MEMORY EXTENSION TECHNIQUES FOR
MINI-COMPUTERS

by

Mary Poppendieck
and
Edward J. Desautels

Computer Sciences Technical Report #290

December, 1976

MEMORY EXTENSION TECHNIQUES FOR
MINI-COMPUTERS

by

Edward J. Desautels
and
Mary Poppendieck

Computer Sciences Department
University of Wisconsin
December, 1976

INTRODUCTION

There are many computer users these days who have bumped up
against the end of their memories. Years ago, IBM 1800, 1130, and
7094 users discovered that 32K words of addressable memory simply
was not enough. Today, mini-computer users are discovering the
same thing. And so are mini-computer manufacturers. Some of the
newest mini's can address 128K, 256K, 512K or even 1024K (1M) bytes
of main memory. The claim is that 16M byte addressing is right
around the corner.

It makes sense to add more and more memory to mini-computers,
because memory prices are dropping rapidly. In assessing the future
cost of memory, one must distinguish between the memory device
components (e.g. memory chips) whose costs are dropping more rapidly,
and the memory systems these go into (e.g. memory chips and supporting
logic, circuit boards, etc.). The component cost for 4096 bit chips
was in the $3.50 to $4.00 range in late 1976, or approximately 0.1¢/bit,
whereas the memory system cost to the system assembler was approximately
2.6 times greater (.26 ¢/bit). This factor is expected to decrease by
1980 to approximately 2.0 for smaller memory system (512K bytes for
$1300) and to 2.5 for larger memory systems (4 MW, 64 bits/word, with
error correction circuitry, for $100,000). The cost to the end-user
is 1ikely to involve another factor of 2 or 3. Figure 1. depicts the
cost/bit at the component and system levels over time. As of January,

1976, it was possible for an end-user to obtain a 16K 16-bit word

memory board for less than $1300 in unit quantity, or 0.5¢ per bit.
When this is compared to the salary of a programmer trying to squeeze
code into a small memory, extended memory becomes very attractive
now, and it will be even more so in the future.

However, the mini-computer user contemplating memory expansion
must understand the various memory expansion techniques which are
available in order to evaluate their effectiveness. One computer's
IM bytes is not the same as another computer's M bytes. There are
dramatically different ways of addressing large memories.

It is important to establish the fact that there are two kinds of
1imits to memory space, logical and physical. Logically, a program is
limited to a certain address space by the instruction set of the
machine. Any linked set of code is usually confined to a certain
logical space, depending upon the address size supported by the
instruction set. Most mini-computers allow a maximum of 16 bits for
an address, which gives 64K addresses. However, in some computers
this address is a byte address, and if the computer's word size is
16 bits, only 32K words can be addressed. If one is dealing with
applications in which floating point values are required, then the
32K of 16 bit words becomes a maximum of 16K floating point words
of 32 bits. Many other mini-computers reserve one of the 16 bits as
a flag, perhaps for indirect addressing, which again 1imits the
logical address space to 32K words. If a single program with its
data cannot fit within the logical address space, more memory will

not help unless the program is divided into segments or overlays.

One method of extending mini-computer memory is to extend the
logical address space by changing the classical instruction format
and allowing more than 16 bits for an address. Currently the
Interdata 7/32 and 8/32 instruction sets allow a 24 bit address
and the Scientific Engineering Laboratories SEL32 instructions allow
19 bits for an address. These computers are basically 32 bit computers
at the top of the "mini" classification.

The physical Timits of the memory space are determined by the
number of wires carrying an address to the memory, as well as the
granule size which is selected by the address. For example, in a
PDP-11/45, eighteen wires carry the address: to memory, allowing
256K addresses. But since each address is a byte address and there
are two bytes per word, only 128K words may be physically addressed,
with the top 4K reserved for access to peripheral devices. The logical
address space of a PDP-11 is 32K words, with 4K of that dedicated to
the bus hardware.

