MAN-MACHINE INTEGRATION IN A
LEXICAL PROCESSING SYSTEM
by

Richard L. Venezky
Nathan Relles
Lynne Price

Jack Bennett

Computer Sciences Technical Report #280

September, 1976

MAN-MACHINE INTEGRATION IN A
LEXICAL PROCESSING SYSTEM

by

Richard L. Venezky
Nathan Relles
Lynne Price
Jack Bennett

Computer Sciences Department
University of Wisconsin
Madison, Wisconsin

September 28, 1976

Abstract

LEXTCO is a computer system that may be used for dictionary
construction and other areas of lexical analysis. Textual material
may be stored, edited, concorded, and lemmatized to assist the
researcher. The system is designed to facilitate use by three types
of users: (l)the novice, who has had no previous experience with
the system, (2)the sustained user, who has learned how to accomplish
desired tasks, and (3) the occasional user, who has used the system,
put sometimes forgets a specific command or procedure. Despite the
many and varied tasks which can be performed, the system appears to
the user as a single, unified entity with a consistent means of
communication. Many of the automated capabilities, such as
homograph separation, reduce the amount of work that would be required
by manual procedures. The system has many features that facilitate
its maintenance; in addition, monitoring of user and system behavior

allows continual refinement of system capabilities.

1. Introduction
LEXICO is a computer system which assists lexicographers in stor-

ing, editing, concording, lemmatizing, and formatting information for
dictionaries and for other products of Texical ana]ysis.] The design of
this system began almost five years ago as part of an experimental study
of data processing techniques for natural language texts. Through suc-
cessive improvements, the initial design has evolved into a production
system which is now being used for a variety of text processing tasks,
including initial processing for the Dictionary of 01d Eng]ishz. Like
many newer language processing systems LEXICO provides a command language,
on-line interaction with the user, and extensive file handling; however,
it differs from these systems in two important characteristics.

First, LEXICO was designed from the beginning to facilitate use
by non-professional programmers; decisions on such matters as system
capabilities, interaction modes, error recovery, and documentation were
strongly influenced by projected user needs. Second, since LEXICO
began as a research project, techniques and components were tested and re-

vised systematically over a five-year period and

software components for monitoring both user and system behavior were incorporated
in the initial design. The resulting system, although neither error free nor ideal
in any sense, has nevertheless been extensively tested and refined and continues
to provide monitoring data for planning further improvements. The present

chapter will present the design and use of the LEXICO system with emphasis on

the two characteristics just mentioned.

2. Criteria for Software Design

Given a well defined set of functions, the software designed to realize
these functions is usually shaped by two factors: (1) the hardware-software
environment in which the new system will operate and (2) the programming
capabilities and style of the software designer. Advances over the past five
years in both of these areas have strongly influenced software design. For large
machines, mass storage costs have declined dramatically, on-line access tebhniques
have become routine, and operating systems have begun to offer support services
which previously had to be provided by processing software (e.g., file management).
On the other hand, the price of powerful small machines (viz., minicomputers and
micro processors) has declined to the point where many tasks which were considered

large machine jobs five years ago are now done more efficiently on a small machine,

For program implementation, similar advancements have occurred.
New languages like SIMULA have been developed especially for simplifying
the writing of large software systems; approaches to program organization,
such as structured programming, have been widely accepted, and implementation
procedures such as the chief programmer team approach (Baker and Mills, 1973)
have been devised.

ATl of these advances have lightened the programmer's burden ,
allowed a more efficient use of hardware resources, and have resulted in
more elegant and sophisticated software systems. Yet in a world in which
human costs continue to rise, the needs of the users of computing systems are
becoming at least as important as thcse of the system designers.

To a limited degree the computer industry has professed an awareness
of this need. Most software systems are now labeled 'user-oriented' and
a variety of so called user-oriented features are beginning to appear in
operating-systems, compilers and other programs which are designed for
diverse audiences. These include such mechanisms as front-end processors
which translate simplified user commands into the (unnatural or unwieldy)
commands which a particular system was designed to receive (Hagerty 1972),
HELP commands that provide brief explanations of particular error messages,

and user-defined synonyms for keywords in commands.

Although such features represent a positive shift in the design of
user-oriented systems, they are more like a new coat of paint than they
are a structural change in software design. Software systems are still
designed on the basis of hardware and software desiderata, with the user
receiving only post hoc consideration.

In contrast to most other systems, LEXICO was designed with three
types of users in mind: (1) the novice who knows nothing about the
system, (2) the sustained user who has learned how to accomplish what
he needs to do, and (3) the occasional user who has used the system, but
occasionally forgets a specific command or procedure. These user classes
were selected over the more standard professional - non-professional
dichotomy because of the tasks which LEXICO incorporates and the nature
of the anticipated user community. Except for file handling, LEXICO
functions are conceptually quite simple: enter a text into a collection,
correct a misspelled word, concord, and so on. In specifying such tasks,
the professional programmer should have little advantage over the non-

professional.

3. Tasks in Lexical Processing
The initial goal for the LEXICO project was to explore how computers
could be employed in the construction of dictionaries. At the time this
project began, some experience in lexical processing had already been
gained by the St. Thomas Aquinas Project (Busa, 1964), the Italian
Dictionary Project (Zampolli, 1968), the Hebrew Dictionary Project (Ben-
Hayyim, 1966), and the Dictionary of American Regional English (Venezky,

1968). In addition, software for specific lexical processing

tasks such as concording and text editing had been developed and tested

on a number of different computers.

3 From these experiences, initial

consideration was given to the following tasks:

A.

Corpus management

Dictionaries, and especially academic dictionam‘es,4

generally are
based upon quotations extracted from published materials. Until
recently, quotations were extracted by human readers (either pro-

fessional or volunteer). The Oxford English Dictionary, for example,

managed to recruit almost 800 volunteer readers, who read their way
through approximately 4,500 published works, extracting 656,900 quo-
tations in the process.5

However, optical scanners and direct text entry techniques allow
a multi-million word corpus to be transiated into machine readable
form at a cost which many projects have already found to be tolerable.
Therefore, the first task for a lexicographic system is to facilitate
the input and correcting of texts.

Selection of quotations

In the hand procedure just described, quotations are selected and re-
corded by readers. In a computer-based system, on the other hand,
quotations can be extracted automatically. However, to avoid a

deluge of quotations for the most common forms (such as the, of,

and in for English), and to ensure that sufficient syntactic and
semantic context is included to allow proper sense selection, the
dictionary editor must have some control over the words for which
quotations are or are not selected and gver the boundaries of the
quotations themselves.

Lemmatization

In a non-mechanical system, quotations are recorded on slips, which
are then usually sorted alphabetically on the words for which each
quotation was selected. This sorting, however, is generally done

on Temmata or headwords and not text forms. For a computer to do

such a task requires that (a) alternate spellings be recognized and
normalized, and (b) correspondences between text forms and lemmata be
recognized. Partial schemes for such processes have been suggested
for specific langages (e.g., Price, 1969) but no approach which could
be applied to all languages has yet been devised.

Sense categorization

Once a lemmatized quotation (slip) file is formed, various editorial
processes begin which lead eventually to the set of entries which
compose the dictionary. The first of these is sorting quotations
into sense classes, a task for which no computable algorithms exist
for any language. However, much of the bookkeeping in this task

might be computer-assisted.

Entry writing

Once sense categories for a word are derived and quotations sorted
into them, the initial drafting of an entry begins. Before this
process is completed, however, a variety of supplementary materials
may be consulting, including word studies, other dictionaries and
word lists, and the opinions of consultants. Whatever may be mar-
shalled for assisting the editor, the end product is an entry which
contains a description of the word's different senses, with (usually)
illustrative quotations for each, in addition to supplementary items
which vary with dictionary, period covered, and intended audience:
pronunciation, variant orthographic and morphological forms, gram-
matical classes, etymology, synonyms and antonyms, etc.

