PROGRAM INVERSIONS TO REORDER CODE

by
Raphael A. Finkel

Computer Sciences Technical Report #293

March 1977

ABSTRACT

Different languages provide control structures with different
kinds of flexibility. For example, CLU iterators and SIMULA classes
allow control to be suspended in the middle, to be resumed later.
Other languages, like ALPHARD and PASCAL, do not have such a facility.
A technique called inversion is presented in some generality. It
brings statements inside loops to positions outside those loops. It
is often possible to invert code that employs one set of control struc-
tures to create code that does not make use of those features. Although
inversion works when the termination test is not the first step of the
loop, statements between the Toop entry and the termination test cannot
be brought outside the loop. Two examples are given to demonstrate in-
version: Two programs, in CLU and ALPHARD, that generate all binary
trees on n nodes, and two SIMULA programs that generate all partitions

of the integer n.

Key Words and Phrases: Tloops, control structures, program transformation,

loop inversion, program inversion, iteration.

CR Categories: 4.12, 4.22, 4.29, 5.24

PROGRAM INVERSIONS TO REORDER CODE
INTRODUCTION

Several new programming languages generalize the FOR loop of
ALGOL 1in such a way that the body of the iteration is executed for
all values that a generator might produce. In this way, one can de-
fine ways to iterate over objects of user-defined types. In particu-
lar, ALPHARD [London 76, Shaw 76a, 76b, Wulf 76] allows a construc-
tion called a generator, and CLU [Liskov 77] has a similar construct
called an iterator. These two forms share a common goal: to allow
separation between the abstraction that supplies values to a Toop and
the body that uses those values.

These two methods of producing values for the loop variable differ
in a fundamental way, as will be shown below. This paper will show
that in most cases, CLU iterators can be transformed by a mechanical
process into ALPHARD generators. The resulting code Tooks quite dif-
ferent, even though it represents the same algorithm. Designers of
programming languages realize that the constructs they provide in-
fluence the quality of the algorithms that are used and the ease both
of programming and of understanding the code. The results shown in this
paper indicate that in most cases, one can program iteration in either
a CLU fashion or an ALPHARD fashion, and then mechanically translate

the result into whatever language is actually available.

THE ALPHARD GENERATOR AND CLU ITERATOR

The ALPHARD generator is written as a "form" (the ALPHARD term
for module) that extends some type, either programmer-defined or
basic. This form has the following two functions: &init, which sets
up the first value in the result cell, and returns the boolean value
TRUE iff it succeeds, and &next, which uses the current value of the
result cell and any other local data to form the next value; it also
returns TRUE iff it succeeds. The Toops that the user actually writes,
however, do not explicitly use these two functions. A loop to sum the
numbers from 1 to 10 might Took as follows:

T sum := 0;

2 FOR i:upto(1,10) DO Figure 1

3 sum := sum + i

This user-oriented loop is equivalent to the following code that ex-
plicitly calls &init and &next:

1 (LOCAL i:upto(1,10), ok: boolean;

2 ok := 1.&init;

3 WHILE ok DO Figure 2

4 (sum := sum + i; ok := 1i.&next)

5

The procedures &init and &next can be written quite readily:

1 FORM upto (lower, upper: integer) EXTENDS k: integer =

2 BEGINFORM

3 SPECIFICATIONS ...

4 FUNCTIONS &init(u:upto) RETURNS (b:boolean), Figure 3
5 &next(u:upto) RETURNS (b:boolean);

) IMPLEMENTATION

7 BODY &init = (u.k := u.lower; b := u.lower < u.upper);
8 BODY &next = (u.k := u.k + 13 b := u.k < u.upper);

9 ENDFORM

The form given above holds only part of the information required of
a form; for a complete specification, see [Shaw 76, p. 11].
In CLU, the same Toop might be written as follows:

1 sum := 0;
2 FOR i:INT IN fromto(1,10) DO Figure 4
3 sum := sum + 1;

Although the iterator has a different name (and in practice has one

extra argument, the step size), this code looks very similar to Figure 1

for ALPHARD. The jterator fromto Jlooks Tike this:

1 fromto = ITER (Tower, upper: INT) YIELDS (INT);

2 k:INT := lower;

3 WHILE k < upper DO Figure 5
4 YIELD(k); k := k + 1

5 END k;

6 END fromto;

The iterator signals that it has no more values by falling to the end

of its code; when this happens, the loop that depends on it terminates.