If memory extension beyond the logical address space is implemented,
then the computer can no longer simply use the Togical address to
select a physical address; some transformation or translation must
be applied to the logical address to convert it to a physical address.
This translation consists of combining the logical address, or some portion
of that address, to a base address which is obtained in some specific
way. The method of selecting the base address and combining it with

the logical address can be used to classify physical memory extension.

techniques. There are three basic methods of implementing the
translation of a logical address into a physical address:memory

mapping bank switching, and the use of base registers.

MEMORY MAPPING

Memory mapping involves dividing the logical address into two
parts-a descriptor, which is a set of the most significant bits,
and a displacement, which is the remaining set of bits of the address.
A function is applied to the descriptor, and the result of this function
is a physical address which may be called a page address. The dis-
placement is added to the page address. to give a physical address.
Generally, pages in memory do not overlap, and the number of bits in
the displacement determine the granularity, or page sjze, of the memory.
Typical page sizes vary between 256 and 1024 words. In most cases
the significant part of the page address is effectively concatenated
with the displacement. (See Figure 2a). In some jmplementations (e.g.
PDP-11/45 and TI990/10) the page size is smaller than the displacement
field, so that the displacement field must be subdivided into a second
descriptor and the second displacement. The second descriptor is added
to the beginning page address to obtain the true page address, which
is added to (or concatenated with) the second displacement to obtain
the physcial address. This technique gives the PDP-11/45 and 11/70 a
page size between 32 words and 4K words. But, their limited number of
mapping registers makes it necessary to use 4K pages in order to gain

sufficient address space. (See Figure 2b).

ASSOCIATIVE MAPPING

Memory mapping was first used in the early sixties. The Atlas
computer developed at Manchester University used a memory mapping
technique which was eventually adapted for use with associative
memories and became the prototype of several memory mapping systems.
Memory was divided into 32 "pages" of 512 words, and there were 32
Page Address Registers, one for each physical page. The page address
registers were directories to the program. As a segment of the
program was brought in from the drum being used as the pageing device,
the program segment number was filed in the page address register
corresponding to the physical page where the program segment was
located. If a reference was then made to that program segment, the
computer proceeded to search through the address registers, looking
for the program segment number. If a match was found then the physical
page number of the memory reference was simply the register number
of the match. If no match was found, the missing program segment
was brought in off a drum. (See Figure 3a).

A sequential search of several registers for every memory reference
can be slow, but content addressable or associative memories remove
this drawback. A key and a value are stored in one slot of a small
associative memory (on the order of eight registers are usually used).
The key is the descriptor from the logical address and the value is
the physical page. When a descriptor is sent to the associative memory,

all keys are simultaneously searched. If a match is found, the value,

a physical page number, is the result of the compare. If no match is
found, the associative registers are updated from a table in memory.
(See Figure 3b). This type of map was first used in the IBM 360/67
(1966) and in Scientific Control Corporation 4700 mini-computer

(1968). Today it is found in the Prime Computer Models 300 and 400.

INDEX MAPPING
Another type of memory map was used on the Berkeley Timesharing

system SDS 930, about 1965. 1In this system there were 8 six-bit

registers which could be selected by the top 3 bits of a logical
address, used as an index. The contents of the selected register
contained a six bit physical memory page number. (See figure 4a).
A memory map of this type is available from Fabri-tek for the PDP-11/05,
11/10, 11/15, and 11/20. Note that the top three bits of each address
will always select a register- there is no possibility of a no-match.
Therefore an entire program must be in memory before execution can
begin, unless there is some way of telling the system whether or not
each register contains a valid address.

If protection bits of some sort are added to the registers the
requirement that an entire program must be in memory before execution
is removed from the index-type mapping scheme. Protection bits are
usually used to restrict users from reading, writing into, or executing
certain pages of physical memory. However, since reference to a
completely protected page will cause a trap of some sort, the protection

bits can be used to indicate that a page is not in memory and must be

fetched from mass storage. An extra protection bit can be used
during a program's execution to determine whether or not a page has
been changed and thus whether or not the page must be saved before
it is overlaid. (See Figure 4b).