Cogitation and inscription .are clearly.reserved for humans in this
process, but formatting, insertion of quotations, and various types
of error checking are candidates for computer assistance.

Publication

Initial drafts of entries are usually reviewed, revised, and then
rechecked for accuracy and consistency. Finally, the dictionary is
printed. Both editing by on-line terminal and publication by computer-
driven photo composition are applicable to this stage of dictionary

making.

4, Design Goals for LEXICO

From an analysis of the tasks just described and from interviews
with dictionary editors, a set of functions were selected for computer
implementation and testing. These included:

1. Formation and maintenance of a text collection

2. Text editing

3. Concording

4. lLemmatization

5. Slip generation

In addition, various utility functions were identified, including
copying texts, deleting texts, and correcting concordance output. Of
these the first two were selected for implementation but the third re-
Jjected because of the potentially high cost of such an operation. Sense
categorization was considered for inclusion, but no efficient technique
was found to justify its computer jmplementation. Assistance for entry
writing and publication require special equipment (e.g., a photocomposition
device) which was not available to the project.6

The users of LEXICO were seen as non-professional programmers:
editors, Tinguists, and the 1ike, who were comfortable with non-mechanical
techniques and would not convert to a computer system just for novelty.
In addition, the intended users would need to remain in constant communi-
cation with their data as it flowed through the various LEXICO processes.
Previous experience with concording systems had shown that simple errors,
if not corrected soon enough, could lead to disastrous expenses when

large texts were involved. Therefore, constant monitoring was desired.

Finally, as discussed above, at least three different types of users were
identified: the novice, the sustained user, and the occasional user.

Because of the large number of parameters which must be specified
in doing certain tasks and the relatively unfamiliar vocabulary of
Texicography, the novice, sustained user, and occasional user have widely
differing needs. The novice needs to know what functions the system can
perform and the statements required for initiating these functions, in
addition to learning how and when to create backup files, how to recover
from syntax errors, and which servicing priority to select for different
cost and time demands.

On the other hand, the sustained user, once he acquires this
knowledge, wants to make requests as briefly as possible. He needs
little extra documentation; errors are quickly recognized and therefore
do not require extensive explication; and servicing priorities are pre-
determined. Between the novice and the sustained user, however, is another
class of users, the occasional users. These are people who mastered the
system once, but because of infrequent practice, often forget an essential
jtem. They need some assistance, but their memories can often be jarred
-with a minimum of verbiage. Thus, while the novice may require a full
page explanation of a certain command, the occasional user may need only

a sentence or two, and the sustained user desires at most an abbreviation.

- 10 -

From the intended users of LEXICO and from our previous experience

with other text processing systems, we developed the following general design

criteria:

A.

The user should be totally isolated from the operating system. Cer-
tainly the user should not be required to understand file formats,
program characteristics, and the Tike., But just as important is the
need to isolate the user from the ciphers and incantations required

to create files, use programs, and enter data. The user should be
aware only of the data and tasks that are at his level of discourse.
(A corollary of this requirement is that all communication between a
user and the system.should be in the user's vocabulary.)

The system should appear to the user as a single, unified entity, with
consistent means of communication. The manner in which a user specifies
tasks to be performed on texts should be similar for all tasks. The
manner in which the system responds to user requests should likewise

be consistent throughout the system.

- 11 -

C. The means of specifying tasks to be performed should be flexible and
easy to use, and should minimize the chance of user errors. Previous
experience demonstrated the inadequacy of an ever-expanding number of
fixed-field control cards for specifying task parameters. For this reason,

a command language is required for task specification and for ensuring a
consistent means of communicating with all components of the system.

D. The user should be required to specify as 1ittle as possible to have a task
performed. To achieve this, the system should have several levels of
default values. These values are assumed for any parameters which are not
overtly specified by the user.

E. The system should be easy to maintain. In particular, it should be possible
for programmers maintaining the system to implement new capabilities, modify
the command language to accomodate new or revised capabilities, and trace
system errors with minimal effort. Facilities should be provided for monitoring
both user and system behavior.

F. The system should not be too expensive to use. While this might seem an
ovious goal, it needs to be emphasized that LEXICO was designed as a practical
system. In addition to demonstrating the feasibility of automating certain
tasks, our goal was to provide a useful and practical alternative to other
methods. For this reason, all design decisions had to include a careful

consideration of user costs.

-12-

These design goals were not always compatible with each other. Much
of the system's development consisted of ensuring that the primary goals,
efficiency and ease of use, would be satisfied. In some cases, entire

components of the system were replaced or eliminated to achieve these goals.

5. The User's View
The user of LEXICO works with one or more collections of texts.
A collection is composed of texts which the user wants to process in
similar ways. In addition to the texts themselves, a collection contains
a directory identifying and describing each text and may contain any of
the following:
(1) conventions to be used when entering or concording texts;
(2) spelling conversion rules to be used for headword classifi-
cation;
(3) a text form--base form conversion 1ist to be used for head-
word classification;
(4) concordances of texts;
(5) for each concorded text, a list of words occurring in the
text.
Features which may be common to all texts in a collection are called

collection defaults. Once specified for a collection, these features need

not be respecified for each text.
Figure 1 illustrates the components of a collection which are access-
ible by the user.

Insert Figure 1 about here

-13-

The typical processes which can occur for a collection of texts include:

(1) creation of a collection and, optionally, definition of collection
default values;

(2) entry of one or more texts into the collection, optionally pro-
ducing a Tisting of each text;

(3) correction of errors in texts (editing);

(4) concording texts;

(5) formation of a headword classification (lemmatization) process for
the collection by definition of spelling conversions and base form--text
form associations;

(6) headword classification of the words that occur in texts, pro-
ducing, for each text, a listing of the headword (base form) associated
with each text form;

(7) resorting of a concordance by base form
(8) generation of slips 7

(9) deletion of texts from the collection; and

(10) deletion of the collection from the system (after all processing
is complete).

In addition, users may at any time examine a summary (the collection
directory) of the processes performed on each text. Users may also obtain
listings of any text, of the spelling conversion rules and base form--text
form associations, or of the base forms associated with each word in a text.
The Tatter Tisting may be generated showing the contexts in which forms of
each base occur. Also, collection default values may be inspected or updated;
the headword classification process may be revised; and the text form--base

form associations of any text may be corrected.

-14-

System Commands_and Aids

The user enters commands to LEXICO from a remote terminal. Many
tasks are performed on-line with the results displayed immediately at the
same terminal. However, some tasks require so much time, generate so much
output, or cost so much, that they are performed off-line. In this case,
the user describes a task by commands entered at the terminal, but the
tasks are actually performed later and results printed at the computing
center.

Tasks are specified to the system by entering statements in the
LEXICO command language. Most tasks are specified in the system as func-

tional blocks. A block begins with a block header which is a command that

identifies the task (e.g., CREATE, ADD, EDIT). Subsequent commands specify
how the designated task is to be performed (e.g., delimiter specifications,
printing options, collating sequence). Following these commands and declara-
tions the END command is used to signify that the task has been completely
described. (Many tasks are specified in one command and therefore do not
require an END command.)

After some commands are entered, LEXICO asks a question of the user;
for example, the command

EDIT ;

is followed by the prompt, WHICH TEXT?.

During interaction, the user may enter special commands called user aids
to LEXICO for assistance in understanding error messages, questions, or requests

for information. These capabilities are especially suited to the novice user,

- 15 -

but, of course, may be used by anyone.
These user aids include

EXPLAIN ERROR (*err). If an error is made, the system displays a brief
description of that error. In response to *err, a more detailed explanation
is displayed. *err may be entered several times for progressively more de-
tailed explanations.