As Tong as there are more values to come, the iterator has a control
point somewhere in the middle of its code; it is in a simple coroutine
relationship to the loop that is employing it. Thus we see the major
difference between CLU iterators and ALPHARD generators: the latter
explicitly return Boolean values that indicate when the loop ought to
terminate, and the &next procedure must begin anew for each value to
be returned. We will show that most CLU-type iterators can be trans-
formed to ALPHARD-type generators. However, we will also argue that
the ALPHARD-Tike solutions are often considerably less clear. Thus,

in a subjective sense, CLU iterators are more expressive.

AN EXAMPLE: GENERATING BINARY TREES

Consider the following problem: Print all distinct binary trees
that have n nodes. This task will require a FOR loop over such
trees; we are interested in how to produce those trees in CLU and
ALPHARD. One algorithm chooses some subset of the nodes to Tie in the
left subtree, according to some arrangement in that tree, one node to
be the root, and the rest of the nodes to inhabit the right subtree in
some arrangement. Such a partitioning produces one tree. To get the
next one, find a different arrangement of the nodes in the right sub-
tree, if possible; the result is certain to be different from the first.
Continue finding new right subtrees until all combinations have been
found. Then, to get the next tree, find the next arrangement on the

left, and reset the right to its initial arrangement. When there are

no more combinations on the left, then put another node in the left
side, taking it from the right side, and continue. The process stops
when there are no more nodes on the right side, and all the arrangements
on the left side have been used up.

To program this algorithm in CLU requires an abstraction called
"tree" with at Teast two operations: ‘"create", which returns an empty
tree, and "build", which takes two trees and returns a new one that has
the two arguments as subtrees. Given these operations, the CLU iterator,

which we will call "bingen", Tooks 1like this:

|

1 bingen = ITER (n: INT) YIELDS tree;
2 IF n = 0 THEN YIELD tree$create() ELSE Figure 6

3 FOR root: INT IN fromto(1,n) DO

4 FOR left: tree IN bingen(root - 1) DO

5 FOR right: tree IN bingen(n - root) DO

6 YIELD tree$build(left,right)

7 END right;

8 END Teft;

9 END root;

10 END if;

11 END bingen;

This recursive iterator is a clear and compact implementation of the
algorithm given above; the reader is urged to trace through the execu-
tion of bingen(3) to be convinced that it works properly. Note that
the YIELD statement falls in the middle of three nested iterations.

In order to use this algorithm in ALPHARD, we must rearrange the code

so that the &next procedure terminates at the point where the iterator

is ready to yield a value. It is not obvious how to accomplish this
rearrangement; we will spend much effort later in formalizing a

method. Figure 7 shows the ALPHARD generator that results.

1 FORM bingen (n: integer) EXTENDS t: tree =

2 BEGINFORM ... Figure 7
3 IMPLEMENTATION

4 BODY &init =

5 (LOCAL okroot, okright, okleft: boolean;

6 root := upto(1l,n); okroot := root.&init;

7 left := bingen(root - 1); okleft := Teft.&init;
8 right := bingen(n - root); okright := right.&init;
9 b := TRUE);

10 BODY &next =

11 IF n =0 THEN b := FALSE ELSE

12 (LOCAL okright: boolean;

13 okright := right.&next;

14 WHILE NOT okright DO

15 (LOCAL okleft;

16 okleft := left.&next;

17 WHILE NOT okleft DO

18 (LOCAL okroot;

19 okroot := root.&next;

20 WHILE NOT okroot DO

21 (b := FALSE; RETURN);

22 left := bingen(root - 1);

23 okleft := left.&init);

24 right := bingen(n - root);

25 okright := right.&init);

26 = treecreate(left,right);

27

TRUE)

After the reader is convinced that the code in figure 7 works, let

us point out a few peculiarities. None of the loops could be made
into a standard ALPHARD FOR loop, because the role of &init and &next
are reversed, and the condition that is tested is the negation of the
usual condition. Furthermore, the loop variable is given a new value
in the middle (which is absolutely forbidden in ALPHARD, and is most
Tikely not syntactically correct in any case). For example, the loop
at lines 16 to 23 "initializes" left by a call to &next, and gets the
"next" value by a call in 1ine 23 to &init. In Tine 22 a new genera-
tor is given to Teft. The condition in line 17 is the negation of
okleft. The ALPHARD code appears to be strangely inverted.