In contrast to associative mapping registers, registers which
are addressed by the top bits of a logical address used as an index
are relatively inexpensive. With an associative map, the various
maps are usually stored in main memory and when a memory reference
creates a "no-find" condition, the associative registers are updated
from main-memory. With an index-type map, the map or maps are stored
in the mapping hardware registers. Several sets of registers may be
available. The HP2IMX has two maps - a system and a user map. The
PDP 11/45 and 11/70 have three maps - kernel, supervisor, and user.
The Modcomp IV has four maps - one for system, two for large users,
and one which may be subdivided among four small users. The Data
General Eclipse has three user maps and the supervisor is not mapped.
The IBM Series 1 has eight maps. The Varian 75 provides sixteen maps
in 1024 registers. The Harris Slash 4 map provides 1024 registers for
any number of users, since the beginning of the active map is selected
by a 10 bit base register.

More hardware maps allow faster switching between users. Some
computers, like the PDP-11/45, 11/70 and the Modcomp IV, divide the
maps up into an instruction and a data map. If the data and instructions

can be completely separated, the address space available to any one

program can be doubled, since the same addresses could be used for
instructions and data, and then the map can separate the two. (See
Table 1). The mappings on the PDP-11/34, 40 and 55 do not distinguish

between instructions and data.

EVALUATION
The limitations on logical address space in any mapped system
is the most serious drawback of any mapping scheme. No matter how
large the physical addresses can become, the logical address space
remains Timited by the computer's instruction set. The only way
around a limited logical addresss space is program segmentation and
overlays; more physical memory, if it is mapped, won't solve the
problem of a program which has outgrown its logical address space.
Another very important drawback of memory mapping is I/0 handling.
In general, I/0 does not occur through the memory map. Even if most
1/0 could go through the map, DMA (direct memory access) channels
from a disk, say, must access large sections of data quickly, with no
time for a "no match" condition to occur. Moreover, if one user asks for
1/0, control may very well switch to another user, so that the user map
would not correspond to the I/0 map. In most systems, therefore, I/0
is handled using physical memory addresses. If block I/0 is going to
physical addresses, but the I/0 buffer is not in consecutive locations
in physical memory (as can easily happen with mapping) it is probably
necessary for a supervisor program to do all I/0 through its own buffers

and copy the buffers from or to the user huffer. Whereas this might be

reasonable in a timesharing system, it can be a severe time restriction
in a dedicated system, especially one with the large data buffers that
are common in real time monitor systems.

Some computers have some of the I/0 going through a separate map.
The Eclipse has one data channel map, the HP2IMX has two such maps.
The PDP-11/70 has a Unibus map. To be useful for large data buffers,
these maps must apply to DMA access. The high speed I/0 channel on
the PDP-11/70 is not mapped, thus high speed transfers of data across
block boundaries cannot be easily handled. The IBM Series 1 allows each
DMA device to transfer through any of the maps. When I/0 is performed
using physical addresses, the supervisor may not, itself, be mapped, or
it may be mapped into consecutive pages in memory. This allows the
supervisor to determine the physical addresses of its own buffers, and
assures that these buffers are in contiguous blocks of memory. A
supervisor which is not mapped can save mapping overhead time and
simplify the "startup " problem, namely that map tables must be initialized
by the supervisor before any mapping of the supervisor can begin.

A third problem with memory mapping is a slight decrease in speed.
The PDP-11/45 map adds 90 ns to each memory reference; the Varian 75 map
adds 30 to 40 ns. Manufacturers claim that the HP21MX and PDP-11/70 maps
do not add to the memory reference speed. This may be true for today's
memories, but probably not for the higher speed memories of tomorrow.
Besides the actual hardware construction of each address, the mapping

unit must be set up with each user's map. The maps must be switched as

10

new users are enabled. Associative registers require an extra memory
reference with each "no match" condition. Unmapped I/0 which must
cross page boundaries can dramatically decrease "high speed" I/0

time. And finally, if a segment of a program must be fetched from mass
storage, a large swapping time will be added.