EXPLAIN QUESTION (*equ). Occasionally the system will solicit information
in the form of a brief question. By successively entering *equ, progressively
more detailed explanations of the solicited information are displayed.

EXAMPLE (*exa). Whenever the system solicits information or when an
error has been made, examples of correct input may be obtained with this
command.

MENU (*mnu). This command causes the system to display all commands
allowed in the block in which the user is working.

Figure 2 diagrams communication between LEXICO and a user.

- e ot wm e A e W s e e

directory
of
texts

collection
defaults

base-type
rules

text 1

text 2

concordance
to text 1

word }ist
from text 1

text n

concordance
to text 2

word list
from text 2

Figure 1

concordance
to text n

word 1ist
from text n

Components of a Collection which are accessible

to the User

FOUUP—

user

aids

—“~

/ \<
"‘\m‘: -

l term1na] ;

i

\M

T TR AR e

collection &

files

input
processor}

task

generator

interpreter

command

LEXICO ‘

\\,,.,_/

main

D

‘ computer

\ /

PNV e

Figure 2

User-system Relationships

- L?rinter

TEXT NAME: JOHN

1: 10 JOHN E FRANCESCO SEDEVANNO SUL BANCO [JOHN AND FRANCESCO
WERE SITTING ON A BENCH].

2: 20 FRANCESCO LAVORAVA NEGLI UFFICJ DEL BANCO [FRANCESCO WORKED
IN THE OFFICES OF THE BANK]; JOHN ERA UN UOMO SENZA PRINCIPJ-
[JOHN WAS A MAN WITHOUT PRINCIPLES].

3: 30 C'EFA UN BUCO NELLA SCARPA DI JOHN [THERE WAS A HOLE IN JOHN'S
SHOE], E COSI' VOLEVA UN NUOVO PAJO DI SCARPE [SOHE WANTED A
NEW P?IR OF SHOES]; MA NON AVEVA DENARO [BUT HE DIDN'T HAVE
MONEY].

4: 40 JOHN VOLEVA CHE FRANCESCO LO AIUTASSE DI RUBARE IL BANCO
[JOHN WNATED FRANCESCO TO HELP HIM ROB THE BANK].

5: 50 FRANCESCO LO HA CONSEGNATO AGLI UFFICII DEL BANCO [FRANCESCO
TURNED HIM IN AT THE OFFICES OF THE BANK].

6: 60 MORALE: DECISIONI FATTE SU UN BANCO NON TI FA PADRONE DEL

BANCO [MORAL: DECISIONS MADE ON A BENCH DON'T MAKE YOU BOSS
OF THE BANK (IT LOSES SOMETHING IN TRANSLATION]. L

Figure 3

Qutput from an ADD command

! !
1ndang 29uepL0dU0) t 43 INOISIJ3IG O!
‘.
Lt 141 vy3.d 6
y aunbiy
] 143 /71500 ¢
*CYNVE 3
Hi 40 S$3D1440 3yl LV NI WiH Q3N¥nL 03S3DNYHAD 0ONYE 1130 131440 179V OLYNOISNGD VH 01 0DSIINVHY {0G=5 | S 1
N ! $43 DLYNDISNOD £
[} 143 3Hd ¢
*CA3NOW 3AVH 1,NQIC 3H Lng) O¥YN3Q YAIAY NON YH {CS3IOHS 40 Y¥Ivd M3IN VY QIINVM 3H 0S] 34H¥VIS 1a Orv
d OAOAN NN YA3I0A 715023 3 3046 S,NHOr NT 370H v SYM 3¥3HL] NHOP 10 Vg¥¥IS v173n 0dNg NN V3D {0f=¢ t) !
C1 143 oong s
*CINOILYISNYNL NI O9NIHLIWOS §3507 L1) y¥NVE 3Hl 40 5508 NOA 3Ix¥W L,NOG WO
N3g ¥ NO 3gYW SNOISID3Q $YNO0W) OONYE 13g 3INONAYJ Y4 1l NON OONVE NA AS 3iilvd INOISIDIQ 131VYNON {09=9 { } 9
eCINOILVISNVYL NI ONIHLI3WOS 3507 LI} yNVE 3IHL 40 SS08 NOA Invw L.NOG HD
N3g Y NO 3aVW SNOISIDI3Q $1Y¥OW3 OONVE 13g 3INOMQYY ¥4 11 NON ODNYE NN NS 3Jilvy INOISID3G ¢3VHOW (09=9 1) S
..... o *CANVE 3
Hi 40 $3313440 34l LV NI WIH 03N¥nL 0DS3DNVHJ4I OINVE 130 [12144n 179V OLVYNIISNOD VH 07 0IS3ONVYHy4 tos=-s 1 h
*CANYE 3IHL
8048 WIH d73H Ol 00S3INVH4 Q3ILNVYM NHOMJ 0ONVE 11 3JYVENY Iq 3ssvinly 01 0353INVH4 3IHD YAIT0A NHOP {Oh=h 1) €
*LS3THIINIYL LNOHLIM NVW Vv SVUM NHOPJ rdIIONIMd VZINIS OWON NN VN
3 NHOr 1CuNYE 3HL 40 S331J440 3IHL NI Q3IxMOM 0DSIINVHLED 0InNvE 130 r2144n 193N YAVHOAVT 0DSIINVY4 (0Z=2 t) 4
TCHONTG V NO oNTIl1S 3J¥3m 02S3ONVHL ANV NHOp3 0DNVE NS ONNYA3Q3S 03S3ONV¥4 3 NHOP (gl=1 1) 1
[] HE D! OONVE b
Lt 143 YAIAV €
e SCANYE 3HYL
804 WIH mqux 0l 03s3ONVu3 g3LINvM NHOM] ODNVE 11 38VENy Ig 3gsviniv 07 05539nvdd IHD YAII0A NHOP {Oh=h | 1
c! HED) 3ssvinly 2z
C1 HER | {9y 1

LOOKUP JOHN (1)
ORIGINAL
1 AGLI

2 ATUTASSE

3 AVEVA
4 BANCO
BASE 1 : BANCO(=BANK)

BASE 2 :
6 CITATIONS.

5 BUCO

16 FA
17 FATTE

40 TI
41 UFFICII
42 UFFICJ

45 VOLEVA

BANCO (=BENCH)
NO BASE ASSOCIATIONS EXIST.

IN EXAMPLE
RESPELLED
AGLI

ATUTASSE

AVEVA
BANCO

BUCO

FA
FATTE

TI
UFFICII
UFFICII

VOLEVA

40 FORMS REMAIN UNMATCHED

DATE 080876 PAGE 1

BASE

no basetype rule exists for
"”9'17: 1 .

e

AIUTARE[there is a rule giving the !

base for "aiutasse',

HOMOGRAPH

LEXICO has not yet been told which
occurrences of '"banco" belong with
each base,

FARE

FARE -

UFFICIO wonds 41 and 42 are both.
matched by ;h@’nuﬁe

UFFICIO | ufficio:ugfiedl,

The number of words which have no associated bases includes "banco" until
each occurrence of "banco" is matched with an individual base,

Figure 5

Output from LOOKUP

text form

base form
//_, /

% V2
AVE HA

STOPWORD--FREQUENCY IS 1
EXAMPLE JOHN
. i
ZZcoﬂection \\
name text
Figure 6 name

S1ip for a Stopword

BANCO (=BANK) BANCO

(1 2-20) FRANCESCO LAVORAVA NEGLI UFFICJ DEL BANCO (FRAN-
CESCO WORKED IN THE OFFICES OF THE BANK]; JOHN ERA UN UOMO SENZA P-
RINCIPJ [JOHN WAS A MAN WITHOUT PRINCIPLES].

