch Hansen monitors do not completely
solve the problem of concurrency control. Associated with the
schema must be some form of deadlock detection or avoidance algo-

rithm.

-25-

4.9 FUTURE RESEARCH PLANS

There are several areas which we plan to investigate in the
future. They include:
~ Complete an implementation of our proposed DBMS archi-
tecture using the programming language SIMULA
~ Either through analytic modelling or simulation attempt
to measure the performance of a DBMS implemented using
abstract data types versus an interpreted schema
~ Expand the analysis of programming languages and their
suitability to be used to compile the schema (e.g. ex-
amine CLU and ALPHARD)
~ Use the concepts of abstract data types to analyze their
suitability to implement a system designed according to
the ANSI/SPARC architecture [ANSI75].
~ Develop a more detailed solution to the concurrency

problem

[ANSI75]

[Brin75]

[CODAT1]

[CODA73]

[Dahl70]

[GescT77]

[Grie77]

[Hamm76]

[Hoar72]

[Hoar74]

[ICRS75]

[Jens75]

[Kost76]

[Lamp77]

-26-

REFERENCES

ANSI/X3/SPARC Interim report 75-§2~08, FDT BULLETIN OF
ACM SIGMOD, Volume 7, Number 2, (February 1975).

Brinch Hansen, P. The purpose of concurrent PASCAL.
PROC. OF THE TIEEE INTER. CONF. ON RELIABLE SOFTWARE.
April 21-23, 1975., pp 305-309.

CODASYL DATA BASE TASK GROUP REPORT. ACM, New York.
1971.
CODASYL Data Description Language Committee. DATA

DESCRIPTION LANGUAGE JOURANL OF DEVELOPMENT, Document
C13.6/2:13, U.S. Government Printing Office, Washing-
ton, D.C. 1973.

Dahl, 0. J. , Myhrharg, B., and Nygaard, K. THE SIMULA
67 COMMON BASE LANGUAGE. Pub. S-22, Norwegian Comput-
ing Center., Oslo, 19748.

Geschke, C.M., Morris, J. H. , and Satterthwaite, E. H.
Early experience with MESA. COMM. ACM. 20,8 (August
1977). pp. 548-553.

Gries, D. , and Gehani, N. Some ideas on data types in
high-level languages. COMM. ACM 20,6 (June 1977), pp.
414-420.

Hammer, M. Data abstractions for data bases. PROC. OF
THE SIGPLAN/SIGMOD CONF. ON DATA: ABSTRACTION, DEFINI-
TION, AND STRUCTURE, March 22-~24, 1976. pp. 58~59,

Hoare, C. A. R. Notes on data structuring. In STRUC-
TURE PROGRAMMING by O. J. Dahl, E. W. Dijkstra, and
C. A. R. Hoare. Academic Press, New York. 1972.

Hoare, C. A. R. Monitors: an operating system structur-
ing concept. coMM. ACM 17,18 (October 1974), ©pp
549~557.

PROC. OF THE IEEE INTERNATIONAL CONFERENCE ON RElIABILE
SOFTWARE. April 21-23, 1975.

Jensen, J. and Wirth, N. PASCAL USER MANUAL AND RE~
PORT. Springer~Verlag, New York. 1975.

Koster, C. H. A. Visibility and types. PROC. OF THE
SIGPLAN/SIGMOD CONF. ON DATA: ABSTRACTION, DEFINITION,
AND STRUCTURE, March 22~24, 1976. pp. 179~190.

Lampson, B. W. , Horning, J. J. , London, R. L. ,
Mitchell, J. G.. , and Popek, G. L. Report on the pro-

[LDRS77]

[Lind76]

[Lisk77]

[Naur63]

[Shaw77]

[Smit77]

[Trav77]

[Wied77]

[Wirt77]

-27-

gramming language EUCLID. SIGPLAN NOTICES, Volume 12,
Number 2 (February 1977).

PROC. OF THE ACM CONFERENCE ON LANGUAGE DESIGN FOR RE~
LIABLE SOFTWARE, March 28-30, 1977.

Linden, T. A. The use of abstract data types to simpli-
fy program modifications. PROC. OF SIGPLAN/SIGMOD
CONF. ON DATA: ABSTRACTION, DEFINITION, AND STRUCTURE,
March 22-24, 1976. pp. 12~23.

Liskov, B., Snyder,A. Atkinson, R. and Schaffert, C.
Abstraction mechanisms in CLU. COMM. ACM. 20,8 (August
1977). pp 564-~576.

Naur, P. (ed.). Revised report on the algorithmic
language ALGOL 6@. COMM. ACM, 6,1 (January 1963) pp.
1-17.

Shaw, M., Wulf, W. A. , and London, R. L. Abstraction
and verification in ALPHARD: defining and specifying
iterators and generators. COMM. ACM. 26,8 (August
1977). pp 553~564.

Smith, J. M., and Smith, D. C. P. Database abstrac~
tions: aggregation and generalization. ACM Transac-
tions on Database Systems Vol. 2, No. 2, (June 1977) pp
195~133.

Travis, L., Honda, M., LeBlanc, R., and Zeigler, 8S.
Design rationale for TELOS, a PASCAL-based AI language.
PROC. SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND PROGRAM~-
MING LANGUAGES. August 15-17, 1977. pp. 67-76.

Wiederhold, J. DATABASE DESIGN. McGraw~Hill Book Com~
pany. New York. 1977.

Wirth, N. Toward a disipline of real-time programming.
COMM. ACM. 20,8 (August 1977). opp. 577-583.