Memory mapping usually provides a supervisor and user mode, as
well as page level memory protection and traps on certain instructions
attempted while in user mode (such as halts and I/0 instructions). It
allows for multiple users of various sizes. It also requires a layer
of software and a layer of hardware to be added to the existing system.
Both the software and the hardware must be of a rather sophisticated
design and they carry a relatively high initial cost. Moreover, this
software and hardware may degrade the running time of existing programs

to levels which are unacceptable, especially in a real time environment.

BASE REGISTERS

Using base registers involves adding the logical address to an
address found in a base register. (Figure 5) Again, there may be two
registers, one for instructions and one for data references. With base
registers the granularity of memory is not usually a consideration,
since the base register schemes tend to 1imit the logical address space
by Timiting the displacement which is added to the base register. In
this case, the logical address space is expanded by changing the

base registers. The IBM 360's and 370's use base register changing to

11

determine all addresses, but there do not seem to be any mini-computers
which use base registers to determine the addresses for every memory
reference. This is probably because of the sixteen bit word
orientation of most mini-computers. Base registers must be as wide as
the physical addresses the memory system require, perhaps twenty or
twenty-four bits wide, but sixteen bit machines do not usually support
registers wider than sixteen bits.

Although base registers are not used to extend mini-computer
addressing capabilities, they are found in some mini-computers. A
special case of base register usage occurs when the program counter
doubles as a base register.

Many mini-computers add a signed displacement field to the program
counter to determine some operand addresses. The Data General Nova
has an 8 bit displacement; the Interdata 7/32 allows 15 bits. By using
the program counter as a base register, programs are not restricted to
particular segments of physical memory. Instead, the direct address
range of an instruction is the memory area surrounding the instruction
as limited by the displacement size. This technique allows direct
addressing beyond either end of a program if the displacement permits,
but it also requires careful program organization if the program is

larger than the displacement range.

12

BANK SWITCHING

Bank switching involves concatenating a bank indicator, which
is separate from the logical address, with the entire Togical address
to obtain a physical address. In some machines, two separate bank
indicators are used for instruction and data memory references. 1In
any case, since the entire logical memory address determines the dis-
placement within a page, the memory granularity is quite large.
(See Figure 6).

Bank switching had its roots in the early 1960's, on a few IBM
7094's and DEC PDP-5. About 1962, MIT added an extra 32K to the
709411 used for their Compatible Time Sharing System (CTSS). A single
bit register was used to select which 32K bank memory was in use. In
addition to expanding the memory, this system prevented programs in
one half of memory from interfering with programs in the other half.
About the same time, the PDP-5, predecessor of the PDP-8, was able to
address 32K of memory with only 12 bits for the address. This was done
with a set of two three-bit registers which could be read and written
with special instructions. These registers selected one of eight banks
of 4096 words. One register selected the instruction bank and one
selected the operand (data) bank. This technique is still used by the

PDP-8 today.

13

METHODS OF BANK SWITCHING

Computer Automation's Naked Mini and Megabyter LSI-2 Computers
can address 512K and 1M bytes respectively, using a bank switching
option. The logical address space is only 32K. General Automation's
SPC-16 and the Microdata 1600 also have a bank switching option.

There are many variations of bank switching available. The
SPC-16 divides its 32K address space into eight 4K banks. The lower
four banks are always the same, but the upper four banks may be switched
to any of eight additional 4K banks which are selected by an I/0
command., This provides 64K of physical memory, with 32K selected
at any one time. In one system developed by the Nuclear Physics group
at the University of Wisconsin, a Honeywell DDP-124 has a flip flop on
the end of an I/0 channel acting as a bank switch. The lower 8K of
each bank is physically the same, and in this 8K resides a monitor
which communicates with the 24K left in either bank and does all the
bank switching. With this system, a total of 16K of address space is
lost to the monitor.