EXAMPLE JOHN

Figure 7

First Slip for a Keyword

| BACOGRANO BANCO

: 1 4-40) JOHN VOLEVA CHE FRANCESCO LO AIUTASSE DI RUBARE
] IL BANCO [JOHN WANTED FRANCESCO TO HELP HIM ROB THE BANK].

EXAMPLE JOHN

Figure 8

Second S1ip for the Same Keyword

* (1 4-40) encodes text code (1), citation sequence number (4), and
citation identifier (40).

*

BASE: ESSERE [F: 1]
RESPELLED: ERA
ORIGINAL: ERA

BASE: FARE [F: 1]
RESPELLED: FA
ORIGINAL: FA

T (1 6-60) MORALE: DECISIONI FATTE SU UN BANCO NON TI FA PADRONE
DEL BANCO [MORAL: DECISIONS MADE ON A BENCH DON'T MAKE YOU BOSS OF THE BANK
(IT LOSES SOMETHING IN TRANSLATION)].

BASE: FARE LF: 1]

RESPELLED: FATTE

ORIGINAL: FATTE

1 (1 6-60 MORALE: DECISIONI FATTE SU UN BANCO NON TI FA PADRONE
DEL BANCO [MORAL: DECISIONS MADE ON A BENCH DON'T MAKE YOU BOSS OF THE BANK
(IT LOSES SOMETHING IN TRANSLATION)].
Figure 9 -
Sample from a Base Concordance

* Frequency of occurrence for stopword (no citations given) or keyword
(citations given).

02IX37 40 SMaLp Jsugeaboud pue 4asn
0L a4nbiL4

',
1] e S3TT13
u andano
® teuor3ido
CAR P
spie
1asn o113
piom S
\\ ~ HYWWYHD -peay a
usab n
mme a1ty o113
tosn Rinezsp ISTT h:!
\ walsis —-piom
o]
Tuoh \\ Emmmwm .
ewuwe 1b o113 .
*Duo0D
Lo z/
-]
. L3tr13n ojut snjels
: 9113
. 1a39adasjur i
mmmwwu : sbenbueq Ixe3
113d4S3Y puewwo)
dONYITD 9AT3ORIB®3UT
arvad) So113 FEELY
waaqy WILISXS dorIad
1x93 ONILIYYIdO
B1IT1
JOVAINO « 9 { Mma31A S, 19uwe1boid
e 5035 OF ¥asn {uotjejuawsdul [eNn3loyY)

> S abn et Gy

(ma1A 13801)

JZ2ILYWNIAT Q¥0oNOD LIadg £0J1IX3a1

N J_=

*D33/S9TNI UOTIBZIJEWWAT
‘ssIna burpioduod
‘S3S11 piom ‘s3xel

NOTILOATTON

-16-

Text preparation

The rest of this section demonstrates the flow of a text through the
LEXICO system. The samples illustrate many of the system's capabilities,
but do not reflect normal interactive sessions. Typically, a user would
remain in a single task and would request fewer user aids. The text used
for these examples was written specifically to illustrate some of the capa-
bilities of the system. The first step is to prepare the text for input
into a collection. Shown below is a sample text as it exists, prior to
processing by LEXICO, on a card file called INPUT TEXT.

' JOHN’

(10) JOHN E FRANCESCO SEDEVANNO SUL BANCO

[JOHN AND FRANCESCO WERE SITTING ON A BENCH].

(20) FRANCESCO LAVORAVA NEGLI UFFICJ DEL BANCO

[FRANCESCO WORKED IN THE OFFICES OF THE BANK]:

JOHN ERA UN UOMO SENZA PRINCIPJ

[JOHN WAS A MAN WITHOUT PRINCIPLES].

(30 C'EFA UN BUCO NELLA SCARPA DI JOHN

[THERE WAS A HOLE IN JOHN'S SHOE].

E COSI/ VOLEVA UN NUOVO PAJO DI SCARPE

[SO HE WANTED A NEW PAIR OF SHOESI;

MA NON AVEVA DENARO [BUT HE DIDN'T HAVE MONEY].

(40) JOHN VOLEVA CHE FRANCESCO LO AIUTASSE DI RUBARE IL BANCO
[JOHN WNATED FRANCESCO TO HELP HIM ROB THE BANK].

(50) FRANCESCO LO HA CONSEGNATO AGLI UFFICII DEL BANCO
[FRANCESCO TURNED HIM IN AT THE OFFICES OF THE BANK].
(60) MORALE: DECISIONI FATTE SU UN BANCO NON TI FA
PADRONE DEL BANCO [MORAL: DECISIONS MADE ON A BENCH
DON'T MAKE YOU BOSS OF THE BANK (IT LOSES SOMETHING

IN TRANSLATION)].

The text begins with its title. The body of the text has been divided
into citations--in this case, sentences. Each citation has been given an
identifier. Here the'identifiers are multiples of ten, but the system allows
alphabetic or numeric identifiers of up to three levels. Typical identifiers
may be page and line numbers or psalm and verse numbers. Notice that the
identifiers are enclosed in parentheses. The English translation of the
text has been included but is enclosed in square brackets to indicate that
the English words are notes to the text which should not be concorded. The

text ends with '*~'. (Note that in citation 30 the symbol "/" marks the accent

in 'cosi'.)

-17 -

Several of these symbols, called delimiters, have special meaning to
LEXICO. A blank, comma, or semicolon marks the end of a word, a period
indicates the end of a sentence, and parentheses, square brackets and '**'
have the uses mentioned above. All of these symbols are standard delimiters,

called system defaults. However, a user may select other symbols to be

used for these purposes.

Entry of a text into a collection

Once the text has been prepared in this manner, it is ready to be
entered into a collection. The user creates a collection called "example"
and, with some foresight, specifies stopwords. These are words which will
be listed in a concordance only with the number of times they appeared in
the concorded text. Words not designated as stopwords are keywords, which
are Tisted in a concordance with each citation in which they occurred. The
commands for creating the collection are shown below. (In all examples
of dialogues between a user and LEXICO, user input is shown in Tower case

and is preceded by the symbol '>'. Answers to system questions are indented.)

-18-

>@Te*ico.

LEXICO VERSION 2.0
COLLECTION NAME?

08/07/76 12:17:55

->example

NEW COLLECTION MAY BE CREATED.

TASK COMMAND:
>create;

COLLECTION 'EXAMPLE 'TO BE CREATED:
YOU MAY ENTER COLLECTION DEFAULTS.

>add stopwords del di e era negli nella sul un
> 'c''era' cosi/ ma non aveva che 1o il ha

> agli su ti;

>end;

COLLECTION CREATED.

the user initiates interaction with LEXICO.

LEXICO responds
and asks for a collection name .

the user enters the collection name .

LEXICO recognizes that the user wants to
work in a new collection

LEXICO asks for a task to perform
the user wants to create a collection.,

LEXICO acknowledges

the usen entens the stopwonds; o'erna 48
entered as 'c"ena' beaause it contains
an apostrophe,

the user ends the CREATE block .

LEXICO creates the collection .

Having created a collection, the user continues in the same interactive

session, causing the text to be added to the collection as shown below.

TASK COMMAND:
>add john;
TEXT CODE ASSIGNED TO 'JOHN ' 1S 1.