A second peculiarity is the use of RETURN in line 21. This manner
of leaving a procedure is not actually allowed in ALPHARD, nor is our
explicit use of &init and &next, but its function is necessary, since
the code at the end of the CLU iterator now appears in the middle of
the ALPHARD generator. A third point is that the initialization code
is actually a duplicate of some code residing in the &next procedure.
If Tine 21 were changed to this:

(b := FALSE; RETURN:

ENTRY &init; root := upto(l,n); okroot := root.&init),
then the rest of the initialization would take place correctly. Fourth,
although IF conditionals would serve in place of the WHILE constructs
at lines 14, 17, and 20, the WHILE is more general in case &init can

fail, although this occurrence is not possible in this particular appli-

cation. These various connections between the code for the two lan-
guages leads us to seek a formal way to invert nested loops to arrive
at an ALPHARD-1ike representation given a CLU-1ike one. These tech-
niques will prove generally useful for coding in languages that do not
have the limited coroutine facility of CLU. For the sake of this dis-
cussion, we will deal with a simple formalization of the idea of loop,
add new constructs to enter and leave loops, and derive the formal

mechanism we seek.

LOOP_ROTATION

The notation that follows is based on a construct suggested by
0. J. Dahl to perform the "n and a half times" Toop [Knuth 74]. This
construct resembles the ALGOL type of WHILE statement, except that the
test may appear at any one place inside the Toop. We will write the

standard Toop in this form:

1 1oopj: LOOP

2 o

3 ASSURE cond;

4 B, Figure 8
5

REPEAT]oopj;

When the Tloop is entered, statement o (which may actually be many
statements) is executed, and then the Boolean expression cond is
evaluated. If its value is TRUE, then control remains inside the

Toop and continues with statement(s) B . When REPEAT is encountered,

control returns unconditionally to the head of the loop. When the
condition is tested and proves to be FALSE, then control exits from
the loop to whatever statement follows. A Tabel (here 1oopj) may
appear before the word LOOP, and that same Tabel may be used after

the matching REPEAT to make it clear where the matching LOOP is to be
found. One standard use of this LOOP construct is to read a stream of
input and process it until some sentinel is read. In this case, a

in 1ine 2 will read the next data item, the condition in Tine 3 is
that the data are good (anything but the sentinel), and B in Tine 4
will contain code to process the input.

The first generalization that I would Tike to introduce is a dual
of the loop termination property inherent in ASSURE. This construct,
called ENTER, may appear at any place between L.OOP and REPEAT; the
meaning of the Toop is now the same as before, except that the first
statement executed will be the one directly following ENTER. For ex-
ample, if the programmer wishes to write a loop to process input, as
mentioned above, and to him the most essential part of the Toop is the
processing step, then an appropriate way to write the code would be:

scan: LOOP

process input;

ENTER;

read input;

ASSURE not the sentinel;
REPEAT scan;

Figure 9

Sy O AW N~

10

Figure 9 presents a rotated form of Figure 8, with o, B and
cond made explicit. I do not wish to claim that this program segment
js particularly clear; however, we will need the ability to rotate
shortly. As an aside, we might note that unbridled use of ENTER and

ASSURE can turn a straightforward program into one that looks (spe-

ciously) as if it were a loop:

1 LOOP

2 ENTER;

3 some code; Figure 10
4 ASSURE FALSE;

5 REPEAT

Or, even worse:

1 LOOP

2 ASSURE FALSE;

3 ENTER; Figure 11
4 some code;

5 REPEAT

The reason that these examples are opaque is that a loop construct is
being used where it does not belong; the use of ENTER in Figure 11 only
exacerbates an already bad situation. However, let us Tive for the mo-
ment with this peculiarity. In one-level loops, then, ENTER allows us
to rotate any desired statement to a position directly before the final
REPEAT. This facility will eventually allow us to invert CLU iterators
by moving the YIELD statement to the end of the outermost loop, where

it can function as the termination of the ALPHARD &next procedure.