Harris Slash 5 computers can directly address 32K 24 bit words
with most instructions, but they support 64K of memory. In this case
the top bit of the address comes from the program counter. A special
jump instruction has a 16 bit address field for access to the other

bank, or else indirect addressing expands the address space to 32K.

14

The top bits of the address can also be obtained from the status
register. For instance if there is both a system and a user mode
which is indicated in the status register, the system/user mode bit
can be used to determine the top bit of the address. In the modified
PDP-11's used by the Carnegie-Mellon multi-mini processor, a two bit
bank indicator is contained in the program status word. This gives
the advantage of saving the bank indicator automatically whenever the

status word is saved.

EVALUATION

Three distinct disadvantages of bank switching should be mentioned.
First of all, communication between banks may be very difficult, if
not possible. This may be an advantage, since memory protection
increases as cross-talk becomes more difficult. However, if a supervisor
is to run programs in all banks, some method of communication is usually
needed. Usually communication between banks must be done via registers
or disk. In the SPC 16 and DDP-124 systems described above, communication
is simplified because the Tower quarter or half of memory remains unchanged.
The second serious drawback of bank switching is the granule
size. The banks are typically Targe and the logical space of any program
must usually be confined to one bank., This is a rather rigid restriction
which would generally result in a Tot of wasted memory space. Moreover,
memory protection within each bank may not be available. However, in some

systems, particularly dedicated ones, there are often only two users of

15

approximately equal sizes, and two banks. Or it may be feasible to
separate the supervisor and the user into separate banks, especially
if the supervisor is large or can be assigned enough tasks to make it
into a second user.

The third serious drawback of bank switching is that banks must
be switched. First of all, what is going to happen to the program
counter when the banks are switched? This is not a problem when the
program counter is also the bank indicator, but is definitely a problem
otherwise. If there isn't some sort of memory common to both banks
in which the bank switching can occur, then there must be some way
of changing the program counter at the same time as switching the banks.
Secondly, how is the switching mechanism governed? Switching from one
bank to another usually requires positive action on the part of the
user or supervisor. Protecting the program status word from the user
(if it contains the bank indicator) or not allowing the user access to
the bank register is probably necessary. Some method of saving the
current bank in case of an interrupt and restoring it after the interrupt
is needed. And of course, some means of deciding when to switch from

one bank to another must be available.

BANK SWITCHING FOR SPEED

In a dedicated system with only a few users, or a single user and
a supervisor, bank switching may be more economical and simpler technique
for extending memory. Table 2 gives an overall picture or the tradeoffs

involved in using bank switching vs. memory mapping for such a system.

16

One possibility, implemented by the High Energy group of the
Physics department at the University of Wisconsin on a Scientific
Control Corporation 4700 with a 32K logical address space, is a
hybrid scheme using some features of memory mapping in a bank switching
environemnt. In this implementation,real time considerations ruled
out the use of a fully mapped system, although mapping hardware was
available. It was estimated that the associative map would add about
10% to execution time. Furthermore, the transfer of large data buffers
(usually 2K) through DMA units was necessary, and these could not be
copied by the supervisor without an intolerable degradation in speed.
Thus it would be necessary to map all user pages consecutively, if mapping
were to be used. Instead, the system was divided into two 32K banks,
with one bank dedicated to the supervisor and one to the user. A large
and independent data handling routine became part of the supervisor,
giving two approximately equal size programs. The mode bit in the status
register (system or user) determines which bank is in use. Bank
switching is accomplished by a system call instruction (switch to one
of 64 system routines) and system return (return to caller) instruction
normally used by the mapping hardware. These instructions simultaneously
switch the system/user bit in the status register and save or restore
all registers, including the status register. Communication between
supervisor and user can take place because the supervisor can place itself
in an "indirect user" mode. In this mode, the last memory reference of

an indirect address sequence is done in user mode, while all other memory

17

references are in system mode. This allows the supervisor to read
or write in the user bank under special circumstances. Thus in
this implementation, a few features of a memory map system are
being used to overcome drawbacks of bank switching, resulting in

a very efficient bank switching system.