>input on card file input.text;
>end;

CREATE BACKUP IMMEDIATELY BEFORE THIS
PROCESS? (Y OR N)

->n
WHEN? (I, T, 0, W)

—>*equ

LEXICO asks what to do next ,
the user wants to add a text called "John'l

from now on the text may be referred to as
"John'" or as "1"

the user tells LEXICO where to find the text,
the user has no further specifications

»

LEXICO asks if a copy of the collection
should be savedin case the computer goes
down while the text is being added.

the user does not want a backup |

LEXICO asks for a run priority ,

the user requests an explanation of the
question

-19-

THE CHARACTER YOU ENTER WILL DETERMINE WHEN LEXICO explains the options .
THE RUN WILL BE INITIATED:

[=>IMMEDIATELY T=>TODAY

0=>0VERNIGHT W=>WEEKEND

ANYTHING ELSE =>CANCEL RUN

(FOR COST IMPLICATIONS, PRESS EXPLAIN-QUESTION AGAIN)

WHEN? (I, T, 0, W)

->*equ the user wants more detail ,
NOTE: I=VERY EXPENSIVE T=LESS EXPENSIVE
0=INEXPENSIVE W=LEAST EXPENSIVE

(BUT NOT CHEAP)

->0 the user selects overnight priority .

RUN IDENTIFICATION: XD0848 (SAVERN0807*6122421) [LEXICO tells the user how to identify
the output at the computing center.

TASK COMMAND: LEXICO asks for the next task .

The output which results from these commands is shown in figure 3.

Insert figure 3 about here

Text editing
Now that the text has been added, the user notices it contains some errors.

These are corrected as follows.

-20-

>@le*ico
LEXICO VERSION 2.0 08/07/76 12:52:26
COLLECTION NAME?

->example
COLLECTION ACCESSIBLE; PROCEED LEXICO recognizes the collection created
above «
TASK COMMAND:
>edit john; the user wants to edit the text.
TEXT 'JOHN ' (TEXT CODE: 1) AVAILABLE
CURRENT CITATION IS SEQUENCE NUMBER 1; PROCEED

TO EDIT.

>*mnu the user requests a display of the editing
commands ,
THE FOLLOWING COMMANDS OR DECLARATIONS MAY BE

MADE WITHIN THIS BLOCK:

END; (TO END THE BLOCK)

COST;

MEMO 'NOTE ABOUT THE TEXT' ; _
COMMANDS TO MOVE THROUGH THE TEXT, LEXICO shows the types of commands and
COMMANDS TO ADD AND DELETE CITATIONS, gives some of them, showing altermate
COMMANDS TO MODIFY TEXT, forms «

COMMANDS PERTAINING TO DISPLAY OF TEXT,
COMMANDS ABOUT RELEVANT DELIMITERS.
(MATERIAL IN SQUARE BRACKETS IS OPTIONAL)
COMMANDS TO MOVE THROUGH THE TEXT ARE:

. /// \\\ ””G §\ gn, go to N and N, where N 18 a sequence
4/%OP H BOTTOM > <:GO TO N> ; number of a citation, allow changes

/ N \ N//' to be made to that citation.

NEXT [N]; UP [N]; OFFSET [-1 N 3
N U

FOR OTHER ALLOWABLE COMMANDS, PRESS
EXPLAIN-QUESTION (OR ENTER *EQU)

>3; the user selects the third citation.
ID: 30 LEXICO displays the citation and its
identifier.

C'EFA UN BUCO NELLA SCARPA DI JOHN [THERE WAS A HOLE IN JOHN'S SH
0E], E COSI/ VOLEVA UN NUOVO PAJO DI SCARPE [SO HE WANTED A NEW PA
IR OF SHOES]; MA NON AVENA DENARO [BUT HE DIDN'T HAVE MONEY].

>change f ro r; the user attempts to correct the spelling
of "e'era", but enters 'ro' instead of
"tO II.

-21-

UNRECOGNIZED KEYWORD OR PUNCTUATION: F LEXICO does not understand the previous
input.
>*err The user wants the error message eaplained,

I WAS EXPECTING A KEYWORD OR PUNCTUATION IN PLACE
OF THE ABOVE STRING
YOUR ERROR IS DUE TO:
1. A MISSPELLED KEYWORD. the keyword "to" was misspelled
2. A COMMAND NOT ALLOWED IN THIS BLOCK,
3. A WORD THAT ISN'T A KEYWORD, OR
4. INCORRECT OR OMITTED PUNCTUATION.

PRESS EXPLAIN-ERROR FOR CORRECTIVE MEASURES, beginning with the symbol where the error
EXAMPLE-KEY FOR EXAMPLES. occurred, the command is reentered .
>f to r;

C'ERA UN BUCO NELLA SCARPA DI JOHN [THERE WAS the corrected citation is displayed s
A HOLE IN JOHN'S SHOE], E COSI/ VOLEVA UN NUOVO

PAJO DI SCARPE [SO HE WANTED A NEW PIIR OF SHOES];
MA NON AVEVA DENARO [BUT HE DIDN'T HAVE MONEY].

>Next; the user continues to the next citation .
ID; 40 -
JOHN VOLEVA CHE FRANCESCO LO AIUTASSE DI RUBARE the citation 44 displayed.

IL BANCO [JOHN WNATED FRANCESCO TO HELP HIM ROB

THE BANK].

>c na to an; the spelling of "wanted" is corrected,
using "e" as an abbreviation for "change'

JOHN VOLEVA CHE FRANCESCO LO AIUTASSE DI RUBARE
IL BANCO [JOHN WANTED FRANCESCO TO HELP HIM ROB

THE BANK].
>end; all corrections are made so the block is

ended ,

-22-
Egncording

The corrected text is ready for concording. In the following

exchange, the user schedules the concordance.

>concord 1; The user refers to the text by text code

instead of text name,

TEXT'JOHN ! (TEXT CODE: 1)AVAILABLE:
YOU MAY ENTER CONCORDANCE SPECIFICATIONS.
>end;

CREATE BACKUP IMMEDIATELY BEFORE THIS PROCESS? (YOR N)

> n the user does not want a backup,
WHEN? (I, T, 0, W)

-0 he selects the overnight priority,
RUN IDENTIFICATION: XDO0851 (SAVERN0807*6125642)

For this text, it is unnecessary to enter other commands within the CONCORD block.,

However, at this point the user may specify, for example, that a set of delimiters

is to be used for this text which differs from those used for other texts in the

collection. Figure 4 shows part of the concordance generated as a result of this

block. It should be mentioned that for texts that do not require editing, there
is an ADD-CONCORD block which allows a text to be added and concorded in one run.

It is also possible to add, or to add and concord, several texts at one time.

Insert figure 4 about here

-23-

Spelling Conversion

One result of concording a text is to store in the collection an alpha-
betized 1ist of all the keywords and stopwords which appeared in the text.
Headword classification is the process of associating a base form or headword
with each entry in this list. When this has been completed, slips may be gen-
erated using this list and the concordance. An optional step in the headword
classification process is the standardization of spelling. When applying
spelling rules of the form new:old, LEXICO replaces every occurrence of the
string "old" with "new" in the word 1ist of a text. No change is made in
the body of the text. Blanks are used in spelling rules to indicate that
the rules apply only at the beginning or end of words. Spelling rules which
convert word-final "j" to "ii" and every other occurrence of “j" to "i", and
the application of these rules to the word list of the sample text, are shown

below.

TASK COMMAND:
>update;

COLLECTION 'EXAMPLE ' TO BE UPDATED;
YOU MAY ENTER COLLECTION DEFAULTS.

>add spelling rules ii:'j ', i:J;

>end;

TASK COMMAND:
>respell 1;

HERE AND NOW? (Y OR N)

> *equ
YOU CAN CAUSE A WORD LIST TO BE RESPELLED

IMMEDIATELY (HERE AND NOW) OR AT A LATER TIME,

-24-

AT THE COMPUTING CENTER, AT A REDUCED COST.

YOU WANT RESPELLING TO TAKE PLACE HERE AND NOW,
OTHERWISE, ENTER N.