11

Consider next a two-level Toop, as shown in Figure 12. We wish
to move the statement "use(a,b)" to the point directly before the

outermost REPEAT.

1 a := initial _a;

2 1oop]: LOOP

3 ASSURE a < Timit_a;

4 b := initial _b;

5]OOPZ: L.o0oP Figure 12
6 ASSURE b < Timit b;
7 use(a,b);

8 b:=b +1;

9 REPEAT 1oop2;

10 a:=a+l;

11

REPEAT 1oop];
No use of ENTER alone can rotate the "use" statement out of the inner
loop. This situation is due to the weakness of ENTER. Let us extend
ENTER so that it specifies which LOOP is to be entered at that point.
(If no loop is specified, it is to be understood that the ENTER refers
to the nearest surrounding loop.) The exact dual to this extended ENTER
will also be introduced: a Tabeled LEAVE. The meaning of LEAVE is to
unconditionally exit the specified loop (or closest surrounding loop,
if none is specified.) Since ASSURE can also break loops, we will in-
sist that each loop have exactly one means of termination. That is,
each loop must either contain one ASSURE or one LEAVE that can transfer

control to the statement following it.

12

Given these tools, it is now possible to arrange the code of
Figure 12 to place the "use(a,b)" at the end of the outmost loop:

1 a := initial_a;
2]oopzz LOOP
3 b:=b+1;
4 1oop]: LOOP

5 ASSURE b > Timit b;
b a :=a+l;

7 IF a > 1imit _a THEN LEAVE 1oop2;
8 ENTER 1oop2;

9 b := initial_b;

10 REPEAT 1oop];

11 use(a,b);

12 REPEAT 1oop2;

Figure 13

It may take some effort to realize that Figure 13 1is, in fact, correct.
The condition on line 5 is certainly counterintuitive; it will usually
cause 1oop] to be exited immediately. The body of 1oop] is designed to
treat the unusual case that b 1is at the end of its range. Furthermore,
b becomes initialized in line 9, which is executed both at the start
of "loop2 and whenever a is incremented, due to the ENTER at Tline 8.
Also, notice that the code between lines 4 and 10 must be in a loop, not
a conditional like "IF b > Tlimit b THEN ...", since resetting a might
change the value of 1imit b, if the latter is a procedure.

One bothersome aspect of Figure 13 is its nonuniform treatment of

a and b. The termination tests are opposite, and the initializations

13

are in different places. It is actually possible to treat both
variables in a uniform fashion, yielding Figure 14.

1 1oop0: LOOP

2 b:=>b+1;

3 loopzz LOOP

4 ASSURE b > Timit b;

5 a :=a-tl;

6 1oop]: LOOP

7 ASSURE a > Timit_a;
8 LLEAVE 1oop0;

9 ENTER 1oop0; Figure 14
10 a := initial_a;

11 REPEAT]oop];

12 b := initial_b;

13 REPEAT 1oop2;

14 use(a,b);

15 REPEAT 1oop0;

Now both tests are opposite to their state in Figure 12, and the deeper
loops cover successively Tess-frequently encountered situations. Ini-
tialization is handled in lines 10 and 12. Figure 14 represents an inver-
sion of the original program. It is as if the "use(a,b)" were plucked
from its inner loop, causing an inversion of each loop that it passed.

The reader can easily verify that a program with even deeper nesting can

also be inverted to a form similar to that of Figure 14.

LOOP INVERSION

We wish to find a straightforward way to invert a program such as

14

Figure 12 and automatically get Figure 14. In order to present the
answer, we must note that Figure 12 contains only a subset of all
possible loops. In particular, no application of ENTER appears there,
and all ASSUREs fall directly at the beginning of the loops. Nested
Toops of this particular flavor can be readily represented by a flow

chart:

i B

Bs B3

T;

N NN TN
SR SR SRR

Here, the higher loops are nested within the Tower-numbered loops.

1oo

The program begins with ay and ends with BO; an artificial Toop
has been introduced at the beginning to make the symmetry of the
figure apparent. Figure 16 shows two programs that equally describe

the conditions depicted in Figure 15.