SUMMARY

Probably the most straight forward approach to extending mini-
computer memory is by extending the number of address bits which can
be placed in an instruction. However, this technique cannot be used
by manufacturers with long established instruction sets, nor is it
being used by every manufacturer coming out with a new machine. Instead
of departing from the traditional instruction set design mini-computer
manufacturers are using either bank switching or memory mapping to
extend the physical size of their computers' memory.

Bank switching is the more primitive approach, involving an action
by the program in order to switch banks. It is Tikely to be faster and
less complex than memory mapping, and may be the method of choice for
dedicated, real time use.

Memory mapping is more complex than bank switching, and provides
the kind of context switching and memory protection needed for time sharing.
In fact, even machines with a large direct address space, such as the
Interdata 8/32, provide memory mapping capabilities. Memory mapping
implementations vary greatly in sophistication, and potential users

may wish to inspect the number of map files provided and insure that

DMA paths go through a map.

Above all, a mini-computer buyer should not assume that programs
of any size may be run in a mini-computer, simply by expanding the
memory. The data space requirements of programs tend to outgrow the
addressing capabilities of mini-computers fairly quickly in some
applications, so that it is usually necessary to change the addressing
capability of the instruction set in order to gain more space for an
individual program. This kind of expansion cannot be accomplished
with either memory mapping or bank switching. It takes a new

instruction set format, and therefore, a new computer.

19

BIBLIOGRAPHY

1.

9‘

10.

11.

12.

Bell, C.G., and A. Newell, Computing Structures: Readings

and Examples, McGraw-Hill, New York, 1971.

Freeman, P., Software Systems Principles-A Survey, Science

Research Associates, Chicago, 1975.

Hobbs, L.C. and R.A. McLaughlin, "Minicomputer Survey," Datamation
20, 7(July, 1974), pp. 50-61.

Hodges, D. A., A Review and Projection of Semiconductor Components
for Digital Storage," Proc. IEEE, Vol. 63, No. 8, Aug. 1975, pp.1136-
1147,

Hollingworth, D., Minicomputers: A Review of Current Technology,

Systems, and Applications, Rand Corporation, Santa Monica, California,
1973.

Kilburn, T. et al, "One Level Storage System," IRE Trans., EC-11,
vol. 2 (April, 1962), pp. 223-235.

Koppel, R.J. and I. Maltz, "Predicting the Real Costs of Semiconductor-
Memory Systems," Electronics, Nov. 25, 1976, pp. 117-122,

Lampson, B.W. et al, "A User Machine in a Time-sharing System," Proc.
IEEE, 54, vol. 12 (December, 1966), pp. 1766-1774.

Michaels, John, "The Mega-Mini Succeeds the Model T," Datamation 20,
2 (February, 1974), pp. 71-74.

Reagan, Fonnie H., Editor, Datapro Reports on Minicomputers, Datapro
Research Corporation, Delran, N. J., 1975.

Watson, R.W., Timesharing System Design Concepts, McGraw-Hill, New
York, 1970.

Model

Naked Mini
Megabyter
Nova 3/12

Eclipse
ols D-616
PDP-8

PDP-11/45
PDP-11/70
Solution 16/440
Series 200

21MX
Series 1
8/32

ms Modcomp IV
Prime 400

SEL 32

990/10
V75

ne data map

o Each priority level

Basic
Unit

8 or 16 bits

8 or 16 bits
8 or 16 bits
8, 16, or 32
16 bits
12 bits
8 or 16 bits
8 or 16 bits
8 or 16 bits
24 bits
8, 16, or 32
8 bits
8, 16, or 32