ENTER Y (IN COLUMN 1).
HERE AND NOW? (Y OR N)

> Y

WANT A LISTING? (Y OR N)

._>y

CURRENT SPELLING RULES ARE:
7! . g
III| . lJ i

(WORDS THAT ARE CHANGED ARE MARKED WITH ***)

1 AGLI AGLI

2 AIUTASSE AIUTASSE
20 IL ' IL

21 JOHN TOHN
ok k

22 LAVORAVA LAVORAVA
32 PAJO PATO
* ko k

41 UFFICII UFFICII

the spelling rules are entered in an
UPDATE block.,

the user requests the rules to be applied
to the word list,

LEXICO asks if this should be done on-

line or off-line.

the user requests an explanation.

the user wants the RESPELL done on-line.
the user wants the original and respelled
forms to be displayed,

the system first displays the spelling
rules and then shows the word list-

42 UFFICJ

*kk

45 VOLEVA
RESPELLING COMPLETED.
TASK COMMAND:

>cleanup 1;

TEXT 'JOHN ! (TEXT CODE:

PROCEED WITH CLEANUP.
>type 21;
21 JOHN
>new respelled john;
21 JOHN

>end;

-25-

UFFICII

VOLEVA

1) AVAILABLE:

IOHN

JOHN

the CLEANUP block may be used o connect an
exception to the spelling rules,

the user selects the word to correct .
LEXICO displays the entry in the word list,
the user enters the correction,
the change is displayed,

the user ends the block ,

Since headwords are assigned to respelled forms rather than text forms, re-

spelling can greatly reduce the number of bases which must be specified for texts

which have many variant spellings.

Lemmatization

A base form may be associated with each entry in the word 1ist of a text

in either of two ways. Previously defined basetype rules may be applied to the

word list in an offline process called LOOKUP, or the bases may be entered ex-

plicitly in a CLEANUP block. Basetype rules may be entered as follows:

>add basetype rules

ufficio : ufficii,
fare : fa fatte,

aiutare : aiutasse,
'nel gli ' : negli;

>add homograph rule banco :banco(=bank)

banco(=bench);

in basetype nules, the base precedes
the colon.

basetype pairns are separated by
a comma; a semicofon ends
the entine List,

homoghaph rules permit more than one
base to be associated with a wond:
in these the bases follow the
colon,

Figure 5 shows the output of a LOOKUP performed on the sample text using

the basetype rules entered above.

Insert figure 5 about here

The CLEANUP block may be used to enter bases in the word list and to
associate citations with each occurrence of the homograph. In the following

sequence, the SHOW UNMATCHED command is used to have LEXICO display each entry

that has no base.

-27-

>show unmatched;
ENTER BASE FOR TYPE T AGLI
RESPELLED FORM IS AGLI

-> *equ
ENTER BASE (WITHOUT ';') OR '?' OR '=!
OR 'H' or 'R" or ';"'.

->*equ

? LEAVES TYPE UNMATCHED

= ENTERS A BASE WHICH IS THE SAME AS THE
RESPELLED TYPE, IF ANY EXISTS, AND OTHERWISE,
IS THE SAME AS THE ORIGINAL TYPE

H ALLOWS YOU TO ENTER HOMOGRAPHS

R REJECTS THE TYPE

; TERMINATES THE“SHOW UNMATCHED: PROCESS.
(FURTHER EXPLANATION AVAILABLE).

->A GLI

BASE IS A GLI

‘A GLI' : 'AGLI'
ADD BASETYPE RULE? (Y OR N)
>y

ENTER BASE FOR TYPE 3 AVEVA
RESPELLED FORM IS AVEVA
->avere
BASE IS AVERE
"AVERE' : "AVEVA'
ADD BASETYPE RULE? (Y OR N)
>y

4 BANCO BANCO *HOMOGRAPH*

BASE 1 : BANCO(=BANK)
BASE 2 : BANCO(=BENCH)

6 CITATIONS. NO BASE ASSOCIATIONS EXIST.

ENTER BASE 3

_>;

ENTER BASE NUMBER OR ;

->1

ENTER SEQUENCE NUMBERS FOR BASE 1 BANCO(=BANK)
(TERMINATE WITH ;)
-52-4 63

the show unmatched process begins.

the user asks for an explanation
the system displays the code ~ which may
be entered,

the usen asks what the codes mean.

the system explains.

the user enters the base for the first
word.

LEXICO formulates the corresponding base-
type rule and asks if it should be saved
in the collection for use in future
LOOKUPs (if other texts are processed)s

the second word, "atutasse' was assigned
a base during LOOKUP.

Zthe fourth word is a homograph, LEXICO
displays the the information it has,
and asks for additional bases.

the user does not want to add other bases.

he wants to associate citations with the
first bases

the second, third, fourth and sixth
occurrences of "banco" in the text
helona with the first base

-28-

ENTER BASE NUMBER OR ;
> 2
ENTER SEQUENCE NUMBERS FOR BASE 2 BANCO(=BENCH)

(TERMINATE WITH ;)

<> rest; all other occurrences of the word in the
text are matched with the second base.

4 BANCO BANCO *HOMOGRAPH* when all ceitations are matched, LEXICO
displays the results and continues
to the next word ,

BASE 1 : BANCO(=BANK)
CITATIONS 2 3 4 6
BASE 2 : BANCO(=BENCH)
CITATIONS: 1 5
ENTER BASE FOR TYPE 5 BUCO
RESPELLED FORM IS BUCO

> = = 45 the code fon enterning
a base identical to the nespelled
goxm,
BASE IS BUCO C-
‘BUCO' : 'BUCO’
ADD BASETYPE RULE? (Y OR N)
..>y

ENTER BASE FOR TYPE 6 CHE

- 29 -

As the headword classification process is completed, LEXICO
will output information in any of severé] forms. Figures 6, 7,
and 8 show slip output. Each slip is printed on a separate page and all
the slips are alphabetized by the spelling of the base form. Figure 9

show part of a base concordance.

Insert figures 6-9 here

Summary

The user sees a single system centered around a text collection,
Communication is established through an on-l1ine terminal, requests are
made, and results are observed either immediately on the terminal or at a
later time as output from the computer printer. Requests for all tasks are
made in the same form, viz., a combination of command statements and replies
to system prompts.

When uncertain, puzzled, or completely unsure, the user can request help
from LEXICO, either in the form of a list of legal statements for the
‘current block (MENU) or as an explanation of a specific action (EXPLAIN

ERROR, EXPLAIN QUESTION, EXAMPLE).

-30-

6. The Programmer's View
Although the user's view of LEXICO consists of a single system that operates

on a collection of texts, LEXICO is in fact a complex of many programs and files
that interact with one another. These components fall into at least five
cateyories: g

1) files representing the user's data,

2) system files used to support LEXICO functions,

3) an interactive program that interprets user commands and responds

accordingly,

4) several off-line programs that perform user-requested tasks, and

5) programs used to generate or interpret system files.

The ability of LEXICO to isolate a user from its own underlying com-
plexity is illustrated by the two views of the system shown in Figure 10.

Insert Figure 10 about here

-31-

LEXICO was designed both for a specific local environment and a more
diffuse expanded environment. The local environment was a UNIVAC 1108 which
was updated two years ago to a dual processor 1110 with .5 million characters
of core memory and almost 1.5 billion characters of random access, secondary
storage. At any time, up to 72 remote sites (keyboard terminals and Remote
Job Entry stations) may have simultaneous access to the 1110. At the time this
project began the system software for this machine included a variety of high
level and assembly languages, but the only high level language practical for
system development at that time was FORTRAN.

Operating system capabilities, although considerable expanded now, were
quite Timited when the 1110 was first installed. For example, random access
to disk files was possible only through non-supported I/0 routines and user—._
oriented aids such as message files and HELP capabilities were not available.