15

1 1oop0: LOOP 1 1oopO: LOOP

2 ENTER]oopo; 2 Figure 16
3 g 3 Bgs

4 1oop]: LOOP 4 1oop3: LOOP

5 ENTER loopl; 5 ENTER 1oop3;

6 ASSURE cond]; 6 ASSURE NOT cond3;

7 o 7 Bos

8 1oop2: LOOP 8 1oop2: LOOP

9 ENTER condZ; 9 ENTER 1oop2;

10 ASSURE condz; 10 ASSURE NOT condZ;
11 Gy 11 B];

12 1oop3: LOOP 12 1oop]: LOOP
13 ENTER 1oop2; 13 ENTER 1oop1;
14 ASSURE cond3; 14 ASSURE NOT cond];
15 ags 15 BO;

16 16 LEAVE Toopo;
17 17 ENTER 1oop0;
18 63; 18 a3

19 REPEAT 1oop2; 19 REPEAT 1oop];
20 BZ; 20 2 E

21 REPEAT 1oop2; 21 REPEAT 1oop2;

22 B]; 22 Gos

23 REPEAT 1oop]; 23 REPEAT 1oop3;

24 BO; 24 Ga3

25 LEAVE 1oop0; 25

26 REPEAT 1oop0; 26 REPEAT]oopo;

Figure 16 uses the fullest forms, with all ENTERs explicit.
The only difference between the formal structure on the Teft (the usual
way to represent the program) and the right (the inverted format) is
the presence of ENTER and LEAVE at Tines 2 and 25 on the Teft and lines
16 and 17 on the right. 1In both cases, the first executable statement

is .
%

16

From this example it is possible to derive an algorithm that
will transform programs like that on the left to ones Tike that on
the right. To begin, it is necessary to surround the source code by
LOOP .. REPEAT with an explicit ENTER and LEAVE. Call this Tlevel
1oopo, the outermost loop. In order to distinguish some statement
(here “3) in the innermost loop, so that it will end up at the very
end of the outermost Toop, begin to copy the code from the source
immediately after the distinguished statement (here, at 83). The
special words LOOP, ASSURE, REPEAT and ENTER get special treatment:

"j: LOOP" becomes "REPEAT j;". Continue with the first state-

ment after "ASSURE condj".

“ASSURE condj” becomes "ASSURE NOT condj;”. Continue with the

first statement after "REPEAT j".

"REPEAT j" 1is omitted. Continue with the first statement
after "j: LOOP".

"ENTER j: (which is, by default, immediately after "j: LOOP")
becomes "j: LOOP; ENTER j" (the "ENTER j" is not, strictly
speaking, required). However, the outermost "ENTER" is pre-
served intact. In any case, continue with the first state-
ment after the "ENTER j". "LEAVE" should only appear in the
outermost loop. Leave it intact.

When the distinguished statement (here u3) has been copied, the re-

sult is surrounded by ”1oop0: LOOP ... REPEAT 1oop0;”

These rules may seem arbitrary, but reference to Figure 15 shows that

they work. Let us now relax the constraint that the test in any Toop

be at the point of entry. Consider the flowchart of Figure 17.

%3

Y2
loop O 1\ Toop 1 \L, loop 2 w\ Toop 3
Y

3\

7 R
LO
\4
=
N
_“(D
I—{
Q
~N
\/4

Figure 17

Figure 17 can be best understood as a recursive view of the program
schema in Figure 18, as expanded in Figure 19, which also shows the
inverted form.

LOOP
ENTER; Figure 18
Y
ASSURE cond;
a3
recurse
B3
REPEAT;

00 N Y OB N

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1oop0: LOOP
ENTER 1oopo;
ags
1oop]: L.OOP
ENTER 1oop];
Y1;
ASSURE cond1;
a];
1oop2: L.OOP
ENTER 1oop2;
Y2;
ASSURE condz;
az;
1oop3: LOOP
ENTER 1oop3;
Y33
ASSURE cond3;
ag;
63;
REPEAT 1oop3;
82;
REPEAT 1oop2;
B];

REPEAT 1oop];
BO;
LEAVE 1oop0;
REPEAT 1oop0;

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

18

1oop0: LOOP

83;
1oop3: LOOP
ENTER 1oop3;

Figure 19

Y3;
ASSURE NOT cond3;
82;
1oop2: LOOP
ENTER 1oop2;
Yz;
ASSURE NOT cond
B];
1oop]: LOOP
ENTER 1oop];
Y];
ASSURE NOT cond

23

];
BO’
LEAVE 1oop0;
ENTER 1oop0;
uo;
REPEAT 1oop];
a];
REPEAT 1oop2;
%
REPEAT 1oop3;

0(,3;

REPEAT 1oop0;

It is evident that the method used before holds even in this more com-

plicated case.