16 or 32 bits

16 bits
32 bits

8 bits
16 bits

Hmvam 1:

instruction and two data maps
~-type device may be assigned

Addressable Addressable

Directly

Address
Space

32Kw

bits

bits

bits

32Kw
1 Kw
TKw
TKw
256Kw
32Kw
32Kw
64 Kw
32Kw
2Kw
64 Kb
1Mb
64 Kw
64 Kw
iMb

64Kb
32Kw

Indirectly

Address
Space

32Kw
32Kw
32Kw
32Kw
32Kw

4KW
32Kw
32Kw
64 Kw
192Kw
32Kw
64Kb
64Kw
64 Kw

1Mb

64Kb
32Kw

Maximum
Physical
Memory

256Kw
512KW
128Kw
128Kw
TMw
32Kw
124Kw
2Mw
TMw
256Kw
TMw
16Mb
iMb
256Kw
8Mb
1Mb

TMw
256Kw

Type of
Address

Translation

Bank Switch

Bank Switch
Index Map
Index Map
Index Map
Bank Switch
Index Map
Index Map
Index Map
Index Map
Index Map
Index Map
not needed
Index map
Asso. Map
not needed

Index Map
Index Map

Memory Expansion in Representative
Mini-Computers. Information from Datapro

Reports on Minicomputers and Vendor-

Supplied Literature.

Page
Size

1Kw
TKw

4Kw
32w
32w

T Kw
TKw
2Kb

256w

16w

512w

Number of Number of
CPU maps CPU maps
/System /User

0 2
0 2
4Kw 2% 2%
4Kw 2% %
1 1
Variable
1 1
~-see note** -
1 3-8
32Kw 1 1
1 15
K= 1024
M = 1024K
w = word
b = byte

Number of
1/0
Maps

0¢

21

*uor3lvjuswsTduTr SY3

uo juopuadsp ATUDBTY Sa® S2100S STRTIBA UITM SPTID
*uoT3leorTdde syl 03 souejzodur sSy3 I0JF polybrom

9 pInoys mox yoed °*I93ndwoo-TUTW PS3ROTPIP

e 103 burddew Azowsuw °sA BUTYDITMS ued - :7 3|qe]

I9sl 8 xo0STAaedng uLeM3d®q UOTIBOTUNUMIOD £e-1 € €-T £ 4 €
a9sn 03 Aousaedsuedl T 174] 4 14 4 3

Axowsl ut sass FJo xsqumN abxeTl 1 1 T -€ 174 1
uoT3lejuswbesd 03 3ISOT AJOWSH WNWTUTKH T £ T 7-€ A 74l
uotiejusuwsTdwI x03 pos[AJIOWSH WMWTUTNH 14 7 7-€ € 4 13
poads YybTH i 4 4 €-2 L 2

150D uorjejusuwsTdwl MO £ € € 4 € r4

=) E) 2 °

J00d AadoA = T x x x I

e e e B

=7 M oM M M

P 3 P 3

= £ X F X s

L 0 o e 0] c

pooS AIBA = ¥ H I S H I S

butyo3TMs ued butdden AxoweR

21

Mary Poppendieck is currently a Project Engineer with General
Motors Corporation Transportation Systems Division, in Warren, Michigan.
Work on this paper was done while she was a Systems Analyst in the
Physics Department at the University of Wisconsin, Madison, Wisconsin,
working on real time equipment control and data aquisition.

She received a Masters Degree in Mathematics from the University
of Maryland in 1971, and a B.S. from Marquette University in 1967.

Ms. Poppendieck has been an active member of ACM since 1972 and has

been a member of IEEE Computer Society since 1976.

kkk

22

Edward J. Desautels is an associate professor in the Computer
Sciences Department of the University of Wisconsin-Madison. He is the
director of the department's computer laboratory, and the department'’s
associate chairman. His research and teaching have involved pro-
gramming systems, Tanguages and applications.

He received a B.Sc. from the University of Manitoba, an M.Sc.
from the University of Ottawa, and was awarded a Phd.D. in Computer
Science from Purdue University in 1969.

Dr. Desautels is a member of the IEEE and the ACM. He recently
chaired an ACM panel on computing facilities for computer science
education, and is chairman of the ACM Special Interest Group on

Computing and the Physically Handicapped.