The expanded environment included users from outside the University of
Wisconsin campus who would use LEXICO either by remote access, or by sending
data initially processed at a local site, or by processing LEXICO output on
their own systems. Therefore, LEXICO needed to facilitate the entry of
data files produced on machines other than the UNIVAC 1110 and had to produce
output which would be readily compatible with other major systems, including a
microfiche processor.

For reasons primarily of convenience, the system was developed in

FORTRAN on the UNIVAC 1110 and was not written to be especially transportable.

- 32 -

This Tatter decision involved a switch from initial intentions. However,
we felt that an experimental system that would change frequently should
not be distibuted to other users, hence the added cost of generality
~could not be justified.

A further decision, which we have now begun to question, at least
in part, was to isolate the user from the various processors on the
UNIVAC 1110. We might have developed LEXICO in about half the time it
has required so far by utilizing several standard UNIVAC systems. But
this would have required the user to learn not only the procedures unique
to LEXICO, but also how to use the UNIVAC sort package, the text editor,
and a variety of other systems which were written by different programmers
and which utilize widely differing control languages, error handling, and
documentation. LEXICO was designed to give the user a single, integrated
system with consistent control commands, input and output formats, and
error handling. This goal we feel is still desirable. The degree to which
it can be realized with standard software components is something we are
now re-evaluating (see Section 7).

The current system consists of 18 separately executable subsystems
(programs). These are composed of 275 distinct functional modules (subroutines).
The entire system contains almost 27,000 lines of code, 95% of which are
FORTRAN, the remainder assembly language; this is equivalent to almost

100,000 machine instructions.

-33-

Components of the LEXICO System

A11 of the user's work centers on a collection, which LEXICO main-
tains internally as four separate files: a text file, a concordance file,
a word 1ist file, and a headword file. The text file contains 1) collection
default values, 2) a directory of all texts entered in the collection, 3) the
body of each text, 4) a table of identifiers associated with each text, and
5) text default values. The concordance file contains a directory and con-
cordances (corresponding to texts in the text file). The word list file
contains (for each concorded text) each keyword and stopword, its respelled
form (if any), and its base. The headword file contains headword
classification (basetype) rules.

The LEXICO command language is represented by a grammar, which
specifies allowable LEXICO commands and (indirectly) their resulting inter-

pretation. This grammar is coded in a concise format as shown below.

STATEMENT : %SHOW %DIR
78

HSHOW - SHOW

%SHOW S

%DIR : DIRECTORY
%*DIR : DIR

This example indicates that any of the commands

S DIR

SHOW DIR

S DIRECTORY

SHOW DIRECTORY ;
are to cause action number 78 to be performed. A LEXICO support program
produces from this grammar a condensed form, which is used at run time to

interpret user commands.

-34-

During interaction with a user, all system routines must provide user
aids to explain prompts, error messages, and user options. Al1 such messages
must be specified on a system file and are therefore treated consistently by
the interactive system. Messages are specified at increasing levels of detail,

each Tevel being displayed at the user's request. An example of such a
multi-level message (as specified by the programmer) is:

ESEQ13 ENTER CITATION:

ESEQ14 ENTER A NEW CITATION. USE AS
MANY LINES AS NECESSARY; TRAILING
BLANKS ARE IGNORED. TERMINATE
WITH A CITATION DELIMITER.

ESEQT5 SEE USER GUIDE 5, SECTION 1.3;

The Command Language Interpreter operates in conjunction with the
grammar and the User Aids file to communicate with the user. A1l collection-
related data is obtained from (and updated on) appropriate files of the
collection. Tasks that are scheduled for later processing take the form of
runstreams stored on system-generated files.

The operations performed by LEXICO to concord a text illustrate the
interpretation of user requests and resulting file management. When a user
enters a CONCORD statement, LEXICO retrieves from the text file all pertinent
defaults and searches the directory to ensure that the requested text exists.
If this is the first concordance to be generated in the collection, the con-
cordance file and word 1list file are created and initialized. When all
declarations have been entered, followed by an END statement, LEXICO creates
a system file to contain a runstream. Appropriate commands and data are
entered in the file and the user is prompted for a scheduling priority,

which is translated into a request to the operating system to schedule the

task.

-35-

The text directory (and possibly text defaults) are updated to reflect
scheduling of the concordance. Later, when the operating system begins

the actual task, an offline component of LEXICO ensures that the collection
(and text) still exist, and then begins to read citations from the text
file. In addition to several intermediate system files (e.g., for sorting),
the system generates a concordance in the concordance file and a new list
of words in the word list file (updating directories in each file). The
collection directory is updated and the concordance is output according

to the user's request (i.e., on paper, magnetic tape, or mass storage).
Finally, information about the task is logged on the system's statistics
file for Tlater analysis.

Programmer Aids

Several features of LEXICO were developed to simplify debugging and
modification and to encourage more consistent, reliable programs. These
were:
1) the ability to use LEXICO commandé to perform system maintenance func-
tions (e.g., updating system defaults, condensing the grammar);
2) diagnostic features selectable by entering commands during
interaction;
3) the requirement that all communication with the user be estab-
lished through user aids;
4) a set of utility routines for common collection-related opera-

tions.

-36-

7. Evaluation

The primary goal of harmonious and effective man-machine integration
was attempted in LEXICO through a variety of software mechanisms: a single
integrated system which shields the user from disparate computer components;
a terminal-independent communication Tanguage; operational aids for correct-
ing errors and reducing costs; learning aids; and special routines for
assisting the programmer in diagnosing software faults and in planning sys-
tem improvements. The contribution of each of these mechanisms towards the
primary design goal can not yet be evaluated quantitatively; nevertheless,
after approximately 600 man-hours of system usage, subjective assessment
can be offered. In the sections which follow, the value of each mechanism
mentioned above 1is discussed.

A Single, Integrated System‘

Even though LEXICO was developed over a five-year period by a team
of programmers, the outward appearance of a single, integrated system has
been achieved. A single communication structure is used throughout; aids,
such as MENU, are available regardiess of task; and error handling is the
same throughout the system. Users are not required to learn protocols for
independent systems. But the price of achieving this goal in cost and
time has been exceedingly high. For example, a sorting routine was pro-
grammed into LEXICO even though a general sort system was available on the
Univac 1110. Similarly, general 1110 systems for file handling and text

editing were ignored in favor of our own versions of these.

- 37 -

Where Univac 1110 systems had to be utilized, such as in initiating
running programs, elaborate procedures were implemented to isolate the
user from the 1110 protocols. A smaller system utilizing existing 1110
routines might have been developed in one-half the time which LEXICO required,
yet the user would have paid for this in increased complexity and increased
learning time. If the project were initiated tomorrow, some, but not very
many 1110 systems would probably be utilized.

Terminal-independent Communication Language

It was originally planned to allow a user to interact with LEXICO
in a command mode, a forms mode, and a prompt mode. The forms mode was
to nave cansisted of a series of displays, each showing some parameters
of the system. The user would simply type over the values he wanted to
change. This mode was discarded because the implementation would have
been so dependent on a specific type of terminal that the class of
potential users of the system would have been severely reduced. In the
prompt mode, the user would select a task and LEXICO would ask him all
relevant questions. Instead of permitting the user to alternate between
command language and prompt mode, LEXICO itself decides when each is to be
used. For example, the SHOW UNMATCHED process described in section 5 involves
a temporary transition.to prompt mode. Thus, instead of offering three
communication options, with high terminal dependence, two modes are employed,
but at LEXICO's option, with 1ittle terminal dependence.

The possibility of users selecting prompt or command mode was

considered, and components of each actually designed. However,

-38-

a full prompt mode was eventually seen as a crutch for the novice which might
actually inhibit the learning of the more efficient command mode. In addi-
tion, documentation for two independent modes was found to be clumsy. Hence,
we decided to have the system determine when commands are required and when
prompts are given. This solution appears to be satisfactory, especially with
the command abbreviations which users tend to use as they become more familiar
with the system. Users have, in fact, requested more extensive use of abbre-
viations.