It should be pointed out that even though Figure 19

poses the source program with every loop having its entry immediately

19

after its beginning, this situation by no means represents any re-
striction on the source program; the same target code would have re-
sulted from rotating any or all of the source loops.

Having given some rules for inversion and demonstrated that they
work in particular cases, let us investigate why these rules are cor-
rect. Both Figures 15 and 17 are symmetric, with control tending to
the right as tests succeed. Each Toop has an entry point, a conditional
test for moving right, and a final statement before encountering the
entry point again. Inversion changes the tests so that success moves
control to the left. So the statement executed after a successful test
will be what used to be the first statement after the loop terminates.
Therefore our rule changes assertions to their negations and continues
outside the loop. When the excursion to the left has finished, as sig-
naled by encountering the original loop again, it is time to close the
current loop, which was opened when we saw its "ENTER". At this point,
REPEAT is generated, and the remaining case, failure at the termination
test, is finally treated. For this reason, encountering "LOOP" generates

"REPEAT" and continues copying after the "ASSURE".

UNINVERTABLE LOOPS

Figures 17 and 19 raise a troubling question: How can Y3 be
brought to the distinguished spot 1in the outermost loop? If we follow
the rules as they stand, the very first statement to be translated is
"ASSURE cond3“ in line 17, and the code that will be generated will be
another ASSURE. However, there will be no current loop open. Even

though the eventual number of LOOPs and REPEATs will match, there will

20

be places in the target code where there have been more of the latter

than the former. The (bad) target code is shown in Figure 20.

1 1oop0: LOOP

2 ASSURE NOT cond3;

3 Bys

4 Toop,: LOOP Figure 20
5 ENTER 1oop2;

6 Yos

7 ASSURE NOT condz;
8 B];

9 1oop]: LOOP
10 ENTER 1oop1;
11 E

12 ASSURE NOT cond];
13 By

14 LEAVE 1oopo;
15 ENTER 1oopO;
16 %y

17 REPEAT 1oop];
18 oy

19 REPEAT 1oop2;

20 Qo3

21 REPEAT 1oop3;

22 G

23 63;

24 1oop3: LOOP

25 ENTER loop3;

26 Y3;

27 REPEAT 1oop0;
It is evident that 1oop3 is illegally rotated with respect to 1oop0;
its LOOP in line 24 falls after its REPEAT in 1ine 21. The difficulty

encountered here stems from the fact that the distinguished statement,

21

Y3 is positioned between the ENTER and the ASSURE in a loop. Our
earlier example was free of this problem since only WHILE-type Toops
were allowed; in such Toops, there can be no statements between the
entrance and the first test.

The program of Figure 20 can be understood, however, if the
meaning of "REPEAT 1oopj“ is taken to be "GO TO after 1oopj”, the
meaning of ”]oopj: LOOP" is "GO TO after ENTER 1oopj”, and "LEAVE
1oopj” means "GO TO after REPEAT 1oopj". These interpretations are
consistent with the usual meanings when Toops are well-formed, and
are therefore an extension for this special case. In order to com-
plete this rewording, each ASSURE must be converted to the equivalent
LEAVE statement (with appropriate loop information). The process just
described will turn what was a fairly clear program into a web of ab-
solute control transfers. The significant observation is that in the
usual case, the control structures that result from inversion are

simple loops.

EXTENSIONS

An interesting extension of the initial rules is to cover cases in
which the distinguished statement, which from now on we restrict from
lying between the ENTER and the ASSURE of a loop, is not in the inner-
most Toop. An example would be to distinguish 82 in 1ine 23 of Figure
19. A1l of 1oop3 is irrelevant to 62 and will not get inverted. This
consideration leads to a simple rule: Loops deeper than the distinguished

statement do not follow the special handling reserved for LOOP and the

22

other constructs; instead, the entire deeper loop is copied intact.
An example of the result of such action taken on the source program

of Figure 19 can be seen in Figure 21.