Operational Aids

The user aids described in section 5 (explain error, explain question,
etc.) tend to be used by both experienced and inexperienced users. However,
writing explicit but complete messages proved to be exceedingly challenging. _.
With almost 1300 Tines of messages in LEXICO, obtaining sufficient user reactions
to each message so that acceptable wordings can be empirically derived will prob-
ably require a millenium of continual user experience to achieve. Common sense
and a proper appreciation for the simple and direct are welcomed allies in this
task.

Assisting the user in minimizing costs has been moderately successful,
yet has been limited by changes in the billing algorithms adopted by
the University computing center. The original design of LEXICO was predicated
on the availability of inexpensive disk packs and on cheap central memory usage
compared to I/P usage. However, user-owned disk packs have yet to be implemented
and central memory usage is now billed at a considerably higher rate relative to

I/0 usage.

-39-

Costs

The cost of performing different tasks is dependent on the priority
at which off-line jobs arerun and the time of day at whichon-line interac-
tion takes place. Since the system is still being modified, cost estimates
can not be extremely accurate. For example, a recent change reduced the
charge for initiating interaction with LEXICO from about $1.00 to $.43
during the day, or from $.35 to $.17 at night. Table 1 | gives the cost
of some tasks performed by the system in the last few months. A1l process-
ing was billed at the Teast expensive rate. Table 2 gives some typical
file charges.8

Insert Tables 1 and 2 about here

-40~

Learning Aids

The primary learning aids for LEXICO users are a series of seven user
guides: an overview, and a guide for each of the major processes. In addition,
a special guide describes features for system maintenance. These guides replaced
a single, thick reference manual whose bulkwasapsychological barrier to several
prospective users.

The multiple guide approach has been well accepted and will be continued.
Two problems remain to be resolved, however. The first, which will soon resolve
itself, is the difficulty of maintaining up-to-date documentation on a changing
system. Until recently, a guide more than a week old was an outdated guide.
The second problem is one inherent in all software documentation, and
that is the conflict created by attempting to make a single manual serve ~
as both a reference manual, which is intended for experienced users,
and a tutorial manual which is written for beginners. Expensive systems
can afford both; for LEXICO, a compromise was adopted whereby explanations
and examples were directed towards beginners, but format and summaries were

directed towards non-beginners.

Programmer Aids

In manufacturing it is inefficient to develop a process just for pro-
ducing a product. To be efficient, the process must also provide information
for its own improvement. From this standpoint, LEXICO has been highly efficient.
The programmer aids for diagnosing software faults and for gathering statistics
on user and system performance have been continually utilized. Their implementa-
tion absorbed a major portion of the total development cost of LEXICO, but their

utility has more than justified their expense.

-41-

8. Conclusions

There are several levels of success which software systems can attain.
The lowest level, but one achieved by remarkably few projects, is to have a
working system reasonably close to the projected completion date and costing
not too much more than what was originally allocated.

The second level of success is achieved when documentation is complete,
accurate, and readable; the system can be used without assistance from the
programmers; and the system is being properly maintained. Finally, the
third and highest level is attained when the system is found to be easy to
use and cost-efficient.

With some stretching of the semantic range of 'reasonable', LEXICO
can be classed as a success at the first level. On the second level, LEXICO
is not too far from the stated criteria. Documentation is now complete,
seemingly accuraie, and readable, at least to those users who have commented
on it. The University of Wisconsin Academic Computing Center is now offering
LEXICO as a Center system and has taken over responsibility for system main-
tenance. So long as the system earns revenue for the Center, it will
have proper maintenance. Finally, no major errors are known to exist in the
system, even though improvements in communications, particularly in error
messages, and in efficiency of file handling are still being done.

The degree of success at the third level, as discussed in the
preceding section, is somewhat more difficult to gauge, especially without
a larger user population. In time, success will be determined by the popu-
larity of the system. Perhaps a more stingent test will be whether
succeeding user-oriented systems adopt any of the man-machine techniques

employed by LEXICO.

Footnotes

The initial work on LEXICO was supported by Grant GJ-32764 from the
National Sciénce Foundation. Subsequent work has been supported by
the Graduate Research Committee at the University of Wisconsin, by

the Foundation for Education and Social Development, and by the Canada
%ounci] through a grant to the Medieval Centre at the University of
oronto.

The Dictionary of 01d English is described in A. Cameron and R.
Frank (eds.), A Plan for the Dictionary of 01d English. Toronto:
University of Toronto Press, 1973.

See, for example, the papers on computer processing published in
A. Cameron, R. Frank, and J. Leyerle (eds.), Concordances and Old
English Texts. Toronto: University of Toronto Press, 1970.

Academic dictionaries 1is intended here to designate historical dic-
tionaries and other works of primarily scholarly interest from dic-
tionaries produced for a mass audience. Admittedly, such a distinc-
tion cannot be applied rigorously, in that some commercial dictionaries
are as scholarly as any academically produced work.

The figures cited here are drawn from the introduction to Volume I
of The Oxford English Dictionary, pp. XIVff.

A general approach to these functions is now being implemented at
the University of Montreal (Bratley and Lusignan, 1975).

A slip is a listing of a base form with its associated text form and
a single context in which the text form occurs. Generally, slips are
printed in a manner that allows them to be filed in an index card
box for hand processing.

Since space limitations do not allow a full description of the University
of Wisconsin Computing Center charges and of the degree to which
computing is subsidized by the University, these figures should be
interpreted with caution.

References

Baker, F. T., and H. D. Mills, "Chief programmer teams," Datamation,
1973, 12, 58-61.

Ben-Hayyim, Z., "A Hebrew dictionary on historical principles," Ariel, 1966,
13, 14-20.

Bratley, P., and S. Lusignan, "Information processing in dictionary making:
some technical guidelines, "Publication No. 196, Department d'Informa-
tique | Université de Montreal [n.d.].

Busa, R., "An inventory of fifteen million words," in IBM Literary Data Pro-
cessing Conference Proceedings September 9-11, 1964, NY:MLA, 1964, pp.
64-78.

Hagerty, P. E., "The University of Maryland DUM (Demand User's Monitor) Sys-
tem," Proceedings of the USE Conference, Fall, 1972, pp. 29-80.

Mills, R. G., "Man-machine communication and problem solving," in Annual Re-
view of Information Science and Technology vol. 2, C. A. Cuadra (ed.),
1967.

Price, J. D., "An algorithm for analyzing Hebrew words," Computer Studies in
the Humanities and Verbal Behavior, 1969, 2, 137-65.

Venezky, R. L., "Storage, retrieval, and editing of information for a dic-
tionary," American Documentation, 1968, 19, 71-79.

Zampolli, A., "Intervento sul tema "I1 dizionario italiano di macchinaﬁ“
Calcolo, 1968, 5 (suppl. n. 2), 109-126.

Cost of

Total Printed

Process* Cost Output
add and concord a text of 3500 words $8.04 $4.65
generate a base concordance for 1000 words com- $1.64 $1.20
prising a text of 1100 words
RESPELL a word 1list with 1,083 entries
(without Tisting the word Tlist)

on-Tline $.31 -

off-1line $.12 -
LOOKUP a word list with 1,083 entries $1.00 $.68
1 1/2 hours of on-line interaction $7.88 -

*planned system modification should significantly reduce some of these charges

Table 1
Sample Costs for Using LEXICO

Data

A collection with 6 concorded texts totalling over
14,000 words. No basetype rules; concordances
stored on tape.

The concordances for the above collection (if
stored in the collection rather than on tape).

A file of about 8600 basetype rules.

Table 2

Typical Daily File Charges

Daily File Charge

$1.21

$3.44

$.79