1 1oop0: LOOP

2 1oop2: LOOP

3 ENTER 1oop2;

X V22 Figure 21
5 ASSURE NOT condz;
6 Bqs

7 1oop]: LOOP
38 ENTER 100p];
9 Yys

10 ASSURE NOT cond];
11 60;

12 LEAVE 1oop0;
13 ENTER 1oop0;
14 G

15 REPEAT 1oop];
16 o3

17 REPEAT 1oop2;

18 Go3

19 1oop3: LOOP

20 ENTER 1oop3;

21 Y3

22 ASSURE cond3;

23 Ca3

24 83;

25 REPEAT 1oop3;

26 62;

27 REPEAT 1oopo;

23

Not all cases have yet been covered. If one takes a threefold-nested
loop, such as that shown in Figure 16 left, and tries to arrive at the
right side of Figure 16 by applying three successive inversion steps,
then the first will invert Tines 11 to 20, the second lines 7 to 22

and the third Tines 3 to 24. 1In each step an artificial loop 1is in-
troduced about the code to be inverted; Figure 16 shows this artificial
loop about Tines 3 to 24 on the left side. In performing these inver-
sions, one comes upon situations of deeper Toops that have multi-level
ENTERs and LEAVEs that cannot be copied verbatim. These occurrences
Tead to yet another rule for inversion: Deeper loops are copied verba-
tim, except that occurrences of "LEAVE 1oopj“, where 1oopj is not a
deeper loop, are omitted; copying continues after "REPEAT]oopj”. Like-
wise, when ”1oopj: LOOP" 1is encountered, after it is replaced by
"REPEAT 1oopj", if there is an "ENTER 1oopj” in a deeper loop, con-
trol proceeds to after that ENTER. The other case works as before,
with control continuing after the matching ASSURE. To demonstrate
these new rules, consider the second inversion that will take place
during a three-step inversion as mentioned above. This inversion

step is demonstrated in Figure 22.

24

1 100p0: LOOP 1]oopO: LOOP

2 ENTER 1oop0; 2 63; Figure 22
3 Qg3 3 1oop3: LOOP

4 1oop2: LOOP 4 ENTER 1oop3;

5 ENTER 1oop2; 5 ASSURE NOT cond3;

6 ASSURE condz; 6 Bos

7 1oopt: LOOP 7 1oop2: LOOP

8 63; 8 ENTER]oopz;

9 1oop3: LOOP 9 ASSURE NOT condz;
10 ENTER 1oop3; 10 B];

11 ASSURE NOT cond3; 11 LEAVE 1oop0;

12 Bys 12 ENTER 1oop0;

13 LEAVE 1oopt; 13 a3

14 ENTER 1oopt; 14 REPEAT 1oop2;

15 a3 15 O3

16 REPEAT 1oop3; 16 REPEAT 1oop3;

17 Ga3 17 Qg3

18 REPEAT loopt; 18 REPEAT 1oop0;

19 REPEAT 1oop2;

20 Bys

21 LEAVE 1oop0;
22 REPEAT]oopo;

The reader should verify that this transformation follows the rules
given, and that by three successive inversions, the program on the

left in Figure 16 can be transformed into the one on the right.

AN APPLICATION

Consider Figure 23, which is a SIMULA class that generates all
partitions of the integer n, that is sequences 11""’ik which

sum to n.

25

CLASS partition (n); INTEGER n; COMMENT n 1is to be partitioned;

1 BEGIN

2 INTEGER first; COMMENT the first part of the partition;

3 REF(partition) REST; COMMENT a list of the rest of the partitions;
4 BOOLEAN more; COMMENT when false there are no more partitions;
5 PROCEDURE print;

6 IF rest =/= NONE THEN

7 BEGIN COMMENT print this element, recurse for the rest;
8 output(first);

9 rest.print;

10 END

1T more := TRUE; Figure 23

12 IF n=0 THEN detach

13 ELSE BEGIN COMMENT: Chop off initial chunk, recurse for rest;
14 FOR first := 1 STEP 1 UNTIL n DO

15 BEGIN

16 rest := NEW partition(n-first);

17 WHILE rest.more DO

18 BEGIN

19 detach;

20 call(rest);

21 END while Toop

22 END for Toop;

23 END conditional;

24 more := FALSE;
25 END partition;

This program makes heavy use of the SIMULA feature by which a class
object may temporarily halt in its execution ("detach") or may be con-

tinued from such a halt ("call"). It is therefore not possible to

26

directly represent this program in ALPHARD, although it should be

fairly easy in CLU. We would Tike to create a procedure "next" from
Figure 23. We can do this by inverting 1lines 14 through 22, changing
the "call" to an explicit invocation of &next, as shown in Figure 24.

1 PROCEDURE next;

2 BEGIN COMMENT causes the next partition to exist;

3 rest.next; COMMENT perhaps can just change deeper down;

4 WHILE NOT rest.more DO

5 BEGIN COMMENT Must make a change at this level instead;
6 first = first +1;

7 WHILE first > n DO

8 BEGIN COMMENT: termination condition;

Figure 24

9 more := FALSE;

10 RETURN;

11 init: first :=1; more := TRUE;
12 END while Toop;

13 rest := NEW partition(n-first);

14 END while Toop;

15 END next;

Figure 24 is by no means clearer than Figure 23; it takes extra effort
to be convinced that the initialization works correctly and that the
special cases are correctly handled. For example, it is essential

that line 7 and 4 both contain WHILE Toops, even though at first glance
it would appear that IF conditionals would work as well. By now we are
used to these peculiarities of inverted programs. It is an easy exer-

cise to translate Figure 24 into the extended ALPHARD of Figure 7.

27

CONCLUSIONS

Not all programming languages support the same constructs, but
the way we develop programs depends on the constructs available to
us. A class of recursive generators is readily programmed using
CLU iterators or SIMULA classes, but the language we are using may
not have these ideas. This paper has shown a way to transform a
program written in one manner into a functionally equivalent program
that uses less fancy Tanguage features. Now we can pretend our lan-
guage allows CLU-T1ike iterators to some extent, since many programs
written with them can be inverted to avoid using internal returns.

It must be emphasized that the CLU approach to iteration is not
always most natural. When Figures 6 and 7, the CLU and ALPHARD ver-
sions of bingen, are translated into SIMULA, they occupy precisely
the same Tength (as one might expect from the inversion rules). A
colleague of mine found the method of Figure 6 natural when he wrote
a SIMULA program to implement bingen; I chose the Figure 7 style.
Neither of us was at that time familiar with inversions. Our programs
were dual to each other; each could be found by inverting the other.

Further work is required to settle the case where the distin-
guished statement falls between Toop entry and the conditioned test
that terminates the loop. This situation might be considered freakish,
and it may truly be impossible to invert at that place. Another un-
finished issue is the presence of conditionals in the code; this paper
has completely ignored that case. Perhaps all ASSUREs should be ex-
pressed as LEAVEs inside conditionals; this arrangement may well be

clearer.

28

ACKNOWLEDGEMENTS

The author would 1like to thank David Gries, Larry Landweber,
Barbara Liskov, Mary Shaw, and Marvin Solomon for fruitful discussions

that led to the ideas presented here.

29

BIBLIOGRAPHY

[Knuth 74] Knuth, D. E. "Structured programming with go to

statements", Computing Surveys 6, 4 (December 1974),

261-301.

[Liskov 77] Liskov, B., Snyder, A., Atkinson, R., Schaffert, C.,

Abstraction mechanisms in CLU, Massachusetts Institute of

Technology Laboratory for Computer Science, Computation

Structures Group Memo 144-1 (January 1977).

[London 76] London, R. L., Shaw, M., Wulf, W. A. Abstraction

and verification in Alphard: A symbol table example, Carnegie-

Mellon University Technical Report (1976).

[Shaw 76a] Shaw, M. "Abstraction and verification in Alphard:

Design and verification of a tree handler", Proc. Fifth Texas

Conference on Computing Systems (1976, 86-94.

[Shaw 76b] Shaw, M., Wulf, W. A., London, R. L. Abstraction and

verification in Alphard: Iteration and generators, Carnegie-

Mellon University Technical Report (1976).

[Wulf 76] Wulf, W. A., London, R. L., Shaw, M. Abstraction and

verification in Alphard: Introduction to language and method-

ology, Carnegie-Mellon University Technical Report (1976).

